Properties

Label 1331.2.a.e.1.5
Level $1331$
Weight $2$
Character 1331.1
Self dual yes
Analytic conductor $10.628$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1331,2,Mod(1,1331)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1331, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1331.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1331 = 11^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1331.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6280885090\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 1331.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.62967 q^{2} -3.23376 q^{3} +0.655813 q^{4} -0.934058 q^{5} +5.26996 q^{6} -3.14288 q^{7} +2.19058 q^{8} +7.45722 q^{9} +1.52220 q^{10} -2.12074 q^{12} +3.95136 q^{13} +5.12185 q^{14} +3.02052 q^{15} -4.88154 q^{16} -5.78643 q^{17} -12.1528 q^{18} -1.48329 q^{19} -0.612568 q^{20} +10.1633 q^{21} -1.92737 q^{23} -7.08380 q^{24} -4.12754 q^{25} -6.43940 q^{26} -14.4136 q^{27} -2.06115 q^{28} -4.13485 q^{29} -4.92245 q^{30} -3.20660 q^{31} +3.57412 q^{32} +9.42995 q^{34} +2.93564 q^{35} +4.89055 q^{36} -5.71858 q^{37} +2.41727 q^{38} -12.7778 q^{39} -2.04613 q^{40} +11.7813 q^{41} -16.5629 q^{42} -2.34870 q^{43} -6.96548 q^{45} +3.14097 q^{46} -3.54657 q^{47} +15.7857 q^{48} +2.87772 q^{49} +6.72651 q^{50} +18.7119 q^{51} +2.59135 q^{52} -9.44683 q^{53} +23.4894 q^{54} -6.88473 q^{56} +4.79662 q^{57} +6.73842 q^{58} -14.0004 q^{59} +1.98090 q^{60} +8.02865 q^{61} +5.22569 q^{62} -23.4372 q^{63} +3.93844 q^{64} -3.69080 q^{65} +1.19184 q^{67} -3.79482 q^{68} +6.23265 q^{69} -4.78411 q^{70} +5.59466 q^{71} +16.3356 q^{72} -0.0557016 q^{73} +9.31938 q^{74} +13.3475 q^{75} -0.972763 q^{76} +20.8235 q^{78} -5.92689 q^{79} +4.55964 q^{80} +24.2385 q^{81} -19.1996 q^{82} -0.787284 q^{83} +6.66526 q^{84} +5.40486 q^{85} +3.82760 q^{86} +13.3711 q^{87} -14.8017 q^{89} +11.3514 q^{90} -12.4187 q^{91} -1.26399 q^{92} +10.3694 q^{93} +5.77973 q^{94} +1.38548 q^{95} -11.5579 q^{96} +10.4524 q^{97} -4.68973 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 5 q^{2} - 3 q^{3} + 25 q^{4} - 3 q^{5} + 15 q^{6} + 19 q^{7} + 9 q^{8} + 22 q^{9} + 25 q^{10} - 12 q^{12} + 46 q^{13} - 12 q^{14} - 15 q^{15} + 13 q^{16} + 14 q^{17} + 6 q^{18} + 45 q^{19} - 24 q^{20}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62967 −1.15235 −0.576174 0.817327i \(-0.695455\pi\)
−0.576174 + 0.817327i \(0.695455\pi\)
\(3\) −3.23376 −1.86701 −0.933507 0.358559i \(-0.883268\pi\)
−0.933507 + 0.358559i \(0.883268\pi\)
\(4\) 0.655813 0.327907
\(5\) −0.934058 −0.417724 −0.208862 0.977945i \(-0.566976\pi\)
−0.208862 + 0.977945i \(0.566976\pi\)
\(6\) 5.26996 2.15145
\(7\) −3.14288 −1.18790 −0.593949 0.804502i \(-0.702432\pi\)
−0.593949 + 0.804502i \(0.702432\pi\)
\(8\) 2.19058 0.774486
\(9\) 7.45722 2.48574
\(10\) 1.52220 0.481363
\(11\) 0 0
\(12\) −2.12074 −0.612206
\(13\) 3.95136 1.09591 0.547955 0.836508i \(-0.315407\pi\)
0.547955 + 0.836508i \(0.315407\pi\)
\(14\) 5.12185 1.36887
\(15\) 3.02052 0.779896
\(16\) −4.88154 −1.22038
\(17\) −5.78643 −1.40342 −0.701708 0.712465i \(-0.747579\pi\)
−0.701708 + 0.712465i \(0.747579\pi\)
\(18\) −12.1528 −2.86444
\(19\) −1.48329 −0.340291 −0.170145 0.985419i \(-0.554424\pi\)
−0.170145 + 0.985419i \(0.554424\pi\)
\(20\) −0.612568 −0.136974
\(21\) 10.1633 2.21782
\(22\) 0 0
\(23\) −1.92737 −0.401884 −0.200942 0.979603i \(-0.564400\pi\)
−0.200942 + 0.979603i \(0.564400\pi\)
\(24\) −7.08380 −1.44598
\(25\) −4.12754 −0.825507
\(26\) −6.43940 −1.26287
\(27\) −14.4136 −2.77390
\(28\) −2.06115 −0.389520
\(29\) −4.13485 −0.767822 −0.383911 0.923370i \(-0.625423\pi\)
−0.383911 + 0.923370i \(0.625423\pi\)
\(30\) −4.92245 −0.898711
\(31\) −3.20660 −0.575922 −0.287961 0.957642i \(-0.592977\pi\)
−0.287961 + 0.957642i \(0.592977\pi\)
\(32\) 3.57412 0.631822
\(33\) 0 0
\(34\) 9.42995 1.61722
\(35\) 2.93564 0.496213
\(36\) 4.89055 0.815091
\(37\) −5.71858 −0.940129 −0.470064 0.882632i \(-0.655769\pi\)
−0.470064 + 0.882632i \(0.655769\pi\)
\(38\) 2.41727 0.392133
\(39\) −12.7778 −2.04608
\(40\) −2.04613 −0.323521
\(41\) 11.7813 1.83993 0.919964 0.392002i \(-0.128217\pi\)
0.919964 + 0.392002i \(0.128217\pi\)
\(42\) −16.5629 −2.55570
\(43\) −2.34870 −0.358173 −0.179087 0.983833i \(-0.557314\pi\)
−0.179087 + 0.983833i \(0.557314\pi\)
\(44\) 0 0
\(45\) −6.96548 −1.03835
\(46\) 3.14097 0.463110
\(47\) −3.54657 −0.517320 −0.258660 0.965968i \(-0.583281\pi\)
−0.258660 + 0.965968i \(0.583281\pi\)
\(48\) 15.7857 2.27847
\(49\) 2.87772 0.411103
\(50\) 6.72651 0.951272
\(51\) 18.7119 2.62020
\(52\) 2.59135 0.359356
\(53\) −9.44683 −1.29762 −0.648811 0.760950i \(-0.724733\pi\)
−0.648811 + 0.760950i \(0.724733\pi\)
\(54\) 23.4894 3.19650
\(55\) 0 0
\(56\) −6.88473 −0.920010
\(57\) 4.79662 0.635327
\(58\) 6.73842 0.884798
\(59\) −14.0004 −1.82269 −0.911347 0.411638i \(-0.864957\pi\)
−0.911347 + 0.411638i \(0.864957\pi\)
\(60\) 1.98090 0.255733
\(61\) 8.02865 1.02796 0.513982 0.857801i \(-0.328170\pi\)
0.513982 + 0.857801i \(0.328170\pi\)
\(62\) 5.22569 0.663663
\(63\) −23.4372 −2.95281
\(64\) 3.93844 0.492305
\(65\) −3.69080 −0.457787
\(66\) 0 0
\(67\) 1.19184 0.145606 0.0728030 0.997346i \(-0.476806\pi\)
0.0728030 + 0.997346i \(0.476806\pi\)
\(68\) −3.79482 −0.460189
\(69\) 6.23265 0.750323
\(70\) −4.78411 −0.571810
\(71\) 5.59466 0.663964 0.331982 0.943286i \(-0.392283\pi\)
0.331982 + 0.943286i \(0.392283\pi\)
\(72\) 16.3356 1.92517
\(73\) −0.0557016 −0.00651938 −0.00325969 0.999995i \(-0.501038\pi\)
−0.00325969 + 0.999995i \(0.501038\pi\)
\(74\) 9.31938 1.08336
\(75\) 13.3475 1.54123
\(76\) −0.972763 −0.111584
\(77\) 0 0
\(78\) 20.8235 2.35779
\(79\) −5.92689 −0.666827 −0.333414 0.942781i \(-0.608201\pi\)
−0.333414 + 0.942781i \(0.608201\pi\)
\(80\) 4.55964 0.509783
\(81\) 24.2385 2.69317
\(82\) −19.1996 −2.12024
\(83\) −0.787284 −0.0864157 −0.0432078 0.999066i \(-0.513758\pi\)
−0.0432078 + 0.999066i \(0.513758\pi\)
\(84\) 6.66526 0.727239
\(85\) 5.40486 0.586240
\(86\) 3.82760 0.412740
\(87\) 13.3711 1.43353
\(88\) 0 0
\(89\) −14.8017 −1.56898 −0.784488 0.620144i \(-0.787074\pi\)
−0.784488 + 0.620144i \(0.787074\pi\)
\(90\) 11.3514 1.19654
\(91\) −12.4187 −1.30183
\(92\) −1.26399 −0.131780
\(93\) 10.3694 1.07526
\(94\) 5.77973 0.596133
\(95\) 1.38548 0.142147
\(96\) −11.5579 −1.17962
\(97\) 10.4524 1.06128 0.530638 0.847599i \(-0.321952\pi\)
0.530638 + 0.847599i \(0.321952\pi\)
\(98\) −4.68973 −0.473734
\(99\) 0 0
\(100\) −2.70689 −0.270689
\(101\) 1.16663 0.116084 0.0580421 0.998314i \(-0.481514\pi\)
0.0580421 + 0.998314i \(0.481514\pi\)
\(102\) −30.4942 −3.01938
\(103\) −3.85120 −0.379470 −0.189735 0.981835i \(-0.560763\pi\)
−0.189735 + 0.981835i \(0.560763\pi\)
\(104\) 8.65575 0.848766
\(105\) −9.49315 −0.926437
\(106\) 15.3952 1.49531
\(107\) −12.0786 −1.16768 −0.583840 0.811869i \(-0.698450\pi\)
−0.583840 + 0.811869i \(0.698450\pi\)
\(108\) −9.45263 −0.909580
\(109\) 12.8601 1.23178 0.615888 0.787834i \(-0.288797\pi\)
0.615888 + 0.787834i \(0.288797\pi\)
\(110\) 0 0
\(111\) 18.4925 1.75523
\(112\) 15.3421 1.44969
\(113\) 1.06284 0.0999840 0.0499920 0.998750i \(-0.484080\pi\)
0.0499920 + 0.998750i \(0.484080\pi\)
\(114\) −7.81689 −0.732119
\(115\) 1.80027 0.167876
\(116\) −2.71169 −0.251774
\(117\) 29.4661 2.72415
\(118\) 22.8160 2.10038
\(119\) 18.1861 1.66712
\(120\) 6.61669 0.604018
\(121\) 0 0
\(122\) −13.0840 −1.18457
\(123\) −38.0979 −3.43517
\(124\) −2.10293 −0.188849
\(125\) 8.52565 0.762557
\(126\) 38.1948 3.40266
\(127\) −14.9779 −1.32908 −0.664538 0.747254i \(-0.731372\pi\)
−0.664538 + 0.747254i \(0.731372\pi\)
\(128\) −13.5666 −1.19913
\(129\) 7.59513 0.668714
\(130\) 6.01477 0.527530
\(131\) 7.33497 0.640859 0.320430 0.947272i \(-0.396173\pi\)
0.320430 + 0.947272i \(0.396173\pi\)
\(132\) 0 0
\(133\) 4.66182 0.404231
\(134\) −1.94230 −0.167789
\(135\) 13.4631 1.15872
\(136\) −12.6756 −1.08693
\(137\) −5.22649 −0.446530 −0.223265 0.974758i \(-0.571671\pi\)
−0.223265 + 0.974758i \(0.571671\pi\)
\(138\) −10.1571 −0.864634
\(139\) 15.1116 1.28175 0.640877 0.767644i \(-0.278571\pi\)
0.640877 + 0.767644i \(0.278571\pi\)
\(140\) 1.92523 0.162712
\(141\) 11.4688 0.965844
\(142\) −9.11744 −0.765118
\(143\) 0 0
\(144\) −36.4027 −3.03356
\(145\) 3.86219 0.320737
\(146\) 0.0907750 0.00751259
\(147\) −9.30587 −0.767535
\(148\) −3.75032 −0.308274
\(149\) −9.59596 −0.786132 −0.393066 0.919510i \(-0.628586\pi\)
−0.393066 + 0.919510i \(0.628586\pi\)
\(150\) −21.7519 −1.77604
\(151\) 12.6043 1.02572 0.512862 0.858471i \(-0.328585\pi\)
0.512862 + 0.858471i \(0.328585\pi\)
\(152\) −3.24927 −0.263550
\(153\) −43.1507 −3.48853
\(154\) 0 0
\(155\) 2.99515 0.240576
\(156\) −8.37982 −0.670923
\(157\) 18.1108 1.44540 0.722700 0.691162i \(-0.242901\pi\)
0.722700 + 0.691162i \(0.242901\pi\)
\(158\) 9.65886 0.768417
\(159\) 30.5488 2.42268
\(160\) −3.33844 −0.263927
\(161\) 6.05750 0.477398
\(162\) −39.5007 −3.10346
\(163\) −10.0441 −0.786714 −0.393357 0.919386i \(-0.628686\pi\)
−0.393357 + 0.919386i \(0.628686\pi\)
\(164\) 7.72633 0.603325
\(165\) 0 0
\(166\) 1.28301 0.0995810
\(167\) −14.4023 −1.11449 −0.557243 0.830350i \(-0.688141\pi\)
−0.557243 + 0.830350i \(0.688141\pi\)
\(168\) 22.2636 1.71767
\(169\) 2.61323 0.201017
\(170\) −8.80813 −0.675552
\(171\) −11.0612 −0.845874
\(172\) −1.54031 −0.117447
\(173\) 14.2248 1.08149 0.540744 0.841187i \(-0.318143\pi\)
0.540744 + 0.841187i \(0.318143\pi\)
\(174\) −21.7905 −1.65193
\(175\) 12.9724 0.980619
\(176\) 0 0
\(177\) 45.2739 3.40300
\(178\) 24.1218 1.80801
\(179\) 9.70539 0.725415 0.362707 0.931903i \(-0.381852\pi\)
0.362707 + 0.931903i \(0.381852\pi\)
\(180\) −4.56805 −0.340483
\(181\) 6.61148 0.491427 0.245714 0.969342i \(-0.420978\pi\)
0.245714 + 0.969342i \(0.420978\pi\)
\(182\) 20.2383 1.50016
\(183\) −25.9627 −1.91922
\(184\) −4.22205 −0.311253
\(185\) 5.34149 0.392714
\(186\) −16.8986 −1.23907
\(187\) 0 0
\(188\) −2.32589 −0.169633
\(189\) 45.3003 3.29511
\(190\) −2.25787 −0.163803
\(191\) 7.25228 0.524757 0.262378 0.964965i \(-0.415493\pi\)
0.262378 + 0.964965i \(0.415493\pi\)
\(192\) −12.7360 −0.919141
\(193\) 24.7374 1.78064 0.890318 0.455339i \(-0.150482\pi\)
0.890318 + 0.455339i \(0.150482\pi\)
\(194\) −17.0339 −1.22296
\(195\) 11.9352 0.854695
\(196\) 1.88725 0.134803
\(197\) 1.08099 0.0770177 0.0385088 0.999258i \(-0.487739\pi\)
0.0385088 + 0.999258i \(0.487739\pi\)
\(198\) 0 0
\(199\) 0.658437 0.0466754 0.0233377 0.999728i \(-0.492571\pi\)
0.0233377 + 0.999728i \(0.492571\pi\)
\(200\) −9.04168 −0.639343
\(201\) −3.85411 −0.271848
\(202\) −1.90122 −0.133769
\(203\) 12.9953 0.912095
\(204\) 12.2715 0.859180
\(205\) −11.0044 −0.768582
\(206\) 6.27618 0.437282
\(207\) −14.3728 −0.998980
\(208\) −19.2887 −1.33743
\(209\) 0 0
\(210\) 15.4707 1.06758
\(211\) 0.404094 0.0278190 0.0139095 0.999903i \(-0.495572\pi\)
0.0139095 + 0.999903i \(0.495572\pi\)
\(212\) −6.19535 −0.425499
\(213\) −18.0918 −1.23963
\(214\) 19.6840 1.34557
\(215\) 2.19382 0.149617
\(216\) −31.5741 −2.14834
\(217\) 10.0780 0.684137
\(218\) −20.9577 −1.41943
\(219\) 0.180126 0.0121718
\(220\) 0 0
\(221\) −22.8643 −1.53802
\(222\) −30.1367 −2.02264
\(223\) −15.1521 −1.01466 −0.507331 0.861751i \(-0.669368\pi\)
−0.507331 + 0.861751i \(0.669368\pi\)
\(224\) −11.2331 −0.750540
\(225\) −30.7799 −2.05200
\(226\) −1.73208 −0.115216
\(227\) −0.629848 −0.0418045 −0.0209022 0.999782i \(-0.506654\pi\)
−0.0209022 + 0.999782i \(0.506654\pi\)
\(228\) 3.14569 0.208328
\(229\) −27.6597 −1.82781 −0.913903 0.405934i \(-0.866946\pi\)
−0.913903 + 0.405934i \(0.866946\pi\)
\(230\) −2.93385 −0.193452
\(231\) 0 0
\(232\) −9.05770 −0.594667
\(233\) −6.98602 −0.457669 −0.228835 0.973465i \(-0.573491\pi\)
−0.228835 + 0.973465i \(0.573491\pi\)
\(234\) −48.0200 −3.13917
\(235\) 3.31270 0.216097
\(236\) −9.18164 −0.597674
\(237\) 19.1662 1.24498
\(238\) −29.6372 −1.92110
\(239\) −16.7634 −1.08433 −0.542167 0.840270i \(-0.682396\pi\)
−0.542167 + 0.840270i \(0.682396\pi\)
\(240\) −14.7448 −0.951772
\(241\) −16.4072 −1.05688 −0.528439 0.848971i \(-0.677223\pi\)
−0.528439 + 0.848971i \(0.677223\pi\)
\(242\) 0 0
\(243\) −35.1407 −2.25428
\(244\) 5.26529 0.337076
\(245\) −2.68796 −0.171727
\(246\) 62.0869 3.95851
\(247\) −5.86102 −0.372928
\(248\) −7.02430 −0.446044
\(249\) 2.54589 0.161339
\(250\) −13.8940 −0.878732
\(251\) 6.76681 0.427117 0.213558 0.976930i \(-0.431495\pi\)
0.213558 + 0.976930i \(0.431495\pi\)
\(252\) −15.3704 −0.968245
\(253\) 0 0
\(254\) 24.4090 1.53156
\(255\) −17.4780 −1.09452
\(256\) 14.2321 0.889509
\(257\) −0.136839 −0.00853576 −0.00426788 0.999991i \(-0.501359\pi\)
−0.00426788 + 0.999991i \(0.501359\pi\)
\(258\) −12.3775 −0.770592
\(259\) 17.9728 1.11678
\(260\) −2.42047 −0.150111
\(261\) −30.8345 −1.90861
\(262\) −11.9536 −0.738493
\(263\) −16.6239 −1.02507 −0.512537 0.858665i \(-0.671294\pi\)
−0.512537 + 0.858665i \(0.671294\pi\)
\(264\) 0 0
\(265\) 8.82389 0.542047
\(266\) −7.59721 −0.465815
\(267\) 47.8651 2.92930
\(268\) 0.781622 0.0477452
\(269\) −1.36202 −0.0830441 −0.0415220 0.999138i \(-0.513221\pi\)
−0.0415220 + 0.999138i \(0.513221\pi\)
\(270\) −21.9404 −1.33525
\(271\) 20.6770 1.25604 0.628018 0.778199i \(-0.283866\pi\)
0.628018 + 0.778199i \(0.283866\pi\)
\(272\) 28.2467 1.71271
\(273\) 40.1590 2.43053
\(274\) 8.51744 0.514558
\(275\) 0 0
\(276\) 4.08746 0.246036
\(277\) 26.4680 1.59031 0.795154 0.606407i \(-0.207390\pi\)
0.795154 + 0.606407i \(0.207390\pi\)
\(278\) −24.6269 −1.47703
\(279\) −23.9123 −1.43159
\(280\) 6.43074 0.384310
\(281\) −4.65579 −0.277741 −0.138871 0.990311i \(-0.544347\pi\)
−0.138871 + 0.990311i \(0.544347\pi\)
\(282\) −18.6903 −1.11299
\(283\) 22.0637 1.31155 0.655776 0.754955i \(-0.272342\pi\)
0.655776 + 0.754955i \(0.272342\pi\)
\(284\) 3.66906 0.217718
\(285\) −4.48032 −0.265391
\(286\) 0 0
\(287\) −37.0272 −2.18565
\(288\) 26.6530 1.57054
\(289\) 16.4828 0.969575
\(290\) −6.29408 −0.369601
\(291\) −33.8004 −1.98142
\(292\) −0.0365298 −0.00213775
\(293\) 0.308905 0.0180464 0.00902321 0.999959i \(-0.497128\pi\)
0.00902321 + 0.999959i \(0.497128\pi\)
\(294\) 15.1655 0.884468
\(295\) 13.0772 0.761383
\(296\) −12.5270 −0.728116
\(297\) 0 0
\(298\) 15.6382 0.905898
\(299\) −7.61572 −0.440429
\(300\) 8.75345 0.505381
\(301\) 7.38169 0.425473
\(302\) −20.5408 −1.18199
\(303\) −3.77261 −0.216731
\(304\) 7.24075 0.415285
\(305\) −7.49923 −0.429404
\(306\) 70.3212 4.02000
\(307\) −2.54346 −0.145163 −0.0725814 0.997362i \(-0.523124\pi\)
−0.0725814 + 0.997362i \(0.523124\pi\)
\(308\) 0 0
\(309\) 12.4539 0.708476
\(310\) −4.88110 −0.277228
\(311\) −7.84600 −0.444906 −0.222453 0.974943i \(-0.571406\pi\)
−0.222453 + 0.974943i \(0.571406\pi\)
\(312\) −27.9906 −1.58466
\(313\) 28.3651 1.60329 0.801644 0.597801i \(-0.203959\pi\)
0.801644 + 0.597801i \(0.203959\pi\)
\(314\) −29.5146 −1.66560
\(315\) 21.8917 1.23346
\(316\) −3.88693 −0.218657
\(317\) −5.04616 −0.283420 −0.141710 0.989908i \(-0.545260\pi\)
−0.141710 + 0.989908i \(0.545260\pi\)
\(318\) −49.7843 −2.79177
\(319\) 0 0
\(320\) −3.67873 −0.205647
\(321\) 39.0592 2.18007
\(322\) −9.87170 −0.550128
\(323\) 8.58297 0.477569
\(324\) 15.8959 0.883107
\(325\) −16.3094 −0.904681
\(326\) 16.3685 0.906568
\(327\) −41.5866 −2.29974
\(328\) 25.8078 1.42500
\(329\) 11.1465 0.614524
\(330\) 0 0
\(331\) 32.9653 1.81194 0.905969 0.423343i \(-0.139144\pi\)
0.905969 + 0.423343i \(0.139144\pi\)
\(332\) −0.516312 −0.0283363
\(333\) −42.6447 −2.33692
\(334\) 23.4710 1.28428
\(335\) −1.11324 −0.0608230
\(336\) −49.6127 −2.70660
\(337\) −7.92651 −0.431784 −0.215892 0.976417i \(-0.569266\pi\)
−0.215892 + 0.976417i \(0.569266\pi\)
\(338\) −4.25869 −0.231642
\(339\) −3.43699 −0.186672
\(340\) 3.54458 0.192232
\(341\) 0 0
\(342\) 18.0261 0.974742
\(343\) 12.9558 0.699550
\(344\) −5.14500 −0.277400
\(345\) −5.82166 −0.313428
\(346\) −23.1816 −1.24625
\(347\) −12.3791 −0.664544 −0.332272 0.943184i \(-0.607815\pi\)
−0.332272 + 0.943184i \(0.607815\pi\)
\(348\) 8.76896 0.470065
\(349\) 12.1559 0.650693 0.325346 0.945595i \(-0.394519\pi\)
0.325346 + 0.945595i \(0.394519\pi\)
\(350\) −21.1406 −1.13001
\(351\) −56.9533 −3.03994
\(352\) 0 0
\(353\) −13.9022 −0.739942 −0.369971 0.929043i \(-0.620632\pi\)
−0.369971 + 0.929043i \(0.620632\pi\)
\(354\) −73.7814 −3.92144
\(355\) −5.22574 −0.277354
\(356\) −9.70714 −0.514478
\(357\) −58.8095 −3.11253
\(358\) −15.8165 −0.835931
\(359\) −1.94064 −0.102423 −0.0512116 0.998688i \(-0.516308\pi\)
−0.0512116 + 0.998688i \(0.516308\pi\)
\(360\) −15.2584 −0.804189
\(361\) −16.7998 −0.884202
\(362\) −10.7745 −0.566296
\(363\) 0 0
\(364\) −8.14432 −0.426878
\(365\) 0.0520285 0.00272330
\(366\) 42.3106 2.21161
\(367\) 5.98445 0.312386 0.156193 0.987727i \(-0.450078\pi\)
0.156193 + 0.987727i \(0.450078\pi\)
\(368\) 9.40852 0.490453
\(369\) 87.8557 4.57358
\(370\) −8.70484 −0.452543
\(371\) 29.6903 1.54144
\(372\) 6.80038 0.352583
\(373\) 33.5193 1.73556 0.867782 0.496944i \(-0.165545\pi\)
0.867782 + 0.496944i \(0.165545\pi\)
\(374\) 0 0
\(375\) −27.5699 −1.42371
\(376\) −7.76903 −0.400657
\(377\) −16.3383 −0.841463
\(378\) −73.8243 −3.79711
\(379\) 4.59681 0.236122 0.118061 0.993006i \(-0.462332\pi\)
0.118061 + 0.993006i \(0.462332\pi\)
\(380\) 0.908618 0.0466111
\(381\) 48.4351 2.48140
\(382\) −11.8188 −0.604702
\(383\) 19.3485 0.988663 0.494331 0.869274i \(-0.335413\pi\)
0.494331 + 0.869274i \(0.335413\pi\)
\(384\) 43.8711 2.23879
\(385\) 0 0
\(386\) −40.3137 −2.05191
\(387\) −17.5148 −0.890326
\(388\) 6.85479 0.347999
\(389\) 18.9514 0.960873 0.480437 0.877029i \(-0.340478\pi\)
0.480437 + 0.877029i \(0.340478\pi\)
\(390\) −19.4503 −0.984906
\(391\) 11.1526 0.564010
\(392\) 6.30387 0.318393
\(393\) −23.7195 −1.19649
\(394\) −1.76166 −0.0887512
\(395\) 5.53606 0.278550
\(396\) 0 0
\(397\) −11.3455 −0.569412 −0.284706 0.958615i \(-0.591896\pi\)
−0.284706 + 0.958615i \(0.591896\pi\)
\(398\) −1.07303 −0.0537863
\(399\) −15.0752 −0.754705
\(400\) 20.1487 1.00744
\(401\) −10.8271 −0.540679 −0.270339 0.962765i \(-0.587136\pi\)
−0.270339 + 0.962765i \(0.587136\pi\)
\(402\) 6.28092 0.313264
\(403\) −12.6704 −0.631159
\(404\) 0.765092 0.0380648
\(405\) −22.6402 −1.12500
\(406\) −21.1781 −1.05105
\(407\) 0 0
\(408\) 40.9899 2.02930
\(409\) 32.7178 1.61779 0.808896 0.587952i \(-0.200066\pi\)
0.808896 + 0.587952i \(0.200066\pi\)
\(410\) 17.9335 0.885674
\(411\) 16.9012 0.833677
\(412\) −2.52567 −0.124431
\(413\) 44.0016 2.16518
\(414\) 23.4229 1.15117
\(415\) 0.735369 0.0360979
\(416\) 14.1226 0.692419
\(417\) −48.8675 −2.39305
\(418\) 0 0
\(419\) 16.5244 0.807271 0.403636 0.914920i \(-0.367746\pi\)
0.403636 + 0.914920i \(0.367746\pi\)
\(420\) −6.22574 −0.303785
\(421\) −11.1452 −0.543184 −0.271592 0.962412i \(-0.587550\pi\)
−0.271592 + 0.962412i \(0.587550\pi\)
\(422\) −0.658539 −0.0320572
\(423\) −26.4476 −1.28592
\(424\) −20.6940 −1.00499
\(425\) 23.8837 1.15853
\(426\) 29.4836 1.42849
\(427\) −25.2331 −1.22112
\(428\) −7.92129 −0.382890
\(429\) 0 0
\(430\) −3.57520 −0.172411
\(431\) −26.2629 −1.26504 −0.632520 0.774544i \(-0.717979\pi\)
−0.632520 + 0.774544i \(0.717979\pi\)
\(432\) 70.3605 3.38522
\(433\) 9.99011 0.480094 0.240047 0.970761i \(-0.422837\pi\)
0.240047 + 0.970761i \(0.422837\pi\)
\(434\) −16.4237 −0.788365
\(435\) −12.4894 −0.598821
\(436\) 8.43384 0.403908
\(437\) 2.85885 0.136757
\(438\) −0.293545 −0.0140261
\(439\) 22.2044 1.05976 0.529880 0.848072i \(-0.322237\pi\)
0.529880 + 0.848072i \(0.322237\pi\)
\(440\) 0 0
\(441\) 21.4598 1.02190
\(442\) 37.2611 1.77233
\(443\) 29.3758 1.39569 0.697844 0.716250i \(-0.254143\pi\)
0.697844 + 0.716250i \(0.254143\pi\)
\(444\) 12.1276 0.575553
\(445\) 13.8256 0.655398
\(446\) 24.6929 1.16924
\(447\) 31.0311 1.46772
\(448\) −12.3781 −0.584809
\(449\) −33.7859 −1.59445 −0.797227 0.603680i \(-0.793700\pi\)
−0.797227 + 0.603680i \(0.793700\pi\)
\(450\) 50.1610 2.36461
\(451\) 0 0
\(452\) 0.697028 0.0327854
\(453\) −40.7594 −1.91504
\(454\) 1.02644 0.0481733
\(455\) 11.5998 0.543805
\(456\) 10.5074 0.492052
\(457\) −17.5898 −0.822815 −0.411408 0.911451i \(-0.634963\pi\)
−0.411408 + 0.911451i \(0.634963\pi\)
\(458\) 45.0761 2.10627
\(459\) 83.4033 3.89293
\(460\) 1.18064 0.0550478
\(461\) 31.0570 1.44647 0.723234 0.690603i \(-0.242655\pi\)
0.723234 + 0.690603i \(0.242655\pi\)
\(462\) 0 0
\(463\) 37.3368 1.73519 0.867594 0.497273i \(-0.165665\pi\)
0.867594 + 0.497273i \(0.165665\pi\)
\(464\) 20.1844 0.937038
\(465\) −9.68561 −0.449159
\(466\) 11.3849 0.527394
\(467\) 4.37372 0.202392 0.101196 0.994867i \(-0.467733\pi\)
0.101196 + 0.994867i \(0.467733\pi\)
\(468\) 19.3243 0.893266
\(469\) −3.74580 −0.172965
\(470\) −5.39860 −0.249019
\(471\) −58.5660 −2.69858
\(472\) −30.6689 −1.41165
\(473\) 0 0
\(474\) −31.2345 −1.43465
\(475\) 6.12234 0.280912
\(476\) 11.9267 0.546658
\(477\) −70.4471 −3.22555
\(478\) 27.3188 1.24953
\(479\) 10.4683 0.478309 0.239154 0.970982i \(-0.423130\pi\)
0.239154 + 0.970982i \(0.423130\pi\)
\(480\) 10.7957 0.492755
\(481\) −22.5962 −1.03030
\(482\) 26.7382 1.21789
\(483\) −19.5885 −0.891308
\(484\) 0 0
\(485\) −9.76311 −0.443320
\(486\) 57.2677 2.59771
\(487\) −5.80738 −0.263157 −0.131579 0.991306i \(-0.542005\pi\)
−0.131579 + 0.991306i \(0.542005\pi\)
\(488\) 17.5874 0.796143
\(489\) 32.4802 1.46881
\(490\) 4.38048 0.197890
\(491\) −7.07576 −0.319325 −0.159662 0.987172i \(-0.551041\pi\)
−0.159662 + 0.987172i \(0.551041\pi\)
\(492\) −24.9851 −1.12642
\(493\) 23.9260 1.07757
\(494\) 9.55151 0.429743
\(495\) 0 0
\(496\) 15.6531 0.702847
\(497\) −17.5834 −0.788722
\(498\) −4.14895 −0.185919
\(499\) 6.49078 0.290567 0.145284 0.989390i \(-0.453591\pi\)
0.145284 + 0.989390i \(0.453591\pi\)
\(500\) 5.59124 0.250048
\(501\) 46.5737 2.08076
\(502\) −11.0276 −0.492188
\(503\) 5.90604 0.263338 0.131669 0.991294i \(-0.457966\pi\)
0.131669 + 0.991294i \(0.457966\pi\)
\(504\) −51.3409 −2.28691
\(505\) −1.08970 −0.0484911
\(506\) 0 0
\(507\) −8.45056 −0.375302
\(508\) −9.82273 −0.435813
\(509\) −9.33224 −0.413644 −0.206822 0.978379i \(-0.566312\pi\)
−0.206822 + 0.978379i \(0.566312\pi\)
\(510\) 28.4834 1.26127
\(511\) 0.175064 0.00774436
\(512\) 3.93954 0.174105
\(513\) 21.3796 0.943932
\(514\) 0.223001 0.00983617
\(515\) 3.59725 0.158514
\(516\) 4.98099 0.219276
\(517\) 0 0
\(518\) −29.2897 −1.28692
\(519\) −45.9995 −2.01915
\(520\) −8.08498 −0.354550
\(521\) 31.1924 1.36656 0.683282 0.730155i \(-0.260552\pi\)
0.683282 + 0.730155i \(0.260552\pi\)
\(522\) 50.2499 2.19938
\(523\) −17.4309 −0.762198 −0.381099 0.924534i \(-0.624454\pi\)
−0.381099 + 0.924534i \(0.624454\pi\)
\(524\) 4.81037 0.210142
\(525\) −41.9495 −1.83083
\(526\) 27.0914 1.18124
\(527\) 18.5548 0.808259
\(528\) 0 0
\(529\) −19.2853 −0.838489
\(530\) −14.3800 −0.624627
\(531\) −104.404 −4.53075
\(532\) 3.05728 0.132550
\(533\) 46.5521 2.01639
\(534\) −78.0042 −3.37557
\(535\) 11.2821 0.487767
\(536\) 2.61081 0.112770
\(537\) −31.3849 −1.35436
\(538\) 2.21965 0.0956957
\(539\) 0 0
\(540\) 8.82931 0.379953
\(541\) 23.5369 1.01193 0.505965 0.862554i \(-0.331137\pi\)
0.505965 + 0.862554i \(0.331137\pi\)
\(542\) −33.6966 −1.44739
\(543\) −21.3800 −0.917502
\(544\) −20.6814 −0.886708
\(545\) −12.0121 −0.514542
\(546\) −65.4458 −2.80082
\(547\) 4.70986 0.201379 0.100690 0.994918i \(-0.467895\pi\)
0.100690 + 0.994918i \(0.467895\pi\)
\(548\) −3.42760 −0.146420
\(549\) 59.8714 2.55525
\(550\) 0 0
\(551\) 6.13319 0.261283
\(552\) 13.6531 0.581115
\(553\) 18.6275 0.792123
\(554\) −43.1340 −1.83259
\(555\) −17.2731 −0.733202
\(556\) 9.91042 0.420295
\(557\) −33.1180 −1.40326 −0.701628 0.712543i \(-0.747543\pi\)
−0.701628 + 0.712543i \(0.747543\pi\)
\(558\) 38.9691 1.64969
\(559\) −9.28055 −0.392525
\(560\) −14.3304 −0.605571
\(561\) 0 0
\(562\) 7.58739 0.320055
\(563\) 7.48682 0.315532 0.157766 0.987477i \(-0.449571\pi\)
0.157766 + 0.987477i \(0.449571\pi\)
\(564\) 7.52137 0.316707
\(565\) −0.992759 −0.0417657
\(566\) −35.9565 −1.51136
\(567\) −76.1788 −3.19921
\(568\) 12.2555 0.514231
\(569\) −29.8028 −1.24940 −0.624698 0.780866i \(-0.714778\pi\)
−0.624698 + 0.780866i \(0.714778\pi\)
\(570\) 7.30143 0.305823
\(571\) −13.7647 −0.576034 −0.288017 0.957625i \(-0.592996\pi\)
−0.288017 + 0.957625i \(0.592996\pi\)
\(572\) 0 0
\(573\) −23.4522 −0.979728
\(574\) 60.3420 2.51863
\(575\) 7.95528 0.331758
\(576\) 29.3698 1.22374
\(577\) 29.0765 1.21047 0.605234 0.796047i \(-0.293079\pi\)
0.605234 + 0.796047i \(0.293079\pi\)
\(578\) −26.8614 −1.11729
\(579\) −79.9948 −3.32447
\(580\) 2.53288 0.105172
\(581\) 2.47434 0.102653
\(582\) 55.0834 2.28328
\(583\) 0 0
\(584\) −0.122019 −0.00504916
\(585\) −27.5231 −1.13794
\(586\) −0.503412 −0.0207958
\(587\) 28.7574 1.18694 0.593472 0.804854i \(-0.297757\pi\)
0.593472 + 0.804854i \(0.297757\pi\)
\(588\) −6.10291 −0.251680
\(589\) 4.75633 0.195981
\(590\) −21.3114 −0.877378
\(591\) −3.49568 −0.143793
\(592\) 27.9155 1.14732
\(593\) −26.5838 −1.09166 −0.545832 0.837895i \(-0.683786\pi\)
−0.545832 + 0.837895i \(0.683786\pi\)
\(594\) 0 0
\(595\) −16.9869 −0.696393
\(596\) −6.29316 −0.257778
\(597\) −2.12923 −0.0871436
\(598\) 12.4111 0.507527
\(599\) 11.6062 0.474215 0.237108 0.971483i \(-0.423801\pi\)
0.237108 + 0.971483i \(0.423801\pi\)
\(600\) 29.2386 1.19366
\(601\) −30.2074 −1.23219 −0.616094 0.787673i \(-0.711286\pi\)
−0.616094 + 0.787673i \(0.711286\pi\)
\(602\) −12.0297 −0.490294
\(603\) 8.88778 0.361939
\(604\) 8.26608 0.336342
\(605\) 0 0
\(606\) 6.14810 0.249749
\(607\) 15.9646 0.647983 0.323991 0.946060i \(-0.394975\pi\)
0.323991 + 0.946060i \(0.394975\pi\)
\(608\) −5.30147 −0.215003
\(609\) −42.0239 −1.70289
\(610\) 12.2212 0.494823
\(611\) −14.0138 −0.566936
\(612\) −28.2988 −1.14391
\(613\) 0.239609 0.00967770 0.00483885 0.999988i \(-0.498460\pi\)
0.00483885 + 0.999988i \(0.498460\pi\)
\(614\) 4.14499 0.167278
\(615\) 35.5857 1.43495
\(616\) 0 0
\(617\) −6.81566 −0.274388 −0.137194 0.990544i \(-0.543808\pi\)
−0.137194 + 0.990544i \(0.543808\pi\)
\(618\) −20.2957 −0.816411
\(619\) 24.0332 0.965978 0.482989 0.875627i \(-0.339551\pi\)
0.482989 + 0.875627i \(0.339551\pi\)
\(620\) 1.96426 0.0788866
\(621\) 27.7803 1.11479
\(622\) 12.7864 0.512687
\(623\) 46.5200 1.86378
\(624\) 62.3751 2.49700
\(625\) 12.6742 0.506969
\(626\) −46.2256 −1.84755
\(627\) 0 0
\(628\) 11.8773 0.473956
\(629\) 33.0902 1.31939
\(630\) −35.6762 −1.42137
\(631\) −15.8884 −0.632508 −0.316254 0.948674i \(-0.602425\pi\)
−0.316254 + 0.948674i \(0.602425\pi\)
\(632\) −12.9833 −0.516448
\(633\) −1.30675 −0.0519385
\(634\) 8.22356 0.326599
\(635\) 13.9903 0.555187
\(636\) 20.0343 0.794412
\(637\) 11.3709 0.450532
\(638\) 0 0
\(639\) 41.7206 1.65044
\(640\) 12.6720 0.500904
\(641\) 14.0783 0.556059 0.278029 0.960573i \(-0.410319\pi\)
0.278029 + 0.960573i \(0.410319\pi\)
\(642\) −63.6535 −2.51220
\(643\) −28.2102 −1.11250 −0.556252 0.831014i \(-0.687761\pi\)
−0.556252 + 0.831014i \(0.687761\pi\)
\(644\) 3.97259 0.156542
\(645\) −7.09430 −0.279338
\(646\) −13.9874 −0.550326
\(647\) 20.4001 0.802012 0.401006 0.916075i \(-0.368661\pi\)
0.401006 + 0.916075i \(0.368661\pi\)
\(648\) 53.0962 2.08582
\(649\) 0 0
\(650\) 26.5788 1.04251
\(651\) −32.5898 −1.27729
\(652\) −6.58705 −0.257969
\(653\) 16.5223 0.646566 0.323283 0.946302i \(-0.395213\pi\)
0.323283 + 0.946302i \(0.395213\pi\)
\(654\) 67.7722 2.65010
\(655\) −6.85129 −0.267702
\(656\) −57.5108 −2.24542
\(657\) −0.415379 −0.0162055
\(658\) −18.1650 −0.708146
\(659\) 42.0970 1.63987 0.819933 0.572460i \(-0.194011\pi\)
0.819933 + 0.572460i \(0.194011\pi\)
\(660\) 0 0
\(661\) −26.6792 −1.03770 −0.518850 0.854865i \(-0.673640\pi\)
−0.518850 + 0.854865i \(0.673640\pi\)
\(662\) −53.7225 −2.08798
\(663\) 73.9376 2.87150
\(664\) −1.72461 −0.0669277
\(665\) −4.35441 −0.168857
\(666\) 69.4967 2.69294
\(667\) 7.96938 0.308575
\(668\) −9.44524 −0.365447
\(669\) 48.9984 1.89439
\(670\) 1.81422 0.0700893
\(671\) 0 0
\(672\) 36.3250 1.40127
\(673\) −15.1914 −0.585586 −0.292793 0.956176i \(-0.594585\pi\)
−0.292793 + 0.956176i \(0.594585\pi\)
\(674\) 12.9176 0.497566
\(675\) 59.4926 2.28987
\(676\) 1.71379 0.0659150
\(677\) −26.7863 −1.02948 −0.514740 0.857346i \(-0.672112\pi\)
−0.514740 + 0.857346i \(0.672112\pi\)
\(678\) 5.60114 0.215111
\(679\) −32.8505 −1.26069
\(680\) 11.8398 0.454034
\(681\) 2.03678 0.0780495
\(682\) 0 0
\(683\) 17.7240 0.678192 0.339096 0.940752i \(-0.389879\pi\)
0.339096 + 0.940752i \(0.389879\pi\)
\(684\) −7.25411 −0.277368
\(685\) 4.88185 0.186526
\(686\) −21.1137 −0.806125
\(687\) 89.4449 3.41254
\(688\) 11.4653 0.437109
\(689\) −37.3278 −1.42208
\(690\) 9.48737 0.361178
\(691\) 15.0790 0.573632 0.286816 0.957986i \(-0.407403\pi\)
0.286816 + 0.957986i \(0.407403\pi\)
\(692\) 9.32878 0.354627
\(693\) 0 0
\(694\) 20.1738 0.765786
\(695\) −14.1152 −0.535419
\(696\) 29.2905 1.11025
\(697\) −68.1716 −2.58218
\(698\) −19.8101 −0.749825
\(699\) 22.5911 0.854475
\(700\) 8.50745 0.321551
\(701\) −39.8913 −1.50667 −0.753337 0.657634i \(-0.771557\pi\)
−0.753337 + 0.657634i \(0.771557\pi\)
\(702\) 92.8148 3.50307
\(703\) 8.48233 0.319917
\(704\) 0 0
\(705\) −10.7125 −0.403456
\(706\) 22.6560 0.852670
\(707\) −3.66659 −0.137896
\(708\) 29.6912 1.11587
\(709\) −28.1244 −1.05623 −0.528116 0.849172i \(-0.677101\pi\)
−0.528116 + 0.849172i \(0.677101\pi\)
\(710\) 8.51622 0.319608
\(711\) −44.1981 −1.65756
\(712\) −32.4242 −1.21515
\(713\) 6.18030 0.231454
\(714\) 95.8398 3.58672
\(715\) 0 0
\(716\) 6.36492 0.237868
\(717\) 54.2089 2.02447
\(718\) 3.16260 0.118027
\(719\) 39.5088 1.47343 0.736715 0.676203i \(-0.236376\pi\)
0.736715 + 0.676203i \(0.236376\pi\)
\(720\) 34.0022 1.26719
\(721\) 12.1039 0.450772
\(722\) 27.3781 1.01891
\(723\) 53.0569 1.97321
\(724\) 4.33590 0.161142
\(725\) 17.0667 0.633842
\(726\) 0 0
\(727\) −4.95971 −0.183946 −0.0919728 0.995762i \(-0.529317\pi\)
−0.0919728 + 0.995762i \(0.529317\pi\)
\(728\) −27.2040 −1.00825
\(729\) 40.9213 1.51560
\(730\) −0.0847891 −0.00313819
\(731\) 13.5906 0.502666
\(732\) −17.0267 −0.629325
\(733\) 12.1731 0.449624 0.224812 0.974402i \(-0.427823\pi\)
0.224812 + 0.974402i \(0.427823\pi\)
\(734\) −9.75266 −0.359977
\(735\) 8.69222 0.320617
\(736\) −6.88865 −0.253919
\(737\) 0 0
\(738\) −143.175 −5.27036
\(739\) −29.8936 −1.09966 −0.549828 0.835278i \(-0.685307\pi\)
−0.549828 + 0.835278i \(0.685307\pi\)
\(740\) 3.50302 0.128774
\(741\) 18.9532 0.696261
\(742\) −48.3853 −1.77628
\(743\) 13.1288 0.481649 0.240824 0.970569i \(-0.422582\pi\)
0.240824 + 0.970569i \(0.422582\pi\)
\(744\) 22.7149 0.832770
\(745\) 8.96319 0.328386
\(746\) −54.6253 −1.99998
\(747\) −5.87095 −0.214807
\(748\) 0 0
\(749\) 37.9615 1.38708
\(750\) 44.9298 1.64060
\(751\) −17.2193 −0.628341 −0.314171 0.949367i \(-0.601726\pi\)
−0.314171 + 0.949367i \(0.601726\pi\)
\(752\) 17.3127 0.631330
\(753\) −21.8822 −0.797433
\(754\) 26.6259 0.969659
\(755\) −11.7732 −0.428469
\(756\) 29.7085 1.08049
\(757\) −17.0776 −0.620697 −0.310349 0.950623i \(-0.600446\pi\)
−0.310349 + 0.950623i \(0.600446\pi\)
\(758\) −7.49127 −0.272095
\(759\) 0 0
\(760\) 3.03500 0.110091
\(761\) −3.30126 −0.119670 −0.0598352 0.998208i \(-0.519058\pi\)
−0.0598352 + 0.998208i \(0.519058\pi\)
\(762\) −78.9330 −2.85944
\(763\) −40.4179 −1.46322
\(764\) 4.75614 0.172071
\(765\) 40.3053 1.45724
\(766\) −31.5316 −1.13928
\(767\) −55.3205 −1.99751
\(768\) −46.0234 −1.66073
\(769\) −26.7422 −0.964348 −0.482174 0.876075i \(-0.660153\pi\)
−0.482174 + 0.876075i \(0.660153\pi\)
\(770\) 0 0
\(771\) 0.442504 0.0159364
\(772\) 16.2231 0.583882
\(773\) −13.8206 −0.497093 −0.248547 0.968620i \(-0.579953\pi\)
−0.248547 + 0.968620i \(0.579953\pi\)
\(774\) 28.5432 1.02597
\(775\) 13.2354 0.475428
\(776\) 22.8967 0.821943
\(777\) −58.1199 −2.08504
\(778\) −30.8844 −1.10726
\(779\) −17.4751 −0.626111
\(780\) 7.82724 0.280260
\(781\) 0 0
\(782\) −18.1750 −0.649936
\(783\) 59.5980 2.12986
\(784\) −14.0477 −0.501703
\(785\) −16.9165 −0.603777
\(786\) 38.6549 1.37878
\(787\) −10.9843 −0.391548 −0.195774 0.980649i \(-0.562722\pi\)
−0.195774 + 0.980649i \(0.562722\pi\)
\(788\) 0.708931 0.0252546
\(789\) 53.7578 1.91383
\(790\) −9.02194 −0.320986
\(791\) −3.34040 −0.118771
\(792\) 0 0
\(793\) 31.7241 1.12655
\(794\) 18.4893 0.656161
\(795\) −28.5344 −1.01201
\(796\) 0.431812 0.0153052
\(797\) 18.4437 0.653308 0.326654 0.945144i \(-0.394079\pi\)
0.326654 + 0.945144i \(0.394079\pi\)
\(798\) 24.5676 0.869683
\(799\) 20.5220 0.726016
\(800\) −14.7523 −0.521573
\(801\) −110.379 −3.90007
\(802\) 17.6445 0.623050
\(803\) 0 0
\(804\) −2.52758 −0.0891409
\(805\) −5.65805 −0.199420
\(806\) 20.6486 0.727315
\(807\) 4.40446 0.155044
\(808\) 2.55560 0.0899055
\(809\) 12.5013 0.439521 0.219760 0.975554i \(-0.429472\pi\)
0.219760 + 0.975554i \(0.429472\pi\)
\(810\) 36.8959 1.29639
\(811\) 21.3578 0.749973 0.374987 0.927030i \(-0.377647\pi\)
0.374987 + 0.927030i \(0.377647\pi\)
\(812\) 8.52252 0.299082
\(813\) −66.8644 −2.34504
\(814\) 0 0
\(815\) 9.38176 0.328629
\(816\) −91.3430 −3.19765
\(817\) 3.48381 0.121883
\(818\) −53.3191 −1.86426
\(819\) −92.6087 −3.23601
\(820\) −7.21684 −0.252023
\(821\) 8.71755 0.304245 0.152122 0.988362i \(-0.451389\pi\)
0.152122 + 0.988362i \(0.451389\pi\)
\(822\) −27.5434 −0.960686
\(823\) −26.2385 −0.914616 −0.457308 0.889308i \(-0.651186\pi\)
−0.457308 + 0.889308i \(0.651186\pi\)
\(824\) −8.43635 −0.293894
\(825\) 0 0
\(826\) −71.7079 −2.49504
\(827\) 28.6887 0.997605 0.498802 0.866716i \(-0.333773\pi\)
0.498802 + 0.866716i \(0.333773\pi\)
\(828\) −9.42588 −0.327572
\(829\) 33.2537 1.15495 0.577474 0.816409i \(-0.304039\pi\)
0.577474 + 0.816409i \(0.304039\pi\)
\(830\) −1.19841 −0.0415973
\(831\) −85.5913 −2.96913
\(832\) 15.5622 0.539522
\(833\) −16.6517 −0.576948
\(834\) 79.6377 2.75763
\(835\) 13.4526 0.465547
\(836\) 0 0
\(837\) 46.2186 1.59755
\(838\) −26.9293 −0.930258
\(839\) 42.3483 1.46203 0.731013 0.682364i \(-0.239048\pi\)
0.731013 + 0.682364i \(0.239048\pi\)
\(840\) −20.7955 −0.717512
\(841\) −11.9030 −0.410449
\(842\) 18.1630 0.625938
\(843\) 15.0557 0.518547
\(844\) 0.265010 0.00912204
\(845\) −2.44091 −0.0839697
\(846\) 43.1007 1.48183
\(847\) 0 0
\(848\) 46.1150 1.58360
\(849\) −71.3488 −2.44869
\(850\) −38.9225 −1.33503
\(851\) 11.0218 0.377823
\(852\) −11.8649 −0.406483
\(853\) −34.2986 −1.17436 −0.587181 0.809455i \(-0.699763\pi\)
−0.587181 + 0.809455i \(0.699763\pi\)
\(854\) 41.1216 1.40715
\(855\) 10.3318 0.353342
\(856\) −26.4590 −0.904351
\(857\) 32.6414 1.11501 0.557505 0.830174i \(-0.311759\pi\)
0.557505 + 0.830174i \(0.311759\pi\)
\(858\) 0 0
\(859\) −24.8732 −0.848663 −0.424331 0.905507i \(-0.639491\pi\)
−0.424331 + 0.905507i \(0.639491\pi\)
\(860\) 1.43874 0.0490605
\(861\) 119.737 4.08064
\(862\) 42.7998 1.45777
\(863\) 34.2263 1.16508 0.582538 0.812804i \(-0.302060\pi\)
0.582538 + 0.812804i \(0.302060\pi\)
\(864\) −51.5160 −1.75261
\(865\) −13.2867 −0.451763
\(866\) −16.2806 −0.553236
\(867\) −53.3014 −1.81021
\(868\) 6.60927 0.224333
\(869\) 0 0
\(870\) 20.3536 0.690051
\(871\) 4.70937 0.159571
\(872\) 28.1711 0.953993
\(873\) 77.9455 2.63806
\(874\) −4.65898 −0.157592
\(875\) −26.7951 −0.905841
\(876\) 0.118129 0.00399120
\(877\) 17.7942 0.600869 0.300435 0.953802i \(-0.402868\pi\)
0.300435 + 0.953802i \(0.402868\pi\)
\(878\) −36.1858 −1.22121
\(879\) −0.998925 −0.0336929
\(880\) 0 0
\(881\) −16.3604 −0.551197 −0.275599 0.961273i \(-0.588876\pi\)
−0.275599 + 0.961273i \(0.588876\pi\)
\(882\) −34.9723 −1.17758
\(883\) −12.1775 −0.409806 −0.204903 0.978782i \(-0.565688\pi\)
−0.204903 + 0.978782i \(0.565688\pi\)
\(884\) −14.9947 −0.504326
\(885\) −42.2885 −1.42151
\(886\) −47.8728 −1.60832
\(887\) −7.70306 −0.258643 −0.129322 0.991603i \(-0.541280\pi\)
−0.129322 + 0.991603i \(0.541280\pi\)
\(888\) 40.5093 1.35940
\(889\) 47.0739 1.57881
\(890\) −22.5312 −0.755247
\(891\) 0 0
\(892\) −9.93697 −0.332714
\(893\) 5.26060 0.176039
\(894\) −50.5703 −1.69132
\(895\) −9.06540 −0.303023
\(896\) 42.6382 1.42444
\(897\) 24.6274 0.822286
\(898\) 55.0597 1.83737
\(899\) 13.2588 0.442206
\(900\) −20.1859 −0.672863
\(901\) 54.6634 1.82110
\(902\) 0 0
\(903\) −23.8706 −0.794365
\(904\) 2.32824 0.0774362
\(905\) −6.17551 −0.205281
\(906\) 66.4242 2.20680
\(907\) −1.16828 −0.0387921 −0.0193961 0.999812i \(-0.506174\pi\)
−0.0193961 + 0.999812i \(0.506174\pi\)
\(908\) −0.413063 −0.0137080
\(909\) 8.69983 0.288555
\(910\) −18.9037 −0.626653
\(911\) −57.1088 −1.89210 −0.946049 0.324024i \(-0.894964\pi\)
−0.946049 + 0.324024i \(0.894964\pi\)
\(912\) −23.4149 −0.775343
\(913\) 0 0
\(914\) 28.6655 0.948170
\(915\) 24.2507 0.801704
\(916\) −18.1396 −0.599350
\(917\) −23.0530 −0.761276
\(918\) −135.920 −4.48601
\(919\) −10.6905 −0.352647 −0.176324 0.984332i \(-0.556421\pi\)
−0.176324 + 0.984332i \(0.556421\pi\)
\(920\) 3.94364 0.130018
\(921\) 8.22494 0.271021
\(922\) −50.6125 −1.66684
\(923\) 22.1065 0.727645
\(924\) 0 0
\(925\) 23.6036 0.776083
\(926\) −60.8465 −1.99954
\(927\) −28.7193 −0.943265
\(928\) −14.7785 −0.485127
\(929\) −33.8631 −1.11101 −0.555506 0.831513i \(-0.687475\pi\)
−0.555506 + 0.831513i \(0.687475\pi\)
\(930\) 15.7843 0.517588
\(931\) −4.26850 −0.139895
\(932\) −4.58152 −0.150073
\(933\) 25.3721 0.830646
\(934\) −7.12771 −0.233226
\(935\) 0 0
\(936\) 64.5478 2.10981
\(937\) 40.7999 1.33287 0.666437 0.745561i \(-0.267818\pi\)
0.666437 + 0.745561i \(0.267818\pi\)
\(938\) 6.10441 0.199316
\(939\) −91.7259 −2.99336
\(940\) 2.17252 0.0708596
\(941\) −0.0192262 −0.000626757 0 −0.000313378 1.00000i \(-0.500100\pi\)
−0.000313378 1.00000i \(0.500100\pi\)
\(942\) 95.4431 3.10970
\(943\) −22.7069 −0.739438
\(944\) 68.3434 2.22439
\(945\) −42.3131 −1.37644
\(946\) 0 0
\(947\) 32.4815 1.05551 0.527753 0.849398i \(-0.323035\pi\)
0.527753 + 0.849398i \(0.323035\pi\)
\(948\) 12.5694 0.408236
\(949\) −0.220097 −0.00714465
\(950\) −9.97738 −0.323709
\(951\) 16.3181 0.529150
\(952\) 39.8380 1.29116
\(953\) 7.92375 0.256675 0.128338 0.991731i \(-0.459036\pi\)
0.128338 + 0.991731i \(0.459036\pi\)
\(954\) 114.805 3.71696
\(955\) −6.77405 −0.219203
\(956\) −10.9937 −0.355561
\(957\) 0 0
\(958\) −17.0598 −0.551178
\(959\) 16.4263 0.530432
\(960\) 11.8962 0.383947
\(961\) −20.7177 −0.668313
\(962\) 36.8242 1.18726
\(963\) −90.0726 −2.90255
\(964\) −10.7600 −0.346558
\(965\) −23.1062 −0.743814
\(966\) 31.9227 1.02710
\(967\) −34.1966 −1.09969 −0.549844 0.835268i \(-0.685313\pi\)
−0.549844 + 0.835268i \(0.685313\pi\)
\(968\) 0 0
\(969\) −27.7553 −0.891629
\(970\) 15.9106 0.510859
\(971\) 8.68724 0.278787 0.139393 0.990237i \(-0.455485\pi\)
0.139393 + 0.990237i \(0.455485\pi\)
\(972\) −23.0458 −0.739193
\(973\) −47.4942 −1.52259
\(974\) 9.46409 0.303249
\(975\) 52.7406 1.68905
\(976\) −39.1921 −1.25451
\(977\) −8.48837 −0.271567 −0.135783 0.990739i \(-0.543355\pi\)
−0.135783 + 0.990739i \(0.543355\pi\)
\(978\) −52.9319 −1.69258
\(979\) 0 0
\(980\) −1.76280 −0.0563106
\(981\) 95.9008 3.06188
\(982\) 11.5311 0.367973
\(983\) −19.2677 −0.614544 −0.307272 0.951622i \(-0.599416\pi\)
−0.307272 + 0.951622i \(0.599416\pi\)
\(984\) −83.4563 −2.66049
\(985\) −1.00971 −0.0321721
\(986\) −38.9914 −1.24174
\(987\) −36.0450 −1.14733
\(988\) −3.84374 −0.122286
\(989\) 4.52681 0.143944
\(990\) 0 0
\(991\) −42.3749 −1.34608 −0.673041 0.739605i \(-0.735012\pi\)
−0.673041 + 0.739605i \(0.735012\pi\)
\(992\) −11.4608 −0.363880
\(993\) −106.602 −3.38291
\(994\) 28.6550 0.908883
\(995\) −0.615019 −0.0194974
\(996\) 1.66963 0.0529042
\(997\) −0.832594 −0.0263685 −0.0131843 0.999913i \(-0.504197\pi\)
−0.0131843 + 0.999913i \(0.504197\pi\)
\(998\) −10.5778 −0.334835
\(999\) 82.4253 2.60782
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1331.2.a.e.1.5 yes 25
11.10 odd 2 1331.2.a.d.1.21 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1331.2.a.d.1.21 25 11.10 odd 2
1331.2.a.e.1.5 yes 25 1.1 even 1 trivial