Properties

Label 1323.4.a.q.1.1
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.82843 q^{2} +6.65685 q^{4} +12.4142 q^{5} +5.14214 q^{8} -47.5269 q^{10} +39.4853 q^{11} -7.95837 q^{13} -72.9411 q^{16} -41.4558 q^{17} +112.113 q^{19} +82.6396 q^{20} -151.167 q^{22} -1.26703 q^{23} +29.1127 q^{25} +30.4680 q^{26} -37.1299 q^{29} +257.291 q^{31} +238.113 q^{32} +158.711 q^{34} -128.331 q^{37} -429.215 q^{38} +63.8356 q^{40} +130.823 q^{41} +493.966 q^{43} +262.848 q^{44} +4.85072 q^{46} -423.754 q^{47} -111.456 q^{50} -52.9777 q^{52} +577.941 q^{53} +490.179 q^{55} +142.149 q^{58} -294.715 q^{59} -67.5147 q^{61} -985.021 q^{62} -328.068 q^{64} -98.7969 q^{65} +987.776 q^{67} -275.966 q^{68} -715.663 q^{71} +340.260 q^{73} +491.306 q^{74} +746.318 q^{76} +81.6123 q^{79} -905.507 q^{80} -500.848 q^{82} +846.409 q^{83} -514.642 q^{85} -1891.11 q^{86} +203.039 q^{88} -1311.42 q^{89} -8.43442 q^{92} +1622.31 q^{94} +1391.79 q^{95} -715.980 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 22 q^{5} - 18 q^{8} - 30 q^{10} + 62 q^{11} - 64 q^{13} - 78 q^{16} - 32 q^{17} + 162 q^{19} + 38 q^{20} - 110 q^{22} + 170 q^{23} - 4 q^{25} - 72 q^{26} - 128 q^{29} + 178 q^{31}+ \cdots - 640 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.82843 −1.35355 −0.676777 0.736188i \(-0.736624\pi\)
−0.676777 + 0.736188i \(0.736624\pi\)
\(3\) 0 0
\(4\) 6.65685 0.832107
\(5\) 12.4142 1.11036 0.555181 0.831730i \(-0.312649\pi\)
0.555181 + 0.831730i \(0.312649\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 5.14214 0.227252
\(9\) 0 0
\(10\) −47.5269 −1.50293
\(11\) 39.4853 1.08230 0.541148 0.840927i \(-0.317990\pi\)
0.541148 + 0.840927i \(0.317990\pi\)
\(12\) 0 0
\(13\) −7.95837 −0.169789 −0.0848944 0.996390i \(-0.527055\pi\)
−0.0848944 + 0.996390i \(0.527055\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −72.9411 −1.13971
\(17\) −41.4558 −0.591442 −0.295721 0.955274i \(-0.595560\pi\)
−0.295721 + 0.955274i \(0.595560\pi\)
\(18\) 0 0
\(19\) 112.113 1.35371 0.676853 0.736118i \(-0.263343\pi\)
0.676853 + 0.736118i \(0.263343\pi\)
\(20\) 82.6396 0.923939
\(21\) 0 0
\(22\) −151.167 −1.46495
\(23\) −1.26703 −0.0114867 −0.00574334 0.999984i \(-0.501828\pi\)
−0.00574334 + 0.999984i \(0.501828\pi\)
\(24\) 0 0
\(25\) 29.1127 0.232902
\(26\) 30.4680 0.229818
\(27\) 0 0
\(28\) 0 0
\(29\) −37.1299 −0.237754 −0.118877 0.992909i \(-0.537929\pi\)
−0.118877 + 0.992909i \(0.537929\pi\)
\(30\) 0 0
\(31\) 257.291 1.49067 0.745337 0.666688i \(-0.232289\pi\)
0.745337 + 0.666688i \(0.232289\pi\)
\(32\) 238.113 1.31540
\(33\) 0 0
\(34\) 158.711 0.800549
\(35\) 0 0
\(36\) 0 0
\(37\) −128.331 −0.570202 −0.285101 0.958497i \(-0.592027\pi\)
−0.285101 + 0.958497i \(0.592027\pi\)
\(38\) −429.215 −1.83231
\(39\) 0 0
\(40\) 63.8356 0.252332
\(41\) 130.823 0.498321 0.249161 0.968462i \(-0.419845\pi\)
0.249161 + 0.968462i \(0.419845\pi\)
\(42\) 0 0
\(43\) 493.966 1.75184 0.875919 0.482458i \(-0.160256\pi\)
0.875919 + 0.482458i \(0.160256\pi\)
\(44\) 262.848 0.900586
\(45\) 0 0
\(46\) 4.85072 0.0155478
\(47\) −423.754 −1.31513 −0.657563 0.753399i \(-0.728413\pi\)
−0.657563 + 0.753399i \(0.728413\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −111.456 −0.315245
\(51\) 0 0
\(52\) −52.9777 −0.141282
\(53\) 577.941 1.49786 0.748928 0.662652i \(-0.230569\pi\)
0.748928 + 0.662652i \(0.230569\pi\)
\(54\) 0 0
\(55\) 490.179 1.20174
\(56\) 0 0
\(57\) 0 0
\(58\) 142.149 0.321812
\(59\) −294.715 −0.650315 −0.325158 0.945660i \(-0.605417\pi\)
−0.325158 + 0.945660i \(0.605417\pi\)
\(60\) 0 0
\(61\) −67.5147 −0.141711 −0.0708555 0.997487i \(-0.522573\pi\)
−0.0708555 + 0.997487i \(0.522573\pi\)
\(62\) −985.021 −2.01771
\(63\) 0 0
\(64\) −328.068 −0.640758
\(65\) −98.7969 −0.188527
\(66\) 0 0
\(67\) 987.776 1.80113 0.900567 0.434717i \(-0.143151\pi\)
0.900567 + 0.434717i \(0.143151\pi\)
\(68\) −275.966 −0.492143
\(69\) 0 0
\(70\) 0 0
\(71\) −715.663 −1.19625 −0.598124 0.801404i \(-0.704087\pi\)
−0.598124 + 0.801404i \(0.704087\pi\)
\(72\) 0 0
\(73\) 340.260 0.545540 0.272770 0.962079i \(-0.412060\pi\)
0.272770 + 0.962079i \(0.412060\pi\)
\(74\) 491.306 0.771799
\(75\) 0 0
\(76\) 746.318 1.12643
\(77\) 0 0
\(78\) 0 0
\(79\) 81.6123 0.116229 0.0581145 0.998310i \(-0.481491\pi\)
0.0581145 + 0.998310i \(0.481491\pi\)
\(80\) −905.507 −1.26548
\(81\) 0 0
\(82\) −500.848 −0.674505
\(83\) 846.409 1.11934 0.559672 0.828715i \(-0.310927\pi\)
0.559672 + 0.828715i \(0.310927\pi\)
\(84\) 0 0
\(85\) −514.642 −0.656714
\(86\) −1891.11 −2.37121
\(87\) 0 0
\(88\) 203.039 0.245954
\(89\) −1311.42 −1.56192 −0.780959 0.624582i \(-0.785269\pi\)
−0.780959 + 0.624582i \(0.785269\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −8.43442 −0.00955814
\(93\) 0 0
\(94\) 1622.31 1.78009
\(95\) 1391.79 1.50310
\(96\) 0 0
\(97\) −715.980 −0.749451 −0.374725 0.927136i \(-0.622263\pi\)
−0.374725 + 0.927136i \(0.622263\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 193.799 0.193799
\(101\) 766.230 0.754878 0.377439 0.926034i \(-0.376805\pi\)
0.377439 + 0.926034i \(0.376805\pi\)
\(102\) 0 0
\(103\) 1088.57 1.04136 0.520678 0.853753i \(-0.325679\pi\)
0.520678 + 0.853753i \(0.325679\pi\)
\(104\) −40.9230 −0.0385849
\(105\) 0 0
\(106\) −2212.61 −2.02743
\(107\) −1146.87 −1.03619 −0.518095 0.855323i \(-0.673359\pi\)
−0.518095 + 0.855323i \(0.673359\pi\)
\(108\) 0 0
\(109\) −1055.09 −0.927150 −0.463575 0.886058i \(-0.653434\pi\)
−0.463575 + 0.886058i \(0.653434\pi\)
\(110\) −1876.61 −1.62662
\(111\) 0 0
\(112\) 0 0
\(113\) 514.296 0.428149 0.214075 0.976817i \(-0.431326\pi\)
0.214075 + 0.976817i \(0.431326\pi\)
\(114\) 0 0
\(115\) −15.7291 −0.0127544
\(116\) −247.169 −0.197836
\(117\) 0 0
\(118\) 1128.29 0.880237
\(119\) 0 0
\(120\) 0 0
\(121\) 228.087 0.171365
\(122\) 258.475 0.191813
\(123\) 0 0
\(124\) 1712.75 1.24040
\(125\) −1190.37 −0.851756
\(126\) 0 0
\(127\) −1906.50 −1.33208 −0.666041 0.745915i \(-0.732012\pi\)
−0.666041 + 0.745915i \(0.732012\pi\)
\(128\) −648.917 −0.448099
\(129\) 0 0
\(130\) 378.237 0.255181
\(131\) −683.209 −0.455666 −0.227833 0.973700i \(-0.573164\pi\)
−0.227833 + 0.973700i \(0.573164\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3781.63 −2.43793
\(135\) 0 0
\(136\) −213.172 −0.134407
\(137\) 2558.84 1.59574 0.797870 0.602829i \(-0.205960\pi\)
0.797870 + 0.602829i \(0.205960\pi\)
\(138\) 0 0
\(139\) −2864.87 −1.74817 −0.874084 0.485774i \(-0.838538\pi\)
−0.874084 + 0.485774i \(0.838538\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2739.86 1.61919
\(143\) −314.238 −0.183762
\(144\) 0 0
\(145\) −460.939 −0.263992
\(146\) −1302.66 −0.738417
\(147\) 0 0
\(148\) −854.280 −0.474469
\(149\) −1924.34 −1.05804 −0.529020 0.848609i \(-0.677440\pi\)
−0.529020 + 0.848609i \(0.677440\pi\)
\(150\) 0 0
\(151\) 2036.83 1.09771 0.548857 0.835916i \(-0.315063\pi\)
0.548857 + 0.835916i \(0.315063\pi\)
\(152\) 576.499 0.307633
\(153\) 0 0
\(154\) 0 0
\(155\) 3194.07 1.65519
\(156\) 0 0
\(157\) 1761.91 0.895639 0.447820 0.894124i \(-0.352201\pi\)
0.447820 + 0.894124i \(0.352201\pi\)
\(158\) −312.447 −0.157322
\(159\) 0 0
\(160\) 2955.98 1.46057
\(161\) 0 0
\(162\) 0 0
\(163\) 3386.88 1.62749 0.813746 0.581221i \(-0.197425\pi\)
0.813746 + 0.581221i \(0.197425\pi\)
\(164\) 870.872 0.414657
\(165\) 0 0
\(166\) −3240.42 −1.51509
\(167\) 1536.82 0.712114 0.356057 0.934464i \(-0.384121\pi\)
0.356057 + 0.934464i \(0.384121\pi\)
\(168\) 0 0
\(169\) −2133.66 −0.971172
\(170\) 1970.27 0.888898
\(171\) 0 0
\(172\) 3288.26 1.45772
\(173\) −3428.13 −1.50657 −0.753284 0.657696i \(-0.771531\pi\)
−0.753284 + 0.657696i \(0.771531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2880.10 −1.23350
\(177\) 0 0
\(178\) 5020.69 2.11414
\(179\) −2456.95 −1.02593 −0.512964 0.858410i \(-0.671452\pi\)
−0.512964 + 0.858410i \(0.671452\pi\)
\(180\) 0 0
\(181\) 4389.03 1.80240 0.901199 0.433405i \(-0.142688\pi\)
0.901199 + 0.433405i \(0.142688\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.51523 −0.00261037
\(185\) −1593.13 −0.633130
\(186\) 0 0
\(187\) −1636.90 −0.640116
\(188\) −2820.87 −1.09433
\(189\) 0 0
\(190\) −5328.37 −2.03453
\(191\) 2997.74 1.13565 0.567824 0.823150i \(-0.307785\pi\)
0.567824 + 0.823150i \(0.307785\pi\)
\(192\) 0 0
\(193\) −2029.00 −0.756738 −0.378369 0.925655i \(-0.623515\pi\)
−0.378369 + 0.925655i \(0.623515\pi\)
\(194\) 2741.08 1.01442
\(195\) 0 0
\(196\) 0 0
\(197\) −1030.86 −0.372820 −0.186410 0.982472i \(-0.559685\pi\)
−0.186410 + 0.982472i \(0.559685\pi\)
\(198\) 0 0
\(199\) 1674.99 0.596667 0.298334 0.954462i \(-0.403569\pi\)
0.298334 + 0.954462i \(0.403569\pi\)
\(200\) 149.701 0.0529275
\(201\) 0 0
\(202\) −2933.45 −1.02177
\(203\) 0 0
\(204\) 0 0
\(205\) 1624.07 0.553317
\(206\) −4167.50 −1.40953
\(207\) 0 0
\(208\) 580.492 0.193509
\(209\) 4426.80 1.46511
\(210\) 0 0
\(211\) 1693.66 0.552588 0.276294 0.961073i \(-0.410894\pi\)
0.276294 + 0.961073i \(0.410894\pi\)
\(212\) 3847.27 1.24638
\(213\) 0 0
\(214\) 4390.72 1.40254
\(215\) 6132.19 1.94517
\(216\) 0 0
\(217\) 0 0
\(218\) 4039.34 1.25495
\(219\) 0 0
\(220\) 3263.05 0.999976
\(221\) 329.921 0.100420
\(222\) 0 0
\(223\) 3754.40 1.12741 0.563707 0.825975i \(-0.309375\pi\)
0.563707 + 0.825975i \(0.309375\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1968.94 −0.579523
\(227\) 3183.35 0.930778 0.465389 0.885106i \(-0.345914\pi\)
0.465389 + 0.885106i \(0.345914\pi\)
\(228\) 0 0
\(229\) 1956.24 0.564505 0.282253 0.959340i \(-0.408918\pi\)
0.282253 + 0.959340i \(0.408918\pi\)
\(230\) 60.2179 0.0172637
\(231\) 0 0
\(232\) −190.927 −0.0540301
\(233\) −4683.36 −1.31681 −0.658406 0.752663i \(-0.728769\pi\)
−0.658406 + 0.752663i \(0.728769\pi\)
\(234\) 0 0
\(235\) −5260.58 −1.46026
\(236\) −1961.87 −0.541132
\(237\) 0 0
\(238\) 0 0
\(239\) 5636.08 1.52539 0.762693 0.646760i \(-0.223877\pi\)
0.762693 + 0.646760i \(0.223877\pi\)
\(240\) 0 0
\(241\) −2048.77 −0.547606 −0.273803 0.961786i \(-0.588282\pi\)
−0.273803 + 0.961786i \(0.588282\pi\)
\(242\) −873.216 −0.231952
\(243\) 0 0
\(244\) −449.436 −0.117919
\(245\) 0 0
\(246\) 0 0
\(247\) −892.234 −0.229844
\(248\) 1323.03 0.338759
\(249\) 0 0
\(250\) 4557.23 1.15290
\(251\) 3702.47 0.931066 0.465533 0.885031i \(-0.345863\pi\)
0.465533 + 0.885031i \(0.345863\pi\)
\(252\) 0 0
\(253\) −50.0289 −0.0124320
\(254\) 7298.89 1.80304
\(255\) 0 0
\(256\) 5108.88 1.24728
\(257\) 5968.05 1.44855 0.724274 0.689512i \(-0.242175\pi\)
0.724274 + 0.689512i \(0.242175\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −657.677 −0.156874
\(261\) 0 0
\(262\) 2615.61 0.616768
\(263\) −3258.25 −0.763926 −0.381963 0.924178i \(-0.624752\pi\)
−0.381963 + 0.924178i \(0.624752\pi\)
\(264\) 0 0
\(265\) 7174.68 1.66316
\(266\) 0 0
\(267\) 0 0
\(268\) 6575.48 1.49874
\(269\) 1330.77 0.301630 0.150815 0.988562i \(-0.451810\pi\)
0.150815 + 0.988562i \(0.451810\pi\)
\(270\) 0 0
\(271\) 4821.61 1.08078 0.540391 0.841414i \(-0.318276\pi\)
0.540391 + 0.841414i \(0.318276\pi\)
\(272\) 3023.84 0.674070
\(273\) 0 0
\(274\) −9796.33 −2.15992
\(275\) 1149.52 0.252069
\(276\) 0 0
\(277\) 2772.23 0.601324 0.300662 0.953731i \(-0.402792\pi\)
0.300662 + 0.953731i \(0.402792\pi\)
\(278\) 10968.0 2.36624
\(279\) 0 0
\(280\) 0 0
\(281\) 8873.74 1.88385 0.941927 0.335817i \(-0.109012\pi\)
0.941927 + 0.335817i \(0.109012\pi\)
\(282\) 0 0
\(283\) 7071.33 1.48532 0.742662 0.669666i \(-0.233563\pi\)
0.742662 + 0.669666i \(0.233563\pi\)
\(284\) −4764.07 −0.995406
\(285\) 0 0
\(286\) 1203.04 0.248731
\(287\) 0 0
\(288\) 0 0
\(289\) −3194.41 −0.650196
\(290\) 1764.67 0.357328
\(291\) 0 0
\(292\) 2265.06 0.453947
\(293\) −3349.72 −0.667892 −0.333946 0.942592i \(-0.608380\pi\)
−0.333946 + 0.942592i \(0.608380\pi\)
\(294\) 0 0
\(295\) −3658.65 −0.722085
\(296\) −659.895 −0.129580
\(297\) 0 0
\(298\) 7367.19 1.43211
\(299\) 10.0835 0.00195031
\(300\) 0 0
\(301\) 0 0
\(302\) −7797.85 −1.48581
\(303\) 0 0
\(304\) −8177.63 −1.54283
\(305\) −838.142 −0.157350
\(306\) 0 0
\(307\) −812.535 −0.151055 −0.0755274 0.997144i \(-0.524064\pi\)
−0.0755274 + 0.997144i \(0.524064\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −12228.3 −2.24038
\(311\) −1128.24 −0.205712 −0.102856 0.994696i \(-0.532798\pi\)
−0.102856 + 0.994696i \(0.532798\pi\)
\(312\) 0 0
\(313\) 3454.94 0.623913 0.311956 0.950096i \(-0.399016\pi\)
0.311956 + 0.950096i \(0.399016\pi\)
\(314\) −6745.33 −1.21230
\(315\) 0 0
\(316\) 543.281 0.0967150
\(317\) 2710.05 0.480163 0.240081 0.970753i \(-0.422826\pi\)
0.240081 + 0.970753i \(0.422826\pi\)
\(318\) 0 0
\(319\) −1466.09 −0.257320
\(320\) −4072.71 −0.711473
\(321\) 0 0
\(322\) 0 0
\(323\) −4647.73 −0.800639
\(324\) 0 0
\(325\) −231.690 −0.0395441
\(326\) −12966.4 −2.20290
\(327\) 0 0
\(328\) 672.712 0.113245
\(329\) 0 0
\(330\) 0 0
\(331\) −4511.86 −0.749228 −0.374614 0.927181i \(-0.622225\pi\)
−0.374614 + 0.927181i \(0.622225\pi\)
\(332\) 5634.42 0.931413
\(333\) 0 0
\(334\) −5883.62 −0.963884
\(335\) 12262.5 1.99991
\(336\) 0 0
\(337\) −159.558 −0.0257913 −0.0128956 0.999917i \(-0.504105\pi\)
−0.0128956 + 0.999917i \(0.504105\pi\)
\(338\) 8168.58 1.31453
\(339\) 0 0
\(340\) −3425.89 −0.546457
\(341\) 10159.2 1.61335
\(342\) 0 0
\(343\) 0 0
\(344\) 2540.04 0.398109
\(345\) 0 0
\(346\) 13124.4 2.03922
\(347\) −9581.15 −1.48226 −0.741128 0.671364i \(-0.765709\pi\)
−0.741128 + 0.671364i \(0.765709\pi\)
\(348\) 0 0
\(349\) −3871.09 −0.593738 −0.296869 0.954918i \(-0.595942\pi\)
−0.296869 + 0.954918i \(0.595942\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 9401.95 1.42365
\(353\) 11436.0 1.72430 0.862151 0.506651i \(-0.169117\pi\)
0.862151 + 0.506651i \(0.169117\pi\)
\(354\) 0 0
\(355\) −8884.39 −1.32827
\(356\) −8729.96 −1.29968
\(357\) 0 0
\(358\) 9406.25 1.38865
\(359\) −10320.2 −1.51721 −0.758604 0.651552i \(-0.774118\pi\)
−0.758604 + 0.651552i \(0.774118\pi\)
\(360\) 0 0
\(361\) 5710.26 0.832520
\(362\) −16803.1 −2.43964
\(363\) 0 0
\(364\) 0 0
\(365\) 4224.06 0.605746
\(366\) 0 0
\(367\) −3489.21 −0.496281 −0.248140 0.968724i \(-0.579819\pi\)
−0.248140 + 0.968724i \(0.579819\pi\)
\(368\) 92.4184 0.0130914
\(369\) 0 0
\(370\) 6099.17 0.856976
\(371\) 0 0
\(372\) 0 0
\(373\) 1829.43 0.253952 0.126976 0.991906i \(-0.459473\pi\)
0.126976 + 0.991906i \(0.459473\pi\)
\(374\) 6266.74 0.866431
\(375\) 0 0
\(376\) −2179.00 −0.298866
\(377\) 295.494 0.0403679
\(378\) 0 0
\(379\) 11638.7 1.57742 0.788709 0.614767i \(-0.210750\pi\)
0.788709 + 0.614767i \(0.210750\pi\)
\(380\) 9264.95 1.25074
\(381\) 0 0
\(382\) −11476.6 −1.53716
\(383\) 6536.92 0.872118 0.436059 0.899918i \(-0.356374\pi\)
0.436059 + 0.899918i \(0.356374\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7767.87 1.02428
\(387\) 0 0
\(388\) −4766.17 −0.623623
\(389\) 10675.0 1.39137 0.695685 0.718347i \(-0.255101\pi\)
0.695685 + 0.718347i \(0.255101\pi\)
\(390\) 0 0
\(391\) 52.5257 0.00679370
\(392\) 0 0
\(393\) 0 0
\(394\) 3946.56 0.504631
\(395\) 1013.15 0.129056
\(396\) 0 0
\(397\) 7093.58 0.896767 0.448384 0.893841i \(-0.352000\pi\)
0.448384 + 0.893841i \(0.352000\pi\)
\(398\) −6412.57 −0.807621
\(399\) 0 0
\(400\) −2123.51 −0.265439
\(401\) −6753.23 −0.840999 −0.420499 0.907293i \(-0.638145\pi\)
−0.420499 + 0.907293i \(0.638145\pi\)
\(402\) 0 0
\(403\) −2047.62 −0.253100
\(404\) 5100.68 0.628139
\(405\) 0 0
\(406\) 0 0
\(407\) −5067.18 −0.617128
\(408\) 0 0
\(409\) 5081.62 0.614352 0.307176 0.951653i \(-0.400616\pi\)
0.307176 + 0.951653i \(0.400616\pi\)
\(410\) −6217.63 −0.748944
\(411\) 0 0
\(412\) 7246.43 0.866519
\(413\) 0 0
\(414\) 0 0
\(415\) 10507.5 1.24287
\(416\) −1894.99 −0.223340
\(417\) 0 0
\(418\) −16947.7 −1.98311
\(419\) −985.533 −0.114908 −0.0574540 0.998348i \(-0.518298\pi\)
−0.0574540 + 0.998348i \(0.518298\pi\)
\(420\) 0 0
\(421\) 3342.33 0.386924 0.193462 0.981108i \(-0.438028\pi\)
0.193462 + 0.981108i \(0.438028\pi\)
\(422\) −6484.04 −0.747957
\(423\) 0 0
\(424\) 2971.85 0.340391
\(425\) −1206.89 −0.137748
\(426\) 0 0
\(427\) 0 0
\(428\) −7634.57 −0.862221
\(429\) 0 0
\(430\) −23476.7 −2.63290
\(431\) −5799.54 −0.648153 −0.324076 0.946031i \(-0.605053\pi\)
−0.324076 + 0.946031i \(0.605053\pi\)
\(432\) 0 0
\(433\) −15279.1 −1.69576 −0.847881 0.530187i \(-0.822122\pi\)
−0.847881 + 0.530187i \(0.822122\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7023.58 −0.771488
\(437\) −142.050 −0.0155496
\(438\) 0 0
\(439\) 15279.9 1.66120 0.830602 0.556866i \(-0.187996\pi\)
0.830602 + 0.556866i \(0.187996\pi\)
\(440\) 2520.57 0.273098
\(441\) 0 0
\(442\) −1263.08 −0.135924
\(443\) −7466.99 −0.800829 −0.400415 0.916334i \(-0.631134\pi\)
−0.400415 + 0.916334i \(0.631134\pi\)
\(444\) 0 0
\(445\) −16280.3 −1.73429
\(446\) −14373.4 −1.52601
\(447\) 0 0
\(448\) 0 0
\(449\) −8177.88 −0.859550 −0.429775 0.902936i \(-0.641407\pi\)
−0.429775 + 0.902936i \(0.641407\pi\)
\(450\) 0 0
\(451\) 5165.60 0.539331
\(452\) 3423.59 0.356266
\(453\) 0 0
\(454\) −12187.2 −1.25986
\(455\) 0 0
\(456\) 0 0
\(457\) 15392.7 1.57558 0.787792 0.615941i \(-0.211224\pi\)
0.787792 + 0.615941i \(0.211224\pi\)
\(458\) −7489.31 −0.764088
\(459\) 0 0
\(460\) −104.707 −0.0106130
\(461\) −1000.16 −0.101046 −0.0505228 0.998723i \(-0.516089\pi\)
−0.0505228 + 0.998723i \(0.516089\pi\)
\(462\) 0 0
\(463\) −10927.3 −1.09684 −0.548420 0.836203i \(-0.684770\pi\)
−0.548420 + 0.836203i \(0.684770\pi\)
\(464\) 2708.30 0.270969
\(465\) 0 0
\(466\) 17929.9 1.78238
\(467\) 7131.43 0.706645 0.353322 0.935502i \(-0.385052\pi\)
0.353322 + 0.935502i \(0.385052\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 20139.7 1.97655
\(471\) 0 0
\(472\) −1515.46 −0.147786
\(473\) 19504.4 1.89601
\(474\) 0 0
\(475\) 3263.90 0.315280
\(476\) 0 0
\(477\) 0 0
\(478\) −21577.3 −2.06469
\(479\) −1517.76 −0.144777 −0.0723887 0.997376i \(-0.523062\pi\)
−0.0723887 + 0.997376i \(0.523062\pi\)
\(480\) 0 0
\(481\) 1021.31 0.0968139
\(482\) 7843.58 0.741214
\(483\) 0 0
\(484\) 1518.34 0.142594
\(485\) −8888.33 −0.832161
\(486\) 0 0
\(487\) −7631.37 −0.710083 −0.355042 0.934851i \(-0.615533\pi\)
−0.355042 + 0.934851i \(0.615533\pi\)
\(488\) −347.170 −0.0322042
\(489\) 0 0
\(490\) 0 0
\(491\) −504.070 −0.0463307 −0.0231653 0.999732i \(-0.507374\pi\)
−0.0231653 + 0.999732i \(0.507374\pi\)
\(492\) 0 0
\(493\) 1539.25 0.140618
\(494\) 3415.85 0.311106
\(495\) 0 0
\(496\) −18767.1 −1.69893
\(497\) 0 0
\(498\) 0 0
\(499\) −7564.63 −0.678636 −0.339318 0.940672i \(-0.610196\pi\)
−0.339318 + 0.940672i \(0.610196\pi\)
\(500\) −7924.09 −0.708752
\(501\) 0 0
\(502\) −14174.6 −1.26025
\(503\) 18408.9 1.63184 0.815919 0.578166i \(-0.196232\pi\)
0.815919 + 0.578166i \(0.196232\pi\)
\(504\) 0 0
\(505\) 9512.14 0.838187
\(506\) 191.532 0.0168274
\(507\) 0 0
\(508\) −12691.3 −1.10843
\(509\) 6253.92 0.544598 0.272299 0.962213i \(-0.412216\pi\)
0.272299 + 0.962213i \(0.412216\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −14367.6 −1.24017
\(513\) 0 0
\(514\) −22848.2 −1.96069
\(515\) 13513.7 1.15628
\(516\) 0 0
\(517\) −16732.1 −1.42336
\(518\) 0 0
\(519\) 0 0
\(520\) −508.027 −0.0428432
\(521\) −17119.3 −1.43955 −0.719777 0.694205i \(-0.755756\pi\)
−0.719777 + 0.694205i \(0.755756\pi\)
\(522\) 0 0
\(523\) −260.727 −0.0217988 −0.0108994 0.999941i \(-0.503469\pi\)
−0.0108994 + 0.999941i \(0.503469\pi\)
\(524\) −4548.02 −0.379163
\(525\) 0 0
\(526\) 12474.0 1.03401
\(527\) −10666.2 −0.881648
\(528\) 0 0
\(529\) −12165.4 −0.999868
\(530\) −27467.8 −2.25118
\(531\) 0 0
\(532\) 0 0
\(533\) −1041.14 −0.0846094
\(534\) 0 0
\(535\) −14237.5 −1.15055
\(536\) 5079.28 0.409312
\(537\) 0 0
\(538\) −5094.75 −0.408272
\(539\) 0 0
\(540\) 0 0
\(541\) 1950.11 0.154976 0.0774878 0.996993i \(-0.475310\pi\)
0.0774878 + 0.996993i \(0.475310\pi\)
\(542\) −18459.2 −1.46290
\(543\) 0 0
\(544\) −9871.16 −0.777983
\(545\) −13098.1 −1.02947
\(546\) 0 0
\(547\) 5871.97 0.458990 0.229495 0.973310i \(-0.426293\pi\)
0.229495 + 0.973310i \(0.426293\pi\)
\(548\) 17033.8 1.32783
\(549\) 0 0
\(550\) −4400.87 −0.341188
\(551\) −4162.74 −0.321849
\(552\) 0 0
\(553\) 0 0
\(554\) −10613.3 −0.813925
\(555\) 0 0
\(556\) −19071.0 −1.45466
\(557\) 13538.6 1.02989 0.514944 0.857224i \(-0.327813\pi\)
0.514944 + 0.857224i \(0.327813\pi\)
\(558\) 0 0
\(559\) −3931.16 −0.297442
\(560\) 0 0
\(561\) 0 0
\(562\) −33972.5 −2.54990
\(563\) −6173.58 −0.462141 −0.231071 0.972937i \(-0.574223\pi\)
−0.231071 + 0.972937i \(0.574223\pi\)
\(564\) 0 0
\(565\) 6384.58 0.475400
\(566\) −27072.1 −2.01047
\(567\) 0 0
\(568\) −3680.04 −0.271850
\(569\) 3100.80 0.228457 0.114229 0.993454i \(-0.463560\pi\)
0.114229 + 0.993454i \(0.463560\pi\)
\(570\) 0 0
\(571\) −17731.1 −1.29952 −0.649758 0.760141i \(-0.725130\pi\)
−0.649758 + 0.760141i \(0.725130\pi\)
\(572\) −2091.84 −0.152909
\(573\) 0 0
\(574\) 0 0
\(575\) −36.8866 −0.00267526
\(576\) 0 0
\(577\) 8204.13 0.591928 0.295964 0.955199i \(-0.404359\pi\)
0.295964 + 0.955199i \(0.404359\pi\)
\(578\) 12229.6 0.880075
\(579\) 0 0
\(580\) −3068.40 −0.219670
\(581\) 0 0
\(582\) 0 0
\(583\) 22820.2 1.62112
\(584\) 1749.66 0.123975
\(585\) 0 0
\(586\) 12824.1 0.904028
\(587\) −4420.79 −0.310844 −0.155422 0.987848i \(-0.549674\pi\)
−0.155422 + 0.987848i \(0.549674\pi\)
\(588\) 0 0
\(589\) 28845.6 2.01793
\(590\) 14006.9 0.977380
\(591\) 0 0
\(592\) 9360.60 0.649862
\(593\) −12927.5 −0.895228 −0.447614 0.894227i \(-0.647726\pi\)
−0.447614 + 0.894227i \(0.647726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12810.0 −0.880402
\(597\) 0 0
\(598\) −38.6038 −0.00263985
\(599\) 6766.30 0.461542 0.230771 0.973008i \(-0.425875\pi\)
0.230771 + 0.973008i \(0.425875\pi\)
\(600\) 0 0
\(601\) 13167.0 0.893667 0.446834 0.894617i \(-0.352552\pi\)
0.446834 + 0.894617i \(0.352552\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 13558.9 0.913415
\(605\) 2831.53 0.190278
\(606\) 0 0
\(607\) 2850.33 0.190595 0.0952977 0.995449i \(-0.469620\pi\)
0.0952977 + 0.995449i \(0.469620\pi\)
\(608\) 26695.5 1.78066
\(609\) 0 0
\(610\) 3208.77 0.212982
\(611\) 3372.39 0.223294
\(612\) 0 0
\(613\) 18140.6 1.19526 0.597628 0.801774i \(-0.296110\pi\)
0.597628 + 0.801774i \(0.296110\pi\)
\(614\) 3110.73 0.204461
\(615\) 0 0
\(616\) 0 0
\(617\) 14183.6 0.925462 0.462731 0.886499i \(-0.346870\pi\)
0.462731 + 0.886499i \(0.346870\pi\)
\(618\) 0 0
\(619\) −1427.97 −0.0927220 −0.0463610 0.998925i \(-0.514762\pi\)
−0.0463610 + 0.998925i \(0.514762\pi\)
\(620\) 21262.5 1.37729
\(621\) 0 0
\(622\) 4319.38 0.278442
\(623\) 0 0
\(624\) 0 0
\(625\) −18416.5 −1.17866
\(626\) −13227.0 −0.844499
\(627\) 0 0
\(628\) 11728.7 0.745267
\(629\) 5320.07 0.337242
\(630\) 0 0
\(631\) 12501.4 0.788703 0.394352 0.918960i \(-0.370969\pi\)
0.394352 + 0.918960i \(0.370969\pi\)
\(632\) 419.661 0.0264133
\(633\) 0 0
\(634\) −10375.2 −0.649926
\(635\) −23667.7 −1.47909
\(636\) 0 0
\(637\) 0 0
\(638\) 5612.80 0.348296
\(639\) 0 0
\(640\) −8055.79 −0.497552
\(641\) 564.946 0.0348113 0.0174056 0.999849i \(-0.494459\pi\)
0.0174056 + 0.999849i \(0.494459\pi\)
\(642\) 0 0
\(643\) 8594.12 0.527090 0.263545 0.964647i \(-0.415108\pi\)
0.263545 + 0.964647i \(0.415108\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 17793.5 1.08371
\(647\) −17721.5 −1.07682 −0.538410 0.842683i \(-0.680975\pi\)
−0.538410 + 0.842683i \(0.680975\pi\)
\(648\) 0 0
\(649\) −11636.9 −0.703834
\(650\) 887.007 0.0535250
\(651\) 0 0
\(652\) 22546.0 1.35425
\(653\) −31721.2 −1.90099 −0.950496 0.310738i \(-0.899424\pi\)
−0.950496 + 0.310738i \(0.899424\pi\)
\(654\) 0 0
\(655\) −8481.50 −0.505953
\(656\) −9542.40 −0.567939
\(657\) 0 0
\(658\) 0 0
\(659\) −31116.1 −1.83932 −0.919659 0.392718i \(-0.871535\pi\)
−0.919659 + 0.392718i \(0.871535\pi\)
\(660\) 0 0
\(661\) 22782.0 1.34057 0.670285 0.742104i \(-0.266172\pi\)
0.670285 + 0.742104i \(0.266172\pi\)
\(662\) 17273.3 1.01412
\(663\) 0 0
\(664\) 4352.35 0.254373
\(665\) 0 0
\(666\) 0 0
\(667\) 47.0447 0.00273100
\(668\) 10230.4 0.592555
\(669\) 0 0
\(670\) −46945.9 −2.70698
\(671\) −2665.84 −0.153373
\(672\) 0 0
\(673\) 17281.0 0.989799 0.494900 0.868950i \(-0.335205\pi\)
0.494900 + 0.868950i \(0.335205\pi\)
\(674\) 610.855 0.0349099
\(675\) 0 0
\(676\) −14203.5 −0.808119
\(677\) 22273.3 1.26445 0.632224 0.774786i \(-0.282142\pi\)
0.632224 + 0.774786i \(0.282142\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2646.36 −0.149240
\(681\) 0 0
\(682\) −38893.8 −2.18376
\(683\) −18801.5 −1.05332 −0.526662 0.850075i \(-0.676557\pi\)
−0.526662 + 0.850075i \(0.676557\pi\)
\(684\) 0 0
\(685\) 31766.0 1.77185
\(686\) 0 0
\(687\) 0 0
\(688\) −36030.4 −1.99658
\(689\) −4599.47 −0.254319
\(690\) 0 0
\(691\) 9169.88 0.504831 0.252416 0.967619i \(-0.418775\pi\)
0.252416 + 0.967619i \(0.418775\pi\)
\(692\) −22820.6 −1.25363
\(693\) 0 0
\(694\) 36680.7 2.00631
\(695\) −35565.2 −1.94110
\(696\) 0 0
\(697\) −5423.39 −0.294728
\(698\) 14820.2 0.803656
\(699\) 0 0
\(700\) 0 0
\(701\) 446.611 0.0240631 0.0120316 0.999928i \(-0.496170\pi\)
0.0120316 + 0.999928i \(0.496170\pi\)
\(702\) 0 0
\(703\) −14387.5 −0.771886
\(704\) −12953.9 −0.693490
\(705\) 0 0
\(706\) −43782.0 −2.33393
\(707\) 0 0
\(708\) 0 0
\(709\) −33315.3 −1.76471 −0.882357 0.470581i \(-0.844044\pi\)
−0.882357 + 0.470581i \(0.844044\pi\)
\(710\) 34013.3 1.79788
\(711\) 0 0
\(712\) −6743.52 −0.354950
\(713\) −325.995 −0.0171229
\(714\) 0 0
\(715\) −3901.02 −0.204042
\(716\) −16355.5 −0.853681
\(717\) 0 0
\(718\) 39510.0 2.05362
\(719\) −28284.2 −1.46707 −0.733535 0.679652i \(-0.762131\pi\)
−0.733535 + 0.679652i \(0.762131\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −21861.3 −1.12686
\(723\) 0 0
\(724\) 29217.1 1.49979
\(725\) −1080.95 −0.0553732
\(726\) 0 0
\(727\) −14352.0 −0.732170 −0.366085 0.930581i \(-0.619302\pi\)
−0.366085 + 0.930581i \(0.619302\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −16171.5 −0.819910
\(731\) −20477.8 −1.03611
\(732\) 0 0
\(733\) 22682.3 1.14296 0.571481 0.820615i \(-0.306369\pi\)
0.571481 + 0.820615i \(0.306369\pi\)
\(734\) 13358.2 0.671743
\(735\) 0 0
\(736\) −301.695 −0.0151096
\(737\) 39002.6 1.94936
\(738\) 0 0
\(739\) −22632.9 −1.12661 −0.563304 0.826250i \(-0.690470\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(740\) −10605.2 −0.526832
\(741\) 0 0
\(742\) 0 0
\(743\) 26923.7 1.32939 0.664693 0.747116i \(-0.268562\pi\)
0.664693 + 0.747116i \(0.268562\pi\)
\(744\) 0 0
\(745\) −23889.1 −1.17481
\(746\) −7003.83 −0.343738
\(747\) 0 0
\(748\) −10896.6 −0.532645
\(749\) 0 0
\(750\) 0 0
\(751\) 3753.03 0.182357 0.0911785 0.995835i \(-0.470937\pi\)
0.0911785 + 0.995835i \(0.470937\pi\)
\(752\) 30909.1 1.49886
\(753\) 0 0
\(754\) −1131.28 −0.0546401
\(755\) 25285.6 1.21886
\(756\) 0 0
\(757\) −17863.5 −0.857673 −0.428837 0.903382i \(-0.641076\pi\)
−0.428837 + 0.903382i \(0.641076\pi\)
\(758\) −44558.0 −2.13512
\(759\) 0 0
\(760\) 7156.78 0.341584
\(761\) 14086.4 0.671003 0.335502 0.942040i \(-0.391094\pi\)
0.335502 + 0.942040i \(0.391094\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 19955.5 0.944981
\(765\) 0 0
\(766\) −25026.1 −1.18046
\(767\) 2345.45 0.110416
\(768\) 0 0
\(769\) 3686.96 0.172894 0.0864469 0.996256i \(-0.472449\pi\)
0.0864469 + 0.996256i \(0.472449\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13506.7 −0.629687
\(773\) 20443.5 0.951233 0.475616 0.879653i \(-0.342225\pi\)
0.475616 + 0.879653i \(0.342225\pi\)
\(774\) 0 0
\(775\) 7490.45 0.347180
\(776\) −3681.67 −0.170315
\(777\) 0 0
\(778\) −40868.4 −1.88329
\(779\) 14667.0 0.674581
\(780\) 0 0
\(781\) −28258.2 −1.29469
\(782\) −201.091 −0.00919564
\(783\) 0 0
\(784\) 0 0
\(785\) 21872.7 0.994483
\(786\) 0 0
\(787\) 24461.5 1.10795 0.553977 0.832532i \(-0.313110\pi\)
0.553977 + 0.832532i \(0.313110\pi\)
\(788\) −6862.26 −0.310226
\(789\) 0 0
\(790\) −3878.78 −0.174685
\(791\) 0 0
\(792\) 0 0
\(793\) 537.307 0.0240610
\(794\) −27157.3 −1.21382
\(795\) 0 0
\(796\) 11150.2 0.496491
\(797\) −29004.8 −1.28909 −0.644543 0.764568i \(-0.722952\pi\)
−0.644543 + 0.764568i \(0.722952\pi\)
\(798\) 0 0
\(799\) 17567.1 0.777821
\(800\) 6932.10 0.306359
\(801\) 0 0
\(802\) 25854.3 1.13834
\(803\) 13435.3 0.590436
\(804\) 0 0
\(805\) 0 0
\(806\) 7839.16 0.342584
\(807\) 0 0
\(808\) 3940.06 0.171548
\(809\) −4947.16 −0.214997 −0.107499 0.994205i \(-0.534284\pi\)
−0.107499 + 0.994205i \(0.534284\pi\)
\(810\) 0 0
\(811\) 12576.5 0.544539 0.272270 0.962221i \(-0.412226\pi\)
0.272270 + 0.962221i \(0.412226\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 19399.3 0.835315
\(815\) 42045.5 1.80710
\(816\) 0 0
\(817\) 55379.8 2.37147
\(818\) −19454.6 −0.831559
\(819\) 0 0
\(820\) 10811.2 0.460419
\(821\) 18247.0 0.775669 0.387835 0.921729i \(-0.373223\pi\)
0.387835 + 0.921729i \(0.373223\pi\)
\(822\) 0 0
\(823\) −898.728 −0.0380652 −0.0190326 0.999819i \(-0.506059\pi\)
−0.0190326 + 0.999819i \(0.506059\pi\)
\(824\) 5597.56 0.236651
\(825\) 0 0
\(826\) 0 0
\(827\) 1079.33 0.0453833 0.0226916 0.999743i \(-0.492776\pi\)
0.0226916 + 0.999743i \(0.492776\pi\)
\(828\) 0 0
\(829\) −20197.3 −0.846176 −0.423088 0.906089i \(-0.639054\pi\)
−0.423088 + 0.906089i \(0.639054\pi\)
\(830\) −40227.2 −1.68230
\(831\) 0 0
\(832\) 2610.89 0.108794
\(833\) 0 0
\(834\) 0 0
\(835\) 19078.5 0.790703
\(836\) 29468.6 1.21913
\(837\) 0 0
\(838\) 3773.04 0.155534
\(839\) −15739.9 −0.647679 −0.323840 0.946112i \(-0.604974\pi\)
−0.323840 + 0.946112i \(0.604974\pi\)
\(840\) 0 0
\(841\) −23010.4 −0.943473
\(842\) −12795.9 −0.523723
\(843\) 0 0
\(844\) 11274.4 0.459812
\(845\) −26487.8 −1.07835
\(846\) 0 0
\(847\) 0 0
\(848\) −42155.7 −1.70711
\(849\) 0 0
\(850\) 4620.50 0.186449
\(851\) 162.599 0.00654972
\(852\) 0 0
\(853\) 15677.9 0.629310 0.314655 0.949206i \(-0.398111\pi\)
0.314655 + 0.949206i \(0.398111\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5897.38 −0.235477
\(857\) 27079.5 1.07937 0.539684 0.841868i \(-0.318544\pi\)
0.539684 + 0.841868i \(0.318544\pi\)
\(858\) 0 0
\(859\) −10171.2 −0.404000 −0.202000 0.979386i \(-0.564744\pi\)
−0.202000 + 0.979386i \(0.564744\pi\)
\(860\) 40821.1 1.61859
\(861\) 0 0
\(862\) 22203.1 0.877309
\(863\) 2410.93 0.0950974 0.0475487 0.998869i \(-0.484859\pi\)
0.0475487 + 0.998869i \(0.484859\pi\)
\(864\) 0 0
\(865\) −42557.6 −1.67283
\(866\) 58494.8 2.29530
\(867\) 0 0
\(868\) 0 0
\(869\) 3222.48 0.125794
\(870\) 0 0
\(871\) −7861.08 −0.305813
\(872\) −5425.42 −0.210697
\(873\) 0 0
\(874\) 543.827 0.0210472
\(875\) 0 0
\(876\) 0 0
\(877\) 30684.5 1.18146 0.590731 0.806869i \(-0.298839\pi\)
0.590731 + 0.806869i \(0.298839\pi\)
\(878\) −58497.9 −2.24853
\(879\) 0 0
\(880\) −35754.2 −1.36963
\(881\) 7294.27 0.278944 0.139472 0.990226i \(-0.455459\pi\)
0.139472 + 0.990226i \(0.455459\pi\)
\(882\) 0 0
\(883\) −33437.6 −1.27437 −0.637183 0.770713i \(-0.719900\pi\)
−0.637183 + 0.770713i \(0.719900\pi\)
\(884\) 2196.24 0.0835604
\(885\) 0 0
\(886\) 28586.8 1.08396
\(887\) −7420.79 −0.280908 −0.140454 0.990087i \(-0.544856\pi\)
−0.140454 + 0.990087i \(0.544856\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 62328.0 2.34746
\(891\) 0 0
\(892\) 24992.5 0.938129
\(893\) −47508.2 −1.78029
\(894\) 0 0
\(895\) −30501.1 −1.13915
\(896\) 0 0
\(897\) 0 0
\(898\) 31308.4 1.16345
\(899\) −9553.22 −0.354413
\(900\) 0 0
\(901\) −23959.0 −0.885895
\(902\) −19776.1 −0.730014
\(903\) 0 0
\(904\) 2644.58 0.0972979
\(905\) 54486.4 2.00131
\(906\) 0 0
\(907\) −15062.0 −0.551406 −0.275703 0.961243i \(-0.588911\pi\)
−0.275703 + 0.961243i \(0.588911\pi\)
\(908\) 21191.1 0.774506
\(909\) 0 0
\(910\) 0 0
\(911\) −34458.6 −1.25320 −0.626600 0.779341i \(-0.715554\pi\)
−0.626600 + 0.779341i \(0.715554\pi\)
\(912\) 0 0
\(913\) 33420.7 1.21146
\(914\) −58930.0 −2.13264
\(915\) 0 0
\(916\) 13022.4 0.469729
\(917\) 0 0
\(918\) 0 0
\(919\) 1282.11 0.0460205 0.0230102 0.999735i \(-0.492675\pi\)
0.0230102 + 0.999735i \(0.492675\pi\)
\(920\) −80.8814 −0.00289846
\(921\) 0 0
\(922\) 3829.04 0.136771
\(923\) 5695.51 0.203109
\(924\) 0 0
\(925\) −3736.06 −0.132801
\(926\) 41834.5 1.48463
\(927\) 0 0
\(928\) −8841.11 −0.312741
\(929\) 48599.8 1.71637 0.858185 0.513341i \(-0.171592\pi\)
0.858185 + 0.513341i \(0.171592\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −31176.5 −1.09573
\(933\) 0 0
\(934\) −27302.2 −0.956482
\(935\) −20320.8 −0.710760
\(936\) 0 0
\(937\) 12513.3 0.436278 0.218139 0.975918i \(-0.430001\pi\)
0.218139 + 0.975918i \(0.430001\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −35018.9 −1.21510
\(941\) 39362.5 1.36363 0.681817 0.731522i \(-0.261190\pi\)
0.681817 + 0.731522i \(0.261190\pi\)
\(942\) 0 0
\(943\) −165.757 −0.00572405
\(944\) 21496.8 0.741168
\(945\) 0 0
\(946\) −74671.0 −2.56635
\(947\) 33893.8 1.16304 0.581520 0.813532i \(-0.302458\pi\)
0.581520 + 0.813532i \(0.302458\pi\)
\(948\) 0 0
\(949\) −2707.91 −0.0926266
\(950\) −12495.6 −0.426749
\(951\) 0 0
\(952\) 0 0
\(953\) 30224.1 1.02734 0.513669 0.857988i \(-0.328286\pi\)
0.513669 + 0.857988i \(0.328286\pi\)
\(954\) 0 0
\(955\) 37214.6 1.26098
\(956\) 37518.5 1.26928
\(957\) 0 0
\(958\) 5810.65 0.195964
\(959\) 0 0
\(960\) 0 0
\(961\) 36407.9 1.22211
\(962\) −3909.99 −0.131043
\(963\) 0 0
\(964\) −13638.4 −0.455667
\(965\) −25188.4 −0.840252
\(966\) 0 0
\(967\) 47216.8 1.57021 0.785103 0.619366i \(-0.212610\pi\)
0.785103 + 0.619366i \(0.212610\pi\)
\(968\) 1172.86 0.0389432
\(969\) 0 0
\(970\) 34028.3 1.12637
\(971\) −32285.7 −1.06704 −0.533521 0.845787i \(-0.679132\pi\)
−0.533521 + 0.845787i \(0.679132\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 29216.2 0.961136
\(975\) 0 0
\(976\) 4924.60 0.161509
\(977\) 3612.93 0.118309 0.0591545 0.998249i \(-0.481160\pi\)
0.0591545 + 0.998249i \(0.481160\pi\)
\(978\) 0 0
\(979\) −51782.0 −1.69046
\(980\) 0 0
\(981\) 0 0
\(982\) 1929.80 0.0627111
\(983\) −25683.7 −0.833350 −0.416675 0.909056i \(-0.636805\pi\)
−0.416675 + 0.909056i \(0.636805\pi\)
\(984\) 0 0
\(985\) −12797.3 −0.413964
\(986\) −5892.92 −0.190333
\(987\) 0 0
\(988\) −5939.47 −0.191255
\(989\) −625.868 −0.0201228
\(990\) 0 0
\(991\) 5948.30 0.190670 0.0953351 0.995445i \(-0.469608\pi\)
0.0953351 + 0.995445i \(0.469608\pi\)
\(992\) 61264.4 1.96083
\(993\) 0 0
\(994\) 0 0
\(995\) 20793.7 0.662516
\(996\) 0 0
\(997\) 31203.4 0.991196 0.495598 0.868552i \(-0.334949\pi\)
0.495598 + 0.868552i \(0.334949\pi\)
\(998\) 28960.7 0.918571
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.q.1.1 yes 2
3.2 odd 2 1323.4.a.v.1.2 yes 2
7.6 odd 2 1323.4.a.p.1.1 2
21.20 even 2 1323.4.a.w.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.p.1.1 2 7.6 odd 2
1323.4.a.q.1.1 yes 2 1.1 even 1 trivial
1323.4.a.v.1.2 yes 2 3.2 odd 2
1323.4.a.w.1.2 yes 2 21.20 even 2