Properties

Label 1331.2.a.e.1.20
Level $1331$
Weight $2$
Character 1331.1
Self dual yes
Analytic conductor $10.628$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1331,2,Mod(1,1331)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1331, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1331.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1331 = 11^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1331.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6280885090\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 1331.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00638 q^{2} -2.20960 q^{3} +2.02557 q^{4} -3.12320 q^{5} -4.43331 q^{6} +0.406578 q^{7} +0.0513041 q^{8} +1.88235 q^{9} -6.26633 q^{10} -4.47571 q^{12} +1.59878 q^{13} +0.815751 q^{14} +6.90104 q^{15} -3.94821 q^{16} +0.870785 q^{17} +3.77672 q^{18} +7.69273 q^{19} -6.32626 q^{20} -0.898376 q^{21} +5.45997 q^{23} -0.113362 q^{24} +4.75438 q^{25} +3.20776 q^{26} +2.46956 q^{27} +0.823552 q^{28} -9.13391 q^{29} +13.8461 q^{30} +6.93772 q^{31} -8.02422 q^{32} +1.74713 q^{34} -1.26982 q^{35} +3.81284 q^{36} +7.90215 q^{37} +15.4346 q^{38} -3.53266 q^{39} -0.160233 q^{40} -2.89614 q^{41} -1.80249 q^{42} +5.29356 q^{43} -5.87896 q^{45} +10.9548 q^{46} +4.44000 q^{47} +8.72397 q^{48} -6.83469 q^{49} +9.53910 q^{50} -1.92409 q^{51} +3.23843 q^{52} +4.44799 q^{53} +4.95488 q^{54} +0.0208591 q^{56} -16.9979 q^{57} -18.3261 q^{58} -3.39440 q^{59} +13.9785 q^{60} +14.1754 q^{61} +13.9197 q^{62} +0.765323 q^{63} -8.20324 q^{64} -4.99330 q^{65} +5.40601 q^{67} +1.76384 q^{68} -12.0644 q^{69} -2.54775 q^{70} -1.81572 q^{71} +0.0965723 q^{72} +5.78453 q^{73} +15.8547 q^{74} -10.5053 q^{75} +15.5822 q^{76} -7.08787 q^{78} -15.7267 q^{79} +12.3310 q^{80} -11.1038 q^{81} -5.81077 q^{82} -9.70962 q^{83} -1.81972 q^{84} -2.71964 q^{85} +10.6209 q^{86} +20.1823 q^{87} -1.07269 q^{89} -11.7954 q^{90} +0.650027 q^{91} +11.0596 q^{92} -15.3296 q^{93} +8.90833 q^{94} -24.0259 q^{95} +17.7303 q^{96} +9.44446 q^{97} -13.7130 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 5 q^{2} - 3 q^{3} + 25 q^{4} - 3 q^{5} + 15 q^{6} + 19 q^{7} + 9 q^{8} + 22 q^{9} + 25 q^{10} - 12 q^{12} + 46 q^{13} - 12 q^{14} - 15 q^{15} + 13 q^{16} + 14 q^{17} + 6 q^{18} + 45 q^{19} - 24 q^{20}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00638 1.41873 0.709363 0.704843i \(-0.248983\pi\)
0.709363 + 0.704843i \(0.248983\pi\)
\(3\) −2.20960 −1.27572 −0.637858 0.770154i \(-0.720179\pi\)
−0.637858 + 0.770154i \(0.720179\pi\)
\(4\) 2.02557 1.01279
\(5\) −3.12320 −1.39674 −0.698369 0.715738i \(-0.746090\pi\)
−0.698369 + 0.715738i \(0.746090\pi\)
\(6\) −4.43331 −1.80989
\(7\) 0.406578 0.153672 0.0768360 0.997044i \(-0.475518\pi\)
0.0768360 + 0.997044i \(0.475518\pi\)
\(8\) 0.0513041 0.0181387
\(9\) 1.88235 0.627451
\(10\) −6.26633 −1.98159
\(11\) 0 0
\(12\) −4.47571 −1.29203
\(13\) 1.59878 0.443421 0.221710 0.975113i \(-0.428836\pi\)
0.221710 + 0.975113i \(0.428836\pi\)
\(14\) 0.815751 0.218019
\(15\) 6.90104 1.78184
\(16\) −3.94821 −0.987051
\(17\) 0.870785 0.211196 0.105598 0.994409i \(-0.466324\pi\)
0.105598 + 0.994409i \(0.466324\pi\)
\(18\) 3.77672 0.890181
\(19\) 7.69273 1.76483 0.882417 0.470469i \(-0.155915\pi\)
0.882417 + 0.470469i \(0.155915\pi\)
\(20\) −6.32626 −1.41460
\(21\) −0.898376 −0.196042
\(22\) 0 0
\(23\) 5.45997 1.13848 0.569242 0.822170i \(-0.307237\pi\)
0.569242 + 0.822170i \(0.307237\pi\)
\(24\) −0.113362 −0.0231399
\(25\) 4.75438 0.950876
\(26\) 3.20776 0.629093
\(27\) 2.46956 0.475267
\(28\) 0.823552 0.155637
\(29\) −9.13391 −1.69612 −0.848062 0.529897i \(-0.822231\pi\)
−0.848062 + 0.529897i \(0.822231\pi\)
\(30\) 13.8461 2.52794
\(31\) 6.93772 1.24605 0.623026 0.782201i \(-0.285903\pi\)
0.623026 + 0.782201i \(0.285903\pi\)
\(32\) −8.02422 −1.41849
\(33\) 0 0
\(34\) 1.74713 0.299630
\(35\) −1.26982 −0.214639
\(36\) 3.81284 0.635473
\(37\) 7.90215 1.29911 0.649553 0.760317i \(-0.274956\pi\)
0.649553 + 0.760317i \(0.274956\pi\)
\(38\) 15.4346 2.50382
\(39\) −3.53266 −0.565679
\(40\) −0.160233 −0.0253350
\(41\) −2.89614 −0.452301 −0.226151 0.974092i \(-0.572614\pi\)
−0.226151 + 0.974092i \(0.572614\pi\)
\(42\) −1.80249 −0.278130
\(43\) 5.29356 0.807261 0.403630 0.914922i \(-0.367748\pi\)
0.403630 + 0.914922i \(0.367748\pi\)
\(44\) 0 0
\(45\) −5.87896 −0.876384
\(46\) 10.9548 1.61520
\(47\) 4.44000 0.647640 0.323820 0.946119i \(-0.395033\pi\)
0.323820 + 0.946119i \(0.395033\pi\)
\(48\) 8.72397 1.25920
\(49\) −6.83469 −0.976385
\(50\) 9.53910 1.34903
\(51\) −1.92409 −0.269427
\(52\) 3.23843 0.449090
\(53\) 4.44799 0.610979 0.305489 0.952196i \(-0.401180\pi\)
0.305489 + 0.952196i \(0.401180\pi\)
\(54\) 4.95488 0.674274
\(55\) 0 0
\(56\) 0.0208591 0.00278741
\(57\) −16.9979 −2.25143
\(58\) −18.3261 −2.40634
\(59\) −3.39440 −0.441913 −0.220956 0.975284i \(-0.570918\pi\)
−0.220956 + 0.975284i \(0.570918\pi\)
\(60\) 13.9785 1.80462
\(61\) 14.1754 1.81497 0.907486 0.420081i \(-0.137998\pi\)
0.907486 + 0.420081i \(0.137998\pi\)
\(62\) 13.9197 1.76781
\(63\) 0.765323 0.0964216
\(64\) −8.20324 −1.02540
\(65\) −4.99330 −0.619342
\(66\) 0 0
\(67\) 5.40601 0.660449 0.330224 0.943902i \(-0.392876\pi\)
0.330224 + 0.943902i \(0.392876\pi\)
\(68\) 1.76384 0.213897
\(69\) −12.0644 −1.45238
\(70\) −2.54775 −0.304515
\(71\) −1.81572 −0.215486 −0.107743 0.994179i \(-0.534362\pi\)
−0.107743 + 0.994179i \(0.534362\pi\)
\(72\) 0.0965723 0.0113812
\(73\) 5.78453 0.677028 0.338514 0.940961i \(-0.390076\pi\)
0.338514 + 0.940961i \(0.390076\pi\)
\(74\) 15.8547 1.84308
\(75\) −10.5053 −1.21305
\(76\) 15.5822 1.78740
\(77\) 0 0
\(78\) −7.08787 −0.802543
\(79\) −15.7267 −1.76939 −0.884696 0.466168i \(-0.845634\pi\)
−0.884696 + 0.466168i \(0.845634\pi\)
\(80\) 12.3310 1.37865
\(81\) −11.1038 −1.23376
\(82\) −5.81077 −0.641692
\(83\) −9.70962 −1.06577 −0.532885 0.846188i \(-0.678892\pi\)
−0.532885 + 0.846188i \(0.678892\pi\)
\(84\) −1.81972 −0.198548
\(85\) −2.71964 −0.294986
\(86\) 10.6209 1.14528
\(87\) 20.1823 2.16377
\(88\) 0 0
\(89\) −1.07269 −0.113705 −0.0568525 0.998383i \(-0.518106\pi\)
−0.0568525 + 0.998383i \(0.518106\pi\)
\(90\) −11.7954 −1.24335
\(91\) 0.650027 0.0681413
\(92\) 11.0596 1.15304
\(93\) −15.3296 −1.58961
\(94\) 8.90833 0.918824
\(95\) −24.0259 −2.46501
\(96\) 17.7303 1.80960
\(97\) 9.44446 0.958940 0.479470 0.877558i \(-0.340829\pi\)
0.479470 + 0.877558i \(0.340829\pi\)
\(98\) −13.7130 −1.38522
\(99\) 0 0
\(100\) 9.63033 0.963033
\(101\) 12.2477 1.21869 0.609346 0.792904i \(-0.291432\pi\)
0.609346 + 0.792904i \(0.291432\pi\)
\(102\) −3.86046 −0.382243
\(103\) −16.4415 −1.62003 −0.810013 0.586412i \(-0.800540\pi\)
−0.810013 + 0.586412i \(0.800540\pi\)
\(104\) 0.0820237 0.00804309
\(105\) 2.80581 0.273819
\(106\) 8.92437 0.866812
\(107\) 12.8539 1.24263 0.621314 0.783561i \(-0.286599\pi\)
0.621314 + 0.783561i \(0.286599\pi\)
\(108\) 5.00227 0.481343
\(109\) 10.1598 0.973130 0.486565 0.873644i \(-0.338250\pi\)
0.486565 + 0.873644i \(0.338250\pi\)
\(110\) 0 0
\(111\) −17.4606 −1.65729
\(112\) −1.60525 −0.151682
\(113\) 12.0980 1.13808 0.569040 0.822310i \(-0.307315\pi\)
0.569040 + 0.822310i \(0.307315\pi\)
\(114\) −34.1043 −3.19416
\(115\) −17.0526 −1.59016
\(116\) −18.5014 −1.71781
\(117\) 3.00946 0.278225
\(118\) −6.81046 −0.626954
\(119\) 0.354042 0.0324550
\(120\) 0.354051 0.0323203
\(121\) 0 0
\(122\) 28.4413 2.57495
\(123\) 6.39933 0.577008
\(124\) 14.0528 1.26198
\(125\) 0.767128 0.0686140
\(126\) 1.53553 0.136796
\(127\) −15.4030 −1.36680 −0.683400 0.730044i \(-0.739499\pi\)
−0.683400 + 0.730044i \(0.739499\pi\)
\(128\) −0.410399 −0.0362745
\(129\) −11.6967 −1.02984
\(130\) −10.0185 −0.878677
\(131\) 10.1481 0.886647 0.443324 0.896362i \(-0.353799\pi\)
0.443324 + 0.896362i \(0.353799\pi\)
\(132\) 0 0
\(133\) 3.12769 0.271205
\(134\) 10.8465 0.936996
\(135\) −7.71293 −0.663823
\(136\) 0.0446748 0.00383083
\(137\) −8.01446 −0.684721 −0.342361 0.939569i \(-0.611226\pi\)
−0.342361 + 0.939569i \(0.611226\pi\)
\(138\) −24.2058 −2.06053
\(139\) 15.7916 1.33943 0.669713 0.742620i \(-0.266417\pi\)
0.669713 + 0.742620i \(0.266417\pi\)
\(140\) −2.57212 −0.217384
\(141\) −9.81064 −0.826205
\(142\) −3.64303 −0.305716
\(143\) 0 0
\(144\) −7.43191 −0.619326
\(145\) 28.5270 2.36904
\(146\) 11.6060 0.960518
\(147\) 15.1020 1.24559
\(148\) 16.0064 1.31571
\(149\) −6.41132 −0.525236 −0.262618 0.964900i \(-0.584586\pi\)
−0.262618 + 0.964900i \(0.584586\pi\)
\(150\) −21.0776 −1.72098
\(151\) 1.99522 0.162369 0.0811845 0.996699i \(-0.474130\pi\)
0.0811845 + 0.996699i \(0.474130\pi\)
\(152\) 0.394668 0.0320118
\(153\) 1.63912 0.132515
\(154\) 0 0
\(155\) −21.6679 −1.74041
\(156\) −7.15566 −0.572911
\(157\) −3.05648 −0.243934 −0.121967 0.992534i \(-0.538920\pi\)
−0.121967 + 0.992534i \(0.538920\pi\)
\(158\) −31.5538 −2.51028
\(159\) −9.82830 −0.779435
\(160\) 25.0612 1.98126
\(161\) 2.21990 0.174953
\(162\) −22.2785 −1.75036
\(163\) −10.4582 −0.819148 −0.409574 0.912277i \(-0.634323\pi\)
−0.409574 + 0.912277i \(0.634323\pi\)
\(164\) −5.86634 −0.458084
\(165\) 0 0
\(166\) −19.4812 −1.51204
\(167\) −2.90239 −0.224594 −0.112297 0.993675i \(-0.535821\pi\)
−0.112297 + 0.993675i \(0.535821\pi\)
\(168\) −0.0460904 −0.00355595
\(169\) −10.4439 −0.803378
\(170\) −5.45663 −0.418504
\(171\) 14.4804 1.10735
\(172\) 10.7225 0.817582
\(173\) −5.93003 −0.450851 −0.225426 0.974260i \(-0.572377\pi\)
−0.225426 + 0.974260i \(0.572377\pi\)
\(174\) 40.4935 3.06980
\(175\) 1.93302 0.146123
\(176\) 0 0
\(177\) 7.50028 0.563755
\(178\) −2.15223 −0.161316
\(179\) 7.49585 0.560266 0.280133 0.959961i \(-0.409621\pi\)
0.280133 + 0.959961i \(0.409621\pi\)
\(180\) −11.9083 −0.887589
\(181\) 22.4980 1.67226 0.836132 0.548529i \(-0.184812\pi\)
0.836132 + 0.548529i \(0.184812\pi\)
\(182\) 1.30420 0.0966739
\(183\) −31.3220 −2.31539
\(184\) 0.280119 0.0206506
\(185\) −24.6800 −1.81451
\(186\) −30.7571 −2.25522
\(187\) 0 0
\(188\) 8.99353 0.655920
\(189\) 1.00407 0.0730352
\(190\) −48.2052 −3.49717
\(191\) −10.4593 −0.756810 −0.378405 0.925640i \(-0.623527\pi\)
−0.378405 + 0.925640i \(0.623527\pi\)
\(192\) 18.1259 1.30813
\(193\) −7.13825 −0.513823 −0.256911 0.966435i \(-0.582705\pi\)
−0.256911 + 0.966435i \(0.582705\pi\)
\(194\) 18.9492 1.36047
\(195\) 11.0332 0.790105
\(196\) −13.8442 −0.988868
\(197\) 2.45154 0.174665 0.0873324 0.996179i \(-0.472166\pi\)
0.0873324 + 0.996179i \(0.472166\pi\)
\(198\) 0 0
\(199\) 24.7018 1.75107 0.875533 0.483158i \(-0.160510\pi\)
0.875533 + 0.483158i \(0.160510\pi\)
\(200\) 0.243919 0.0172477
\(201\) −11.9451 −0.842545
\(202\) 24.5736 1.72899
\(203\) −3.71365 −0.260647
\(204\) −3.89738 −0.272871
\(205\) 9.04523 0.631746
\(206\) −32.9879 −2.29837
\(207\) 10.2776 0.714342
\(208\) −6.31229 −0.437679
\(209\) 0 0
\(210\) 5.62953 0.388474
\(211\) 11.1941 0.770633 0.385316 0.922785i \(-0.374092\pi\)
0.385316 + 0.922785i \(0.374092\pi\)
\(212\) 9.00972 0.618790
\(213\) 4.01202 0.274899
\(214\) 25.7897 1.76295
\(215\) −16.5329 −1.12753
\(216\) 0.126698 0.00862074
\(217\) 2.82072 0.191483
\(218\) 20.3844 1.38061
\(219\) −12.7815 −0.863695
\(220\) 0 0
\(221\) 1.39219 0.0936488
\(222\) −35.0327 −2.35124
\(223\) −12.6036 −0.844000 −0.422000 0.906596i \(-0.638672\pi\)
−0.422000 + 0.906596i \(0.638672\pi\)
\(224\) −3.26247 −0.217983
\(225\) 8.94941 0.596627
\(226\) 24.2731 1.61462
\(227\) −2.93048 −0.194503 −0.0972513 0.995260i \(-0.531005\pi\)
−0.0972513 + 0.995260i \(0.531005\pi\)
\(228\) −34.4304 −2.28021
\(229\) −0.306170 −0.0202323 −0.0101161 0.999949i \(-0.503220\pi\)
−0.0101161 + 0.999949i \(0.503220\pi\)
\(230\) −34.2140 −2.25601
\(231\) 0 0
\(232\) −0.468607 −0.0307655
\(233\) 0.541467 0.0354727 0.0177363 0.999843i \(-0.494354\pi\)
0.0177363 + 0.999843i \(0.494354\pi\)
\(234\) 6.03813 0.394725
\(235\) −13.8670 −0.904583
\(236\) −6.87559 −0.447563
\(237\) 34.7498 2.25724
\(238\) 0.710344 0.0460447
\(239\) 18.7371 1.21200 0.606002 0.795463i \(-0.292772\pi\)
0.606002 + 0.795463i \(0.292772\pi\)
\(240\) −27.2467 −1.75877
\(241\) 11.4587 0.738120 0.369060 0.929405i \(-0.379680\pi\)
0.369060 + 0.929405i \(0.379680\pi\)
\(242\) 0 0
\(243\) 17.1263 1.09866
\(244\) 28.7133 1.83818
\(245\) 21.3461 1.36375
\(246\) 12.8395 0.818617
\(247\) 12.2989 0.782563
\(248\) 0.355933 0.0226018
\(249\) 21.4544 1.35962
\(250\) 1.53915 0.0973445
\(251\) −2.01853 −0.127409 −0.0637043 0.997969i \(-0.520291\pi\)
−0.0637043 + 0.997969i \(0.520291\pi\)
\(252\) 1.55022 0.0976544
\(253\) 0 0
\(254\) −30.9044 −1.93911
\(255\) 6.00932 0.376318
\(256\) 15.5831 0.973941
\(257\) −1.96540 −0.122599 −0.0612993 0.998119i \(-0.519524\pi\)
−0.0612993 + 0.998119i \(0.519524\pi\)
\(258\) −23.4680 −1.46105
\(259\) 3.21284 0.199636
\(260\) −10.1143 −0.627261
\(261\) −17.1932 −1.06423
\(262\) 20.3611 1.25791
\(263\) −12.1494 −0.749163 −0.374581 0.927194i \(-0.622214\pi\)
−0.374581 + 0.927194i \(0.622214\pi\)
\(264\) 0 0
\(265\) −13.8920 −0.853377
\(266\) 6.27535 0.384766
\(267\) 2.37022 0.145055
\(268\) 10.9502 0.668893
\(269\) 1.70893 0.104195 0.0520977 0.998642i \(-0.483409\pi\)
0.0520977 + 0.998642i \(0.483409\pi\)
\(270\) −15.4751 −0.941784
\(271\) 9.57352 0.581550 0.290775 0.956791i \(-0.406087\pi\)
0.290775 + 0.956791i \(0.406087\pi\)
\(272\) −3.43804 −0.208462
\(273\) −1.43630 −0.0869290
\(274\) −16.0801 −0.971432
\(275\) 0 0
\(276\) −24.4373 −1.47095
\(277\) 1.77483 0.106639 0.0533197 0.998577i \(-0.483020\pi\)
0.0533197 + 0.998577i \(0.483020\pi\)
\(278\) 31.6840 1.90028
\(279\) 13.0592 0.781836
\(280\) −0.0651471 −0.00389329
\(281\) 24.8616 1.48312 0.741559 0.670887i \(-0.234086\pi\)
0.741559 + 0.670887i \(0.234086\pi\)
\(282\) −19.6839 −1.17216
\(283\) −15.8723 −0.943512 −0.471756 0.881729i \(-0.656380\pi\)
−0.471756 + 0.881729i \(0.656380\pi\)
\(284\) −3.67787 −0.218241
\(285\) 53.0878 3.14465
\(286\) 0 0
\(287\) −1.17751 −0.0695061
\(288\) −15.1044 −0.890035
\(289\) −16.2417 −0.955396
\(290\) 57.2361 3.36102
\(291\) −20.8685 −1.22333
\(292\) 11.7170 0.685684
\(293\) 23.7771 1.38907 0.694536 0.719458i \(-0.255610\pi\)
0.694536 + 0.719458i \(0.255610\pi\)
\(294\) 30.3003 1.76715
\(295\) 10.6014 0.617236
\(296\) 0.405412 0.0235641
\(297\) 0 0
\(298\) −12.8636 −0.745166
\(299\) 8.72927 0.504827
\(300\) −21.2792 −1.22856
\(301\) 2.15225 0.124053
\(302\) 4.00318 0.230357
\(303\) −27.0626 −1.55471
\(304\) −30.3725 −1.74198
\(305\) −44.2726 −2.53504
\(306\) 3.28871 0.188003
\(307\) −19.8456 −1.13265 −0.566324 0.824183i \(-0.691635\pi\)
−0.566324 + 0.824183i \(0.691635\pi\)
\(308\) 0 0
\(309\) 36.3291 2.06669
\(310\) −43.4741 −2.46916
\(311\) 19.5861 1.11063 0.555313 0.831641i \(-0.312598\pi\)
0.555313 + 0.831641i \(0.312598\pi\)
\(312\) −0.181240 −0.0102607
\(313\) −14.6641 −0.828865 −0.414432 0.910080i \(-0.636020\pi\)
−0.414432 + 0.910080i \(0.636020\pi\)
\(314\) −6.13247 −0.346075
\(315\) −2.39026 −0.134676
\(316\) −31.8555 −1.79201
\(317\) −12.7428 −0.715706 −0.357853 0.933778i \(-0.616491\pi\)
−0.357853 + 0.933778i \(0.616491\pi\)
\(318\) −19.7193 −1.10581
\(319\) 0 0
\(320\) 25.6204 1.43222
\(321\) −28.4019 −1.58524
\(322\) 4.45398 0.248211
\(323\) 6.69871 0.372726
\(324\) −22.4915 −1.24953
\(325\) 7.60118 0.421638
\(326\) −20.9831 −1.16215
\(327\) −22.4491 −1.24144
\(328\) −0.148584 −0.00820417
\(329\) 1.80520 0.0995242
\(330\) 0 0
\(331\) −0.335176 −0.0184230 −0.00921148 0.999958i \(-0.502932\pi\)
−0.00921148 + 0.999958i \(0.502932\pi\)
\(332\) −19.6675 −1.07940
\(333\) 14.8746 0.815125
\(334\) −5.82331 −0.318637
\(335\) −16.8840 −0.922474
\(336\) 3.54697 0.193503
\(337\) −0.812254 −0.0442463 −0.0221231 0.999755i \(-0.507043\pi\)
−0.0221231 + 0.999755i \(0.507043\pi\)
\(338\) −20.9545 −1.13977
\(339\) −26.7317 −1.45187
\(340\) −5.50881 −0.298757
\(341\) 0 0
\(342\) 29.0533 1.57102
\(343\) −5.62488 −0.303715
\(344\) 0.271581 0.0146427
\(345\) 37.6795 2.02860
\(346\) −11.8979 −0.639635
\(347\) −8.90224 −0.477897 −0.238949 0.971032i \(-0.576803\pi\)
−0.238949 + 0.971032i \(0.576803\pi\)
\(348\) 40.8807 2.19144
\(349\) 10.8292 0.579676 0.289838 0.957076i \(-0.406399\pi\)
0.289838 + 0.957076i \(0.406399\pi\)
\(350\) 3.87839 0.207309
\(351\) 3.94827 0.210743
\(352\) 0 0
\(353\) −18.8915 −1.00549 −0.502747 0.864433i \(-0.667677\pi\)
−0.502747 + 0.864433i \(0.667677\pi\)
\(354\) 15.0484 0.799815
\(355\) 5.67086 0.300978
\(356\) −2.17281 −0.115159
\(357\) −0.782293 −0.0414033
\(358\) 15.0395 0.794864
\(359\) −17.0952 −0.902251 −0.451126 0.892460i \(-0.648977\pi\)
−0.451126 + 0.892460i \(0.648977\pi\)
\(360\) −0.301615 −0.0158965
\(361\) 40.1781 2.11464
\(362\) 45.1396 2.37248
\(363\) 0 0
\(364\) 1.31668 0.0690125
\(365\) −18.0662 −0.945631
\(366\) −62.8439 −3.28490
\(367\) 33.3076 1.73864 0.869322 0.494247i \(-0.164556\pi\)
0.869322 + 0.494247i \(0.164556\pi\)
\(368\) −21.5571 −1.12374
\(369\) −5.45156 −0.283797
\(370\) −49.5175 −2.57429
\(371\) 1.80845 0.0938903
\(372\) −31.0512 −1.60993
\(373\) 22.9460 1.18810 0.594049 0.804429i \(-0.297528\pi\)
0.594049 + 0.804429i \(0.297528\pi\)
\(374\) 0 0
\(375\) −1.69505 −0.0875319
\(376\) 0.227790 0.0117474
\(377\) −14.6031 −0.752096
\(378\) 2.01455 0.103617
\(379\) 24.3737 1.25199 0.625997 0.779826i \(-0.284692\pi\)
0.625997 + 0.779826i \(0.284692\pi\)
\(380\) −48.6662 −2.49652
\(381\) 34.0346 1.74365
\(382\) −20.9854 −1.07371
\(383\) 11.5191 0.588599 0.294299 0.955713i \(-0.404914\pi\)
0.294299 + 0.955713i \(0.404914\pi\)
\(384\) 0.906820 0.0462759
\(385\) 0 0
\(386\) −14.3221 −0.728974
\(387\) 9.96435 0.506516
\(388\) 19.1304 0.971200
\(389\) −5.39102 −0.273336 −0.136668 0.990617i \(-0.543639\pi\)
−0.136668 + 0.990617i \(0.543639\pi\)
\(390\) 22.1368 1.12094
\(391\) 4.75446 0.240444
\(392\) −0.350648 −0.0177104
\(393\) −22.4234 −1.13111
\(394\) 4.91872 0.247802
\(395\) 49.1176 2.47138
\(396\) 0 0
\(397\) −17.8854 −0.897644 −0.448822 0.893621i \(-0.648156\pi\)
−0.448822 + 0.893621i \(0.648156\pi\)
\(398\) 49.5613 2.48428
\(399\) −6.91097 −0.345981
\(400\) −18.7713 −0.938563
\(401\) 25.7031 1.28355 0.641776 0.766892i \(-0.278198\pi\)
0.641776 + 0.766892i \(0.278198\pi\)
\(402\) −23.9665 −1.19534
\(403\) 11.0919 0.552525
\(404\) 24.8086 1.23427
\(405\) 34.6794 1.72323
\(406\) −7.45099 −0.369787
\(407\) 0 0
\(408\) −0.0987137 −0.00488706
\(409\) 6.70143 0.331364 0.165682 0.986179i \(-0.447017\pi\)
0.165682 + 0.986179i \(0.447017\pi\)
\(410\) 18.1482 0.896275
\(411\) 17.7088 0.873510
\(412\) −33.3033 −1.64074
\(413\) −1.38009 −0.0679096
\(414\) 20.6208 1.01346
\(415\) 30.3251 1.48860
\(416\) −12.8289 −0.628990
\(417\) −34.8932 −1.70873
\(418\) 0 0
\(419\) −0.602761 −0.0294468 −0.0147234 0.999892i \(-0.504687\pi\)
−0.0147234 + 0.999892i \(0.504687\pi\)
\(420\) 5.68336 0.277320
\(421\) −35.9824 −1.75368 −0.876838 0.480787i \(-0.840351\pi\)
−0.876838 + 0.480787i \(0.840351\pi\)
\(422\) 22.4596 1.09332
\(423\) 8.35764 0.406362
\(424\) 0.228200 0.0110824
\(425\) 4.14004 0.200822
\(426\) 8.04966 0.390007
\(427\) 5.76340 0.278910
\(428\) 26.0364 1.25852
\(429\) 0 0
\(430\) −33.1712 −1.59966
\(431\) −25.0443 −1.20634 −0.603172 0.797611i \(-0.706097\pi\)
−0.603172 + 0.797611i \(0.706097\pi\)
\(432\) −9.75033 −0.469113
\(433\) 4.64149 0.223056 0.111528 0.993761i \(-0.464426\pi\)
0.111528 + 0.993761i \(0.464426\pi\)
\(434\) 5.65945 0.271662
\(435\) −63.0334 −3.02222
\(436\) 20.5793 0.985571
\(437\) 42.0021 2.00923
\(438\) −25.6446 −1.22535
\(439\) −7.86376 −0.375317 −0.187658 0.982234i \(-0.560090\pi\)
−0.187658 + 0.982234i \(0.560090\pi\)
\(440\) 0 0
\(441\) −12.8653 −0.612633
\(442\) 2.79327 0.132862
\(443\) −18.1876 −0.864117 −0.432058 0.901846i \(-0.642213\pi\)
−0.432058 + 0.901846i \(0.642213\pi\)
\(444\) −35.3677 −1.67848
\(445\) 3.35023 0.158816
\(446\) −25.2877 −1.19741
\(447\) 14.1665 0.670051
\(448\) −3.33526 −0.157576
\(449\) −19.4471 −0.917766 −0.458883 0.888497i \(-0.651750\pi\)
−0.458883 + 0.888497i \(0.651750\pi\)
\(450\) 17.9559 0.846451
\(451\) 0 0
\(452\) 24.5053 1.15263
\(453\) −4.40865 −0.207137
\(454\) −5.87966 −0.275946
\(455\) −2.03016 −0.0951755
\(456\) −0.872061 −0.0408380
\(457\) 39.8414 1.86370 0.931851 0.362840i \(-0.118193\pi\)
0.931851 + 0.362840i \(0.118193\pi\)
\(458\) −0.614293 −0.0287040
\(459\) 2.15046 0.100375
\(460\) −34.5412 −1.61049
\(461\) 29.8434 1.38995 0.694973 0.719036i \(-0.255417\pi\)
0.694973 + 0.719036i \(0.255417\pi\)
\(462\) 0 0
\(463\) 13.4996 0.627378 0.313689 0.949526i \(-0.398435\pi\)
0.313689 + 0.949526i \(0.398435\pi\)
\(464\) 36.0625 1.67416
\(465\) 47.8775 2.22026
\(466\) 1.08639 0.0503260
\(467\) 38.5271 1.78282 0.891410 0.453198i \(-0.149717\pi\)
0.891410 + 0.453198i \(0.149717\pi\)
\(468\) 6.09587 0.281782
\(469\) 2.19796 0.101493
\(470\) −27.8225 −1.28336
\(471\) 6.75361 0.311190
\(472\) −0.174146 −0.00801574
\(473\) 0 0
\(474\) 69.7214 3.20241
\(475\) 36.5741 1.67814
\(476\) 0.717137 0.0328699
\(477\) 8.37268 0.383359
\(478\) 37.5939 1.71950
\(479\) 26.7572 1.22257 0.611285 0.791411i \(-0.290653\pi\)
0.611285 + 0.791411i \(0.290653\pi\)
\(480\) −55.3754 −2.52753
\(481\) 12.6338 0.576050
\(482\) 22.9906 1.04719
\(483\) −4.90511 −0.223190
\(484\) 0 0
\(485\) −29.4969 −1.33939
\(486\) 34.3620 1.55869
\(487\) 0.881973 0.0399660 0.0199830 0.999800i \(-0.493639\pi\)
0.0199830 + 0.999800i \(0.493639\pi\)
\(488\) 0.727255 0.0329213
\(489\) 23.1084 1.04500
\(490\) 42.8285 1.93479
\(491\) −14.6021 −0.658985 −0.329492 0.944158i \(-0.606878\pi\)
−0.329492 + 0.944158i \(0.606878\pi\)
\(492\) 12.9623 0.584385
\(493\) −7.95367 −0.358215
\(494\) 24.6764 1.11024
\(495\) 0 0
\(496\) −27.3915 −1.22992
\(497\) −0.738232 −0.0331142
\(498\) 43.0458 1.92893
\(499\) −20.1804 −0.903399 −0.451699 0.892170i \(-0.649182\pi\)
−0.451699 + 0.892170i \(0.649182\pi\)
\(500\) 1.55387 0.0694912
\(501\) 6.41314 0.286518
\(502\) −4.04995 −0.180758
\(503\) −1.25691 −0.0560427 −0.0280214 0.999607i \(-0.508921\pi\)
−0.0280214 + 0.999607i \(0.508921\pi\)
\(504\) 0.0392642 0.00174897
\(505\) −38.2520 −1.70219
\(506\) 0 0
\(507\) 23.0769 1.02488
\(508\) −31.2000 −1.38427
\(509\) 24.4025 1.08162 0.540812 0.841144i \(-0.318117\pi\)
0.540812 + 0.841144i \(0.318117\pi\)
\(510\) 12.0570 0.533893
\(511\) 2.35186 0.104040
\(512\) 32.0864 1.41803
\(513\) 18.9977 0.838767
\(514\) −3.94335 −0.173934
\(515\) 51.3500 2.26275
\(516\) −23.6924 −1.04300
\(517\) 0 0
\(518\) 6.44618 0.283229
\(519\) 13.1030 0.575158
\(520\) −0.256176 −0.0112341
\(521\) −19.7666 −0.865992 −0.432996 0.901396i \(-0.642544\pi\)
−0.432996 + 0.901396i \(0.642544\pi\)
\(522\) −34.4962 −1.50986
\(523\) −2.73269 −0.119492 −0.0597460 0.998214i \(-0.519029\pi\)
−0.0597460 + 0.998214i \(0.519029\pi\)
\(524\) 20.5558 0.897983
\(525\) −4.27122 −0.186411
\(526\) −24.3763 −1.06286
\(527\) 6.04126 0.263162
\(528\) 0 0
\(529\) 6.81132 0.296144
\(530\) −27.8726 −1.21071
\(531\) −6.38945 −0.277279
\(532\) 6.33536 0.274673
\(533\) −4.63028 −0.200560
\(534\) 4.75557 0.205794
\(535\) −40.1452 −1.73563
\(536\) 0.277350 0.0119797
\(537\) −16.5629 −0.714740
\(538\) 3.42877 0.147825
\(539\) 0 0
\(540\) −15.6231 −0.672310
\(541\) −2.09370 −0.0900151 −0.0450076 0.998987i \(-0.514331\pi\)
−0.0450076 + 0.998987i \(0.514331\pi\)
\(542\) 19.2082 0.825061
\(543\) −49.7117 −2.13333
\(544\) −6.98737 −0.299581
\(545\) −31.7310 −1.35921
\(546\) −2.88177 −0.123328
\(547\) −42.0902 −1.79965 −0.899824 0.436252i \(-0.856305\pi\)
−0.899824 + 0.436252i \(0.856305\pi\)
\(548\) −16.2338 −0.693475
\(549\) 26.6831 1.13881
\(550\) 0 0
\(551\) −70.2647 −2.99338
\(552\) −0.618952 −0.0263443
\(553\) −6.39413 −0.271906
\(554\) 3.56100 0.151292
\(555\) 54.5330 2.31480
\(556\) 31.9870 1.35655
\(557\) −2.95969 −0.125406 −0.0627030 0.998032i \(-0.519972\pi\)
−0.0627030 + 0.998032i \(0.519972\pi\)
\(558\) 26.2018 1.10921
\(559\) 8.46322 0.357956
\(560\) 5.01353 0.211860
\(561\) 0 0
\(562\) 49.8819 2.10414
\(563\) −3.18105 −0.134065 −0.0670327 0.997751i \(-0.521353\pi\)
−0.0670327 + 0.997751i \(0.521353\pi\)
\(564\) −19.8721 −0.836768
\(565\) −37.7843 −1.58960
\(566\) −31.8460 −1.33859
\(567\) −4.51456 −0.189594
\(568\) −0.0931539 −0.00390865
\(569\) 29.8147 1.24990 0.624950 0.780665i \(-0.285119\pi\)
0.624950 + 0.780665i \(0.285119\pi\)
\(570\) 106.514 4.46140
\(571\) 4.76387 0.199362 0.0996808 0.995019i \(-0.468218\pi\)
0.0996808 + 0.995019i \(0.468218\pi\)
\(572\) 0 0
\(573\) 23.1110 0.965474
\(574\) −2.36253 −0.0986101
\(575\) 25.9588 1.08256
\(576\) −15.4414 −0.643391
\(577\) −21.4605 −0.893412 −0.446706 0.894681i \(-0.647403\pi\)
−0.446706 + 0.894681i \(0.647403\pi\)
\(578\) −32.5871 −1.35545
\(579\) 15.7727 0.655492
\(580\) 57.7835 2.39933
\(581\) −3.94772 −0.163779
\(582\) −41.8702 −1.73558
\(583\) 0 0
\(584\) 0.296770 0.0122804
\(585\) −9.39914 −0.388607
\(586\) 47.7059 1.97071
\(587\) −27.4088 −1.13128 −0.565642 0.824651i \(-0.691371\pi\)
−0.565642 + 0.824651i \(0.691371\pi\)
\(588\) 30.5901 1.26151
\(589\) 53.3700 2.19907
\(590\) 21.2704 0.875690
\(591\) −5.41693 −0.222823
\(592\) −31.1993 −1.28228
\(593\) −47.2222 −1.93918 −0.969592 0.244725i \(-0.921302\pi\)
−0.969592 + 0.244725i \(0.921302\pi\)
\(594\) 0 0
\(595\) −1.10574 −0.0453311
\(596\) −12.9866 −0.531951
\(597\) −54.5813 −2.23386
\(598\) 17.5143 0.716212
\(599\) 12.8208 0.523843 0.261922 0.965089i \(-0.415644\pi\)
0.261922 + 0.965089i \(0.415644\pi\)
\(600\) −0.538964 −0.0220031
\(601\) 9.51727 0.388218 0.194109 0.980980i \(-0.437819\pi\)
0.194109 + 0.980980i \(0.437819\pi\)
\(602\) 4.31823 0.175998
\(603\) 10.1760 0.414399
\(604\) 4.04146 0.164445
\(605\) 0 0
\(606\) −54.2979 −2.20570
\(607\) −41.3334 −1.67767 −0.838836 0.544384i \(-0.816763\pi\)
−0.838836 + 0.544384i \(0.816763\pi\)
\(608\) −61.7281 −2.50341
\(609\) 8.20569 0.332511
\(610\) −88.8277 −3.59653
\(611\) 7.09856 0.287177
\(612\) 3.32016 0.134210
\(613\) 14.1112 0.569947 0.284974 0.958535i \(-0.408015\pi\)
0.284974 + 0.958535i \(0.408015\pi\)
\(614\) −39.8179 −1.60692
\(615\) −19.9864 −0.805929
\(616\) 0 0
\(617\) 44.1279 1.77652 0.888262 0.459338i \(-0.151913\pi\)
0.888262 + 0.459338i \(0.151913\pi\)
\(618\) 72.8901 2.93207
\(619\) −16.7648 −0.673832 −0.336916 0.941535i \(-0.609384\pi\)
−0.336916 + 0.941535i \(0.609384\pi\)
\(620\) −43.8898 −1.76266
\(621\) 13.4837 0.541084
\(622\) 39.2972 1.57568
\(623\) −0.436132 −0.0174733
\(624\) 13.9477 0.558354
\(625\) −26.1678 −1.04671
\(626\) −29.4218 −1.17593
\(627\) 0 0
\(628\) −6.19111 −0.247052
\(629\) 6.88108 0.274366
\(630\) −4.79577 −0.191068
\(631\) −2.51127 −0.0999723 −0.0499861 0.998750i \(-0.515918\pi\)
−0.0499861 + 0.998750i \(0.515918\pi\)
\(632\) −0.806844 −0.0320945
\(633\) −24.7345 −0.983108
\(634\) −25.5669 −1.01539
\(635\) 48.1068 1.90906
\(636\) −19.9079 −0.789400
\(637\) −10.9271 −0.432949
\(638\) 0 0
\(639\) −3.41783 −0.135207
\(640\) 1.28176 0.0506659
\(641\) 12.3479 0.487711 0.243855 0.969812i \(-0.421588\pi\)
0.243855 + 0.969812i \(0.421588\pi\)
\(642\) −56.9851 −2.24902
\(643\) −21.5404 −0.849470 −0.424735 0.905318i \(-0.639633\pi\)
−0.424735 + 0.905318i \(0.639633\pi\)
\(644\) 4.49657 0.177190
\(645\) 36.5311 1.43841
\(646\) 13.4402 0.528797
\(647\) −23.5227 −0.924773 −0.462386 0.886679i \(-0.653007\pi\)
−0.462386 + 0.886679i \(0.653007\pi\)
\(648\) −0.569671 −0.0223788
\(649\) 0 0
\(650\) 15.2509 0.598189
\(651\) −6.23268 −0.244278
\(652\) −21.1838 −0.829621
\(653\) −22.5920 −0.884094 −0.442047 0.896992i \(-0.645748\pi\)
−0.442047 + 0.896992i \(0.645748\pi\)
\(654\) −45.0414 −1.76126
\(655\) −31.6947 −1.23841
\(656\) 11.4346 0.446445
\(657\) 10.8885 0.424802
\(658\) 3.62193 0.141198
\(659\) −3.76231 −0.146559 −0.0732794 0.997311i \(-0.523346\pi\)
−0.0732794 + 0.997311i \(0.523346\pi\)
\(660\) 0 0
\(661\) −28.4373 −1.10608 −0.553041 0.833154i \(-0.686533\pi\)
−0.553041 + 0.833154i \(0.686533\pi\)
\(662\) −0.672492 −0.0261371
\(663\) −3.07619 −0.119469
\(664\) −0.498143 −0.0193317
\(665\) −9.76841 −0.378803
\(666\) 29.8442 1.15644
\(667\) −49.8709 −1.93101
\(668\) −5.87900 −0.227465
\(669\) 27.8490 1.07670
\(670\) −33.8758 −1.30874
\(671\) 0 0
\(672\) 7.20877 0.278084
\(673\) 15.5578 0.599710 0.299855 0.953985i \(-0.403062\pi\)
0.299855 + 0.953985i \(0.403062\pi\)
\(674\) −1.62969 −0.0627734
\(675\) 11.7412 0.451920
\(676\) −21.1549 −0.813650
\(677\) −12.3763 −0.475661 −0.237830 0.971307i \(-0.576436\pi\)
−0.237830 + 0.971307i \(0.576436\pi\)
\(678\) −53.6340 −2.05980
\(679\) 3.83991 0.147362
\(680\) −0.139528 −0.00535067
\(681\) 6.47520 0.248130
\(682\) 0 0
\(683\) −26.3400 −1.00787 −0.503936 0.863741i \(-0.668115\pi\)
−0.503936 + 0.863741i \(0.668115\pi\)
\(684\) 29.3311 1.12150
\(685\) 25.0307 0.956376
\(686\) −11.2857 −0.430889
\(687\) 0.676514 0.0258106
\(688\) −20.9001 −0.796808
\(689\) 7.11134 0.270920
\(690\) 75.5995 2.87802
\(691\) −19.4579 −0.740213 −0.370107 0.928989i \(-0.620679\pi\)
−0.370107 + 0.928989i \(0.620679\pi\)
\(692\) −12.0117 −0.456616
\(693\) 0 0
\(694\) −17.8613 −0.678006
\(695\) −49.3203 −1.87083
\(696\) 1.03544 0.0392481
\(697\) −2.52192 −0.0955245
\(698\) 21.7276 0.822402
\(699\) −1.19643 −0.0452530
\(700\) 3.91548 0.147991
\(701\) −17.9455 −0.677793 −0.338896 0.940824i \(-0.610054\pi\)
−0.338896 + 0.940824i \(0.610054\pi\)
\(702\) 7.92174 0.298987
\(703\) 60.7891 2.29270
\(704\) 0 0
\(705\) 30.6406 1.15399
\(706\) −37.9036 −1.42652
\(707\) 4.97965 0.187279
\(708\) 15.1923 0.570963
\(709\) −23.8992 −0.897555 −0.448777 0.893644i \(-0.648140\pi\)
−0.448777 + 0.893644i \(0.648140\pi\)
\(710\) 11.3779 0.427005
\(711\) −29.6032 −1.11021
\(712\) −0.0550334 −0.00206246
\(713\) 37.8798 1.41861
\(714\) −1.56958 −0.0587400
\(715\) 0 0
\(716\) 15.1834 0.567429
\(717\) −41.4017 −1.54617
\(718\) −34.2995 −1.28005
\(719\) 27.8427 1.03836 0.519178 0.854666i \(-0.326238\pi\)
0.519178 + 0.854666i \(0.326238\pi\)
\(720\) 23.2113 0.865036
\(721\) −6.68474 −0.248953
\(722\) 80.6126 3.00009
\(723\) −25.3192 −0.941632
\(724\) 45.5713 1.69364
\(725\) −43.4261 −1.61280
\(726\) 0 0
\(727\) 21.3953 0.793509 0.396755 0.917925i \(-0.370136\pi\)
0.396755 + 0.917925i \(0.370136\pi\)
\(728\) 0.0333490 0.00123600
\(729\) −4.53102 −0.167816
\(730\) −36.2478 −1.34159
\(731\) 4.60956 0.170491
\(732\) −63.4449 −2.34499
\(733\) 10.2227 0.377583 0.188792 0.982017i \(-0.439543\pi\)
0.188792 + 0.982017i \(0.439543\pi\)
\(734\) 66.8278 2.46666
\(735\) −47.1665 −1.73976
\(736\) −43.8120 −1.61493
\(737\) 0 0
\(738\) −10.9379 −0.402630
\(739\) 22.9382 0.843794 0.421897 0.906644i \(-0.361364\pi\)
0.421897 + 0.906644i \(0.361364\pi\)
\(740\) −49.9911 −1.83771
\(741\) −27.1758 −0.998328
\(742\) 3.62845 0.133205
\(743\) 44.7185 1.64056 0.820281 0.571960i \(-0.193817\pi\)
0.820281 + 0.571960i \(0.193817\pi\)
\(744\) −0.786472 −0.0288335
\(745\) 20.0238 0.733616
\(746\) 46.0384 1.68559
\(747\) −18.2769 −0.668718
\(748\) 0 0
\(749\) 5.22609 0.190957
\(750\) −3.40092 −0.124184
\(751\) −0.689344 −0.0251545 −0.0125773 0.999921i \(-0.504004\pi\)
−0.0125773 + 0.999921i \(0.504004\pi\)
\(752\) −17.5300 −0.639254
\(753\) 4.46016 0.162537
\(754\) −29.2993 −1.06702
\(755\) −6.23148 −0.226787
\(756\) 2.03381 0.0739690
\(757\) −40.1068 −1.45771 −0.728853 0.684670i \(-0.759946\pi\)
−0.728853 + 0.684670i \(0.759946\pi\)
\(758\) 48.9030 1.77624
\(759\) 0 0
\(760\) −1.23263 −0.0447121
\(761\) −23.5917 −0.855198 −0.427599 0.903968i \(-0.640641\pi\)
−0.427599 + 0.903968i \(0.640641\pi\)
\(762\) 68.2865 2.47376
\(763\) 4.13074 0.149543
\(764\) −21.1861 −0.766486
\(765\) −5.11931 −0.185089
\(766\) 23.1117 0.835061
\(767\) −5.42688 −0.195953
\(768\) −34.4324 −1.24247
\(769\) −31.8809 −1.14965 −0.574827 0.818275i \(-0.694930\pi\)
−0.574827 + 0.818275i \(0.694930\pi\)
\(770\) 0 0
\(771\) 4.34277 0.156401
\(772\) −14.4590 −0.520392
\(773\) −8.95710 −0.322165 −0.161082 0.986941i \(-0.551498\pi\)
−0.161082 + 0.986941i \(0.551498\pi\)
\(774\) 19.9923 0.718608
\(775\) 32.9845 1.18484
\(776\) 0.484539 0.0173939
\(777\) −7.09910 −0.254679
\(778\) −10.8164 −0.387788
\(779\) −22.2792 −0.798237
\(780\) 22.3485 0.800206
\(781\) 0 0
\(782\) 9.53927 0.341124
\(783\) −22.5567 −0.806112
\(784\) 26.9848 0.963742
\(785\) 9.54599 0.340711
\(786\) −44.9899 −1.60474
\(787\) 17.7766 0.633666 0.316833 0.948481i \(-0.397380\pi\)
0.316833 + 0.948481i \(0.397380\pi\)
\(788\) 4.96576 0.176898
\(789\) 26.8453 0.955718
\(790\) 98.5487 3.50621
\(791\) 4.91876 0.174891
\(792\) 0 0
\(793\) 22.6633 0.804796
\(794\) −35.8850 −1.27351
\(795\) 30.6957 1.08867
\(796\) 50.0353 1.77345
\(797\) 36.7438 1.30153 0.650767 0.759278i \(-0.274448\pi\)
0.650767 + 0.759278i \(0.274448\pi\)
\(798\) −13.8660 −0.490852
\(799\) 3.86628 0.136779
\(800\) −38.1502 −1.34881
\(801\) −2.01918 −0.0713443
\(802\) 51.5703 1.82101
\(803\) 0 0
\(804\) −24.1957 −0.853317
\(805\) −6.93321 −0.244363
\(806\) 22.2545 0.783882
\(807\) −3.77606 −0.132924
\(808\) 0.628357 0.0221055
\(809\) −42.8794 −1.50756 −0.753780 0.657127i \(-0.771771\pi\)
−0.753780 + 0.657127i \(0.771771\pi\)
\(810\) 69.5802 2.44480
\(811\) −18.8186 −0.660812 −0.330406 0.943839i \(-0.607186\pi\)
−0.330406 + 0.943839i \(0.607186\pi\)
\(812\) −7.52225 −0.263979
\(813\) −21.1537 −0.741893
\(814\) 0 0
\(815\) 32.6630 1.14413
\(816\) 7.59671 0.265938
\(817\) 40.7219 1.42468
\(818\) 13.4456 0.470115
\(819\) 1.22358 0.0427553
\(820\) 18.3218 0.639823
\(821\) −21.8437 −0.762351 −0.381175 0.924503i \(-0.624481\pi\)
−0.381175 + 0.924503i \(0.624481\pi\)
\(822\) 35.5306 1.23927
\(823\) −38.2787 −1.33431 −0.667156 0.744918i \(-0.732489\pi\)
−0.667156 + 0.744918i \(0.732489\pi\)
\(824\) −0.843514 −0.0293852
\(825\) 0 0
\(826\) −2.76898 −0.0963452
\(827\) 22.6917 0.789069 0.394534 0.918881i \(-0.370906\pi\)
0.394534 + 0.918881i \(0.370906\pi\)
\(828\) 20.8180 0.723475
\(829\) 27.5376 0.956421 0.478210 0.878245i \(-0.341286\pi\)
0.478210 + 0.878245i \(0.341286\pi\)
\(830\) 60.8437 2.11192
\(831\) −3.92168 −0.136042
\(832\) −13.1151 −0.454686
\(833\) −5.95155 −0.206209
\(834\) −70.0091 −2.42422
\(835\) 9.06475 0.313699
\(836\) 0 0
\(837\) 17.1331 0.592207
\(838\) −1.20937 −0.0417770
\(839\) −14.7079 −0.507773 −0.253886 0.967234i \(-0.581709\pi\)
−0.253886 + 0.967234i \(0.581709\pi\)
\(840\) 0.143949 0.00496673
\(841\) 54.4283 1.87684
\(842\) −72.1945 −2.48799
\(843\) −54.9343 −1.89204
\(844\) 22.6744 0.780485
\(845\) 32.6184 1.12211
\(846\) 16.7686 0.576517
\(847\) 0 0
\(848\) −17.5616 −0.603067
\(849\) 35.0716 1.20365
\(850\) 8.30651 0.284911
\(851\) 43.1455 1.47901
\(852\) 8.12664 0.278414
\(853\) 22.3637 0.765719 0.382859 0.923807i \(-0.374939\pi\)
0.382859 + 0.923807i \(0.374939\pi\)
\(854\) 11.5636 0.395698
\(855\) −45.2253 −1.54667
\(856\) 0.659455 0.0225397
\(857\) 6.64311 0.226924 0.113462 0.993542i \(-0.463806\pi\)
0.113462 + 0.993542i \(0.463806\pi\)
\(858\) 0 0
\(859\) 2.01848 0.0688696 0.0344348 0.999407i \(-0.489037\pi\)
0.0344348 + 0.999407i \(0.489037\pi\)
\(860\) −33.4885 −1.14195
\(861\) 2.60183 0.0886700
\(862\) −50.2485 −1.71147
\(863\) −4.91548 −0.167325 −0.0836624 0.996494i \(-0.526662\pi\)
−0.0836624 + 0.996494i \(0.526662\pi\)
\(864\) −19.8163 −0.674164
\(865\) 18.5207 0.629721
\(866\) 9.31261 0.316455
\(867\) 35.8878 1.21881
\(868\) 5.71357 0.193931
\(869\) 0 0
\(870\) −126.469 −4.28771
\(871\) 8.64299 0.292857
\(872\) 0.521238 0.0176513
\(873\) 17.7778 0.601687
\(874\) 84.2723 2.85055
\(875\) 0.311897 0.0105440
\(876\) −25.8899 −0.874738
\(877\) 30.3758 1.02572 0.512859 0.858473i \(-0.328586\pi\)
0.512859 + 0.858473i \(0.328586\pi\)
\(878\) −15.7777 −0.532472
\(879\) −52.5380 −1.77206
\(880\) 0 0
\(881\) −39.5513 −1.33252 −0.666259 0.745720i \(-0.732106\pi\)
−0.666259 + 0.745720i \(0.732106\pi\)
\(882\) −25.8127 −0.869159
\(883\) −16.0981 −0.541743 −0.270871 0.962616i \(-0.587312\pi\)
−0.270871 + 0.962616i \(0.587312\pi\)
\(884\) 2.81998 0.0948462
\(885\) −23.4249 −0.787418
\(886\) −36.4912 −1.22595
\(887\) −33.6348 −1.12934 −0.564672 0.825315i \(-0.690997\pi\)
−0.564672 + 0.825315i \(0.690997\pi\)
\(888\) −0.895801 −0.0300611
\(889\) −6.26254 −0.210039
\(890\) 6.72184 0.225316
\(891\) 0 0
\(892\) −25.5295 −0.854791
\(893\) 34.1557 1.14298
\(894\) 28.4234 0.950620
\(895\) −23.4110 −0.782544
\(896\) −0.166859 −0.00557437
\(897\) −19.2882 −0.644016
\(898\) −39.0184 −1.30206
\(899\) −63.3685 −2.11346
\(900\) 18.1277 0.604255
\(901\) 3.87324 0.129036
\(902\) 0 0
\(903\) −4.75561 −0.158257
\(904\) 0.620674 0.0206433
\(905\) −70.2658 −2.33571
\(906\) −8.84545 −0.293870
\(907\) −26.3625 −0.875353 −0.437676 0.899133i \(-0.644198\pi\)
−0.437676 + 0.899133i \(0.644198\pi\)
\(908\) −5.93589 −0.196989
\(909\) 23.0545 0.764669
\(910\) −4.07329 −0.135028
\(911\) −45.1795 −1.49686 −0.748431 0.663213i \(-0.769193\pi\)
−0.748431 + 0.663213i \(0.769193\pi\)
\(912\) 67.1112 2.22227
\(913\) 0 0
\(914\) 79.9371 2.64408
\(915\) 97.8249 3.23399
\(916\) −0.620168 −0.0204909
\(917\) 4.12601 0.136253
\(918\) 4.31464 0.142404
\(919\) 26.6358 0.878634 0.439317 0.898332i \(-0.355221\pi\)
0.439317 + 0.898332i \(0.355221\pi\)
\(920\) −0.874867 −0.0288435
\(921\) 43.8509 1.44494
\(922\) 59.8772 1.97195
\(923\) −2.90293 −0.0955511
\(924\) 0 0
\(925\) 37.5698 1.23529
\(926\) 27.0853 0.890078
\(927\) −30.9486 −1.01649
\(928\) 73.2925 2.40594
\(929\) −30.8037 −1.01064 −0.505318 0.862933i \(-0.668625\pi\)
−0.505318 + 0.862933i \(0.668625\pi\)
\(930\) 96.0605 3.14995
\(931\) −52.5775 −1.72316
\(932\) 1.09678 0.0359262
\(933\) −43.2776 −1.41684
\(934\) 77.3000 2.52933
\(935\) 0 0
\(936\) 0.154397 0.00504664
\(937\) 39.1478 1.27890 0.639451 0.768832i \(-0.279162\pi\)
0.639451 + 0.768832i \(0.279162\pi\)
\(938\) 4.40995 0.143990
\(939\) 32.4019 1.05740
\(940\) −28.0886 −0.916149
\(941\) 12.5043 0.407628 0.203814 0.979010i \(-0.434666\pi\)
0.203814 + 0.979010i \(0.434666\pi\)
\(942\) 13.5503 0.441493
\(943\) −15.8129 −0.514938
\(944\) 13.4018 0.436191
\(945\) −3.13591 −0.102011
\(946\) 0 0
\(947\) 3.43405 0.111592 0.0557959 0.998442i \(-0.482230\pi\)
0.0557959 + 0.998442i \(0.482230\pi\)
\(948\) 70.3881 2.28610
\(949\) 9.24817 0.300208
\(950\) 73.3817 2.38082
\(951\) 28.1565 0.913037
\(952\) 0.0181638 0.000588692 0
\(953\) 36.5001 1.18236 0.591178 0.806541i \(-0.298663\pi\)
0.591178 + 0.806541i \(0.298663\pi\)
\(954\) 16.7988 0.543881
\(955\) 32.6665 1.05706
\(956\) 37.9534 1.22750
\(957\) 0 0
\(958\) 53.6852 1.73449
\(959\) −3.25850 −0.105222
\(960\) −56.6109 −1.82711
\(961\) 17.1319 0.552643
\(962\) 25.3482 0.817258
\(963\) 24.1955 0.779688
\(964\) 23.2104 0.747557
\(965\) 22.2942 0.717675
\(966\) −9.84153 −0.316646
\(967\) −14.4299 −0.464036 −0.232018 0.972712i \(-0.574533\pi\)
−0.232018 + 0.972712i \(0.574533\pi\)
\(968\) 0 0
\(969\) −14.8015 −0.475493
\(970\) −59.1821 −1.90022
\(971\) −19.9607 −0.640570 −0.320285 0.947321i \(-0.603779\pi\)
−0.320285 + 0.947321i \(0.603779\pi\)
\(972\) 34.6906 1.11270
\(973\) 6.42051 0.205832
\(974\) 1.76958 0.0567009
\(975\) −16.7956 −0.537890
\(976\) −55.9674 −1.79147
\(977\) 30.1293 0.963921 0.481961 0.876193i \(-0.339925\pi\)
0.481961 + 0.876193i \(0.339925\pi\)
\(978\) 46.3644 1.48257
\(979\) 0 0
\(980\) 43.2381 1.38119
\(981\) 19.1243 0.610591
\(982\) −29.2975 −0.934920
\(983\) −34.4650 −1.09926 −0.549631 0.835408i \(-0.685232\pi\)
−0.549631 + 0.835408i \(0.685232\pi\)
\(984\) 0.328312 0.0104662
\(985\) −7.65664 −0.243961
\(986\) −15.9581 −0.508210
\(987\) −3.98879 −0.126965
\(988\) 24.9124 0.792569
\(989\) 28.9027 0.919053
\(990\) 0 0
\(991\) 33.9663 1.07898 0.539488 0.841994i \(-0.318618\pi\)
0.539488 + 0.841994i \(0.318618\pi\)
\(992\) −55.6698 −1.76752
\(993\) 0.740607 0.0235025
\(994\) −1.48118 −0.0469800
\(995\) −77.1488 −2.44578
\(996\) 43.4574 1.37700
\(997\) 34.6930 1.09874 0.549369 0.835580i \(-0.314868\pi\)
0.549369 + 0.835580i \(0.314868\pi\)
\(998\) −40.4896 −1.28168
\(999\) 19.5148 0.617422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1331.2.a.e.1.20 yes 25
11.10 odd 2 1331.2.a.d.1.6 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1331.2.a.d.1.6 25 11.10 odd 2
1331.2.a.e.1.20 yes 25 1.1 even 1 trivial