Properties

Label 1332.1.bj.a.307.1
Level 13321332
Weight 11
Character 1332.307
Analytic conductor 0.6650.665
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(307,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.307");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1332=223237 1332 = 2^{2} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1332.bj (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6647545968270.664754596827
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.29956589424.3

Embedding invariants

Embedding label 307.1
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 1332.307
Dual form 1332.1.bj.a.1063.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.866025+0.500000i)q2+(0.5000000.866025i)q4+(0.8660250.500000i)q5+1.00000iq8+1.00000q10+(0.5000000.866025i)q16+(0.8660250.500000i)q17+(0.866025+0.500000i)q201.00000iq29+(0.866025+0.500000i)q32+(0.500000+0.866025i)q34+(0.5000000.866025i)q37+(0.5000000.866025i)q40+(0.8660251.50000i)q41+(0.5000000.866025i)q49+(0.500000+0.866025i)q58+(1.500000.866025i)q611.00000q641.00000iq68+2.00000q73+1.00000iq74+1.00000iq80+1.73205iq821.00000q85+(0.8660250.500000i)q89+1.73205iq97+(0.866025+0.500000i)q98+O(q100)q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +1.00000i q^{8} +1.00000 q^{10} +(-0.500000 - 0.866025i) q^{16} +(0.866025 - 0.500000i) q^{17} +(-0.866025 + 0.500000i) q^{20} -1.00000i q^{29} +(0.866025 + 0.500000i) q^{32} +(-0.500000 + 0.866025i) q^{34} +(0.500000 - 0.866025i) q^{37} +(0.500000 - 0.866025i) q^{40} +(0.866025 - 1.50000i) q^{41} +(-0.500000 - 0.866025i) q^{49} +(0.500000 + 0.866025i) q^{58} +(-1.50000 - 0.866025i) q^{61} -1.00000 q^{64} -1.00000i q^{68} +2.00000 q^{73} +1.00000i q^{74} +1.00000i q^{80} +1.73205i q^{82} -1.00000 q^{85} +(0.866025 - 0.500000i) q^{89} +1.73205i q^{97} +(0.866025 + 0.500000i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+4q102q162q34+2q37+2q402q49+2q586q614q64+8q734q85+O(q100) 4 q + 2 q^{4} + 4 q^{10} - 2 q^{16} - 2 q^{34} + 2 q^{37} + 2 q^{40} - 2 q^{49} + 2 q^{58} - 6 q^{61} - 4 q^{64} + 8 q^{73} - 4 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1332Z)×\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times.

nn 667667 10371037 12971297
χ(n)\chi(n) 1-1 11 e(56)e\left(\frac{5}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.866025 + 0.500000i −0.866025 + 0.500000i
33 0 0
44 0.500000 0.866025i 0.500000 0.866025i
55 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
66 0 0
77 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 1.00000i 1.00000i
99 0 0
1010 1.00000 1.00000
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1414 0 0
1515 0 0
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1818 0 0
1919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2020 −0.866025 + 0.500000i −0.866025 + 0.500000i
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0.866025 + 0.500000i 0.866025 + 0.500000i
3333 0 0
3434 −0.500000 + 0.866025i −0.500000 + 0.866025i
3535 0 0
3636 0 0
3737 0.500000 0.866025i 0.500000 0.866025i
3838 0 0
3939 0 0
4040 0.500000 0.866025i 0.500000 0.866025i
4141 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0.500000 + 0.866025i 0.500000 + 0.866025i
5959 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 1.00000i 1.00000i
6969 0 0
7070 0 0
7171 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 2.00000 2.00000 1.00000 00
1.00000 00
7474 1.00000i 1.00000i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
8080 1.00000i 1.00000i
8181 0 0
8282 1.73205i 1.73205i
8383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8484 0 0
8585 −1.00000 −1.00000
8686 0 0
8787 0 0
8888 0 0
8989 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 0.866025 + 0.500000i 0.866025 + 0.500000i
9999 0 0
100100 0 0
101101 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0 0
109109 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
114114 0 0
115115 0 0
116116 −0.866025 0.500000i −0.866025 0.500000i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000 1.00000
122122 1.73205 1.73205
123123 0 0
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
128128 0.866025 0.500000i 0.866025 0.500000i
129129 0 0
130130 0 0
131131 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.500000 + 0.866025i 0.500000 + 0.866025i
137137 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
138138 0 0
139139 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 −0.500000 + 0.866025i −0.500000 + 0.866025i
146146 −1.73205 + 1.00000i −1.73205 + 1.00000i
147147 0 0
148148 −0.500000 0.866025i −0.500000 0.866025i
149149 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
150150 0 0
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 0 0
159159 0 0
160160 −0.500000 0.866025i −0.500000 0.866025i
161161 0 0
162162 0 0
163163 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 −0.866025 1.50000i −0.866025 1.50000i
165165 0 0
166166 0 0
167167 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 −0.500000 0.866025i −0.500000 0.866025i
170170 0.866025 0.500000i 0.866025 0.500000i
171171 0 0
172172 0 0
173173 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −0.500000 + 0.866025i −0.500000 + 0.866025i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
182182 0 0
183183 0 0
184184 0 0
185185 −0.866025 + 0.500000i −0.866025 + 0.500000i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 −0.866025 1.50000i −0.866025 1.50000i
195195 0 0
196196 −1.00000 −1.00000
197197 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 −1.50000 + 0.866025i −1.50000 + 0.866025i
203203 0 0
204204 0 0
205205 −1.50000 + 0.866025i −1.50000 + 0.866025i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0.866025 1.50000i 0.866025 1.50000i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 1.00000 1.73205i 1.00000 1.73205i
227227 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
228228 0 0
229229 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
230230 0 0
231231 0 0
232232 1.00000 1.00000
233233 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
240240 0 0
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 −0.866025 + 0.500000i −0.866025 + 0.500000i
243243 0 0
244244 −1.50000 + 0.866025i −1.50000 + 0.866025i
245245 1.00000i 1.00000i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −0.500000 0.866025i −0.500000 0.866025i
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 −0.866025 0.500000i −0.866025 0.500000i
273273 0 0
274274 −1.50000 + 0.866025i −1.50000 + 0.866025i
275275 0 0
276276 0 0
277277 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 1.00000i 1.00000i
291291 0 0
292292 1.00000 1.73205i 1.00000 1.73205i
293293 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 0 0
295295 0 0
296296 0.866025 + 0.500000i 0.866025 + 0.500000i
297297 0 0
298298 1.50000 0.866025i 1.50000 0.866025i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0.866025 + 1.50000i 0.866025 + 1.50000i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 0 0
313313 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
314314 −0.866025 0.500000i −0.866025 0.500000i
315315 0 0
316316 0 0
317317 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0.866025 + 0.500000i 0.866025 + 0.500000i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 1.50000 + 0.866025i 1.50000 + 0.866025i
329329 0 0
330330 0 0
331331 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
338338 0.866025 + 0.500000i 0.866025 + 0.500000i
339339 0 0
340340 −0.500000 + 0.866025i −0.500000 + 0.866025i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 1.50000 + 0.866025i 1.50000 + 0.866025i
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 1.00000i 1.00000i
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 0.500000 + 0.866025i 0.500000 + 0.866025i
362362 1.00000i 1.00000i
363363 0 0
364364 0 0
365365 −1.73205 1.00000i −1.73205 1.00000i
366366 0 0
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0 0
370370 0.500000 0.866025i 0.500000 0.866025i
371371 0 0
372372 0 0
373373 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
384384 0 0
385385 0 0
386386 −0.866025 1.50000i −0.866025 1.50000i
387387 0 0
388388 1.50000 + 0.866025i 1.50000 + 0.866025i
389389 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0.866025 0.500000i 0.866025 0.500000i
393393 0 0
394394 −1.50000 0.866025i −1.50000 0.866025i
395395 0 0
396396 0 0
397397 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 0 0
399399 0 0
400400 0 0
401401 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0.866025 1.50000i 0.866025 1.50000i
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
410410 0.866025 1.50000i 0.866025 1.50000i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
420420 0 0
421421 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
432432 0 0
433433 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
434434 0 0
435435 0 0
436436 1.73205i 1.73205i
437437 0 0
438438 0 0
439439 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 −1.00000 −1.00000
446446 0 0
447447 0 0
448448 0 0
449449 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
450450 0 0
451451 0 0
452452 2.00000i 2.00000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 1.00000i 1.00000i
459459 0 0
460460 0 0
461461 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
462462 0 0
463463 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
464464 −0.866025 + 0.500000i −0.866025 + 0.500000i
465465 0 0
466466 1.50000 0.866025i 1.50000 0.866025i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.500000 0.866025i 0.500000 0.866025i
485485 0.866025 1.50000i 0.866025 1.50000i
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0.866025 1.50000i 0.866025 1.50000i
489489 0 0
490490 −0.500000 0.866025i −0.500000 0.866025i
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 −0.500000 0.866025i −0.500000 0.866025i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
500500 0.866025 + 0.500000i 0.866025 + 0.500000i
501501 0 0
502502 0 0
503503 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
504504 0 0
505505 −1.50000 0.866025i −1.50000 0.866025i
506506 0 0
507507 0 0
508508 0 0
509509 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0.500000 0.866025i 0.500000 0.866025i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
522522 0 0
523523 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 0 0
544544 1.00000 1.00000
545545 1.73205 1.73205
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0.866025 1.50000i 0.866025 1.50000i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.73205 1.73205
555555 0 0
556556 0 0
557557 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.500000 0.866025i 0.500000 0.866025i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 2.00000 2.00000
566566 0 0
567567 0 0
568568 0 0
569569 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 0 0
579579 0 0
580580 0.500000 + 0.866025i 0.500000 + 0.866025i
581581 0 0
582582 0 0
583583 0 0
584584 2.00000i 2.00000i
585585 0 0
586586 1.73205i 1.73205i
587587 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −1.00000 −1.00000
593593 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0 0
596596 −0.866025 + 1.50000i −0.866025 + 1.50000i
597597 0 0
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.866025 0.500000i −0.866025 0.500000i
606606 0 0
607607 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
608608 0 0
609609 0 0
610610 −1.50000 0.866025i −1.50000 0.866025i
611611 0 0
612612 0 0
613613 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 −0.866025 + 1.50000i −0.866025 + 1.50000i
627627 0 0
628628 1.00000 1.00000
629629 1.00000i 1.00000i
630630 0 0
631631 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
632632 0 0
633633 0 0
634634 −1.50000 0.866025i −1.50000 0.866025i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 −1.00000 −1.00000
641641 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 0 0
656656 −1.73205 −1.73205
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 1.00000i 1.00000i
675675 0 0
676676 −1.00000 −1.00000
677677 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 0 0
679679 0 0
680680 1.00000i 1.00000i
681681 0 0
682682 0 0
683683 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 −1.50000 0.866025i −1.50000 0.866025i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 −1.73205 −1.73205
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 1.73205i 1.73205i
698698 0.866025 + 0.500000i 0.866025 + 0.500000i
699699 0 0
700700 0 0
701701 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −0.500000 + 0.866025i −0.500000 + 0.866025i
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0.500000 + 0.866025i 0.500000 + 0.866025i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 0 0
721721 0 0
722722 −0.866025 0.500000i −0.866025 0.500000i
723723 0 0
724724 −0.500000 0.866025i −0.500000 0.866025i
725725 0 0
726726 0 0
727727 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
728728 0 0
729729 0 0
730730 2.00000 2.00000
731731 0 0
732732 0 0
733733 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 1.00000i 1.00000i
741741 0 0
742742 0 0
743743 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 0 0
745745 1.50000 + 0.866025i 1.50000 + 0.866025i
746746 1.00000i 1.00000i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 1.50000 + 0.866025i 1.50000 + 0.866025i
773773 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0 0
776776 −1.73205 −1.73205
777777 0 0
778778 −1.00000 −1.00000
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.500000 + 0.866025i −0.500000 + 0.866025i
785785 1.00000i 1.00000i
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 1.73205 1.73205
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −0.866025 + 0.500000i −0.866025 + 0.500000i
795795 0 0
796796 0 0
797797 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −1.00000 1.73205i −1.00000 1.73205i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 1.73205i 1.73205i
809809 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
810810 0 0
811811 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −0.866025 + 1.50000i −0.866025 + 1.50000i
819819 0 0
820820 1.73205i 1.73205i
821821 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
822822 0 0
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
828828 0 0
829829 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.866025 0.500000i −0.866025 0.500000i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 0 0
842842 0.866025 + 1.50000i 0.866025 + 1.50000i
843843 0 0
844844 0 0
845845 1.00000i 1.00000i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
854854 0 0
855855 0 0
856856 0 0
857857 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0 0
865865 1.73205i 1.73205i
866866 −0.866025 + 0.500000i −0.866025 + 0.500000i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.866025 1.50000i −0.866025 1.50000i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
882882 0 0
883883 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0.866025 0.500000i 0.866025 0.500000i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 2.00000 2.00000
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 −1.00000 1.73205i −1.00000 1.73205i
905905 −0.866025 + 0.500000i −0.866025 + 0.500000i
906906 0 0
907907 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 −1.73205 −1.73205
915915 0 0
916916 0.500000 + 0.866025i 0.500000 + 0.866025i
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 −1.00000 + 1.73205i −1.00000 + 1.73205i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0.500000 0.866025i 0.500000 0.866025i
929929 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
930930 0 0
931931 0 0
932932 −0.866025 + 1.50000i −0.866025 + 1.50000i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0.866025 1.50000i 0.866025 1.50000i
966966 0 0
967967 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 1.00000i 1.00000i
969969 0 0
970970 1.73205i 1.73205i
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.73205i 1.73205i
977977 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
978978 0 0
979979 0 0
980980 0.866025 + 0.500000i 0.866025 + 0.500000i
981981 0 0
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 1.73205i 1.73205i
986986 0.866025 + 0.500000i 0.866025 + 0.500000i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1332.1.bj.a.307.1 4
3.2 odd 2 inner 1332.1.bj.a.307.2 yes 4
4.3 odd 2 CM 1332.1.bj.a.307.1 4
12.11 even 2 inner 1332.1.bj.a.307.2 yes 4
37.27 even 6 inner 1332.1.bj.a.1063.1 yes 4
111.101 odd 6 inner 1332.1.bj.a.1063.2 yes 4
148.27 odd 6 inner 1332.1.bj.a.1063.1 yes 4
444.323 even 6 inner 1332.1.bj.a.1063.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1332.1.bj.a.307.1 4 1.1 even 1 trivial
1332.1.bj.a.307.1 4 4.3 odd 2 CM
1332.1.bj.a.307.2 yes 4 3.2 odd 2 inner
1332.1.bj.a.307.2 yes 4 12.11 even 2 inner
1332.1.bj.a.1063.1 yes 4 37.27 even 6 inner
1332.1.bj.a.1063.1 yes 4 148.27 odd 6 inner
1332.1.bj.a.1063.2 yes 4 111.101 odd 6 inner
1332.1.bj.a.1063.2 yes 4 444.323 even 6 inner