Properties

Label 135.3.d.g.134.3
Level $135$
Weight $3$
Character 135.134
Analytic conductor $3.678$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(134,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 134.3
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 135.134
Dual form 135.3.d.g.134.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.16228 q^{2} +6.00000 q^{4} +(1.58114 - 4.74342i) q^{5} -3.00000i q^{7} +6.32456 q^{8} +(5.00000 - 15.0000i) q^{10} +9.48683i q^{11} +21.0000i q^{13} -9.48683i q^{14} -4.00000 q^{16} +12.6491 q^{17} -31.0000 q^{19} +(9.48683 - 28.4605i) q^{20} +30.0000i q^{22} +22.1359 q^{23} +(-20.0000 - 15.0000i) q^{25} +66.4078i q^{26} -18.0000i q^{28} -47.4342i q^{29} -16.0000 q^{31} -37.9473 q^{32} +40.0000 q^{34} +(-14.2302 - 4.74342i) q^{35} +27.0000i q^{37} -98.0306 q^{38} +(10.0000 - 30.0000i) q^{40} +47.4342i q^{41} -48.0000i q^{43} +56.9210i q^{44} +70.0000 q^{46} +12.6491 q^{47} +40.0000 q^{49} +(-63.2456 - 47.4342i) q^{50} +126.000i q^{52} +41.1096 q^{53} +(45.0000 + 15.0000i) q^{55} -18.9737i q^{56} -150.000i q^{58} -37.9473i q^{59} -1.00000 q^{61} -50.5964 q^{62} -104.000 q^{64} +(99.6117 + 33.2039i) q^{65} +21.0000i q^{67} +75.8947 q^{68} +(-45.0000 - 15.0000i) q^{70} -28.4605i q^{71} +27.0000i q^{73} +85.3815i q^{74} -186.000 q^{76} +28.4605 q^{77} -1.00000 q^{79} +(-6.32456 + 18.9737i) q^{80} +150.000i q^{82} -110.680 q^{83} +(20.0000 - 60.0000i) q^{85} -151.789i q^{86} +60.0000i q^{88} -113.842i q^{89} +63.0000 q^{91} +132.816 q^{92} +40.0000 q^{94} +(-49.0153 + 147.046i) q^{95} -93.0000i q^{97} +126.491 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{4} + 20 q^{10} - 16 q^{16} - 124 q^{19} - 80 q^{25} - 64 q^{31} + 160 q^{34} + 40 q^{40} + 280 q^{46} + 160 q^{49} + 180 q^{55} - 4 q^{61} - 416 q^{64} - 180 q^{70} - 744 q^{76} - 4 q^{79} + 80 q^{85}+ \cdots + 160 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.16228 1.58114 0.790569 0.612372i \(-0.209785\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) 0 0
\(4\) 6.00000 1.50000
\(5\) 1.58114 4.74342i 0.316228 0.948683i
\(6\) 0 0
\(7\) 3.00000i 0.428571i −0.976771 0.214286i \(-0.931258\pi\)
0.976771 0.214286i \(-0.0687424\pi\)
\(8\) 6.32456 0.790569
\(9\) 0 0
\(10\) 5.00000 15.0000i 0.500000 1.50000i
\(11\) 9.48683i 0.862439i 0.902247 + 0.431220i \(0.141917\pi\)
−0.902247 + 0.431220i \(0.858083\pi\)
\(12\) 0 0
\(13\) 21.0000i 1.61538i 0.589604 + 0.807692i \(0.299284\pi\)
−0.589604 + 0.807692i \(0.700716\pi\)
\(14\) 9.48683i 0.677631i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 12.6491 0.744065 0.372033 0.928220i \(-0.378661\pi\)
0.372033 + 0.928220i \(0.378661\pi\)
\(18\) 0 0
\(19\) −31.0000 −1.63158 −0.815789 0.578349i \(-0.803697\pi\)
−0.815789 + 0.578349i \(0.803697\pi\)
\(20\) 9.48683 28.4605i 0.474342 1.42302i
\(21\) 0 0
\(22\) 30.0000i 1.36364i
\(23\) 22.1359 0.962432 0.481216 0.876602i \(-0.340195\pi\)
0.481216 + 0.876602i \(0.340195\pi\)
\(24\) 0 0
\(25\) −20.0000 15.0000i −0.800000 0.600000i
\(26\) 66.4078i 2.55415i
\(27\) 0 0
\(28\) 18.0000i 0.642857i
\(29\) 47.4342i 1.63566i −0.575459 0.817830i \(-0.695177\pi\)
0.575459 0.817830i \(-0.304823\pi\)
\(30\) 0 0
\(31\) −16.0000 −0.516129 −0.258065 0.966128i \(-0.583085\pi\)
−0.258065 + 0.966128i \(0.583085\pi\)
\(32\) −37.9473 −1.18585
\(33\) 0 0
\(34\) 40.0000 1.17647
\(35\) −14.2302 4.74342i −0.406579 0.135526i
\(36\) 0 0
\(37\) 27.0000i 0.729730i 0.931060 + 0.364865i \(0.118885\pi\)
−0.931060 + 0.364865i \(0.881115\pi\)
\(38\) −98.0306 −2.57975
\(39\) 0 0
\(40\) 10.0000 30.0000i 0.250000 0.750000i
\(41\) 47.4342i 1.15693i 0.815707 + 0.578465i \(0.196348\pi\)
−0.815707 + 0.578465i \(0.803652\pi\)
\(42\) 0 0
\(43\) 48.0000i 1.11628i −0.829747 0.558140i \(-0.811515\pi\)
0.829747 0.558140i \(-0.188485\pi\)
\(44\) 56.9210i 1.29366i
\(45\) 0 0
\(46\) 70.0000 1.52174
\(47\) 12.6491 0.269130 0.134565 0.990905i \(-0.457036\pi\)
0.134565 + 0.990905i \(0.457036\pi\)
\(48\) 0 0
\(49\) 40.0000 0.816327
\(50\) −63.2456 47.4342i −1.26491 0.948683i
\(51\) 0 0
\(52\) 126.000i 2.42308i
\(53\) 41.1096 0.775653 0.387827 0.921732i \(-0.373226\pi\)
0.387827 + 0.921732i \(0.373226\pi\)
\(54\) 0 0
\(55\) 45.0000 + 15.0000i 0.818182 + 0.272727i
\(56\) 18.9737i 0.338815i
\(57\) 0 0
\(58\) 150.000i 2.58621i
\(59\) 37.9473i 0.643175i −0.946880 0.321588i \(-0.895784\pi\)
0.946880 0.321588i \(-0.104216\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.0163934 −0.00819672 0.999966i \(-0.502609\pi\)
−0.00819672 + 0.999966i \(0.502609\pi\)
\(62\) −50.5964 −0.816072
\(63\) 0 0
\(64\) −104.000 −1.62500
\(65\) 99.6117 + 33.2039i 1.53249 + 0.510829i
\(66\) 0 0
\(67\) 21.0000i 0.313433i 0.987644 + 0.156716i \(0.0500909\pi\)
−0.987644 + 0.156716i \(0.949909\pi\)
\(68\) 75.8947 1.11610
\(69\) 0 0
\(70\) −45.0000 15.0000i −0.642857 0.214286i
\(71\) 28.4605i 0.400852i −0.979709 0.200426i \(-0.935767\pi\)
0.979709 0.200426i \(-0.0642326\pi\)
\(72\) 0 0
\(73\) 27.0000i 0.369863i 0.982751 + 0.184932i \(0.0592063\pi\)
−0.982751 + 0.184932i \(0.940794\pi\)
\(74\) 85.3815i 1.15380i
\(75\) 0 0
\(76\) −186.000 −2.44737
\(77\) 28.4605 0.369617
\(78\) 0 0
\(79\) −1.00000 −0.0126582 −0.00632911 0.999980i \(-0.502015\pi\)
−0.00632911 + 0.999980i \(0.502015\pi\)
\(80\) −6.32456 + 18.9737i −0.0790569 + 0.237171i
\(81\) 0 0
\(82\) 150.000i 1.82927i
\(83\) −110.680 −1.33349 −0.666745 0.745286i \(-0.732313\pi\)
−0.666745 + 0.745286i \(0.732313\pi\)
\(84\) 0 0
\(85\) 20.0000 60.0000i 0.235294 0.705882i
\(86\) 151.789i 1.76499i
\(87\) 0 0
\(88\) 60.0000i 0.681818i
\(89\) 113.842i 1.27912i −0.768740 0.639562i \(-0.779116\pi\)
0.768740 0.639562i \(-0.220884\pi\)
\(90\) 0 0
\(91\) 63.0000 0.692308
\(92\) 132.816 1.44365
\(93\) 0 0
\(94\) 40.0000 0.425532
\(95\) −49.0153 + 147.046i −0.515951 + 1.54785i
\(96\) 0 0
\(97\) 93.0000i 0.958763i −0.877607 0.479381i \(-0.840861\pi\)
0.877607 0.479381i \(-0.159139\pi\)
\(98\) 126.491 1.29073
\(99\) 0 0
\(100\) −120.000 90.0000i −1.20000 0.900000i
\(101\) 75.8947i 0.751432i −0.926735 0.375716i \(-0.877397\pi\)
0.926735 0.375716i \(-0.122603\pi\)
\(102\) 0 0
\(103\) 147.000i 1.42718i 0.700561 + 0.713592i \(0.252933\pi\)
−0.700561 + 0.713592i \(0.747067\pi\)
\(104\) 132.816i 1.27707i
\(105\) 0 0
\(106\) 130.000 1.22642
\(107\) 22.1359 0.206878 0.103439 0.994636i \(-0.467015\pi\)
0.103439 + 0.994636i \(0.467015\pi\)
\(108\) 0 0
\(109\) 104.000 0.954128 0.477064 0.878868i \(-0.341701\pi\)
0.477064 + 0.878868i \(0.341701\pi\)
\(110\) 142.302 + 47.4342i 1.29366 + 0.431220i
\(111\) 0 0
\(112\) 12.0000i 0.107143i
\(113\) 173.925 1.53916 0.769581 0.638549i \(-0.220465\pi\)
0.769581 + 0.638549i \(0.220465\pi\)
\(114\) 0 0
\(115\) 35.0000 105.000i 0.304348 0.913043i
\(116\) 284.605i 2.45349i
\(117\) 0 0
\(118\) 120.000i 1.01695i
\(119\) 37.9473i 0.318885i
\(120\) 0 0
\(121\) 31.0000 0.256198
\(122\) −3.16228 −0.0259203
\(123\) 0 0
\(124\) −96.0000 −0.774194
\(125\) −102.774 + 71.1512i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) 144.000i 1.13386i −0.823767 0.566929i \(-0.808131\pi\)
0.823767 0.566929i \(-0.191869\pi\)
\(128\) −177.088 −1.38350
\(129\) 0 0
\(130\) 315.000 + 105.000i 2.42308 + 0.807692i
\(131\) 75.8947i 0.579349i 0.957125 + 0.289674i \(0.0935470\pi\)
−0.957125 + 0.289674i \(0.906453\pi\)
\(132\) 0 0
\(133\) 93.0000i 0.699248i
\(134\) 66.4078i 0.495581i
\(135\) 0 0
\(136\) 80.0000 0.588235
\(137\) −53.7587 −0.392399 −0.196200 0.980564i \(-0.562860\pi\)
−0.196200 + 0.980564i \(0.562860\pi\)
\(138\) 0 0
\(139\) −1.00000 −0.00719424 −0.00359712 0.999994i \(-0.501145\pi\)
−0.00359712 + 0.999994i \(0.501145\pi\)
\(140\) −85.3815 28.4605i −0.609868 0.203289i
\(141\) 0 0
\(142\) 90.0000i 0.633803i
\(143\) −199.223 −1.39317
\(144\) 0 0
\(145\) −225.000 75.0000i −1.55172 0.517241i
\(146\) 85.3815i 0.584805i
\(147\) 0 0
\(148\) 162.000i 1.09459i
\(149\) 75.8947i 0.509360i 0.967025 + 0.254680i \(0.0819702\pi\)
−0.967025 + 0.254680i \(0.918030\pi\)
\(150\) 0 0
\(151\) −31.0000 −0.205298 −0.102649 0.994718i \(-0.532732\pi\)
−0.102649 + 0.994718i \(0.532732\pi\)
\(152\) −196.061 −1.28988
\(153\) 0 0
\(154\) 90.0000 0.584416
\(155\) −25.2982 + 75.8947i −0.163214 + 0.489643i
\(156\) 0 0
\(157\) 102.000i 0.649682i 0.945769 + 0.324841i \(0.105311\pi\)
−0.945769 + 0.324841i \(0.894689\pi\)
\(158\) −3.16228 −0.0200144
\(159\) 0 0
\(160\) −60.0000 + 180.000i −0.375000 + 1.12500i
\(161\) 66.4078i 0.412471i
\(162\) 0 0
\(163\) 171.000i 1.04908i 0.851386 + 0.524540i \(0.175763\pi\)
−0.851386 + 0.524540i \(0.824237\pi\)
\(164\) 284.605i 1.73540i
\(165\) 0 0
\(166\) −350.000 −2.10843
\(167\) −290.930 −1.74209 −0.871047 0.491200i \(-0.836558\pi\)
−0.871047 + 0.491200i \(0.836558\pi\)
\(168\) 0 0
\(169\) −272.000 −1.60947
\(170\) 63.2456 189.737i 0.372033 1.11610i
\(171\) 0 0
\(172\) 288.000i 1.67442i
\(173\) −25.2982 −0.146232 −0.0731162 0.997323i \(-0.523294\pi\)
−0.0731162 + 0.997323i \(0.523294\pi\)
\(174\) 0 0
\(175\) −45.0000 + 60.0000i −0.257143 + 0.342857i
\(176\) 37.9473i 0.215610i
\(177\) 0 0
\(178\) 360.000i 2.02247i
\(179\) 199.223i 1.11298i −0.830854 0.556490i \(-0.812148\pi\)
0.830854 0.556490i \(-0.187852\pi\)
\(180\) 0 0
\(181\) −103.000 −0.569061 −0.284530 0.958667i \(-0.591838\pi\)
−0.284530 + 0.958667i \(0.591838\pi\)
\(182\) 199.223 1.09463
\(183\) 0 0
\(184\) 140.000 0.760870
\(185\) 128.072 + 42.6907i 0.692282 + 0.230761i
\(186\) 0 0
\(187\) 120.000i 0.641711i
\(188\) 75.8947 0.403695
\(189\) 0 0
\(190\) −155.000 + 465.000i −0.815789 + 2.44737i
\(191\) 265.631i 1.39074i 0.718652 + 0.695370i \(0.244759\pi\)
−0.718652 + 0.695370i \(0.755241\pi\)
\(192\) 0 0
\(193\) 213.000i 1.10363i −0.833968 0.551813i \(-0.813936\pi\)
0.833968 0.551813i \(-0.186064\pi\)
\(194\) 294.092i 1.51594i
\(195\) 0 0
\(196\) 240.000 1.22449
\(197\) 240.333 1.21996 0.609982 0.792415i \(-0.291176\pi\)
0.609982 + 0.792415i \(0.291176\pi\)
\(198\) 0 0
\(199\) 47.0000 0.236181 0.118090 0.993003i \(-0.462323\pi\)
0.118090 + 0.993003i \(0.462323\pi\)
\(200\) −126.491 94.8683i −0.632456 0.474342i
\(201\) 0 0
\(202\) 240.000i 1.18812i
\(203\) −142.302 −0.700998
\(204\) 0 0
\(205\) 225.000 + 75.0000i 1.09756 + 0.365854i
\(206\) 464.855i 2.25658i
\(207\) 0 0
\(208\) 84.0000i 0.403846i
\(209\) 294.092i 1.40714i
\(210\) 0 0
\(211\) −223.000 −1.05687 −0.528436 0.848973i \(-0.677221\pi\)
−0.528436 + 0.848973i \(0.677221\pi\)
\(212\) 246.658 1.16348
\(213\) 0 0
\(214\) 70.0000 0.327103
\(215\) −227.684 75.8947i −1.05900 0.352998i
\(216\) 0 0
\(217\) 48.0000i 0.221198i
\(218\) 328.877 1.50861
\(219\) 0 0
\(220\) 270.000 + 90.0000i 1.22727 + 0.409091i
\(221\) 265.631i 1.20195i
\(222\) 0 0
\(223\) 312.000i 1.39910i 0.714582 + 0.699552i \(0.246617\pi\)
−0.714582 + 0.699552i \(0.753383\pi\)
\(224\) 113.842i 0.508223i
\(225\) 0 0
\(226\) 550.000 2.43363
\(227\) −338.364 −1.49059 −0.745295 0.666735i \(-0.767691\pi\)
−0.745295 + 0.666735i \(0.767691\pi\)
\(228\) 0 0
\(229\) −16.0000 −0.0698690 −0.0349345 0.999390i \(-0.511122\pi\)
−0.0349345 + 0.999390i \(0.511122\pi\)
\(230\) 110.680 332.039i 0.481216 1.44365i
\(231\) 0 0
\(232\) 300.000i 1.29310i
\(233\) 50.5964 0.217152 0.108576 0.994088i \(-0.465371\pi\)
0.108576 + 0.994088i \(0.465371\pi\)
\(234\) 0 0
\(235\) 20.0000 60.0000i 0.0851064 0.255319i
\(236\) 227.684i 0.964763i
\(237\) 0 0
\(238\) 120.000i 0.504202i
\(239\) 104.355i 0.436632i 0.975878 + 0.218316i \(0.0700564\pi\)
−0.975878 + 0.218316i \(0.929944\pi\)
\(240\) 0 0
\(241\) 287.000 1.19087 0.595436 0.803403i \(-0.296979\pi\)
0.595436 + 0.803403i \(0.296979\pi\)
\(242\) 98.0306 0.405085
\(243\) 0 0
\(244\) −6.00000 −0.0245902
\(245\) 63.2456 189.737i 0.258145 0.774435i
\(246\) 0 0
\(247\) 651.000i 2.63563i
\(248\) −101.193 −0.408036
\(249\) 0 0
\(250\) −325.000 + 225.000i −1.30000 + 0.900000i
\(251\) 256.144i 1.02050i 0.860027 + 0.510248i \(0.170446\pi\)
−0.860027 + 0.510248i \(0.829554\pi\)
\(252\) 0 0
\(253\) 210.000i 0.830040i
\(254\) 455.368i 1.79279i
\(255\) 0 0
\(256\) −144.000 −0.562500
\(257\) 278.280 1.08280 0.541402 0.840764i \(-0.317894\pi\)
0.541402 + 0.840764i \(0.317894\pi\)
\(258\) 0 0
\(259\) 81.0000 0.312741
\(260\) 597.670 + 199.223i 2.29873 + 0.766244i
\(261\) 0 0
\(262\) 240.000i 0.916031i
\(263\) 354.175 1.34667 0.673337 0.739336i \(-0.264860\pi\)
0.673337 + 0.739336i \(0.264860\pi\)
\(264\) 0 0
\(265\) 65.0000 195.000i 0.245283 0.735849i
\(266\) 294.092i 1.10561i
\(267\) 0 0
\(268\) 126.000i 0.470149i
\(269\) 113.842i 0.423204i 0.977356 + 0.211602i \(0.0678681\pi\)
−0.977356 + 0.211602i \(0.932132\pi\)
\(270\) 0 0
\(271\) −121.000 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(272\) −50.5964 −0.186016
\(273\) 0 0
\(274\) −170.000 −0.620438
\(275\) 142.302 189.737i 0.517464 0.689951i
\(276\) 0 0
\(277\) 48.0000i 0.173285i −0.996239 0.0866426i \(-0.972386\pi\)
0.996239 0.0866426i \(-0.0276138\pi\)
\(278\) −3.16228 −0.0113751
\(279\) 0 0
\(280\) −90.0000 30.0000i −0.321429 0.107143i
\(281\) 303.579i 1.08035i −0.841552 0.540176i \(-0.818358\pi\)
0.841552 0.540176i \(-0.181642\pi\)
\(282\) 0 0
\(283\) 192.000i 0.678445i 0.940706 + 0.339223i \(0.110164\pi\)
−0.940706 + 0.339223i \(0.889836\pi\)
\(284\) 170.763i 0.601278i
\(285\) 0 0
\(286\) −630.000 −2.20280
\(287\) 142.302 0.495828
\(288\) 0 0
\(289\) −129.000 −0.446367
\(290\) −711.512 237.171i −2.45349 0.817830i
\(291\) 0 0
\(292\) 162.000i 0.554795i
\(293\) −205.548 −0.701529 −0.350765 0.936464i \(-0.614078\pi\)
−0.350765 + 0.936464i \(0.614078\pi\)
\(294\) 0 0
\(295\) −180.000 60.0000i −0.610169 0.203390i
\(296\) 170.763i 0.576902i
\(297\) 0 0
\(298\) 240.000i 0.805369i
\(299\) 464.855i 1.55470i
\(300\) 0 0
\(301\) −144.000 −0.478405
\(302\) −98.0306 −0.324605
\(303\) 0 0
\(304\) 124.000 0.407895
\(305\) −1.58114 + 4.74342i −0.00518406 + 0.0155522i
\(306\) 0 0
\(307\) 198.000i 0.644951i −0.946578 0.322476i \(-0.895485\pi\)
0.946578 0.322476i \(-0.104515\pi\)
\(308\) 170.763 0.554425
\(309\) 0 0
\(310\) −80.0000 + 240.000i −0.258065 + 0.774194i
\(311\) 493.315i 1.58622i −0.609077 0.793111i \(-0.708460\pi\)
0.609077 0.793111i \(-0.291540\pi\)
\(312\) 0 0
\(313\) 411.000i 1.31310i 0.754283 + 0.656550i \(0.227985\pi\)
−0.754283 + 0.656550i \(0.772015\pi\)
\(314\) 322.552i 1.02724i
\(315\) 0 0
\(316\) −6.00000 −0.0189873
\(317\) −252.982 −0.798051 −0.399026 0.916940i \(-0.630652\pi\)
−0.399026 + 0.916940i \(0.630652\pi\)
\(318\) 0 0
\(319\) 450.000 1.41066
\(320\) −164.438 + 493.315i −0.513870 + 1.54161i
\(321\) 0 0
\(322\) 210.000i 0.652174i
\(323\) −392.122 −1.21400
\(324\) 0 0
\(325\) 315.000 420.000i 0.969231 1.29231i
\(326\) 540.749i 1.65874i
\(327\) 0 0
\(328\) 300.000i 0.914634i
\(329\) 37.9473i 0.115341i
\(330\) 0 0
\(331\) 329.000 0.993958 0.496979 0.867763i \(-0.334443\pi\)
0.496979 + 0.867763i \(0.334443\pi\)
\(332\) −664.078 −2.00024
\(333\) 0 0
\(334\) −920.000 −2.75449
\(335\) 99.6117 + 33.2039i 0.297348 + 0.0991162i
\(336\) 0 0
\(337\) 381.000i 1.13056i 0.824898 + 0.565282i \(0.191233\pi\)
−0.824898 + 0.565282i \(0.808767\pi\)
\(338\) −860.140 −2.54479
\(339\) 0 0
\(340\) 120.000 360.000i 0.352941 1.05882i
\(341\) 151.789i 0.445130i
\(342\) 0 0
\(343\) 267.000i 0.778426i
\(344\) 303.579i 0.882496i
\(345\) 0 0
\(346\) −80.0000 −0.231214
\(347\) 117.004 0.337188 0.168594 0.985686i \(-0.446077\pi\)
0.168594 + 0.985686i \(0.446077\pi\)
\(348\) 0 0
\(349\) 89.0000 0.255014 0.127507 0.991838i \(-0.459302\pi\)
0.127507 + 0.991838i \(0.459302\pi\)
\(350\) −142.302 + 189.737i −0.406579 + 0.542105i
\(351\) 0 0
\(352\) 360.000i 1.02273i
\(353\) 581.859 1.64833 0.824163 0.566353i \(-0.191646\pi\)
0.824163 + 0.566353i \(0.191646\pi\)
\(354\) 0 0
\(355\) −135.000 45.0000i −0.380282 0.126761i
\(356\) 683.052i 1.91869i
\(357\) 0 0
\(358\) 630.000i 1.75978i
\(359\) 85.3815i 0.237831i 0.992904 + 0.118916i \(0.0379418\pi\)
−0.992904 + 0.118916i \(0.962058\pi\)
\(360\) 0 0
\(361\) 600.000 1.66205
\(362\) −325.715 −0.899764
\(363\) 0 0
\(364\) 378.000 1.03846
\(365\) 128.072 + 42.6907i 0.350883 + 0.116961i
\(366\) 0 0
\(367\) 51.0000i 0.138965i 0.997583 + 0.0694823i \(0.0221347\pi\)
−0.997583 + 0.0694823i \(0.977865\pi\)
\(368\) −88.5438 −0.240608
\(369\) 0 0
\(370\) 405.000 + 135.000i 1.09459 + 0.364865i
\(371\) 123.329i 0.332423i
\(372\) 0 0
\(373\) 237.000i 0.635389i 0.948193 + 0.317694i \(0.102909\pi\)
−0.948193 + 0.317694i \(0.897091\pi\)
\(374\) 379.473i 1.01463i
\(375\) 0 0
\(376\) 80.0000 0.212766
\(377\) 996.117 2.64222
\(378\) 0 0
\(379\) −103.000 −0.271768 −0.135884 0.990725i \(-0.543387\pi\)
−0.135884 + 0.990725i \(0.543387\pi\)
\(380\) −294.092 + 882.275i −0.773926 + 2.32178i
\(381\) 0 0
\(382\) 840.000i 2.19895i
\(383\) 50.5964 0.132106 0.0660528 0.997816i \(-0.478959\pi\)
0.0660528 + 0.997816i \(0.478959\pi\)
\(384\) 0 0
\(385\) 45.0000 135.000i 0.116883 0.350649i
\(386\) 673.565i 1.74499i
\(387\) 0 0
\(388\) 558.000i 1.43814i
\(389\) 265.631i 0.682857i 0.939908 + 0.341428i \(0.110911\pi\)
−0.939908 + 0.341428i \(0.889089\pi\)
\(390\) 0 0
\(391\) 280.000 0.716113
\(392\) 252.982 0.645363
\(393\) 0 0
\(394\) 760.000 1.92893
\(395\) −1.58114 + 4.74342i −0.00400288 + 0.0120086i
\(396\) 0 0
\(397\) 72.0000i 0.181360i 0.995880 + 0.0906801i \(0.0289041\pi\)
−0.995880 + 0.0906801i \(0.971096\pi\)
\(398\) 148.627 0.373435
\(399\) 0 0
\(400\) 80.0000 + 60.0000i 0.200000 + 0.150000i
\(401\) 104.355i 0.260237i 0.991498 + 0.130119i \(0.0415358\pi\)
−0.991498 + 0.130119i \(0.958464\pi\)
\(402\) 0 0
\(403\) 336.000i 0.833747i
\(404\) 455.368i 1.12715i
\(405\) 0 0
\(406\) −450.000 −1.10837
\(407\) −256.144 −0.629348
\(408\) 0 0
\(409\) 137.000 0.334963 0.167482 0.985875i \(-0.446437\pi\)
0.167482 + 0.985875i \(0.446437\pi\)
\(410\) 711.512 + 237.171i 1.73540 + 0.578465i
\(411\) 0 0
\(412\) 882.000i 2.14078i
\(413\) −113.842 −0.275646
\(414\) 0 0
\(415\) −175.000 + 525.000i −0.421687 + 1.26506i
\(416\) 796.894i 1.91561i
\(417\) 0 0
\(418\) 930.000i 2.22488i
\(419\) 37.9473i 0.0905664i −0.998974 0.0452832i \(-0.985581\pi\)
0.998974 0.0452832i \(-0.0144190\pi\)
\(420\) 0 0
\(421\) −631.000 −1.49881 −0.749406 0.662111i \(-0.769661\pi\)
−0.749406 + 0.662111i \(0.769661\pi\)
\(422\) −705.188 −1.67106
\(423\) 0 0
\(424\) 260.000 0.613208
\(425\) −252.982 189.737i −0.595252 0.446439i
\(426\) 0 0
\(427\) 3.00000i 0.00702576i
\(428\) 132.816 0.310317
\(429\) 0 0
\(430\) −720.000 240.000i −1.67442 0.558140i
\(431\) 540.749i 1.25464i −0.778762 0.627320i \(-0.784152\pi\)
0.778762 0.627320i \(-0.215848\pi\)
\(432\) 0 0
\(433\) 288.000i 0.665127i −0.943081 0.332564i \(-0.892086\pi\)
0.943081 0.332564i \(-0.107914\pi\)
\(434\) 151.789i 0.349745i
\(435\) 0 0
\(436\) 624.000 1.43119
\(437\) −686.214 −1.57028
\(438\) 0 0
\(439\) −856.000 −1.94989 −0.974943 0.222455i \(-0.928593\pi\)
−0.974943 + 0.222455i \(0.928593\pi\)
\(440\) 284.605 + 94.8683i 0.646830 + 0.215610i
\(441\) 0 0
\(442\) 840.000i 1.90045i
\(443\) 430.070 0.970812 0.485406 0.874289i \(-0.338672\pi\)
0.485406 + 0.874289i \(0.338672\pi\)
\(444\) 0 0
\(445\) −540.000 180.000i −1.21348 0.404494i
\(446\) 986.631i 2.21218i
\(447\) 0 0
\(448\) 312.000i 0.696429i
\(449\) 796.894i 1.77482i 0.460981 + 0.887410i \(0.347497\pi\)
−0.460981 + 0.887410i \(0.652503\pi\)
\(450\) 0 0
\(451\) −450.000 −0.997783
\(452\) 1043.55 2.30874
\(453\) 0 0
\(454\) −1070.00 −2.35683
\(455\) 99.6117 298.835i 0.218927 0.656781i
\(456\) 0 0
\(457\) 96.0000i 0.210066i 0.994469 + 0.105033i \(0.0334948\pi\)
−0.994469 + 0.105033i \(0.966505\pi\)
\(458\) −50.5964 −0.110473
\(459\) 0 0
\(460\) 210.000 630.000i 0.456522 1.36957i
\(461\) 417.421i 0.905468i −0.891646 0.452734i \(-0.850449\pi\)
0.891646 0.452734i \(-0.149551\pi\)
\(462\) 0 0
\(463\) 237.000i 0.511879i 0.966693 + 0.255940i \(0.0823848\pi\)
−0.966693 + 0.255940i \(0.917615\pi\)
\(464\) 189.737i 0.408915i
\(465\) 0 0
\(466\) 160.000 0.343348
\(467\) 468.017 1.00218 0.501089 0.865396i \(-0.332933\pi\)
0.501089 + 0.865396i \(0.332933\pi\)
\(468\) 0 0
\(469\) 63.0000 0.134328
\(470\) 63.2456 189.737i 0.134565 0.403695i
\(471\) 0 0
\(472\) 240.000i 0.508475i
\(473\) 455.368 0.962723
\(474\) 0 0
\(475\) 620.000 + 465.000i 1.30526 + 0.978947i
\(476\) 227.684i 0.478328i
\(477\) 0 0
\(478\) 330.000i 0.690377i
\(479\) 407.934i 0.851636i 0.904809 + 0.425818i \(0.140014\pi\)
−0.904809 + 0.425818i \(0.859986\pi\)
\(480\) 0 0
\(481\) −567.000 −1.17879
\(482\) 907.574 1.88293
\(483\) 0 0
\(484\) 186.000 0.384298
\(485\) −441.138 147.046i −0.909562 0.303187i
\(486\) 0 0
\(487\) 261.000i 0.535934i 0.963428 + 0.267967i \(0.0863519\pi\)
−0.963428 + 0.267967i \(0.913648\pi\)
\(488\) −6.32456 −0.0129602
\(489\) 0 0
\(490\) 200.000 600.000i 0.408163 1.22449i
\(491\) 749.460i 1.52639i −0.646165 0.763197i \(-0.723628\pi\)
0.646165 0.763197i \(-0.276372\pi\)
\(492\) 0 0
\(493\) 600.000i 1.21704i
\(494\) 2058.64i 4.16729i
\(495\) 0 0
\(496\) 64.0000 0.129032
\(497\) −85.3815 −0.171794
\(498\) 0 0
\(499\) −106.000 −0.212425 −0.106212 0.994343i \(-0.533872\pi\)
−0.106212 + 0.994343i \(0.533872\pi\)
\(500\) −616.644 + 426.907i −1.23329 + 0.853815i
\(501\) 0 0
\(502\) 810.000i 1.61355i
\(503\) 382.636 0.760707 0.380353 0.924841i \(-0.375802\pi\)
0.380353 + 0.924841i \(0.375802\pi\)
\(504\) 0 0
\(505\) −360.000 120.000i −0.712871 0.237624i
\(506\) 664.078i 1.31241i
\(507\) 0 0
\(508\) 864.000i 1.70079i
\(509\) 161.276i 0.316849i 0.987371 + 0.158425i \(0.0506415\pi\)
−0.987371 + 0.158425i \(0.949359\pi\)
\(510\) 0 0
\(511\) 81.0000 0.158513
\(512\) 252.982 0.494106
\(513\) 0 0
\(514\) 880.000 1.71206
\(515\) 697.282 + 232.427i 1.35395 + 0.451315i
\(516\) 0 0
\(517\) 120.000i 0.232108i
\(518\) 256.144 0.494487
\(519\) 0 0
\(520\) 630.000 + 210.000i 1.21154 + 0.403846i
\(521\) 369.986i 0.710147i 0.934838 + 0.355073i \(0.115544\pi\)
−0.934838 + 0.355073i \(0.884456\pi\)
\(522\) 0 0
\(523\) 837.000i 1.60038i 0.599745 + 0.800191i \(0.295269\pi\)
−0.599745 + 0.800191i \(0.704731\pi\)
\(524\) 455.368i 0.869023i
\(525\) 0 0
\(526\) 1120.00 2.12928
\(527\) −202.386 −0.384034
\(528\) 0 0
\(529\) −39.0000 −0.0737240
\(530\) 205.548 616.644i 0.387827 1.16348i
\(531\) 0 0
\(532\) 558.000i 1.04887i
\(533\) −996.117 −1.86889
\(534\) 0 0
\(535\) 35.0000 105.000i 0.0654206 0.196262i
\(536\) 132.816i 0.247790i
\(537\) 0 0
\(538\) 360.000i 0.669145i
\(539\) 379.473i 0.704032i
\(540\) 0 0
\(541\) −511.000 −0.944547 −0.472274 0.881452i \(-0.656567\pi\)
−0.472274 + 0.881452i \(0.656567\pi\)
\(542\) −382.636 −0.705970
\(543\) 0 0
\(544\) −480.000 −0.882353
\(545\) 164.438 493.315i 0.301722 0.905166i
\(546\) 0 0
\(547\) 1083.00i 1.97989i −0.141452 0.989945i \(-0.545177\pi\)
0.141452 0.989945i \(-0.454823\pi\)
\(548\) −322.552 −0.588599
\(549\) 0 0
\(550\) 450.000 600.000i 0.818182 1.09091i
\(551\) 1470.46i 2.66871i
\(552\) 0 0
\(553\) 3.00000i 0.00542495i
\(554\) 151.789i 0.273988i
\(555\) 0 0
\(556\) −6.00000 −0.0107914
\(557\) −973.982 −1.74862 −0.874310 0.485368i \(-0.838686\pi\)
−0.874310 + 0.485368i \(0.838686\pi\)
\(558\) 0 0
\(559\) 1008.00 1.80322
\(560\) 56.9210 + 18.9737i 0.101645 + 0.0338815i
\(561\) 0 0
\(562\) 960.000i 1.70819i
\(563\) −480.666 −0.853759 −0.426879 0.904309i \(-0.640387\pi\)
−0.426879 + 0.904309i \(0.640387\pi\)
\(564\) 0 0
\(565\) 275.000 825.000i 0.486726 1.46018i
\(566\) 607.157i 1.07272i
\(567\) 0 0
\(568\) 180.000i 0.316901i
\(569\) 645.105i 1.13375i −0.823803 0.566876i \(-0.808152\pi\)
0.823803 0.566876i \(-0.191848\pi\)
\(570\) 0 0
\(571\) 569.000 0.996497 0.498249 0.867034i \(-0.333977\pi\)
0.498249 + 0.867034i \(0.333977\pi\)
\(572\) −1195.34 −2.08976
\(573\) 0 0
\(574\) 450.000 0.783972
\(575\) −442.719 332.039i −0.769946 0.577459i
\(576\) 0 0
\(577\) 837.000i 1.45061i 0.688429 + 0.725303i \(0.258300\pi\)
−0.688429 + 0.725303i \(0.741700\pi\)
\(578\) −407.934 −0.705768
\(579\) 0 0
\(580\) −1350.00 450.000i −2.32759 0.775862i
\(581\) 332.039i 0.571496i
\(582\) 0 0
\(583\) 390.000i 0.668954i
\(584\) 170.763i 0.292402i
\(585\) 0 0
\(586\) −650.000 −1.10922
\(587\) 629.293 1.07205 0.536025 0.844202i \(-0.319925\pi\)
0.536025 + 0.844202i \(0.319925\pi\)
\(588\) 0 0
\(589\) 496.000 0.842105
\(590\) −569.210 189.737i −0.964763 0.321588i
\(591\) 0 0
\(592\) 108.000i 0.182432i
\(593\) −641.942 −1.08253 −0.541267 0.840851i \(-0.682055\pi\)
−0.541267 + 0.840851i \(0.682055\pi\)
\(594\) 0 0
\(595\) −180.000 60.0000i −0.302521 0.100840i
\(596\) 455.368i 0.764040i
\(597\) 0 0
\(598\) 1470.00i 2.45819i
\(599\) 635.618i 1.06113i −0.847644 0.530566i \(-0.821979\pi\)
0.847644 0.530566i \(-0.178021\pi\)
\(600\) 0 0
\(601\) 224.000 0.372712 0.186356 0.982482i \(-0.440332\pi\)
0.186356 + 0.982482i \(0.440332\pi\)
\(602\) −455.368 −0.756425
\(603\) 0 0
\(604\) −186.000 −0.307947
\(605\) 49.0153 147.046i 0.0810170 0.243051i
\(606\) 0 0
\(607\) 147.000i 0.242175i 0.992642 + 0.121087i \(0.0386381\pi\)
−0.992642 + 0.121087i \(0.961362\pi\)
\(608\) 1176.37 1.93481
\(609\) 0 0
\(610\) −5.00000 + 15.0000i −0.00819672 + 0.0245902i
\(611\) 265.631i 0.434748i
\(612\) 0 0
\(613\) 243.000i 0.396411i −0.980160 0.198206i \(-0.936489\pi\)
0.980160 0.198206i \(-0.0635114\pi\)
\(614\) 626.131i 1.01976i
\(615\) 0 0
\(616\) 180.000 0.292208
\(617\) 79.0569 0.128131 0.0640656 0.997946i \(-0.479593\pi\)
0.0640656 + 0.997946i \(0.479593\pi\)
\(618\) 0 0
\(619\) −1201.00 −1.94023 −0.970113 0.242653i \(-0.921982\pi\)
−0.970113 + 0.242653i \(0.921982\pi\)
\(620\) −151.789 + 455.368i −0.244821 + 0.734464i
\(621\) 0 0
\(622\) 1560.00i 2.50804i
\(623\) −341.526 −0.548196
\(624\) 0 0
\(625\) 175.000 + 600.000i 0.280000 + 0.960000i
\(626\) 1299.70i 2.07619i
\(627\) 0 0
\(628\) 612.000i 0.974522i
\(629\) 341.526i 0.542967i
\(630\) 0 0
\(631\) −193.000 −0.305864 −0.152932 0.988237i \(-0.548872\pi\)
−0.152932 + 0.988237i \(0.548872\pi\)
\(632\) −6.32456 −0.0100072
\(633\) 0 0
\(634\) −800.000 −1.26183
\(635\) −683.052 227.684i −1.07567 0.358557i
\(636\) 0 0
\(637\) 840.000i 1.31868i
\(638\) 1423.02 2.23045
\(639\) 0 0
\(640\) −280.000 + 840.000i −0.437500 + 1.31250i
\(641\) 303.579i 0.473602i −0.971558 0.236801i \(-0.923901\pi\)
0.971558 0.236801i \(-0.0760989\pi\)
\(642\) 0 0
\(643\) 24.0000i 0.0373250i −0.999826 0.0186625i \(-0.994059\pi\)
0.999826 0.0186625i \(-0.00594081\pi\)
\(644\) 398.447i 0.618706i
\(645\) 0 0
\(646\) −1240.00 −1.91950
\(647\) 667.241 1.03128 0.515642 0.856804i \(-0.327554\pi\)
0.515642 + 0.856804i \(0.327554\pi\)
\(648\) 0 0
\(649\) 360.000 0.554700
\(650\) 996.117 1328.16i 1.53249 2.04332i
\(651\) 0 0
\(652\) 1026.00i 1.57362i
\(653\) −404.772 −0.619865 −0.309932 0.950759i \(-0.600306\pi\)
−0.309932 + 0.950759i \(0.600306\pi\)
\(654\) 0 0
\(655\) 360.000 + 120.000i 0.549618 + 0.183206i
\(656\) 189.737i 0.289233i
\(657\) 0 0
\(658\) 120.000i 0.182371i
\(659\) 151.789i 0.230333i 0.993346 + 0.115166i \(0.0367401\pi\)
−0.993346 + 0.115166i \(0.963260\pi\)
\(660\) 0 0
\(661\) 719.000 1.08775 0.543873 0.839168i \(-0.316957\pi\)
0.543873 + 0.839168i \(0.316957\pi\)
\(662\) 1040.39 1.57159
\(663\) 0 0
\(664\) −700.000 −1.05422
\(665\) 441.138 + 147.046i 0.663365 + 0.221122i
\(666\) 0 0
\(667\) 1050.00i 1.57421i
\(668\) −1745.58 −2.61314
\(669\) 0 0
\(670\) 315.000 + 105.000i 0.470149 + 0.156716i
\(671\) 9.48683i 0.0141384i
\(672\) 0 0
\(673\) 1173.00i 1.74294i −0.490447 0.871471i \(-0.663166\pi\)
0.490447 0.871471i \(-0.336834\pi\)
\(674\) 1204.83i 1.78758i
\(675\) 0 0
\(676\) −1632.00 −2.41420
\(677\) −1125.77 −1.66288 −0.831441 0.555613i \(-0.812483\pi\)
−0.831441 + 0.555613i \(0.812483\pi\)
\(678\) 0 0
\(679\) −279.000 −0.410898
\(680\) 126.491 379.473i 0.186016 0.558049i
\(681\) 0 0
\(682\) 480.000i 0.703812i
\(683\) 894.925 1.31028 0.655142 0.755505i \(-0.272609\pi\)
0.655142 + 0.755505i \(0.272609\pi\)
\(684\) 0 0
\(685\) −85.0000 + 255.000i −0.124088 + 0.372263i
\(686\) 844.328i 1.23080i
\(687\) 0 0
\(688\) 192.000i 0.279070i
\(689\) 863.302i 1.25298i
\(690\) 0 0
\(691\) 872.000 1.26194 0.630970 0.775808i \(-0.282657\pi\)
0.630970 + 0.775808i \(0.282657\pi\)
\(692\) −151.789 −0.219349
\(693\) 0 0
\(694\) 370.000 0.533141
\(695\) −1.58114 + 4.74342i −0.00227502 + 0.00682506i
\(696\) 0 0
\(697\) 600.000i 0.860832i
\(698\) 281.443 0.403213
\(699\) 0 0
\(700\) −270.000 + 360.000i −0.385714 + 0.514286i
\(701\) 1280.72i 1.82699i 0.406846 + 0.913497i \(0.366629\pi\)
−0.406846 + 0.913497i \(0.633371\pi\)
\(702\) 0 0
\(703\) 837.000i 1.19061i
\(704\) 986.631i 1.40146i
\(705\) 0 0
\(706\) 1840.00 2.60623
\(707\) −227.684 −0.322042
\(708\) 0 0
\(709\) −481.000 −0.678420 −0.339210 0.940711i \(-0.610160\pi\)
−0.339210 + 0.940711i \(0.610160\pi\)
\(710\) −426.907 142.302i −0.601278 0.200426i
\(711\) 0 0
\(712\) 720.000i 1.01124i
\(713\) −354.175 −0.496739
\(714\) 0 0
\(715\) −315.000 + 945.000i −0.440559 + 1.32168i
\(716\) 1195.34i 1.66947i
\(717\) 0 0
\(718\) 270.000i 0.376045i
\(719\) 939.196i 1.30625i −0.757248 0.653127i \(-0.773457\pi\)
0.757248 0.653127i \(-0.226543\pi\)
\(720\) 0 0
\(721\) 441.000 0.611650
\(722\) 1897.37 2.62793
\(723\) 0 0
\(724\) −618.000 −0.853591
\(725\) −711.512 + 948.683i −0.981397 + 1.30853i
\(726\) 0 0
\(727\) 768.000i 1.05640i −0.849121 0.528198i \(-0.822868\pi\)
0.849121 0.528198i \(-0.177132\pi\)
\(728\) 398.447 0.547317
\(729\) 0 0
\(730\) 405.000 + 135.000i 0.554795 + 0.184932i
\(731\) 607.157i 0.830585i
\(732\) 0 0
\(733\) 1104.00i 1.50614i −0.657941 0.753070i \(-0.728572\pi\)
0.657941 0.753070i \(-0.271428\pi\)
\(734\) 161.276i 0.219722i
\(735\) 0 0
\(736\) −840.000 −1.14130
\(737\) −199.223 −0.270317
\(738\) 0 0
\(739\) 392.000 0.530447 0.265223 0.964187i \(-0.414554\pi\)
0.265223 + 0.964187i \(0.414554\pi\)
\(740\) 768.433 + 256.144i 1.03842 + 0.346141i
\(741\) 0 0
\(742\) 390.000i 0.525606i
\(743\) 999.280 1.34493 0.672463 0.740131i \(-0.265236\pi\)
0.672463 + 0.740131i \(0.265236\pi\)
\(744\) 0 0
\(745\) 360.000 + 120.000i 0.483221 + 0.161074i
\(746\) 749.460i 1.00464i
\(747\) 0 0
\(748\) 720.000i 0.962567i
\(749\) 66.4078i 0.0886620i
\(750\) 0 0
\(751\) −241.000 −0.320905 −0.160453 0.987044i \(-0.551295\pi\)
−0.160453 + 0.987044i \(0.551295\pi\)
\(752\) −50.5964 −0.0672825
\(753\) 0 0
\(754\) 3150.00 4.17772
\(755\) −49.0153 + 147.046i −0.0649209 + 0.194763i
\(756\) 0 0
\(757\) 27.0000i 0.0356671i 0.999841 + 0.0178336i \(0.00567690\pi\)
−0.999841 + 0.0178336i \(0.994323\pi\)
\(758\) −325.715 −0.429703
\(759\) 0 0
\(760\) −310.000 + 930.000i −0.407895 + 1.22368i
\(761\) 692.539i 0.910038i −0.890482 0.455019i \(-0.849632\pi\)
0.890482 0.455019i \(-0.150368\pi\)
\(762\) 0 0
\(763\) 312.000i 0.408912i
\(764\) 1593.79i 2.08611i
\(765\) 0 0
\(766\) 160.000 0.208877
\(767\) 796.894 1.03898
\(768\) 0 0
\(769\) 1127.00 1.46554 0.732770 0.680477i \(-0.238227\pi\)
0.732770 + 0.680477i \(0.238227\pi\)
\(770\) 142.302 426.907i 0.184808 0.554425i
\(771\) 0 0
\(772\) 1278.00i 1.65544i
\(773\) −243.495 −0.315000 −0.157500 0.987519i \(-0.550344\pi\)
−0.157500 + 0.987519i \(0.550344\pi\)
\(774\) 0 0
\(775\) 320.000 + 240.000i 0.412903 + 0.309677i
\(776\) 588.184i 0.757969i
\(777\) 0 0
\(778\) 840.000i 1.07969i
\(779\) 1470.46i 1.88762i
\(780\) 0 0
\(781\) 270.000 0.345711
\(782\) 885.438 1.13227
\(783\) 0 0
\(784\) −160.000 −0.204082
\(785\) 483.828 + 161.276i 0.616342 + 0.205447i
\(786\) 0 0
\(787\) 573.000i 0.728081i −0.931383 0.364041i \(-0.881397\pi\)
0.931383 0.364041i \(-0.118603\pi\)
\(788\) 1442.00 1.82995
\(789\) 0 0
\(790\) −5.00000 + 15.0000i −0.00632911 + 0.0189873i
\(791\) 521.776i 0.659641i
\(792\) 0 0
\(793\) 21.0000i 0.0264817i
\(794\) 227.684i 0.286756i
\(795\) 0 0
\(796\) 282.000 0.354271
\(797\) −632.456 −0.793545 −0.396773 0.917917i \(-0.629870\pi\)
−0.396773 + 0.917917i \(0.629870\pi\)
\(798\) 0 0
\(799\) 160.000 0.200250
\(800\) 758.947 + 569.210i 0.948683 + 0.711512i
\(801\) 0 0
\(802\) 330.000i 0.411471i
\(803\) −256.144 −0.318984
\(804\) 0 0
\(805\) −315.000 105.000i −0.391304 0.130435i
\(806\) 1062.53i 1.31827i
\(807\) 0 0
\(808\) 480.000i 0.594059i
\(809\) 1138.42i 1.40719i −0.710599 0.703597i \(-0.751576\pi\)
0.710599 0.703597i \(-0.248424\pi\)
\(810\) 0 0
\(811\) −376.000 −0.463625 −0.231813 0.972760i \(-0.574466\pi\)
−0.231813 + 0.972760i \(0.574466\pi\)
\(812\) −853.815 −1.05150
\(813\) 0 0
\(814\) −810.000 −0.995086
\(815\) 811.124 + 270.375i 0.995244 + 0.331748i
\(816\) 0 0
\(817\) 1488.00i 1.82130i
\(818\) 433.232 0.529624
\(819\) 0 0
\(820\) 1350.00 + 450.000i 1.64634 + 0.548780i
\(821\) 37.9473i 0.0462209i 0.999733 + 0.0231104i \(0.00735693\pi\)
−0.999733 + 0.0231104i \(0.992643\pi\)
\(822\) 0 0
\(823\) 339.000i 0.411908i −0.978562 0.205954i \(-0.933970\pi\)
0.978562 0.205954i \(-0.0660297\pi\)
\(824\) 929.710i 1.12829i
\(825\) 0 0
\(826\) −360.000 −0.435835
\(827\) −442.719 −0.535331 −0.267666 0.963512i \(-0.586252\pi\)
−0.267666 + 0.963512i \(0.586252\pi\)
\(828\) 0 0
\(829\) −961.000 −1.15923 −0.579614 0.814891i \(-0.696797\pi\)
−0.579614 + 0.814891i \(0.696797\pi\)
\(830\) −553.399 + 1660.20i −0.666745 + 2.00024i
\(831\) 0 0
\(832\) 2184.00i 2.62500i
\(833\) 505.964 0.607400
\(834\) 0 0
\(835\) −460.000 + 1380.00i −0.550898 + 1.65269i
\(836\) 1764.55i 2.11071i
\(837\) 0 0
\(838\) 120.000i 0.143198i
\(839\) 1062.53i 1.26642i 0.773981 + 0.633209i \(0.218263\pi\)
−0.773981 + 0.633209i \(0.781737\pi\)
\(840\) 0 0
\(841\) −1409.00 −1.67539
\(842\) −1995.40 −2.36983
\(843\) 0 0
\(844\) −1338.00 −1.58531
\(845\) −430.070 + 1290.21i −0.508958 + 1.52687i
\(846\) 0 0
\(847\) 93.0000i 0.109799i
\(848\) −164.438 −0.193913
\(849\) 0 0
\(850\) −800.000 600.000i −0.941176 0.705882i
\(851\) 597.670i 0.702315i
\(852\) 0 0
\(853\) 1221.00i 1.43142i 0.698398 + 0.715709i \(0.253896\pi\)
−0.698398 + 0.715709i \(0.746104\pi\)
\(854\) 9.48683i 0.0111087i
\(855\) 0 0
\(856\) 140.000 0.163551
\(857\) 572.372 0.667879 0.333939 0.942595i \(-0.391622\pi\)
0.333939 + 0.942595i \(0.391622\pi\)
\(858\) 0 0
\(859\) 119.000 0.138533 0.0692666 0.997598i \(-0.477934\pi\)
0.0692666 + 0.997598i \(0.477934\pi\)
\(860\) −1366.10 455.368i −1.58849 0.529498i
\(861\) 0 0
\(862\) 1710.00i 1.98376i
\(863\) −442.719 −0.513000 −0.256500 0.966544i \(-0.582569\pi\)
−0.256500 + 0.966544i \(0.582569\pi\)
\(864\) 0 0
\(865\) −40.0000 + 120.000i −0.0462428 + 0.138728i
\(866\) 910.736i 1.05166i
\(867\) 0 0
\(868\) 288.000i 0.331797i
\(869\) 9.48683i 0.0109170i
\(870\) 0 0
\(871\) −441.000 −0.506315
\(872\) 657.754 0.754305
\(873\) 0 0
\(874\) −2170.00 −2.48284
\(875\) 213.454 + 308.322i 0.243947 + 0.352368i
\(876\) 0 0
\(877\) 123.000i 0.140251i −0.997538 0.0701254i \(-0.977660\pi\)
0.997538 0.0701254i \(-0.0223400\pi\)
\(878\) −2706.91 −3.08304
\(879\) 0 0
\(880\) −180.000 60.0000i −0.204545 0.0681818i
\(881\) 996.117i 1.13067i −0.824862 0.565333i \(-0.808748\pi\)
0.824862 0.565333i \(-0.191252\pi\)
\(882\) 0 0
\(883\) 387.000i 0.438279i 0.975694 + 0.219139i \(0.0703249\pi\)
−0.975694 + 0.219139i \(0.929675\pi\)
\(884\) 1593.79i 1.80293i
\(885\) 0 0
\(886\) 1360.00 1.53499
\(887\) 961.332 1.08380 0.541901 0.840442i \(-0.317705\pi\)
0.541901 + 0.840442i \(0.317705\pi\)
\(888\) 0 0
\(889\) −432.000 −0.485939
\(890\) −1707.63 569.210i −1.91869 0.639562i
\(891\) 0 0
\(892\) 1872.00i 2.09865i
\(893\) −392.122 −0.439107
\(894\) 0 0
\(895\) −945.000 315.000i −1.05587 0.351955i
\(896\) 531.263i 0.592927i
\(897\) 0 0
\(898\) 2520.00i 2.80624i
\(899\) 758.947i 0.844212i
\(900\) 0 0
\(901\) 520.000 0.577137
\(902\) −1423.02 −1.57763
\(903\) 0 0
\(904\) 1100.00 1.21681
\(905\) −162.857 + 488.572i −0.179953 + 0.539858i
\(906\) 0 0
\(907\) 93.0000i 0.102536i −0.998685 0.0512679i \(-0.983674\pi\)
0.998685 0.0512679i \(-0.0163262\pi\)
\(908\) −2030.18 −2.23588
\(909\) 0 0
\(910\) 315.000 945.000i 0.346154 1.03846i
\(911\) 531.263i 0.583164i −0.956546 0.291582i \(-0.905818\pi\)
0.956546 0.291582i \(-0.0941817\pi\)
\(912\) 0 0
\(913\) 1050.00i 1.15005i
\(914\) 303.579i 0.332143i
\(915\) 0 0
\(916\) −96.0000 −0.104803
\(917\) 227.684 0.248292
\(918\) 0 0
\(919\) −376.000 −0.409140 −0.204570 0.978852i \(-0.565580\pi\)
−0.204570 + 0.978852i \(0.565580\pi\)
\(920\) 221.359 664.078i 0.240608 0.721824i
\(921\) 0 0
\(922\) 1320.00i 1.43167i
\(923\) 597.670 0.647530
\(924\) 0 0
\(925\) 405.000 540.000i 0.437838 0.583784i
\(926\) 749.460i 0.809352i
\(927\) 0 0
\(928\) 1800.00i 1.93966i
\(929\) 1413.54i 1.52157i −0.649004 0.760785i \(-0.724814\pi\)
0.649004 0.760785i \(-0.275186\pi\)
\(930\) 0 0
\(931\) −1240.00 −1.33190
\(932\) 303.579 0.325728
\(933\) 0 0
\(934\) 1480.00 1.58458
\(935\) 569.210 + 189.737i 0.608781 + 0.202927i
\(936\) 0 0
\(937\) 243.000i 0.259338i −0.991557 0.129669i \(-0.958608\pi\)
0.991557 0.129669i \(-0.0413915\pi\)
\(938\) 199.223 0.212392
\(939\) 0 0
\(940\) 120.000 360.000i 0.127660 0.382979i
\(941\) 388.960i 0.413348i 0.978410 + 0.206674i \(0.0662639\pi\)
−0.978410 + 0.206674i \(0.933736\pi\)
\(942\) 0 0
\(943\) 1050.00i 1.11347i
\(944\) 151.789i 0.160794i
\(945\) 0 0
\(946\) 1440.00 1.52220
\(947\) 316.228 0.333926 0.166963 0.985963i \(-0.446604\pi\)
0.166963 + 0.985963i \(0.446604\pi\)
\(948\) 0 0
\(949\) −567.000 −0.597471
\(950\) 1960.61 + 1470.46i 2.06380 + 1.54785i
\(951\) 0 0
\(952\) 240.000i 0.252101i
\(953\) 1530.54 1.60603 0.803013 0.595962i \(-0.203229\pi\)
0.803013 + 0.595962i \(0.203229\pi\)
\(954\) 0 0
\(955\) 1260.00 + 420.000i 1.31937 + 0.439791i
\(956\) 626.131i 0.654949i
\(957\) 0 0
\(958\) 1290.00i 1.34656i
\(959\) 161.276i 0.168171i
\(960\) 0 0
\(961\) −705.000 −0.733611
\(962\) −1793.01 −1.86384
\(963\) 0 0
\(964\) 1722.00 1.78631
\(965\) −1010.35 336.783i −1.04699 0.348997i
\(966\) 0 0
\(967\) 237.000i 0.245088i 0.992463 + 0.122544i \(0.0391052\pi\)
−0.992463 + 0.122544i \(0.960895\pi\)
\(968\) 196.061 0.202543
\(969\) 0 0
\(970\) −1395.00 465.000i −1.43814 0.479381i
\(971\) 569.210i 0.586210i −0.956080 0.293105i \(-0.905311\pi\)
0.956080 0.293105i \(-0.0946886\pi\)
\(972\) 0 0
\(973\) 3.00000i 0.00308325i
\(974\) 825.354i 0.847387i
\(975\) 0 0
\(976\) 4.00000 0.00409836
\(977\) 515.451 0.527586 0.263793 0.964579i \(-0.415026\pi\)
0.263793 + 0.964579i \(0.415026\pi\)
\(978\) 0 0
\(979\) 1080.00 1.10317
\(980\) 379.473 1138.42i 0.387218 1.16165i
\(981\) 0 0
\(982\) 2370.00i 2.41344i
\(983\) 629.293 0.640176 0.320088 0.947388i \(-0.396287\pi\)
0.320088 + 0.947388i \(0.396287\pi\)
\(984\) 0 0
\(985\) 380.000 1140.00i 0.385787 1.15736i
\(986\) 1897.37i 1.92431i
\(987\) 0 0
\(988\) 3906.00i 3.95344i
\(989\) 1062.53i 1.07434i
\(990\) 0 0
\(991\) −751.000 −0.757820 −0.378910 0.925433i \(-0.623701\pi\)
−0.378910 + 0.925433i \(0.623701\pi\)
\(992\) 607.157 0.612054
\(993\) 0 0
\(994\) −270.000 −0.271630
\(995\) 74.3135 222.941i 0.0746870 0.224061i
\(996\) 0 0
\(997\) 1536.00i 1.54062i 0.637668 + 0.770311i \(0.279899\pi\)
−0.637668 + 0.770311i \(0.720101\pi\)
\(998\) −335.201 −0.335873
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.d.g.134.3 yes 4
3.2 odd 2 inner 135.3.d.g.134.2 yes 4
4.3 odd 2 2160.3.c.k.1889.3 4
5.2 odd 4 675.3.c.g.26.2 2
5.3 odd 4 675.3.c.f.26.1 2
5.4 even 2 inner 135.3.d.g.134.1 4
9.2 odd 6 405.3.h.i.134.3 8
9.4 even 3 405.3.h.i.269.1 8
9.5 odd 6 405.3.h.i.269.4 8
9.7 even 3 405.3.h.i.134.2 8
12.11 even 2 2160.3.c.k.1889.2 4
15.2 even 4 675.3.c.g.26.1 2
15.8 even 4 675.3.c.f.26.2 2
15.14 odd 2 inner 135.3.d.g.134.4 yes 4
20.19 odd 2 2160.3.c.k.1889.1 4
45.4 even 6 405.3.h.i.269.3 8
45.14 odd 6 405.3.h.i.269.2 8
45.29 odd 6 405.3.h.i.134.1 8
45.34 even 6 405.3.h.i.134.4 8
60.59 even 2 2160.3.c.k.1889.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.d.g.134.1 4 5.4 even 2 inner
135.3.d.g.134.2 yes 4 3.2 odd 2 inner
135.3.d.g.134.3 yes 4 1.1 even 1 trivial
135.3.d.g.134.4 yes 4 15.14 odd 2 inner
405.3.h.i.134.1 8 45.29 odd 6
405.3.h.i.134.2 8 9.7 even 3
405.3.h.i.134.3 8 9.2 odd 6
405.3.h.i.134.4 8 45.34 even 6
405.3.h.i.269.1 8 9.4 even 3
405.3.h.i.269.2 8 45.14 odd 6
405.3.h.i.269.3 8 45.4 even 6
405.3.h.i.269.4 8 9.5 odd 6
675.3.c.f.26.1 2 5.3 odd 4
675.3.c.f.26.2 2 15.8 even 4
675.3.c.g.26.1 2 15.2 even 4
675.3.c.g.26.2 2 5.2 odd 4
2160.3.c.k.1889.1 4 20.19 odd 2
2160.3.c.k.1889.2 4 12.11 even 2
2160.3.c.k.1889.3 4 4.3 odd 2
2160.3.c.k.1889.4 4 60.59 even 2