Properties

Label 135.2.p.a.124.11
Level $135$
Weight $2$
Character 135.124
Analytic conductor $1.078$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,2,Mod(4,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 135.p (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.07798042729\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 124.11
Character \(\chi\) \(=\) 135.124
Dual form 135.2.p.a.49.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.795984 - 0.948617i) q^{2} +(0.595931 - 1.62630i) q^{3} +(0.0810128 + 0.459446i) q^{4} +(2.00198 + 0.996037i) q^{5} +(-1.06839 - 1.85982i) q^{6} +(-2.24130 - 0.395202i) q^{7} +(2.64518 + 1.52719i) q^{8} +(-2.28973 - 1.93833i) q^{9} +O(q^{10})\) \(q+(0.795984 - 0.948617i) q^{2} +(0.595931 - 1.62630i) q^{3} +(0.0810128 + 0.459446i) q^{4} +(2.00198 + 0.996037i) q^{5} +(-1.06839 - 1.85982i) q^{6} +(-2.24130 - 0.395202i) q^{7} +(2.64518 + 1.52719i) q^{8} +(-2.28973 - 1.93833i) q^{9} +(2.53840 - 1.10628i) q^{10} +(-4.87230 + 1.77337i) q^{11} +(0.795478 + 0.142047i) q^{12} +(-0.993836 - 1.18441i) q^{13} +(-2.15894 + 1.81156i) q^{14} +(2.81290 - 2.66225i) q^{15} +(2.67745 - 0.974511i) q^{16} +(-4.61649 + 2.66533i) q^{17} +(-3.66133 + 0.629199i) q^{18} +(2.28767 - 3.96236i) q^{19} +(-0.295440 + 1.00049i) q^{20} +(-1.97838 + 3.40953i) q^{21} +(-2.19602 + 6.03353i) q^{22} +(5.06318 - 0.892775i) q^{23} +(4.06003 - 3.39176i) q^{24} +(3.01582 + 3.98808i) q^{25} -1.91463 q^{26} +(-4.51684 + 2.56869i) q^{27} -1.06177i q^{28} +(4.94693 + 4.15097i) q^{29} +(-0.286437 - 4.78748i) q^{30} +(-0.228069 - 1.29344i) q^{31} +(-0.882557 + 2.42480i) q^{32} +(-0.0195113 + 8.98066i) q^{33} +(-1.14627 + 6.50084i) q^{34} +(-4.09340 - 3.02361i) q^{35} +(0.705061 - 1.20904i) q^{36} +(3.18754 - 1.84032i) q^{37} +(-1.93781 - 5.32410i) q^{38} +(-2.51847 + 0.910455i) q^{39} +(3.77444 + 5.69210i) q^{40} +(3.26644 - 2.74087i) q^{41} +(1.65958 + 4.59066i) q^{42} +(-2.88612 - 7.92956i) q^{43} +(-1.20949 - 2.09490i) q^{44} +(-2.65334 - 6.16115i) q^{45} +(3.18331 - 5.51365i) q^{46} +(-6.68721 - 1.17913i) q^{47} +(0.0107219 - 4.93508i) q^{48} +(-1.71059 - 0.622605i) q^{49} +(6.18371 + 0.313593i) q^{50} +(1.58353 + 9.09617i) q^{51} +(0.463658 - 0.552567i) q^{52} +6.64507i q^{53} +(-1.15863 + 6.32939i) q^{54} +(-11.5206 - 1.30274i) q^{55} +(-5.32509 - 4.46828i) q^{56} +(-5.08071 - 6.08174i) q^{57} +(7.87536 - 1.38864i) q^{58} +(2.83430 + 1.03160i) q^{59} +(1.45104 + 1.07670i) q^{60} +(0.999796 - 5.67013i) q^{61} +(-1.40852 - 0.813210i) q^{62} +(4.36595 + 5.24929i) q^{63} +(4.44699 + 7.70241i) q^{64} +(-0.809923 - 3.36106i) q^{65} +(8.50367 + 7.16697i) q^{66} +(2.22595 + 2.65278i) q^{67} +(-1.59857 - 1.90510i) q^{68} +(1.56538 - 8.76630i) q^{69} +(-6.12653 + 1.47633i) q^{70} +(-0.0130487 - 0.0226011i) q^{71} +(-3.09654 - 8.62409i) q^{72} +(5.00704 + 2.89081i) q^{73} +(0.791465 - 4.48862i) q^{74} +(8.28306 - 2.52802i) q^{75} +(2.00582 + 0.730059i) q^{76} +(11.6211 - 2.04912i) q^{77} +(-1.14099 + 3.11377i) q^{78} +(-12.6845 - 10.6435i) q^{79} +(6.33083 + 0.715887i) q^{80} +(1.48575 + 8.87652i) q^{81} -5.28029i q^{82} +(6.96279 - 8.29793i) q^{83} +(-1.72677 - 0.632744i) q^{84} +(-11.8969 + 0.737738i) q^{85} +(-9.81943 - 3.57398i) q^{86} +(9.69877 - 5.57153i) q^{87} +(-15.5964 - 2.75006i) q^{88} +(2.32308 - 4.02369i) q^{89} +(-7.95659 - 2.38717i) q^{90} +(1.75941 + 3.04738i) q^{91} +(0.820364 + 2.25393i) q^{92} +(-2.23944 - 0.399893i) q^{93} +(-6.44146 + 5.40503i) q^{94} +(8.52651 - 5.65395i) q^{95} +(3.41753 + 2.88032i) q^{96} +(2.48117 + 6.81695i) q^{97} +(-1.95222 + 1.12712i) q^{98} +(14.5937 + 5.38358i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} - 9 q^{5} - 6 q^{6} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{4} - 9 q^{5} - 6 q^{6} - 18 q^{9} - 3 q^{10} - 6 q^{11} - 18 q^{14} - 21 q^{15} - 24 q^{16} - 6 q^{19} - 57 q^{20} + 24 q^{21} - 30 q^{24} + 3 q^{25} + 48 q^{26} - 30 q^{29} - 51 q^{30} - 30 q^{31} - 24 q^{34} - 12 q^{35} + 54 q^{36} - 6 q^{39} - 9 q^{40} - 12 q^{41} + 78 q^{44} + 45 q^{45} - 6 q^{46} - 30 q^{49} + 84 q^{50} - 90 q^{51} + 108 q^{54} - 12 q^{55} - 96 q^{56} + 66 q^{59} + 84 q^{60} + 6 q^{61} + 45 q^{65} - 150 q^{66} + 24 q^{69} - 33 q^{70} - 90 q^{71} + 66 q^{74} + 39 q^{75} + 12 q^{76} + 24 q^{79} + 30 q^{80} - 54 q^{81} + 198 q^{84} - 21 q^{85} + 18 q^{86} + 96 q^{89} + 90 q^{90} - 6 q^{91} + 24 q^{94} + 87 q^{95} + 42 q^{96} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.795984 0.948617i 0.562846 0.670774i −0.407300 0.913294i \(-0.633530\pi\)
0.970146 + 0.242521i \(0.0779742\pi\)
\(3\) 0.595931 1.62630i 0.344061 0.938947i
\(4\) 0.0810128 + 0.459446i 0.0405064 + 0.229723i
\(5\) 2.00198 + 0.996037i 0.895311 + 0.445441i
\(6\) −1.06839 1.85982i −0.436168 0.759270i
\(7\) −2.24130 0.395202i −0.847133 0.149372i −0.266800 0.963752i \(-0.585966\pi\)
−0.580333 + 0.814379i \(0.697077\pi\)
\(8\) 2.64518 + 1.52719i 0.935211 + 0.539945i
\(9\) −2.28973 1.93833i −0.763244 0.646110i
\(10\) 2.53840 1.10628i 0.802713 0.349836i
\(11\) −4.87230 + 1.77337i −1.46905 + 0.534692i −0.947844 0.318736i \(-0.896742\pi\)
−0.521211 + 0.853428i \(0.674520\pi\)
\(12\) 0.795478 + 0.142047i 0.229635 + 0.0410054i
\(13\) −0.993836 1.18441i −0.275641 0.328496i 0.610409 0.792087i \(-0.291005\pi\)
−0.886049 + 0.463591i \(0.846561\pi\)
\(14\) −2.15894 + 1.81156i −0.577000 + 0.484161i
\(15\) 2.81290 2.66225i 0.726287 0.687391i
\(16\) 2.67745 0.974511i 0.669361 0.243628i
\(17\) −4.61649 + 2.66533i −1.11966 + 0.646438i −0.941315 0.337530i \(-0.890409\pi\)
−0.178348 + 0.983967i \(0.557075\pi\)
\(18\) −3.66133 + 0.629199i −0.862983 + 0.148304i
\(19\) 2.28767 3.96236i 0.524827 0.909027i −0.474755 0.880118i \(-0.657463\pi\)
0.999582 0.0289093i \(-0.00920339\pi\)
\(20\) −0.295440 + 1.00049i −0.0660623 + 0.223717i
\(21\) −1.97838 + 3.40953i −0.431718 + 0.744020i
\(22\) −2.19602 + 6.03353i −0.468194 + 1.28635i
\(23\) 5.06318 0.892775i 1.05575 0.186156i 0.381278 0.924461i \(-0.375484\pi\)
0.674468 + 0.738304i \(0.264373\pi\)
\(24\) 4.06003 3.39176i 0.828749 0.692340i
\(25\) 3.01582 + 3.98808i 0.603164 + 0.797617i
\(26\) −1.91463 −0.375490
\(27\) −4.51684 + 2.56869i −0.869266 + 0.494345i
\(28\) 1.06177i 0.200657i
\(29\) 4.94693 + 4.15097i 0.918622 + 0.770816i 0.973740 0.227664i \(-0.0731088\pi\)
−0.0551173 + 0.998480i \(0.517553\pi\)
\(30\) −0.286437 4.78748i −0.0522960 0.874070i
\(31\) −0.228069 1.29344i −0.0409624 0.232309i 0.957453 0.288591i \(-0.0931867\pi\)
−0.998415 + 0.0562816i \(0.982076\pi\)
\(32\) −0.882557 + 2.42480i −0.156015 + 0.428649i
\(33\) −0.0195113 + 8.98066i −0.00339649 + 1.56333i
\(34\) −1.14627 + 6.50084i −0.196584 + 1.11489i
\(35\) −4.09340 3.02361i −0.691911 0.511083i
\(36\) 0.705061 1.20904i 0.117510 0.201506i
\(37\) 3.18754 1.84032i 0.524028 0.302548i −0.214553 0.976712i \(-0.568830\pi\)
0.738581 + 0.674165i \(0.235496\pi\)
\(38\) −1.93781 5.32410i −0.314355 0.863683i
\(39\) −2.51847 + 0.910455i −0.403277 + 0.145790i
\(40\) 3.77444 + 5.69210i 0.596792 + 0.900000i
\(41\) 3.26644 2.74087i 0.510132 0.428052i −0.351044 0.936359i \(-0.614173\pi\)
0.861176 + 0.508307i \(0.169729\pi\)
\(42\) 1.65958 + 4.59066i 0.256078 + 0.708354i
\(43\) −2.88612 7.92956i −0.440130 1.20925i −0.939407 0.342804i \(-0.888623\pi\)
0.499277 0.866442i \(-0.333599\pi\)
\(44\) −1.20949 2.09490i −0.182337 0.315817i
\(45\) −2.65334 6.16115i −0.395537 0.918450i
\(46\) 3.18331 5.51365i 0.469353 0.812944i
\(47\) −6.68721 1.17913i −0.975429 0.171995i −0.336857 0.941556i \(-0.609364\pi\)
−0.638573 + 0.769561i \(0.720475\pi\)
\(48\) 0.0107219 4.93508i 0.00154758 0.712318i
\(49\) −1.71059 0.622605i −0.244371 0.0889436i
\(50\) 6.18371 + 0.313593i 0.874509 + 0.0443488i
\(51\) 1.58353 + 9.09617i 0.221739 + 1.27372i
\(52\) 0.463658 0.552567i 0.0642979 0.0766272i
\(53\) 6.64507i 0.912771i 0.889782 + 0.456385i \(0.150856\pi\)
−0.889782 + 0.456385i \(0.849144\pi\)
\(54\) −1.15863 + 6.32939i −0.157669 + 0.861321i
\(55\) −11.5206 1.30274i −1.55343 0.175662i
\(56\) −5.32509 4.46828i −0.711596 0.597100i
\(57\) −5.08071 6.08174i −0.672956 0.805546i
\(58\) 7.87536 1.38864i 1.03409 0.182337i
\(59\) 2.83430 + 1.03160i 0.368995 + 0.134303i 0.519861 0.854251i \(-0.325984\pi\)
−0.150866 + 0.988554i \(0.548206\pi\)
\(60\) 1.45104 + 1.07670i 0.187329 + 0.139001i
\(61\) 0.999796 5.67013i 0.128011 0.725985i −0.851463 0.524414i \(-0.824284\pi\)
0.979474 0.201571i \(-0.0646046\pi\)
\(62\) −1.40852 0.813210i −0.178882 0.103278i
\(63\) 4.36595 + 5.24929i 0.550058 + 0.661349i
\(64\) 4.44699 + 7.70241i 0.555874 + 0.962801i
\(65\) −0.809923 3.36106i −0.100459 0.416888i
\(66\) 8.50367 + 7.16697i 1.04673 + 0.882193i
\(67\) 2.22595 + 2.65278i 0.271943 + 0.324089i 0.884681 0.466197i \(-0.154376\pi\)
−0.612738 + 0.790286i \(0.709932\pi\)
\(68\) −1.59857 1.90510i −0.193855 0.231028i
\(69\) 1.56538 8.76630i 0.188450 1.05534i
\(70\) −6.12653 + 1.47633i −0.732260 + 0.176455i
\(71\) −0.0130487 0.0226011i −0.00154860 0.00268225i 0.865250 0.501341i \(-0.167160\pi\)
−0.866799 + 0.498658i \(0.833826\pi\)
\(72\) −3.09654 8.62409i −0.364931 1.01636i
\(73\) 5.00704 + 2.89081i 0.586029 + 0.338344i 0.763526 0.645777i \(-0.223467\pi\)
−0.177497 + 0.984121i \(0.556800\pi\)
\(74\) 0.791465 4.48862i 0.0920059 0.521792i
\(75\) 8.28306 2.52802i 0.956446 0.291911i
\(76\) 2.00582 + 0.730059i 0.230083 + 0.0837435i
\(77\) 11.6211 2.04912i 1.32435 0.233519i
\(78\) −1.14099 + 3.11377i −0.129191 + 0.352565i
\(79\) −12.6845 10.6435i −1.42712 1.19749i −0.947393 0.320073i \(-0.896292\pi\)
−0.479724 0.877420i \(-0.659263\pi\)
\(80\) 6.33083 + 0.715887i 0.707809 + 0.0800386i
\(81\) 1.48575 + 8.87652i 0.165083 + 0.986280i
\(82\) 5.28029i 0.583110i
\(83\) 6.96279 8.29793i 0.764265 0.910816i −0.233844 0.972274i \(-0.575131\pi\)
0.998110 + 0.0614583i \(0.0195751\pi\)
\(84\) −1.72677 0.632744i −0.188406 0.0690381i
\(85\) −11.8969 + 0.737738i −1.29040 + 0.0800189i
\(86\) −9.81943 3.57398i −1.05886 0.385392i
\(87\) 9.69877 5.57153i 1.03982 0.597331i
\(88\) −15.5964 2.75006i −1.66258 0.293158i
\(89\) 2.32308 4.02369i 0.246246 0.426510i −0.716235 0.697859i \(-0.754136\pi\)
0.962481 + 0.271349i \(0.0874696\pi\)
\(90\) −7.95659 2.38717i −0.838699 0.251630i
\(91\) 1.75941 + 3.04738i 0.184436 + 0.319453i
\(92\) 0.820364 + 2.25393i 0.0855289 + 0.234989i
\(93\) −2.23944 0.399893i −0.232220 0.0414670i
\(94\) −6.44146 + 5.40503i −0.664386 + 0.557486i
\(95\) 8.52651 5.65395i 0.874802 0.580083i
\(96\) 3.41753 + 2.88032i 0.348800 + 0.293972i
\(97\) 2.48117 + 6.81695i 0.251924 + 0.692157i 0.999605 + 0.0280982i \(0.00894512\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(98\) −1.95222 + 1.12712i −0.197204 + 0.113856i
\(99\) 14.5937 + 5.38358i 1.46672 + 0.541070i
\(100\) −1.58799 + 1.70869i −0.158799 + 0.170869i
\(101\) 0.0757615 0.429665i 0.00753855 0.0427532i −0.980806 0.194984i \(-0.937535\pi\)
0.988345 + 0.152231i \(0.0486457\pi\)
\(102\) 9.88925 + 5.73824i 0.979182 + 0.568171i
\(103\) −0.775652 + 2.13109i −0.0764273 + 0.209982i −0.972023 0.234888i \(-0.924528\pi\)
0.895595 + 0.444870i \(0.146750\pi\)
\(104\) −0.820053 4.65075i −0.0804128 0.456044i
\(105\) −7.35669 + 4.85525i −0.717939 + 0.473824i
\(106\) 6.30363 + 5.28937i 0.612263 + 0.513749i
\(107\) 4.36720i 0.422193i 0.977465 + 0.211097i \(0.0677034\pi\)
−0.977465 + 0.211097i \(0.932297\pi\)
\(108\) −1.54610 1.86715i −0.148773 0.179666i
\(109\) −7.95224 −0.761686 −0.380843 0.924640i \(-0.624366\pi\)
−0.380843 + 0.924640i \(0.624366\pi\)
\(110\) −10.4060 + 9.89166i −0.992174 + 0.943133i
\(111\) −1.09338 6.28061i −0.103779 0.596129i
\(112\) −6.38610 + 1.12604i −0.603429 + 0.106401i
\(113\) −5.38234 + 14.7879i −0.506328 + 1.39112i 0.378671 + 0.925531i \(0.376381\pi\)
−0.884999 + 0.465593i \(0.845841\pi\)
\(114\) −9.81341 0.0213206i −0.919110 0.00199686i
\(115\) 11.0256 + 3.25580i 1.02814 + 0.303605i
\(116\) −1.50638 + 2.60913i −0.139864 + 0.242252i
\(117\) −0.0201547 + 4.63836i −0.00186330 + 0.428817i
\(118\) 3.23466 1.86753i 0.297774 0.171920i
\(119\) 11.4003 4.14937i 1.04506 0.380372i
\(120\) 11.5064 2.74629i 1.05039 0.250701i
\(121\) 12.1680 10.2102i 1.10618 0.928196i
\(122\) −4.58296 5.46176i −0.414922 0.494484i
\(123\) −2.51091 6.94559i −0.226401 0.626263i
\(124\) 0.575791 0.209571i 0.0517075 0.0188200i
\(125\) 2.06532 + 10.9879i 0.184728 + 0.982790i
\(126\) 8.45480 + 0.0367379i 0.753213 + 0.00327287i
\(127\) −2.90443 1.67688i −0.257727 0.148799i 0.365570 0.930784i \(-0.380874\pi\)
−0.623297 + 0.781985i \(0.714207\pi\)
\(128\) 5.76393 + 1.01634i 0.509464 + 0.0898323i
\(129\) −14.6158 0.0317543i −1.28685 0.00279581i
\(130\) −3.83304 1.90704i −0.336180 0.167259i
\(131\) −0.958255 5.43454i −0.0837231 0.474818i −0.997625 0.0688819i \(-0.978057\pi\)
0.913902 0.405936i \(-0.133054\pi\)
\(132\) −4.12771 + 0.718583i −0.359271 + 0.0625447i
\(133\) −6.69329 + 7.97675i −0.580382 + 0.691672i
\(134\) 4.28829 0.370452
\(135\) −11.6011 + 0.643523i −0.998465 + 0.0553857i
\(136\) −16.2819 −1.39616
\(137\) 3.81854 4.55076i 0.326240 0.388798i −0.577848 0.816145i \(-0.696107\pi\)
0.904088 + 0.427347i \(0.140552\pi\)
\(138\) −7.06985 8.46279i −0.601825 0.720400i
\(139\) 2.76633 + 15.6886i 0.234637 + 1.33069i 0.843377 + 0.537323i \(0.180564\pi\)
−0.608740 + 0.793370i \(0.708325\pi\)
\(140\) 1.05757 2.12565i 0.0893807 0.179650i
\(141\) −5.90275 + 10.1728i −0.497101 + 0.856700i
\(142\) −0.0318263 0.00561184i −0.00267081 0.000470935i
\(143\) 6.94267 + 4.00835i 0.580575 + 0.335195i
\(144\) −8.01956 2.95841i −0.668296 0.246534i
\(145\) 5.76913 + 13.2375i 0.479100 + 1.09931i
\(146\) 6.72780 2.44872i 0.556796 0.202657i
\(147\) −2.03194 + 2.41092i −0.167592 + 0.198849i
\(148\) 1.10376 + 1.31541i 0.0907286 + 0.108126i
\(149\) −15.5994 + 13.0894i −1.27795 + 1.07233i −0.284430 + 0.958697i \(0.591804\pi\)
−0.993523 + 0.113632i \(0.963751\pi\)
\(150\) 4.19506 9.86972i 0.342526 0.805859i
\(151\) −1.80439 + 0.656743i −0.146839 + 0.0534450i −0.414394 0.910098i \(-0.636006\pi\)
0.267555 + 0.963543i \(0.413784\pi\)
\(152\) 12.1026 6.98743i 0.981649 0.566755i
\(153\) 15.7368 + 2.84539i 1.27225 + 0.230036i
\(154\) 7.30642 12.6551i 0.588768 1.01978i
\(155\) 0.831728 2.81661i 0.0668060 0.226235i
\(156\) −0.622333 1.08334i −0.0498265 0.0867367i
\(157\) 4.36413 11.9904i 0.348296 0.956935i −0.634611 0.772832i \(-0.718840\pi\)
0.982907 0.184103i \(-0.0589380\pi\)
\(158\) −20.1933 + 3.56063i −1.60649 + 0.283268i
\(159\) 10.8069 + 3.96000i 0.857044 + 0.314049i
\(160\) −4.18205 + 3.97534i −0.330620 + 0.314279i
\(161\) −11.7009 −0.922163
\(162\) 9.60305 + 5.65616i 0.754487 + 0.444390i
\(163\) 24.6659i 1.93198i 0.258578 + 0.965990i \(0.416746\pi\)
−0.258578 + 0.965990i \(0.583254\pi\)
\(164\) 1.52391 + 1.27871i 0.118997 + 0.0998503i
\(165\) −8.98412 + 17.9596i −0.699413 + 1.39816i
\(166\) −2.32929 13.2100i −0.180788 1.02530i
\(167\) 1.83304 5.03625i 0.141845 0.389716i −0.848345 0.529444i \(-0.822401\pi\)
0.990190 + 0.139728i \(0.0446227\pi\)
\(168\) −10.4402 + 5.99743i −0.805477 + 0.462712i
\(169\) 1.84231 10.4483i 0.141717 0.803714i
\(170\) −8.76989 + 11.8728i −0.672620 + 0.910603i
\(171\) −12.9185 + 4.63848i −0.987903 + 0.354714i
\(172\) 3.40939 1.96841i 0.259964 0.150090i
\(173\) −4.89834 13.4581i −0.372414 1.02320i −0.974426 0.224711i \(-0.927856\pi\)
0.602012 0.798487i \(-0.294366\pi\)
\(174\) 2.43482 13.6353i 0.184583 1.03369i
\(175\) −5.18327 10.1304i −0.391818 0.765784i
\(176\) −11.3172 + 9.49622i −0.853063 + 0.715805i
\(177\) 3.36675 3.99468i 0.253060 0.300258i
\(178\) −1.96781 5.40651i −0.147493 0.405235i
\(179\) −2.84521 4.92805i −0.212661 0.368340i 0.739885 0.672733i \(-0.234880\pi\)
−0.952547 + 0.304393i \(0.901546\pi\)
\(180\) 2.61576 1.71820i 0.194967 0.128067i
\(181\) 5.07635 8.79249i 0.377322 0.653541i −0.613350 0.789811i \(-0.710178\pi\)
0.990672 + 0.136271i \(0.0435117\pi\)
\(182\) 4.29126 + 0.756665i 0.318090 + 0.0560878i
\(183\) −8.62554 5.00498i −0.637619 0.369979i
\(184\) 14.7564 + 5.37091i 1.08786 + 0.395948i
\(185\) 8.21440 0.509384i 0.603935 0.0374507i
\(186\) −2.16191 + 1.80607i −0.158519 + 0.132427i
\(187\) 17.7663 21.1731i 1.29920 1.54833i
\(188\) 3.16794i 0.231046i
\(189\) 11.1388 3.97215i 0.810225 0.288931i
\(190\) 1.42354 12.5889i 0.103274 0.913291i
\(191\) −4.87022 4.08660i −0.352397 0.295696i 0.449355 0.893353i \(-0.351654\pi\)
−0.801752 + 0.597657i \(0.796098\pi\)
\(192\) 15.1766 2.64205i 1.09527 0.190674i
\(193\) 19.2071 3.38673i 1.38256 0.243782i 0.567601 0.823304i \(-0.307872\pi\)
0.814957 + 0.579521i \(0.196760\pi\)
\(194\) 8.44165 + 3.07251i 0.606075 + 0.220593i
\(195\) −5.94876 0.685775i −0.425999 0.0491094i
\(196\) 0.147474 0.836365i 0.0105338 0.0597404i
\(197\) −7.83426 4.52311i −0.558168 0.322259i 0.194242 0.980954i \(-0.437775\pi\)
−0.752410 + 0.658695i \(0.771109\pi\)
\(198\) 16.7233 9.55854i 1.18847 0.679296i
\(199\) 5.04715 + 8.74191i 0.357783 + 0.619698i 0.987590 0.157054i \(-0.0501995\pi\)
−0.629807 + 0.776751i \(0.716866\pi\)
\(200\) 1.88680 + 15.1549i 0.133417 + 1.07162i
\(201\) 5.64074 2.03919i 0.397867 0.143834i
\(202\) −0.347282 0.413875i −0.0244347 0.0291201i
\(203\) −9.44710 11.2586i −0.663057 0.790200i
\(204\) −4.05091 + 1.46445i −0.283621 + 0.102532i
\(205\) 9.26934 2.23366i 0.647399 0.156006i
\(206\) 1.40418 + 2.43211i 0.0978338 + 0.169453i
\(207\) −13.3238 7.76990i −0.926069 0.540045i
\(208\) −3.81516 2.20268i −0.264534 0.152729i
\(209\) −4.11947 + 23.3627i −0.284950 + 1.61603i
\(210\) −1.25003 + 10.8434i −0.0862603 + 0.748265i
\(211\) 3.35281 + 1.22032i 0.230817 + 0.0840106i 0.454839 0.890573i \(-0.349697\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(212\) −3.05305 + 0.538336i −0.209685 + 0.0369730i
\(213\) −0.0445323 + 0.00775253i −0.00305131 + 0.000531195i
\(214\) 4.14280 + 3.47622i 0.283196 + 0.237630i
\(215\) 2.12018 18.7495i 0.144595 1.27870i
\(216\) −15.8707 0.103443i −1.07987 0.00703843i
\(217\) 2.98913i 0.202915i
\(218\) −6.32986 + 7.54363i −0.428712 + 0.510919i
\(219\) 7.68519 6.42024i 0.519317 0.433840i
\(220\) −0.334775 5.39863i −0.0225705 0.363975i
\(221\) 7.74487 + 2.81890i 0.520977 + 0.189620i
\(222\) −6.82821 3.96207i −0.458279 0.265917i
\(223\) 18.2797 + 3.22320i 1.22410 + 0.215842i 0.748089 0.663598i \(-0.230971\pi\)
0.476010 + 0.879440i \(0.342083\pi\)
\(224\) 2.93637 5.08593i 0.196194 0.339818i
\(225\) 0.824802 14.9773i 0.0549868 0.998487i
\(226\) 9.74376 + 16.8767i 0.648145 + 1.12262i
\(227\) 8.41561 + 23.1217i 0.558564 + 1.53464i 0.821722 + 0.569888i \(0.193014\pi\)
−0.263158 + 0.964753i \(0.584764\pi\)
\(228\) 2.38263 2.82701i 0.157793 0.187223i
\(229\) −1.56307 + 1.31157i −0.103291 + 0.0866713i −0.692971 0.720966i \(-0.743698\pi\)
0.589680 + 0.807637i \(0.299254\pi\)
\(230\) 11.8647 7.86751i 0.782336 0.518768i
\(231\) 3.59291 20.1207i 0.236396 1.32384i
\(232\) 6.74618 + 18.5350i 0.442908 + 1.21688i
\(233\) 7.51547 4.33906i 0.492355 0.284261i −0.233196 0.972430i \(-0.574918\pi\)
0.725551 + 0.688169i \(0.241585\pi\)
\(234\) 4.38399 + 3.71118i 0.286590 + 0.242608i
\(235\) −12.2132 9.02130i −0.796699 0.588485i
\(236\) −0.244351 + 1.38578i −0.0159059 + 0.0902068i
\(237\) −24.8687 + 14.2860i −1.61540 + 0.927977i
\(238\) 5.13829 14.1173i 0.333066 0.915092i
\(239\) 0.654990 + 3.71463i 0.0423678 + 0.240280i 0.998636 0.0522114i \(-0.0166270\pi\)
−0.956268 + 0.292491i \(0.905516\pi\)
\(240\) 4.93699 9.86924i 0.318681 0.637057i
\(241\) 0.433776 + 0.363981i 0.0279420 + 0.0234461i 0.656652 0.754194i \(-0.271972\pi\)
−0.628710 + 0.777640i \(0.716417\pi\)
\(242\) 19.6699i 1.26443i
\(243\) 15.3213 + 2.87351i 0.982863 + 0.184336i
\(244\) 2.68612 0.171961
\(245\) −2.80443 2.95026i −0.179169 0.188485i
\(246\) −8.58736 3.14669i −0.547510 0.200626i
\(247\) −6.96662 + 1.22840i −0.443275 + 0.0781614i
\(248\) 1.37205 3.76969i 0.0871256 0.239375i
\(249\) −9.34561 16.2686i −0.592254 1.03098i
\(250\) 12.0673 + 6.78701i 0.763203 + 0.429248i
\(251\) 0.425928 0.737730i 0.0268844 0.0465651i −0.852270 0.523102i \(-0.824775\pi\)
0.879155 + 0.476537i \(0.158108\pi\)
\(252\) −2.05807 + 2.43118i −0.129646 + 0.153150i
\(253\) −23.0861 + 13.3288i −1.45141 + 0.837973i
\(254\) −3.90260 + 1.42043i −0.244871 + 0.0891257i
\(255\) −5.88993 + 19.7876i −0.368842 + 1.23915i
\(256\) −8.07425 + 6.77510i −0.504641 + 0.423444i
\(257\) 11.8239 + 14.0912i 0.737553 + 0.878982i 0.996209 0.0869875i \(-0.0277240\pi\)
−0.258656 + 0.965970i \(0.583280\pi\)
\(258\) −11.6641 + 13.8395i −0.726174 + 0.861612i
\(259\) −7.87153 + 2.86500i −0.489113 + 0.178023i
\(260\) 1.47861 0.644405i 0.0916995 0.0399643i
\(261\) −3.28120 19.0934i −0.203101 1.18185i
\(262\) −5.91805 3.41679i −0.365618 0.211090i
\(263\) −6.87408 1.21209i −0.423874 0.0747404i −0.0423576 0.999103i \(-0.513487\pi\)
−0.381516 + 0.924362i \(0.624598\pi\)
\(264\) −13.7668 + 23.7256i −0.847289 + 1.46021i
\(265\) −6.61873 + 13.3033i −0.406586 + 0.817214i
\(266\) 2.23913 + 12.6987i 0.137290 + 0.778610i
\(267\) −5.15935 6.17587i −0.315747 0.377957i
\(268\) −1.03848 + 1.23761i −0.0634352 + 0.0755992i
\(269\) −9.05450 −0.552062 −0.276031 0.961149i \(-0.589019\pi\)
−0.276031 + 0.961149i \(0.589019\pi\)
\(270\) −8.62385 + 11.5173i −0.524831 + 0.700918i
\(271\) −2.68123 −0.162873 −0.0814364 0.996679i \(-0.525951\pi\)
−0.0814364 + 0.996679i \(0.525951\pi\)
\(272\) −9.76300 + 11.6351i −0.591969 + 0.705481i
\(273\) 6.00446 1.04530i 0.363406 0.0632646i
\(274\) −1.27743 7.24467i −0.0771724 0.437667i
\(275\) −21.7664 14.0830i −1.31256 0.849236i
\(276\) 4.15446 + 0.00902597i 0.250069 + 0.000543299i
\(277\) −9.53431 1.68116i −0.572861 0.101011i −0.120289 0.992739i \(-0.538382\pi\)
−0.452572 + 0.891728i \(0.649493\pi\)
\(278\) 17.0845 + 9.86372i 1.02466 + 0.591587i
\(279\) −1.98490 + 3.40371i −0.118833 + 0.203775i
\(280\) −6.21014 14.2494i −0.371127 0.851564i
\(281\) −12.4600 + 4.53506i −0.743300 + 0.270539i −0.685784 0.727806i \(-0.740540\pi\)
−0.0575163 + 0.998345i \(0.518318\pi\)
\(282\) 4.95155 + 13.6968i 0.294861 + 0.815633i
\(283\) −12.5849 14.9981i −0.748094 0.891543i 0.248939 0.968519i \(-0.419918\pi\)
−0.997033 + 0.0769758i \(0.975474\pi\)
\(284\) 0.00932686 0.00782616i 0.000553447 0.000464397i
\(285\) −4.11383 17.2361i −0.243682 1.02098i
\(286\) 9.32865 3.39535i 0.551615 0.200771i
\(287\) −8.40428 + 4.85221i −0.496089 + 0.286417i
\(288\) 6.72089 3.84147i 0.396032 0.226361i
\(289\) 5.70798 9.88651i 0.335763 0.581559i
\(290\) 17.1494 + 5.06413i 1.00705 + 0.297376i
\(291\) 12.5650 + 0.0272988i 0.736576 + 0.00160028i
\(292\) −0.922540 + 2.53466i −0.0539875 + 0.148330i
\(293\) −29.7888 + 5.25257i −1.74028 + 0.306858i −0.951462 0.307767i \(-0.900418\pi\)
−0.788819 + 0.614625i \(0.789307\pi\)
\(294\) 0.669644 + 3.84659i 0.0390544 + 0.224338i
\(295\) 4.64670 + 4.88831i 0.270541 + 0.284609i
\(296\) 11.2421 0.653436
\(297\) 17.4522 20.5255i 1.01268 1.19101i
\(298\) 25.2169i 1.46077i
\(299\) −6.08938 5.10960i −0.352158 0.295496i
\(300\) 1.83252 + 3.60082i 0.105801 + 0.207893i
\(301\) 3.33490 + 18.9131i 0.192220 + 1.09014i
\(302\) −0.813265 + 2.23443i −0.0467982 + 0.128577i
\(303\) −0.653617 0.379262i −0.0375493 0.0217880i
\(304\) 2.26375 12.8384i 0.129835 0.736330i
\(305\) 7.64922 10.3556i 0.437993 0.592962i
\(306\) 15.2254 12.6633i 0.870381 0.723915i
\(307\) −15.8229 + 9.13533i −0.903058 + 0.521381i −0.878191 0.478310i \(-0.841250\pi\)
−0.0248672 + 0.999691i \(0.507916\pi\)
\(308\) 1.88292 + 5.17329i 0.107289 + 0.294775i
\(309\) 3.00356 + 2.53143i 0.170867 + 0.144008i
\(310\) −2.00984 3.03097i −0.114151 0.172147i
\(311\) 25.8479 21.6890i 1.46570 1.22987i 0.545681 0.837993i \(-0.316271\pi\)
0.920018 0.391875i \(-0.128174\pi\)
\(312\) −8.05223 1.43787i −0.455868 0.0814034i
\(313\) −0.953665 2.62017i −0.0539043 0.148101i 0.909818 0.415007i \(-0.136221\pi\)
−0.963723 + 0.266906i \(0.913999\pi\)
\(314\) −7.90048 13.6840i −0.445850 0.772235i
\(315\) 3.51204 + 14.8576i 0.197881 + 0.837132i
\(316\) 3.86253 6.69010i 0.217284 0.376348i
\(317\) 2.71702 + 0.479083i 0.152603 + 0.0269080i 0.249428 0.968393i \(-0.419758\pi\)
−0.0968248 + 0.995301i \(0.530869\pi\)
\(318\) 12.3587 7.09952i 0.693039 0.398121i
\(319\) −31.4642 11.4520i −1.76166 0.641190i
\(320\) 1.23088 + 19.8494i 0.0688085 + 1.10962i
\(321\) 7.10240 + 2.60255i 0.396417 + 0.145260i
\(322\) −9.31377 + 11.0997i −0.519036 + 0.618563i
\(323\) 24.3896i 1.35707i
\(324\) −3.95792 + 1.40173i −0.219884 + 0.0778741i
\(325\) 1.72629 7.53547i 0.0957572 0.417993i
\(326\) 23.3985 + 19.6337i 1.29592 + 1.08741i
\(327\) −4.73899 + 12.9328i −0.262067 + 0.715183i
\(328\) 12.8261 2.26160i 0.708206 0.124876i
\(329\) 14.5221 + 5.28560i 0.800627 + 0.291404i
\(330\) 9.88559 + 22.8181i 0.544184 + 1.25609i
\(331\) −4.85007 + 27.5061i −0.266584 + 1.51187i 0.497902 + 0.867233i \(0.334104\pi\)
−0.764486 + 0.644640i \(0.777007\pi\)
\(332\) 4.37653 + 2.52679i 0.240193 + 0.138676i
\(333\) −10.8658 1.96465i −0.595440 0.107662i
\(334\) −3.31840 5.74763i −0.181575 0.314496i
\(335\) 1.81403 + 7.52793i 0.0991109 + 0.411295i
\(336\) −1.97439 + 11.0568i −0.107712 + 0.603197i
\(337\) −9.17286 10.9318i −0.499677 0.595492i 0.455974 0.889993i \(-0.349291\pi\)
−0.955651 + 0.294501i \(0.904847\pi\)
\(338\) −8.44497 10.0643i −0.459346 0.547427i
\(339\) 20.8421 + 17.5659i 1.13199 + 0.954047i
\(340\) −1.30275 5.40621i −0.0706515 0.293193i
\(341\) 3.40498 + 5.89759i 0.184390 + 0.319372i
\(342\) −5.88279 + 15.9469i −0.318105 + 0.862309i
\(343\) 17.3847 + 10.0371i 0.938685 + 0.541950i
\(344\) 4.47567 25.3828i 0.241312 1.36855i
\(345\) 11.8654 15.9908i 0.638812 0.860913i
\(346\) −16.6656 6.06577i −0.895946 0.326098i
\(347\) −17.3984 + 3.06781i −0.933994 + 0.164688i −0.619880 0.784697i \(-0.712819\pi\)
−0.314114 + 0.949385i \(0.601708\pi\)
\(348\) 3.34554 + 4.00470i 0.179340 + 0.214674i
\(349\) 18.7439 + 15.7280i 1.00334 + 0.841899i 0.987443 0.157975i \(-0.0504965\pi\)
0.0158927 + 0.999874i \(0.494941\pi\)
\(350\) −13.7356 3.14667i −0.734201 0.168197i
\(351\) 7.53138 + 2.79692i 0.401995 + 0.149289i
\(352\) 13.3795i 0.713129i
\(353\) 20.5015 24.4328i 1.09119 1.30043i 0.140567 0.990071i \(-0.455108\pi\)
0.950621 0.310355i \(-0.100448\pi\)
\(354\) −1.10954 6.37346i −0.0589714 0.338745i
\(355\) −0.00361176 0.0582438i −0.000191692 0.00309126i
\(356\) 2.03687 + 0.741359i 0.107954 + 0.0392920i
\(357\) 0.0456530 21.0131i 0.00241621 1.11213i
\(358\) −6.93958 1.22364i −0.366768 0.0646711i
\(359\) −4.13080 + 7.15476i −0.218015 + 0.377614i −0.954201 0.299166i \(-0.903292\pi\)
0.736186 + 0.676780i \(0.236625\pi\)
\(360\) 2.39071 20.3495i 0.126001 1.07251i
\(361\) −0.966856 1.67464i −0.0508871 0.0881391i
\(362\) −4.30002 11.8142i −0.226004 0.620941i
\(363\) −9.35354 25.8734i −0.490934 1.35800i
\(364\) −1.25757 + 1.05523i −0.0659148 + 0.0553091i
\(365\) 7.14461 + 10.7745i 0.373966 + 0.563965i
\(366\) −11.6136 + 4.19846i −0.607053 + 0.219457i
\(367\) 7.40606 + 20.3480i 0.386593 + 1.06216i 0.968525 + 0.248918i \(0.0800750\pi\)
−0.581931 + 0.813238i \(0.697703\pi\)
\(368\) 12.6864 7.32448i 0.661323 0.381815i
\(369\) −12.7920 0.0555839i −0.665924 0.00289358i
\(370\) 6.05533 8.19779i 0.314801 0.426183i
\(371\) 2.62615 14.8936i 0.136343 0.773238i
\(372\) 0.00230578 1.06130i 0.000119549 0.0550259i
\(373\) 10.4509 28.7136i 0.541126 1.48673i −0.304267 0.952587i \(-0.598411\pi\)
0.845393 0.534145i \(-0.179366\pi\)
\(374\) −5.94343 33.7068i −0.307327 1.74294i
\(375\) 19.1005 + 3.18920i 0.986345 + 0.164689i
\(376\) −15.8881 13.3317i −0.819365 0.687529i
\(377\) 9.98457i 0.514232i
\(378\) 5.09822 13.7282i 0.262224 0.706102i
\(379\) −6.49045 −0.333392 −0.166696 0.986008i \(-0.553310\pi\)
−0.166696 + 0.986008i \(0.553310\pi\)
\(380\) 3.28844 + 3.45943i 0.168693 + 0.177465i
\(381\) −4.45795 + 3.72419i −0.228388 + 0.190796i
\(382\) −7.75324 + 1.36711i −0.396690 + 0.0699472i
\(383\) 2.57705 7.08040i 0.131681 0.361791i −0.856276 0.516519i \(-0.827228\pi\)
0.987957 + 0.154727i \(0.0494499\pi\)
\(384\) 5.08778 8.76824i 0.259635 0.447452i
\(385\) 25.3063 + 7.47280i 1.28973 + 0.380849i
\(386\) 12.0758 20.9160i 0.614645 1.06460i
\(387\) −8.76165 + 23.7508i −0.445380 + 1.20732i
\(388\) −2.93102 + 1.69222i −0.148800 + 0.0859096i
\(389\) −7.42372 + 2.70201i −0.376398 + 0.136997i −0.523289 0.852155i \(-0.675295\pi\)
0.146892 + 0.989153i \(0.453073\pi\)
\(390\) −5.38566 + 5.09723i −0.272713 + 0.258108i
\(391\) −20.9946 + 17.6165i −1.06174 + 0.890906i
\(392\) −3.57399 4.25931i −0.180514 0.215128i
\(393\) −9.40926 1.68019i −0.474635 0.0847545i
\(394\) −10.5267 + 3.83139i −0.530325 + 0.193023i
\(395\) −14.7927 33.9424i −0.744301 1.70783i
\(396\) −1.29119 + 7.14114i −0.0648850 + 0.358856i
\(397\) −1.40079 0.808746i −0.0703036 0.0405898i 0.464436 0.885607i \(-0.346257\pi\)
−0.534740 + 0.845017i \(0.679590\pi\)
\(398\) 12.3102 + 2.17062i 0.617054 + 0.108803i
\(399\) 8.98389 + 15.6389i 0.449757 + 0.782925i
\(400\) 11.9611 + 7.73893i 0.598056 + 0.386947i
\(401\) 2.06958 + 11.7372i 0.103350 + 0.586127i 0.991867 + 0.127282i \(0.0406254\pi\)
−0.888517 + 0.458844i \(0.848264\pi\)
\(402\) 2.55553 6.97407i 0.127458 0.347835i
\(403\) −1.30530 + 1.55560i −0.0650216 + 0.0774898i
\(404\) 0.203545 0.0101268
\(405\) −5.86690 + 19.2504i −0.291529 + 0.956562i
\(406\) −18.1999 −0.903244
\(407\) −12.2671 + 14.6193i −0.608055 + 0.724652i
\(408\) −9.70289 + 26.4793i −0.480365 + 1.31092i
\(409\) −1.98160 11.2382i −0.0979836 0.555693i −0.993792 0.111253i \(-0.964514\pi\)
0.895809 0.444440i \(-0.146597\pi\)
\(410\) 5.25936 10.5710i 0.259741 0.522065i
\(411\) −5.12534 8.92205i −0.252814 0.440092i
\(412\) −1.04196 0.183725i −0.0513336 0.00905149i
\(413\) −5.94484 3.43226i −0.292527 0.168890i
\(414\) −17.9762 + 6.45449i −0.883482 + 0.317221i
\(415\) 22.2044 9.67706i 1.08997 0.475028i
\(416\) 3.74908 1.36455i 0.183814 0.0669027i
\(417\) 27.1630 + 4.85045i 1.33018 + 0.237528i
\(418\) 18.8832 + 22.5041i 0.923609 + 1.10071i
\(419\) −24.7402 + 20.7595i −1.20864 + 1.01417i −0.209296 + 0.977852i \(0.567117\pi\)
−0.999340 + 0.0363142i \(0.988438\pi\)
\(420\) −2.82671 2.98666i −0.137930 0.145734i
\(421\) −12.6800 + 4.61514i −0.617986 + 0.224928i −0.631994 0.774974i \(-0.717763\pi\)
0.0140082 + 0.999902i \(0.495541\pi\)
\(422\) 3.82641 2.20918i 0.186267 0.107541i
\(423\) 13.0264 + 15.6619i 0.633363 + 0.761509i
\(424\) −10.1483 + 17.5774i −0.492846 + 0.853634i
\(425\) −24.5521 10.3728i −1.19095 0.503154i
\(426\) −0.0280929 + 0.0484150i −0.00136110 + 0.00234572i
\(427\) −4.48169 + 12.3134i −0.216884 + 0.595885i
\(428\) −2.00649 + 0.353799i −0.0969875 + 0.0171015i
\(429\) 10.6562 8.90219i 0.514484 0.429802i
\(430\) −16.0984 16.9355i −0.776336 0.816704i
\(431\) 23.0480 1.11018 0.555092 0.831789i \(-0.312683\pi\)
0.555092 + 0.831789i \(0.312683\pi\)
\(432\) −9.59037 + 11.2792i −0.461417 + 0.542673i
\(433\) 28.7044i 1.37944i −0.724074 0.689722i \(-0.757733\pi\)
0.724074 0.689722i \(-0.242267\pi\)
\(434\) 2.83554 + 2.37930i 0.136110 + 0.114210i
\(435\) 24.9662 1.49374i 1.19704 0.0716192i
\(436\) −0.644233 3.65363i −0.0308532 0.174977i
\(437\) 8.04538 22.1045i 0.384863 1.05740i
\(438\) 0.0269418 12.4007i 0.00128733 0.592529i
\(439\) −0.464755 + 2.63576i −0.0221816 + 0.125798i −0.993888 0.110395i \(-0.964789\pi\)
0.971706 + 0.236193i \(0.0758996\pi\)
\(440\) −28.4844 21.0401i −1.35794 1.00305i
\(441\) 2.70999 + 4.74130i 0.129047 + 0.225776i
\(442\) 8.83886 5.10312i 0.420422 0.242731i
\(443\) −0.954638 2.62285i −0.0453562 0.124615i 0.914947 0.403575i \(-0.132233\pi\)
−0.960303 + 0.278960i \(0.910010\pi\)
\(444\) 2.79703 1.01116i 0.132741 0.0479874i
\(445\) 8.65849 5.74146i 0.410452 0.272171i
\(446\) 17.6079 14.7748i 0.833760 0.699608i
\(447\) 11.9913 + 33.1698i 0.567167 + 1.56888i
\(448\) −6.92304 19.0209i −0.327083 0.898653i
\(449\) 12.0160 + 20.8123i 0.567069 + 0.982192i 0.996854 + 0.0792608i \(0.0252560\pi\)
−0.429785 + 0.902931i \(0.641411\pi\)
\(450\) −13.5512 12.7041i −0.638810 0.598878i
\(451\) −11.0545 + 19.1470i −0.520536 + 0.901595i
\(452\) −7.23026 1.27489i −0.340083 0.0599658i
\(453\) −0.00722574 + 3.32585i −0.000339495 + 0.156262i
\(454\) 28.6323 + 10.4213i 1.34378 + 0.489097i
\(455\) 0.486987 + 7.85323i 0.0228303 + 0.368165i
\(456\) −4.15138 23.8465i −0.194406 1.11671i
\(457\) 19.7351 23.5193i 0.923167 1.10019i −0.0715399 0.997438i \(-0.522791\pi\)
0.994707 0.102750i \(-0.0327642\pi\)
\(458\) 2.52675i 0.118067i
\(459\) 14.0055 23.8972i 0.653722 1.11543i
\(460\) −0.602649 + 5.32943i −0.0280987 + 0.248486i
\(461\) −8.31123 6.97395i −0.387093 0.324809i 0.428387 0.903595i \(-0.359082\pi\)
−0.815479 + 0.578786i \(0.803527\pi\)
\(462\) −16.2269 19.4240i −0.754944 0.903687i
\(463\) −32.0801 + 5.65658i −1.49089 + 0.262884i −0.858919 0.512111i \(-0.828864\pi\)
−0.631968 + 0.774995i \(0.717753\pi\)
\(464\) 17.2903 + 6.29316i 0.802682 + 0.292153i
\(465\) −4.08501 3.03114i −0.189438 0.140566i
\(466\) 1.86609 10.5831i 0.0864450 0.490254i
\(467\) −11.8736 6.85522i −0.549445 0.317222i 0.199453 0.979907i \(-0.436083\pi\)
−0.748898 + 0.662685i \(0.769417\pi\)
\(468\) −2.13271 + 0.366507i −0.0985846 + 0.0169418i
\(469\) −3.94064 6.82538i −0.181962 0.315167i
\(470\) −18.2793 + 4.40481i −0.843159 + 0.203179i
\(471\) −16.8993 14.2428i −0.778676 0.656275i
\(472\) 5.92178 + 7.05730i 0.272572 + 0.324839i
\(473\) 28.1241 + 33.5170i 1.29315 + 1.54111i
\(474\) −6.24316 + 34.9624i −0.286758 + 1.60587i
\(475\) 22.7014 2.82635i 1.04161 0.129682i
\(476\) 2.82998 + 4.90167i 0.129712 + 0.224668i
\(477\) 12.8803 15.2154i 0.589750 0.696667i
\(478\) 4.04513 + 2.33545i 0.185020 + 0.106821i
\(479\) 2.05131 11.6335i 0.0937266 0.531550i −0.901403 0.432980i \(-0.857462\pi\)
0.995130 0.0985701i \(-0.0314269\pi\)
\(480\) 3.97290 + 9.17032i 0.181337 + 0.418566i
\(481\) −5.34758 1.94636i −0.243829 0.0887465i
\(482\) 0.690558 0.121764i 0.0314541 0.00554620i
\(483\) −6.97295 + 19.0293i −0.317280 + 0.865863i
\(484\) 5.67678 + 4.76339i 0.258036 + 0.216518i
\(485\) −1.82270 + 16.1187i −0.0827643 + 0.731913i
\(486\) 14.9214 12.2468i 0.676848 0.555526i
\(487\) 31.6087i 1.43233i 0.697933 + 0.716163i \(0.254103\pi\)
−0.697933 + 0.716163i \(0.745897\pi\)
\(488\) 11.3040 13.4716i 0.511709 0.609831i
\(489\) 40.1142 + 14.6992i 1.81403 + 0.664719i
\(490\) −5.03095 + 0.311975i −0.227275 + 0.0140936i
\(491\) −15.3997 5.60502i −0.694977 0.252951i −0.0297121 0.999558i \(-0.509459\pi\)
−0.665265 + 0.746608i \(0.731681\pi\)
\(492\) 2.98771 1.71631i 0.134696 0.0773773i
\(493\) −33.9012 5.97769i −1.52683 0.269222i
\(494\) −4.38004 + 7.58644i −0.197067 + 0.341330i
\(495\) 23.8539 + 25.3136i 1.07215 + 1.13776i
\(496\) −1.87111 3.24087i −0.0840155 0.145519i
\(497\) 0.0203142 + 0.0558127i 0.000911215 + 0.00250354i
\(498\) −22.8716 4.08414i −1.02490 0.183015i
\(499\) 30.4626 25.5612i 1.36369 1.14427i 0.388871 0.921292i \(-0.372865\pi\)
0.974823 0.222982i \(-0.0715791\pi\)
\(500\) −4.88104 + 1.83907i −0.218287 + 0.0822456i
\(501\) −7.09810 5.98234i −0.317120 0.267271i
\(502\) −0.360791 0.991264i −0.0161029 0.0442423i
\(503\) 5.13479 2.96457i 0.228949 0.132184i −0.381138 0.924518i \(-0.624468\pi\)
0.610087 + 0.792334i \(0.291134\pi\)
\(504\) 3.53203 + 20.5530i 0.157329 + 0.915502i
\(505\) 0.579634 0.784717i 0.0257934 0.0349195i
\(506\) −5.73228 + 32.5094i −0.254831 + 1.44522i
\(507\) −15.8942 9.22262i −0.705886 0.409591i
\(508\) 0.535138 1.47028i 0.0237429 0.0652331i
\(509\) −7.53016 42.7057i −0.333768 1.89290i −0.439067 0.898454i \(-0.644691\pi\)
0.105298 0.994441i \(-0.466420\pi\)
\(510\) 14.0825 + 21.3379i 0.623586 + 0.944858i
\(511\) −10.0798 8.45798i −0.445905 0.374159i
\(512\) 24.7579i 1.09416i
\(513\) −0.154954 + 23.7736i −0.00684137 + 1.04963i
\(514\) 22.7787 1.00473
\(515\) −3.67548 + 3.49381i −0.161961 + 0.153956i
\(516\) −1.16948 6.71775i −0.0514834 0.295732i
\(517\) 34.6731 6.11381i 1.52492 0.268885i
\(518\) −3.54783 + 9.74757i −0.155883 + 0.428284i
\(519\) −24.8060 0.0538934i −1.08886 0.00236566i
\(520\) 2.99059 10.1275i 0.131146 0.444120i
\(521\) −16.3247 + 28.2751i −0.715196 + 1.23876i 0.247688 + 0.968840i \(0.420329\pi\)
−0.962884 + 0.269916i \(0.913004\pi\)
\(522\) −20.7241 12.0854i −0.907070 0.528966i
\(523\) 15.2548 8.80738i 0.667047 0.385120i −0.127910 0.991786i \(-0.540827\pi\)
0.794957 + 0.606666i \(0.207493\pi\)
\(524\) 2.41925 0.880534i 0.105685 0.0384663i
\(525\) −19.5639 + 2.39258i −0.853840 + 0.104421i
\(526\) −6.62147 + 5.55607i −0.288710 + 0.242256i
\(527\) 4.50033 + 5.36328i 0.196037 + 0.233628i
\(528\) 8.69950 + 24.0642i 0.378597 + 1.04726i
\(529\) 3.22579 1.17409i 0.140252 0.0510475i
\(530\) 7.35131 + 16.8678i 0.319320 + 0.732692i
\(531\) −4.49021 7.85591i −0.194859 0.340917i
\(532\) −4.20713 2.42899i −0.182402 0.105310i
\(533\) −6.49261 1.14482i −0.281226 0.0495878i
\(534\) −9.96530 0.0216506i −0.431241 0.000936913i
\(535\) −4.34989 + 8.74303i −0.188062 + 0.377994i
\(536\) 1.83671 + 10.4165i 0.0793340 + 0.449925i
\(537\) −9.71006 + 1.69040i −0.419020 + 0.0729463i
\(538\) −7.20724 + 8.58925i −0.310726 + 0.370309i
\(539\) 9.43865 0.406551
\(540\) −1.23550 5.27796i −0.0531676 0.227127i
\(541\) 40.8023 1.75423 0.877113 0.480284i \(-0.159466\pi\)
0.877113 + 0.480284i \(0.159466\pi\)
\(542\) −2.13421 + 2.54346i −0.0916723 + 0.109251i
\(543\) −11.2741 13.4954i −0.483819 0.579143i
\(544\) −2.38859 13.5464i −0.102410 0.580797i
\(545\) −15.9202 7.92072i −0.681946 0.339287i
\(546\) 3.78786 6.52798i 0.162106 0.279372i
\(547\) −29.8441 5.26232i −1.27604 0.225000i −0.505743 0.862684i \(-0.668781\pi\)
−0.770298 + 0.637684i \(0.779893\pi\)
\(548\) 2.40018 + 1.38575i 0.102531 + 0.0591961i
\(549\) −13.2798 + 11.0451i −0.566770 + 0.471395i
\(550\) −30.6850 + 9.43811i −1.30841 + 0.402442i
\(551\) 27.7646 10.1055i 1.18281 0.430508i
\(552\) 17.5286 20.7978i 0.746065 0.885212i
\(553\) 24.2234 + 28.8684i 1.03008 + 1.22761i
\(554\) −9.18393 + 7.70623i −0.390188 + 0.327407i
\(555\) 4.06680 13.6627i 0.172626 0.579948i
\(556\) −6.98398 + 2.54196i −0.296187 + 0.107803i
\(557\) −24.6008 + 14.2033i −1.04237 + 0.601812i −0.920503 0.390735i \(-0.872221\pi\)
−0.121865 + 0.992547i \(0.538888\pi\)
\(558\) 1.64887 + 4.59221i 0.0698021 + 0.194404i
\(559\) −6.52350 + 11.2990i −0.275915 + 0.477898i
\(560\) −13.9064 4.10648i −0.587652 0.173530i
\(561\) −23.8463 41.5111i −1.00679 1.75260i
\(562\) −5.61591 + 15.4296i −0.236893 + 0.650858i
\(563\) 6.21863 1.09651i 0.262084 0.0462124i −0.0410621 0.999157i \(-0.513074\pi\)
0.303146 + 0.952944i \(0.401963\pi\)
\(564\) −5.15203 1.88787i −0.216940 0.0794937i
\(565\) −25.5046 + 24.2439i −1.07299 + 1.01995i
\(566\) −24.2448 −1.01909
\(567\) 0.178002 20.4821i 0.00747538 0.860169i
\(568\) 0.0797117i 0.00334463i
\(569\) 2.76710 + 2.32188i 0.116003 + 0.0973381i 0.698944 0.715176i \(-0.253654\pi\)
−0.582941 + 0.812515i \(0.698098\pi\)
\(570\) −19.6250 9.81720i −0.822000 0.411197i
\(571\) 6.03614 + 34.2327i 0.252605 + 1.43259i 0.802147 + 0.597127i \(0.203691\pi\)
−0.549542 + 0.835466i \(0.685198\pi\)
\(572\) −1.27918 + 3.51451i −0.0534851 + 0.146949i
\(573\) −9.54837 + 5.48513i −0.398889 + 0.229145i
\(574\) −2.08678 + 11.8347i −0.0871006 + 0.493972i
\(575\) 18.8301 + 17.4999i 0.785270 + 0.729798i
\(576\) 4.74740 26.2562i 0.197808 1.09401i
\(577\) 19.6374 11.3377i 0.817517 0.471994i −0.0320424 0.999487i \(-0.510201\pi\)
0.849559 + 0.527493i \(0.176868\pi\)
\(578\) −4.83505 13.2842i −0.201112 0.552550i
\(579\) 5.93826 33.2549i 0.246785 1.38203i
\(580\) −5.61453 + 3.72301i −0.233131 + 0.154589i
\(581\) −18.8851 + 15.8465i −0.783485 + 0.657422i
\(582\) 10.0275 11.8977i 0.415652 0.493175i
\(583\) −11.7842 32.3768i −0.488051 1.34091i
\(584\) 8.82966 + 15.2934i 0.365374 + 0.632847i
\(585\) −4.66033 + 9.26582i −0.192681 + 0.383094i
\(586\) −18.7288 + 32.4391i −0.773678 + 1.34005i
\(587\) 18.6058 + 3.28071i 0.767946 + 0.135410i 0.543878 0.839164i \(-0.316955\pi\)
0.224067 + 0.974574i \(0.428066\pi\)
\(588\) −1.27230 0.738253i −0.0524688 0.0304450i
\(589\) −5.64683 2.05528i −0.232673 0.0846862i
\(590\) 8.33584 0.516914i 0.343181 0.0212810i
\(591\) −12.0246 + 10.0454i −0.494628 + 0.413214i
\(592\) 6.74104 8.03366i 0.277055 0.330181i
\(593\) 8.73461i 0.358688i −0.983786 0.179344i \(-0.942603\pi\)
0.983786 0.179344i \(-0.0573974\pi\)
\(594\) −5.57918 32.8934i −0.228917 1.34963i
\(595\) 26.9560 + 3.04817i 1.10509 + 0.124963i
\(596\) −7.27765 6.10667i −0.298104 0.250139i
\(597\) 17.2248 2.99862i 0.704963 0.122725i
\(598\) −9.69410 + 1.70933i −0.396421 + 0.0698998i
\(599\) 6.00796 + 2.18672i 0.245479 + 0.0893469i 0.461829 0.886969i \(-0.347193\pi\)
−0.216351 + 0.976316i \(0.569415\pi\)
\(600\) 25.7709 + 5.96278i 1.05209 + 0.243429i
\(601\) 2.30763 13.0872i 0.0941304 0.533840i −0.900880 0.434068i \(-0.857078\pi\)
0.995010 0.0997716i \(-0.0318112\pi\)
\(602\) 20.5959 + 11.8910i 0.839425 + 0.484642i
\(603\) 0.0451415 10.3888i 0.00183830 0.423064i
\(604\) −0.447916 0.775814i −0.0182255 0.0315674i
\(605\) 34.5297 8.32073i 1.40383 0.338286i
\(606\) −0.880043 + 0.318146i −0.0357493 + 0.0129238i
\(607\) −2.88515 3.43839i −0.117105 0.139560i 0.704307 0.709895i \(-0.251258\pi\)
−0.821412 + 0.570335i \(0.806813\pi\)
\(608\) 7.58895 + 9.04416i 0.307773 + 0.366789i
\(609\) −23.9398 + 8.65451i −0.970088 + 0.350698i
\(610\) −3.73486 15.4991i −0.151220 0.627540i
\(611\) 5.24941 + 9.09225i 0.212369 + 0.367833i
\(612\) −0.0324185 + 7.46073i −0.00131044 + 0.301582i
\(613\) −20.1066 11.6086i −0.812100 0.468866i 0.0355848 0.999367i \(-0.488671\pi\)
−0.847685 + 0.530501i \(0.822004\pi\)
\(614\) −3.92882 + 22.2814i −0.158554 + 0.899205i
\(615\) 1.89128 16.4059i 0.0762636 0.661549i
\(616\) 33.8694 + 12.3275i 1.36464 + 0.496687i
\(617\) 43.5312 7.67572i 1.75250 0.309013i 0.796993 0.603988i \(-0.206423\pi\)
0.955505 + 0.294975i \(0.0953114\pi\)
\(618\) 4.79214 0.834253i 0.192768 0.0335586i
\(619\) −3.65944 3.07064i −0.147085 0.123419i 0.566276 0.824216i \(-0.308384\pi\)
−0.713361 + 0.700796i \(0.752828\pi\)
\(620\) 1.36146 + 0.153953i 0.0546775 + 0.00618291i
\(621\) −20.5763 + 17.0383i −0.825698 + 0.683722i
\(622\) 41.7838i 1.67538i
\(623\) −6.79689 + 8.10022i −0.272312 + 0.324529i
\(624\) −5.85581 + 4.89197i −0.234420 + 0.195835i
\(625\) −6.80964 + 24.0547i −0.272386 + 0.962188i
\(626\) −3.24464 1.18095i −0.129682 0.0472004i
\(627\) 35.5399 + 20.6221i 1.41933 + 0.823566i
\(628\) 5.86248 + 1.03371i 0.233938 + 0.0412496i
\(629\) −9.81015 + 16.9917i −0.391156 + 0.677502i
\(630\) 16.8897 + 8.49484i 0.672903 + 0.338443i
\(631\) −18.1400 31.4193i −0.722140 1.25078i −0.960140 0.279518i \(-0.909825\pi\)
0.238000 0.971265i \(-0.423508\pi\)
\(632\) −17.2980 47.5258i −0.688076 1.89047i
\(633\) 3.98266 4.72546i 0.158297 0.187820i
\(634\) 2.61717 2.19607i 0.103941 0.0872169i
\(635\) −4.14438 6.24999i −0.164465 0.248023i
\(636\) −0.943911 + 5.28600i −0.0374285 + 0.209604i
\(637\) 0.962632 + 2.64481i 0.0381409 + 0.104791i
\(638\) −35.9086 + 20.7318i −1.42163 + 0.820781i
\(639\) −0.0139302 + 0.0770431i −0.000551071 + 0.00304778i
\(640\) 10.5269 + 7.77577i 0.416114 + 0.307364i
\(641\) 3.91713 22.2151i 0.154717 0.877445i −0.804327 0.594187i \(-0.797474\pi\)
0.959044 0.283258i \(-0.0914151\pi\)
\(642\) 8.12222 4.66587i 0.320558 0.184147i
\(643\) −1.31828 + 3.62196i −0.0519881 + 0.142836i −0.962969 0.269613i \(-0.913104\pi\)
0.910981 + 0.412449i \(0.135326\pi\)
\(644\) −0.947926 5.37595i −0.0373535 0.211842i
\(645\) −29.2289 14.6215i −1.15089 0.575719i
\(646\) 23.1364 + 19.4137i 0.910288 + 0.763823i
\(647\) 16.5713i 0.651486i −0.945458 0.325743i \(-0.894386\pi\)
0.945458 0.325743i \(-0.105614\pi\)
\(648\) −9.62609 + 25.7490i −0.378148 + 1.01152i
\(649\) −15.6390 −0.613884
\(650\) −5.77418 7.63570i −0.226482 0.299497i
\(651\) 4.86123 + 1.78131i 0.190527 + 0.0698152i
\(652\) −11.3326 + 1.99825i −0.443821 + 0.0782576i
\(653\) 1.76642 4.85320i 0.0691254 0.189920i −0.900320 0.435230i \(-0.856667\pi\)
0.969445 + 0.245309i \(0.0788894\pi\)
\(654\) 8.49608 + 14.7898i 0.332223 + 0.578325i
\(655\) 3.49459 11.8343i 0.136545 0.462403i
\(656\) 6.07471 10.5217i 0.237178 0.410804i
\(657\) −5.86142 16.3245i −0.228676 0.636879i
\(658\) 16.5733 9.56862i 0.646096 0.373024i
\(659\) −33.9146 + 12.3439i −1.32113 + 0.480850i −0.903819 0.427915i \(-0.859248\pi\)
−0.417307 + 0.908766i \(0.637026\pi\)
\(660\) −8.97931 2.67276i −0.349519 0.104037i
\(661\) 29.5546 24.7993i 1.14954 0.964580i 0.149833 0.988711i \(-0.452127\pi\)
0.999709 + 0.0241316i \(0.00768206\pi\)
\(662\) 22.2322 + 26.4953i 0.864079 + 1.02977i
\(663\) 9.19981 10.9157i 0.357291 0.423929i
\(664\) 31.0903 11.3160i 1.20654 0.439144i
\(665\) −21.3450 + 9.30251i −0.827722 + 0.360736i
\(666\) −10.5127 + 8.74362i −0.407358 + 0.338808i
\(667\) 28.7531 + 16.6006i 1.11332 + 0.642778i
\(668\) 2.46238 + 0.434185i 0.0952725 + 0.0167991i
\(669\) 16.1354 27.8076i 0.623829 1.07510i
\(670\) 8.58506 + 4.27130i 0.331670 + 0.165015i
\(671\) 5.18394 + 29.3996i 0.200124 + 1.13496i
\(672\) −6.52141 7.80629i −0.251569 0.301134i
\(673\) −6.19702 + 7.38532i −0.238878 + 0.284683i −0.872143 0.489252i \(-0.837270\pi\)
0.633265 + 0.773935i \(0.281714\pi\)
\(674\) −17.6715 −0.680682
\(675\) −23.8661 10.2668i −0.918608 0.395170i
\(676\) 4.94968 0.190372
\(677\) 15.8761 18.9204i 0.610167 0.727169i −0.369179 0.929358i \(-0.620361\pi\)
0.979346 + 0.202189i \(0.0648056\pi\)
\(678\) 33.2532 5.78898i 1.27708 0.222324i
\(679\) −2.86697 16.2594i −0.110024 0.623979i
\(680\) −32.5960 16.2174i −1.25000 0.621908i
\(681\) 42.6180 + 0.0925918i 1.63313 + 0.00354813i
\(682\) 8.30486 + 1.46437i 0.318010 + 0.0560737i
\(683\) 17.9981 + 10.3912i 0.688678 + 0.397609i 0.803117 0.595822i \(-0.203174\pi\)
−0.114438 + 0.993430i \(0.536507\pi\)
\(684\) −3.17770 5.55958i −0.121502 0.212576i
\(685\) 12.1774 5.30711i 0.465273 0.202774i
\(686\) 23.3593 8.50208i 0.891861 0.324611i
\(687\) 1.20154 + 3.32364i 0.0458414 + 0.126805i
\(688\) −15.4549 18.4184i −0.589212 0.702195i
\(689\) 7.87048 6.60411i 0.299841 0.251597i
\(690\) −5.72442 23.9841i −0.217925 0.913060i
\(691\) −12.2565 + 4.46098i −0.466257 + 0.169704i −0.564456 0.825463i \(-0.690914\pi\)
0.0981988 + 0.995167i \(0.468692\pi\)
\(692\) 5.78643 3.34080i 0.219967 0.126998i
\(693\) −30.5812 17.8337i −1.16168 0.677446i
\(694\) −10.9387 + 18.9463i −0.415226 + 0.719193i
\(695\) −10.0883 + 34.1637i −0.382672 + 1.29590i
\(696\) 34.1638 + 0.0742241i 1.29497 + 0.00281346i
\(697\) −7.77416 + 21.3593i −0.294467 + 0.809042i
\(698\) 29.8396 5.26153i 1.12945 0.199152i
\(699\) −2.57793 14.8082i −0.0975062 0.560098i
\(700\) 4.23445 3.20212i 0.160047 0.121029i
\(701\) 25.6062 0.967135 0.483567 0.875307i \(-0.339341\pi\)
0.483567 + 0.875307i \(0.339341\pi\)
\(702\) 8.64807 4.91809i 0.326400 0.185621i
\(703\) 16.8402i 0.635141i
\(704\) −35.3263 29.6423i −1.33141 1.11719i
\(705\) −21.9496 + 14.4863i −0.826670 + 0.545584i
\(706\) −6.85846 38.8962i −0.258121 1.46388i
\(707\) −0.339609 + 0.933067i −0.0127723 + 0.0350916i
\(708\) 2.10809 + 1.22322i 0.0792268 + 0.0459714i
\(709\) −2.06567 + 11.7150i −0.0775777 + 0.439965i 0.921135 + 0.389243i \(0.127263\pi\)
−0.998713 + 0.0507221i \(0.983848\pi\)
\(710\) −0.0581260 0.0429350i −0.00218143 0.00161132i
\(711\) 8.41337 + 48.9576i 0.315526 + 1.83605i
\(712\) 12.2899 7.09558i 0.460584 0.265918i
\(713\) −2.30951 6.34531i −0.0864917 0.237634i
\(714\) −19.8970 16.7694i −0.744628 0.627579i
\(715\) 9.90660 + 14.9398i 0.370486 + 0.558716i
\(716\) 2.03368 1.70646i 0.0760021 0.0637733i
\(717\) 6.43145 + 1.14845i 0.240187 + 0.0428897i
\(718\) 3.49908 + 9.61363i 0.130584 + 0.358777i
\(719\) 3.31070 + 5.73431i 0.123468 + 0.213854i 0.921133 0.389247i \(-0.127265\pi\)
−0.797665 + 0.603101i \(0.793932\pi\)
\(720\) −13.1083 13.9104i −0.488517 0.518411i
\(721\) 2.58068 4.46987i 0.0961096 0.166467i
\(722\) −2.35820 0.415814i −0.0877630 0.0154750i
\(723\) 0.850445 0.488544i 0.0316284 0.0181692i
\(724\) 4.45093 + 1.62000i 0.165417 + 0.0602070i
\(725\) −1.63535 + 32.2474i −0.0607355 + 1.19764i
\(726\) −31.9892 11.7219i −1.18723 0.435040i
\(727\) −7.62291 + 9.08463i −0.282718 + 0.336930i −0.888650 0.458586i \(-0.848356\pi\)
0.605932 + 0.795517i \(0.292800\pi\)
\(728\) 10.7478i 0.398341i
\(729\) 13.8037 23.2047i 0.511246 0.859434i
\(730\) 15.9079 + 1.79886i 0.588778 + 0.0665787i
\(731\) 34.4587 + 28.9142i 1.27450 + 1.06943i
\(732\) 1.60074 4.36844i 0.0591650 0.161462i
\(733\) 12.6872 2.23709i 0.468612 0.0826289i 0.0656441 0.997843i \(-0.479090\pi\)
0.402968 + 0.915214i \(0.367979\pi\)
\(734\) 25.1976 + 9.17116i 0.930059 + 0.338514i
\(735\) −6.46926 + 2.80271i −0.238622 + 0.103380i
\(736\) −2.30374 + 13.0651i −0.0849169 + 0.481588i
\(737\) −15.5499 8.97771i −0.572786 0.330698i
\(738\) −10.2349 + 12.0905i −0.376754 + 0.445056i
\(739\) −12.2765 21.2636i −0.451600 0.782194i 0.546886 0.837207i \(-0.315813\pi\)
−0.998486 + 0.0550133i \(0.982480\pi\)
\(740\) 0.899506 + 3.73281i 0.0330665 + 0.137221i
\(741\) −2.15387 + 12.0619i −0.0791243 + 0.443104i
\(742\) −12.0380 14.3463i −0.441928 0.526669i
\(743\) −26.5027 31.5847i −0.972291 1.15873i −0.987304 0.158844i \(-0.949223\pi\)
0.0150131 0.999887i \(-0.495221\pi\)
\(744\) −5.31301 4.47785i −0.194784 0.164166i
\(745\) −44.2672 + 10.6672i −1.62182 + 0.390816i
\(746\) −18.9194 32.7694i −0.692690 1.19977i
\(747\) −32.0270 + 5.50385i −1.17181 + 0.201375i
\(748\) 11.1672 + 6.44737i 0.408313 + 0.235739i
\(749\) 1.72593 9.78822i 0.0630640 0.357654i
\(750\) 18.2290 15.5805i 0.665630 0.568920i
\(751\) −11.6980 4.25772i −0.426866 0.155366i 0.119648 0.992816i \(-0.461823\pi\)
−0.546514 + 0.837450i \(0.684045\pi\)
\(752\) −19.0537 + 3.35968i −0.694817 + 0.122515i
\(753\) −0.945949 1.13233i −0.0344723 0.0412642i
\(754\) −9.47154 7.94756i −0.344933 0.289433i
\(755\) −4.26648 0.482451i −0.155273 0.0175582i
\(756\) 2.72737 + 4.79586i 0.0991935 + 0.174424i
\(757\) 11.3137i 0.411203i −0.978636 0.205602i \(-0.934085\pi\)
0.978636 0.205602i \(-0.0659152\pi\)
\(758\) −5.16630 + 6.15696i −0.187648 + 0.223631i
\(759\) 7.91891 + 45.4881i 0.287438 + 1.65111i
\(760\) 31.1888 1.93405i 1.13134 0.0701555i
\(761\) −21.2994 7.75233i −0.772101 0.281022i −0.0742262 0.997241i \(-0.523649\pi\)
−0.697875 + 0.716220i \(0.745871\pi\)
\(762\) −0.0156281 + 7.19329i −0.000566147 + 0.260585i
\(763\) 17.8234 + 3.14274i 0.645250 + 0.113775i
\(764\) 1.48302 2.56867i 0.0536539 0.0929313i
\(765\) 28.6706 + 21.3708i 1.03659 + 0.772664i
\(766\) −4.66529 8.08053i −0.168564 0.291961i
\(767\) −1.59500 4.38222i −0.0575920 0.158233i
\(768\) 6.20668 + 17.1687i 0.223964 + 0.619521i
\(769\) −11.6191 + 9.74955i −0.418994 + 0.351578i −0.827780 0.561052i \(-0.810397\pi\)
0.408786 + 0.912630i \(0.365952\pi\)
\(770\) 27.2322 18.0577i 0.981381 0.650756i
\(771\) 29.9627 10.8319i 1.07908 0.390101i
\(772\) 3.11204 + 8.55027i 0.112005 + 0.307731i
\(773\) −4.20823 + 2.42962i −0.151359 + 0.0873874i −0.573767 0.819019i \(-0.694518\pi\)
0.422407 + 0.906406i \(0.361185\pi\)
\(774\) 15.5563 + 27.2167i 0.559160 + 0.978286i
\(775\) 4.47054 4.81035i 0.160587 0.172793i
\(776\) −3.84768 + 21.8213i −0.138124 + 0.783338i
\(777\) −0.0315219 + 14.5089i −0.00113084 + 0.520502i
\(778\) −3.34599 + 9.19303i −0.119960 + 0.329586i
\(779\) −3.38777 19.2130i −0.121379 0.688377i
\(780\) −0.166849 2.78869i −0.00597414 0.0998512i
\(781\) 0.103657 + 0.0869789i 0.00370916 + 0.00311235i
\(782\) 33.9383i 1.21363i
\(783\) −33.0071 6.04211i −1.17958 0.215928i
\(784\) −5.18676 −0.185241
\(785\) 20.6797 19.6576i 0.738091 0.701609i
\(786\) −9.08349 + 7.58838i −0.323997 + 0.270669i
\(787\) 4.82676 0.851088i 0.172055 0.0303380i −0.0869567 0.996212i \(-0.527714\pi\)
0.259012 + 0.965874i \(0.416603\pi\)
\(788\) 1.44345 3.96585i 0.0514209 0.141278i
\(789\) −6.06770 + 10.4570i −0.216016 + 0.372280i
\(790\) −43.9731 12.9850i −1.56449 0.461985i
\(791\) 17.9076 31.0170i 0.636723 1.10284i
\(792\) 30.3810 + 36.5279i 1.07954 + 1.29796i
\(793\) −7.70938 + 4.45101i −0.273768 + 0.158060i
\(794\) −1.88220 + 0.685063i −0.0667966 + 0.0243120i
\(795\) 17.6909 + 18.6919i 0.627430 + 0.662934i
\(796\) −3.60756 + 3.02710i −0.127866 + 0.107293i
\(797\) −35.8673 42.7450i −1.27049 1.51411i −0.752270 0.658855i \(-0.771041\pi\)
−0.518215 0.855250i \(-0.673403\pi\)
\(798\) 21.9864 + 3.92607i 0.778310 + 0.138981i
\(799\) 34.0142 12.3802i 1.20334 0.437978i
\(800\) −12.3320 + 3.79307i −0.436001 + 0.134105i
\(801\) −13.1185 + 4.71028i −0.463518 + 0.166430i
\(802\) 12.7814 + 7.37937i 0.451328 + 0.260575i
\(803\) −29.5223 5.20557i −1.04182 0.183701i
\(804\) 1.39387 + 2.42641i 0.0491581 + 0.0855731i
\(805\) −23.4250 11.6546i −0.825623 0.410770i
\(806\) 0.436667 + 2.47646i 0.0153809 + 0.0872296i
\(807\) −5.39585 + 14.7254i −0.189943 + 0.518358i
\(808\) 0.856584 1.02084i 0.0301345 0.0359129i
\(809\) 25.0205 0.879673 0.439837 0.898078i \(-0.355036\pi\)
0.439837 + 0.898078i \(0.355036\pi\)
\(810\) 13.5913 + 20.8885i 0.477551 + 0.733947i
\(811\) 22.4129 0.787024 0.393512 0.919320i \(-0.371260\pi\)
0.393512 + 0.919320i \(0.371260\pi\)
\(812\) 4.40739 5.25253i 0.154669 0.184328i
\(813\) −1.59783 + 4.36049i −0.0560382 + 0.152929i
\(814\) 4.10374 + 23.2735i 0.143836 + 0.815735i
\(815\) −24.5681 + 49.3805i −0.860584 + 1.72972i
\(816\) 13.1041 + 22.8113i 0.458736 + 0.798556i
\(817\) −38.0222 6.70435i −1.33023 0.234555i
\(818\) −12.2381 7.06565i −0.427894 0.247045i
\(819\) 1.87826 10.3880i 0.0656318 0.362986i
\(820\) 1.77718 + 4.07781i 0.0620619 + 0.142403i
\(821\) −37.8576 + 13.7790i −1.32124 + 0.480892i −0.903855 0.427838i \(-0.859275\pi\)
−0.417384 + 0.908730i \(0.637053\pi\)
\(822\) −12.5433 2.23983i −0.437498 0.0781231i
\(823\) −8.96086 10.6791i −0.312356 0.372251i 0.586911 0.809651i \(-0.300344\pi\)
−0.899267 + 0.437400i \(0.855899\pi\)
\(824\) −5.30632 + 4.45253i −0.184854 + 0.155111i
\(825\) −35.8745 + 27.0062i −1.24899 + 0.940237i
\(826\) −7.98790 + 2.90736i −0.277935 + 0.101160i
\(827\) 30.3778 17.5386i 1.05634 0.609878i 0.131922 0.991260i \(-0.457885\pi\)
0.924418 + 0.381382i \(0.124552\pi\)
\(828\) 2.49045 6.75104i 0.0865491 0.234615i
\(829\) −16.3803 + 28.3716i −0.568912 + 0.985385i 0.427762 + 0.903892i \(0.359302\pi\)
−0.996674 + 0.0814933i \(0.974031\pi\)
\(830\) 8.49451 28.7662i 0.294849 0.998491i
\(831\) −8.41586 + 14.5038i −0.291943 + 0.503132i
\(832\) 4.70322 12.9220i 0.163055 0.447989i
\(833\) 9.55639 1.68505i 0.331109 0.0583835i
\(834\) 26.2226 21.9064i 0.908014 0.758558i
\(835\) 8.68600 8.25667i 0.300591 0.285734i
\(836\) −11.0676 −0.382782
\(837\) 4.35260 + 5.25643i 0.150448 + 0.181689i
\(838\) 39.9932i 1.38154i
\(839\) −13.1790 11.0585i −0.454991 0.381783i 0.386293 0.922376i \(-0.373755\pi\)
−0.841284 + 0.540593i \(0.818200\pi\)
\(840\) −26.8747 + 1.60792i −0.927264 + 0.0554786i
\(841\) 2.20580 + 12.5097i 0.0760621 + 0.431370i
\(842\) −5.71508 + 15.7021i −0.196955 + 0.541128i
\(843\) −0.0498965 + 22.9663i −0.00171853 + 0.791001i
\(844\) −0.289053 + 1.63930i −0.00994960 + 0.0564270i
\(845\) 14.0951 19.0822i 0.484888 0.656448i
\(846\) 25.2259 + 0.109612i 0.867286 + 0.00376854i
\(847\) −31.3072 + 18.0752i −1.07573 + 0.621073i
\(848\) 6.47569 + 17.7918i 0.222376 + 0.610973i
\(849\) −31.8912 + 11.5290i −1.09450 + 0.395675i
\(850\) −29.3829 + 15.0339i −1.00782 + 0.515660i
\(851\) 14.4961 12.1636i 0.496919 0.416964i
\(852\) −0.00716956 0.0198322i −0.000245625 0.000679439i
\(853\) 16.6428 + 45.7258i 0.569840 + 1.56562i 0.804756 + 0.593606i \(0.202296\pi\)
−0.234916 + 0.972016i \(0.575482\pi\)
\(854\) 8.11330 + 14.0526i 0.277631 + 0.480872i
\(855\) −30.4827 3.58118i −1.04248 0.122474i
\(856\) −6.66956 + 11.5520i −0.227961 + 0.394840i
\(857\) 9.48011 + 1.67160i 0.323835 + 0.0571008i 0.333202 0.942855i \(-0.391871\pi\)
−0.00936777 + 0.999956i \(0.502982\pi\)
\(858\) 0.0373570 17.1946i 0.00127535 0.587015i
\(859\) −30.1158 10.9613i −1.02754 0.373993i −0.227395 0.973803i \(-0.573021\pi\)
−0.800143 + 0.599809i \(0.795243\pi\)
\(860\) 8.78614 0.544838i 0.299605 0.0185788i
\(861\) 2.88280 + 16.5595i 0.0982457 + 0.564346i
\(862\) 18.3459 21.8638i 0.624863 0.744682i
\(863\) 11.1232i 0.378637i −0.981916 0.189319i \(-0.939372\pi\)
0.981916 0.189319i \(-0.0606279\pi\)
\(864\) −2.24221 13.2195i −0.0762815 0.449735i
\(865\) 3.59838 31.8217i 0.122348 1.08197i
\(866\) −27.2295 22.8482i −0.925295 0.776415i
\(867\) −12.6769 15.1746i −0.430531 0.515356i
\(868\) −1.37334 + 0.242158i −0.0466143 + 0.00821936i
\(869\) 80.6777 + 29.3643i 2.73680 + 0.996114i
\(870\) 18.4557 24.8723i 0.625707 0.843251i
\(871\) 0.929747 5.27286i 0.0315033 0.178664i
\(872\) −21.0351 12.1446i −0.712338 0.411268i
\(873\) 7.53229 20.4183i 0.254930 0.691055i
\(874\) −14.5647 25.2268i −0.492659 0.853310i
\(875\) −0.286568 25.4435i −0.00968776 0.860147i
\(876\) 3.57235 + 3.01081i 0.120699 + 0.101726i
\(877\) 34.3783 + 40.9704i 1.16087 + 1.38347i 0.909563 + 0.415567i \(0.136417\pi\)
0.251309 + 0.967907i \(0.419139\pi\)
\(878\) 2.13039 + 2.53890i 0.0718971 + 0.0856836i
\(879\) −9.20980 + 51.5758i −0.310639 + 1.73961i
\(880\) −32.1153 + 7.73891i −1.08261 + 0.260879i
\(881\) −12.0656 20.8982i −0.406500 0.704078i 0.587995 0.808864i \(-0.299917\pi\)
−0.994495 + 0.104787i \(0.966584\pi\)
\(882\) 6.65479 + 1.20326i 0.224078 + 0.0405158i
\(883\) 15.3713 + 8.87464i 0.517286 + 0.298655i 0.735824 0.677173i \(-0.236795\pi\)
−0.218537 + 0.975829i \(0.570129\pi\)
\(884\) −0.667701 + 3.78672i −0.0224572 + 0.127361i
\(885\) 10.7190 4.64384i 0.360315 0.156101i
\(886\) −3.24795 1.18216i −0.109117 0.0397154i
\(887\) 2.06559 0.364220i 0.0693559 0.0122293i −0.138863 0.990312i \(-0.544345\pi\)
0.208218 + 0.978082i \(0.433234\pi\)
\(888\) 6.69953 18.2831i 0.224822 0.613542i
\(889\) 5.84701 + 4.90623i 0.196103 + 0.164550i
\(890\) 1.44557 12.7837i 0.0484558 0.428511i
\(891\) −22.9804 40.6143i −0.769872 1.36063i
\(892\) 8.65966i 0.289947i
\(893\) −19.9703 + 23.7996i −0.668280 + 0.796425i
\(894\) 41.0103 + 15.0275i 1.37159 + 0.502595i
\(895\) −0.787527 12.6998i −0.0263241 0.424507i
\(896\) −12.5171 4.55584i −0.418166 0.152200i
\(897\) −11.9386 + 6.85822i −0.398619 + 0.228989i
\(898\) 29.3074 + 5.16769i 0.978001 + 0.172448i
\(899\) 4.24080 7.34528i 0.141439 0.244979i
\(900\) 6.94809 0.834401i 0.231603 0.0278134i
\(901\) −17.7113 30.6769i −0.590049 1.02200i
\(902\) 9.36392 + 25.7272i 0.311785 + 0.856621i
\(903\) 32.7459 + 5.84737i 1.08972 + 0.194588i
\(904\) −36.8212 + 30.8966i −1.22465 + 1.02761i
\(905\) 18.9204 12.5461i 0.628935 0.417048i
\(906\) 3.14921 + 2.65418i 0.104626 + 0.0881793i
\(907\) −14.6217 40.1727i −0.485504 1.33391i −0.904713 0.426022i \(-0.859915\pi\)
0.419208 0.907890i \(-0.362308\pi\)
\(908\) −9.94141 + 5.73967i −0.329917 + 0.190478i
\(909\) −1.00631 + 0.836966i −0.0333770 + 0.0277604i
\(910\) 7.83734 + 5.78908i 0.259805 + 0.191906i
\(911\) 3.61639 20.5096i 0.119816 0.679513i −0.864436 0.502743i \(-0.832324\pi\)
0.984252 0.176770i \(-0.0565647\pi\)
\(912\) −19.5300 11.3323i −0.646704 0.375251i
\(913\) −19.2095 + 52.7776i −0.635741 + 1.74668i
\(914\) −6.60204 37.4420i −0.218376 1.23847i
\(915\) −12.2830 18.6112i −0.406063 0.615268i
\(916\) −0.729227 0.611894i −0.0240943 0.0202175i
\(917\) 12.5591i 0.414739i
\(918\) −11.5211 32.3077i −0.380254 1.06631i
\(919\) 14.9586 0.493438 0.246719 0.969087i \(-0.420648\pi\)
0.246719 + 0.969087i \(0.420648\pi\)
\(920\) 24.1924 + 25.4504i 0.797601 + 0.839075i
\(921\) 5.42750 + 31.1768i 0.178842 + 1.02731i
\(922\) −13.2312 + 2.33302i −0.435747 + 0.0768340i
\(923\) −0.0138006 + 0.0379168i −0.000454252 + 0.00124805i
\(924\) 9.53543 + 0.0207167i 0.313693 + 0.000681528i
\(925\) 16.9524 + 7.16207i 0.557392 + 0.235488i
\(926\) −20.1693 + 34.9343i −0.662804 + 1.14801i
\(927\) 5.90679 3.37615i 0.194004 0.110887i
\(928\) −14.4312 + 8.33188i −0.473729 + 0.273507i
\(929\) 25.6422 9.33300i 0.841294 0.306206i 0.114808 0.993388i \(-0.463375\pi\)
0.726486 + 0.687182i \(0.241152\pi\)
\(930\) −6.12700 + 1.46236i −0.200912 + 0.0479528i
\(931\) −6.38026 + 5.35367i −0.209105 + 0.175460i
\(932\) 2.60241 + 3.10144i 0.0852449 + 0.101591i
\(933\) −19.8693 54.9617i −0.650491 1.79936i
\(934\) −15.9542 + 5.80685i −0.522037 + 0.190006i
\(935\) 56.6569 24.6921i 1.85288 0.807517i
\(936\) −7.13699 + 12.2385i −0.233280 + 0.400028i
\(937\) −47.0967 27.1913i −1.53858 0.888300i −0.998922 0.0464165i \(-0.985220\pi\)
−0.539659 0.841884i \(-0.681447\pi\)
\(938\) −9.61136 1.69474i −0.313822 0.0553353i
\(939\) −4.82952 0.0104926i −0.157605 0.000342413i
\(940\) 3.15538 6.34214i 0.102917 0.206858i
\(941\) −8.21935 46.6142i −0.267943 1.51958i −0.760522 0.649313i \(-0.775057\pi\)
0.492579 0.870268i \(-0.336054\pi\)
\(942\) −26.9625 + 4.69385i −0.878487 + 0.152934i
\(943\) 14.0916 16.7937i 0.458885 0.546878i
\(944\) 8.59400 0.279711
\(945\) 26.2559 + 3.14246i 0.854106 + 0.102224i
\(946\) 54.1812 1.76158
\(947\) −26.0639 + 31.0617i −0.846962 + 1.00937i 0.152815 + 0.988255i \(0.451166\pi\)
−0.999777 + 0.0211155i \(0.993278\pi\)
\(948\) −8.57834 10.2685i −0.278612 0.333505i
\(949\) −1.55227 8.80337i −0.0503889 0.285769i
\(950\) 15.3889 23.7847i 0.499280 0.771677i
\(951\) 2.39829 4.13319i 0.0777699 0.134028i
\(952\) 36.4927 + 6.43465i 1.18273 + 0.208548i
\(953\) −23.2862 13.4443i −0.754315 0.435504i 0.0729359 0.997337i \(-0.476763\pi\)
−0.827251 + 0.561833i \(0.810096\pi\)
\(954\) −4.18107 24.3298i −0.135367 0.787705i
\(955\) −5.67967 13.0322i −0.183790 0.421712i
\(956\) −1.65361 + 0.601865i −0.0534816 + 0.0194657i
\(957\) −37.3750 + 44.3457i −1.20816 + 1.43349i
\(958\) −9.40297 11.2060i −0.303796 0.362050i
\(959\) −10.3570 + 8.69054i −0.334444 + 0.280632i
\(960\) 33.0147 + 9.82709i 1.06555 + 0.317168i
\(961\) 27.5095 10.0126i 0.887403 0.322988i
\(962\) −6.10295 + 3.52354i −0.196767 + 0.113603i
\(963\) 8.46508 9.99972i 0.272783 0.322236i
\(964\) −0.132088 + 0.228784i −0.00425428 + 0.00736864i
\(965\) 41.8255 + 12.3508i 1.34641 + 0.397587i
\(966\) 12.5012 + 21.7617i 0.402218 + 0.700171i
\(967\) 13.0453 35.8418i 0.419510 1.15259i −0.532474 0.846446i \(-0.678738\pi\)
0.951984 0.306147i \(-0.0990401\pi\)
\(968\) 47.7794 8.42480i 1.53569 0.270783i
\(969\) 39.6649 + 14.5345i 1.27422 + 0.466916i
\(970\) 13.8397 + 14.5593i 0.444364 + 0.467470i
\(971\) −52.8853 −1.69717 −0.848585 0.529059i \(-0.822545\pi\)
−0.848585 + 0.529059i \(0.822545\pi\)
\(972\) −0.0789999 + 7.27212i −0.00253392 + 0.233253i
\(973\) 36.2562i 1.16232i
\(974\) 29.9846 + 25.1600i 0.960767 + 0.806179i
\(975\) −11.2262 7.29809i −0.359527 0.233726i
\(976\) −2.84870 16.1558i −0.0911846 0.517134i
\(977\) −7.16089 + 19.6744i −0.229097 + 0.629439i −0.999972 0.00754795i \(-0.997597\pi\)
0.770874 + 0.636987i \(0.219820\pi\)
\(978\) 45.8742 26.3527i 1.46689 0.842668i
\(979\) −4.18324 + 23.7243i −0.133697 + 0.758233i
\(980\) 1.12829 1.52749i 0.0360419 0.0487940i
\(981\) 18.2085 + 15.4141i 0.581353 + 0.492133i
\(982\) −17.5749 + 10.1469i −0.560838 + 0.323800i
\(983\) 12.7694 + 35.0835i 0.407279 + 1.11899i 0.958615 + 0.284707i \(0.0918963\pi\)
−0.551335 + 0.834284i \(0.685881\pi\)
\(984\) 3.96546 22.2070i 0.126414 0.707933i
\(985\) −11.1788 16.8584i −0.356187 0.537153i
\(986\) −32.6553 + 27.4011i −1.03996 + 0.872628i
\(987\) 17.2501 20.4674i 0.549078 0.651486i
\(988\) −1.12877 3.10127i −0.0359110 0.0986646i
\(989\) −21.6923 37.5721i −0.689774 1.19472i
\(990\) 43.0003 2.47898i 1.36664 0.0787872i
\(991\) 17.5105 30.3291i 0.556240 0.963436i −0.441566 0.897229i \(-0.645577\pi\)
0.997806 0.0662071i \(-0.0210898\pi\)
\(992\) 3.33763 + 0.588514i 0.105970 + 0.0186853i
\(993\) 41.8430 + 24.2794i 1.32785 + 0.770485i
\(994\) 0.0691147 + 0.0251557i 0.00219218 + 0.000797890i
\(995\) 1.39700 + 22.5282i 0.0442879 + 0.714193i
\(996\) 6.71743 5.61177i 0.212850 0.177816i
\(997\) −30.6391 + 36.5143i −0.970351 + 1.15642i 0.0173159 + 0.999850i \(0.494488\pi\)
−0.987667 + 0.156569i \(0.949957\pi\)
\(998\) 49.2436i 1.55878i
\(999\) −9.67036 + 16.5002i −0.305957 + 0.522045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.2.p.a.124.11 yes 96
3.2 odd 2 405.2.p.a.289.6 96
5.2 odd 4 675.2.l.h.151.11 96
5.3 odd 4 675.2.l.h.151.6 96
5.4 even 2 inner 135.2.p.a.124.6 yes 96
15.14 odd 2 405.2.p.a.289.11 96
27.5 odd 18 405.2.p.a.199.11 96
27.22 even 9 inner 135.2.p.a.49.6 96
135.22 odd 36 675.2.l.h.76.11 96
135.49 even 18 inner 135.2.p.a.49.11 yes 96
135.59 odd 18 405.2.p.a.199.6 96
135.103 odd 36 675.2.l.h.76.6 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.6 96 27.22 even 9 inner
135.2.p.a.49.11 yes 96 135.49 even 18 inner
135.2.p.a.124.6 yes 96 5.4 even 2 inner
135.2.p.a.124.11 yes 96 1.1 even 1 trivial
405.2.p.a.199.6 96 135.59 odd 18
405.2.p.a.199.11 96 27.5 odd 18
405.2.p.a.289.6 96 3.2 odd 2
405.2.p.a.289.11 96 15.14 odd 2
675.2.l.h.76.6 96 135.103 odd 36
675.2.l.h.76.11 96 135.22 odd 36
675.2.l.h.151.6 96 5.3 odd 4
675.2.l.h.151.11 96 5.2 odd 4