Properties

Label 405.3.h.i.269.3
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(134,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.3
Root \(-2.15988 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.i.134.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58114 - 2.73861i) q^{2} +(-3.00000 - 5.19615i) q^{4} +(-3.31735 + 3.74101i) q^{5} +(-2.59808 - 1.50000i) q^{7} -6.32456 q^{8} +(5.00000 + 15.0000i) q^{10} +(-8.21584 - 4.74342i) q^{11} +(-18.1865 + 10.5000i) q^{13} +(-8.21584 + 4.74342i) q^{14} +(2.00000 - 3.46410i) q^{16} -12.6491 q^{17} -31.0000 q^{19} +(29.3909 + 6.01441i) q^{20} +(-25.9808 + 15.0000i) q^{22} +(11.0680 + 19.1703i) q^{23} +(-2.99038 - 24.8205i) q^{25} +66.4078i q^{26} +18.0000i q^{28} +(41.0792 + 23.7171i) q^{29} +(8.00000 + 13.8564i) q^{31} +(-18.9737 - 32.8634i) q^{32} +(-20.0000 + 34.6410i) q^{34} +(14.2302 - 4.74342i) q^{35} -27.0000i q^{37} +(-49.0153 + 84.8970i) q^{38} +(20.9808 - 23.6603i) q^{40} +(41.0792 - 23.7171i) q^{41} +(-41.5692 - 24.0000i) q^{43} +56.9210i q^{44} +70.0000 q^{46} +(6.32456 - 10.9545i) q^{47} +(-20.0000 - 34.6410i) q^{49} +(-72.7020 - 31.0552i) q^{50} +(109.119 + 63.0000i) q^{52} -41.1096 q^{53} +(45.0000 - 15.0000i) q^{55} +(16.4317 + 9.48683i) q^{56} +(129.904 - 75.0000i) q^{58} +(-32.8634 + 18.9737i) q^{59} +(0.500000 - 0.866025i) q^{61} +50.5964 q^{62} -104.000 q^{64} +(21.0504 - 102.868i) q^{65} +(-18.1865 + 10.5000i) q^{67} +(37.9473 + 65.7267i) q^{68} +(9.50962 - 46.4711i) q^{70} -28.4605i q^{71} -27.0000i q^{73} +(-73.9425 - 42.6907i) q^{74} +(93.0000 + 161.081i) q^{76} +(14.2302 + 24.6475i) q^{77} +(0.500000 - 0.866025i) q^{79} +(6.32456 + 18.9737i) q^{80} -150.000i q^{82} +(-55.3399 + 95.8514i) q^{83} +(41.9615 - 47.3205i) q^{85} +(-131.453 + 75.8947i) q^{86} +(51.9615 + 30.0000i) q^{88} -113.842i q^{89} +63.0000 q^{91} +(66.4078 - 115.022i) q^{92} +(-20.0000 - 34.6410i) q^{94} +(102.838 - 115.971i) q^{95} +(-80.5404 - 46.5000i) q^{97} -126.491 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{4} + 40 q^{10} + 16 q^{16} - 248 q^{19} + 80 q^{25} + 64 q^{31} - 160 q^{34} - 40 q^{40} + 560 q^{46} - 160 q^{49} + 360 q^{55} + 4 q^{61} - 832 q^{64} + 180 q^{70} + 744 q^{76} + 4 q^{79} - 80 q^{85}+ \cdots - 160 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58114 2.73861i 0.790569 1.36931i −0.135045 0.990839i \(-0.543118\pi\)
0.925615 0.378467i \(-0.123549\pi\)
\(3\) 0 0
\(4\) −3.00000 5.19615i −0.750000 1.29904i
\(5\) −3.31735 + 3.74101i −0.663470 + 0.748203i
\(6\) 0 0
\(7\) −2.59808 1.50000i −0.371154 0.214286i 0.302809 0.953051i \(-0.402076\pi\)
−0.673962 + 0.738766i \(0.735409\pi\)
\(8\) −6.32456 −0.790569
\(9\) 0 0
\(10\) 5.00000 + 15.0000i 0.500000 + 1.50000i
\(11\) −8.21584 4.74342i −0.746894 0.431220i 0.0776763 0.996979i \(-0.475250\pi\)
−0.824571 + 0.565759i \(0.808583\pi\)
\(12\) 0 0
\(13\) −18.1865 + 10.5000i −1.39896 + 0.807692i −0.994284 0.106766i \(-0.965950\pi\)
−0.404680 + 0.914458i \(0.632617\pi\)
\(14\) −8.21584 + 4.74342i −0.586846 + 0.338815i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −12.6491 −0.744065 −0.372033 0.928220i \(-0.621339\pi\)
−0.372033 + 0.928220i \(0.621339\pi\)
\(18\) 0 0
\(19\) −31.0000 −1.63158 −0.815789 0.578349i \(-0.803697\pi\)
−0.815789 + 0.578349i \(0.803697\pi\)
\(20\) 29.3909 + 6.01441i 1.46955 + 0.300721i
\(21\) 0 0
\(22\) −25.9808 + 15.0000i −1.18094 + 0.681818i
\(23\) 11.0680 + 19.1703i 0.481216 + 0.833491i 0.999768 0.0215556i \(-0.00686188\pi\)
−0.518551 + 0.855046i \(0.673529\pi\)
\(24\) 0 0
\(25\) −2.99038 24.8205i −0.119615 0.992820i
\(26\) 66.4078i 2.55415i
\(27\) 0 0
\(28\) 18.0000i 0.642857i
\(29\) 41.0792 + 23.7171i 1.41652 + 0.817830i 0.995992 0.0894471i \(-0.0285100\pi\)
0.420532 + 0.907278i \(0.361843\pi\)
\(30\) 0 0
\(31\) 8.00000 + 13.8564i 0.258065 + 0.446981i 0.965723 0.259573i \(-0.0835820\pi\)
−0.707659 + 0.706554i \(0.750249\pi\)
\(32\) −18.9737 32.8634i −0.592927 1.02698i
\(33\) 0 0
\(34\) −20.0000 + 34.6410i −0.588235 + 1.01885i
\(35\) 14.2302 4.74342i 0.406579 0.135526i
\(36\) 0 0
\(37\) 27.0000i 0.729730i −0.931060 0.364865i \(-0.881115\pi\)
0.931060 0.364865i \(-0.118885\pi\)
\(38\) −49.0153 + 84.8970i −1.28988 + 2.23413i
\(39\) 0 0
\(40\) 20.9808 23.6603i 0.524519 0.591506i
\(41\) 41.0792 23.7171i 1.00193 0.578465i 0.0931123 0.995656i \(-0.470318\pi\)
0.908819 + 0.417190i \(0.136985\pi\)
\(42\) 0 0
\(43\) −41.5692 24.0000i −0.966726 0.558140i −0.0684895 0.997652i \(-0.521818\pi\)
−0.898237 + 0.439512i \(0.855151\pi\)
\(44\) 56.9210i 1.29366i
\(45\) 0 0
\(46\) 70.0000 1.52174
\(47\) 6.32456 10.9545i 0.134565 0.233073i −0.790866 0.611989i \(-0.790370\pi\)
0.925431 + 0.378916i \(0.123703\pi\)
\(48\) 0 0
\(49\) −20.0000 34.6410i −0.408163 0.706960i
\(50\) −72.7020 31.0552i −1.45404 0.621103i
\(51\) 0 0
\(52\) 109.119 + 63.0000i 2.09845 + 1.21154i
\(53\) −41.1096 −0.775653 −0.387827 0.921732i \(-0.626774\pi\)
−0.387827 + 0.921732i \(0.626774\pi\)
\(54\) 0 0
\(55\) 45.0000 15.0000i 0.818182 0.272727i
\(56\) 16.4317 + 9.48683i 0.293423 + 0.169408i
\(57\) 0 0
\(58\) 129.904 75.0000i 2.23972 1.29310i
\(59\) −32.8634 + 18.9737i −0.557006 + 0.321588i −0.751943 0.659228i \(-0.770883\pi\)
0.194937 + 0.980816i \(0.437550\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.00819672 0.0141971i −0.861898 0.507082i \(-0.830724\pi\)
0.870095 + 0.492885i \(0.164058\pi\)
\(62\) 50.5964 0.816072
\(63\) 0 0
\(64\) −104.000 −1.62500
\(65\) 21.0504 102.868i 0.323853 1.58259i
\(66\) 0 0
\(67\) −18.1865 + 10.5000i −0.271441 + 0.156716i −0.629542 0.776966i \(-0.716758\pi\)
0.358101 + 0.933683i \(0.383424\pi\)
\(68\) 37.9473 + 65.7267i 0.558049 + 0.966569i
\(69\) 0 0
\(70\) 9.50962 46.4711i 0.135852 0.663873i
\(71\) 28.4605i 0.400852i −0.979709 0.200426i \(-0.935767\pi\)
0.979709 0.200426i \(-0.0642326\pi\)
\(72\) 0 0
\(73\) 27.0000i 0.369863i −0.982751 0.184932i \(-0.940794\pi\)
0.982751 0.184932i \(-0.0592063\pi\)
\(74\) −73.9425 42.6907i −0.999224 0.576902i
\(75\) 0 0
\(76\) 93.0000 + 161.081i 1.22368 + 2.11948i
\(77\) 14.2302 + 24.6475i 0.184808 + 0.320098i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.00632911 0.0109623i −0.862844 0.505471i \(-0.831319\pi\)
0.869173 + 0.494509i \(0.164652\pi\)
\(80\) 6.32456 + 18.9737i 0.0790569 + 0.237171i
\(81\) 0 0
\(82\) 150.000i 1.82927i
\(83\) −55.3399 + 95.8514i −0.666745 + 1.15484i 0.312064 + 0.950061i \(0.398980\pi\)
−0.978809 + 0.204776i \(0.934354\pi\)
\(84\) 0 0
\(85\) 41.9615 47.3205i 0.493665 0.556712i
\(86\) −131.453 + 75.8947i −1.52853 + 0.882496i
\(87\) 0 0
\(88\) 51.9615 + 30.0000i 0.590472 + 0.340909i
\(89\) 113.842i 1.27912i −0.768740 0.639562i \(-0.779116\pi\)
0.768740 0.639562i \(-0.220884\pi\)
\(90\) 0 0
\(91\) 63.0000 0.692308
\(92\) 66.4078 115.022i 0.721824 1.25024i
\(93\) 0 0
\(94\) −20.0000 34.6410i −0.212766 0.368521i
\(95\) 102.838 115.971i 1.08250 1.22075i
\(96\) 0 0
\(97\) −80.5404 46.5000i −0.830313 0.479381i 0.0236468 0.999720i \(-0.492472\pi\)
−0.853960 + 0.520339i \(0.825806\pi\)
\(98\) −126.491 −1.29073
\(99\) 0 0
\(100\) −120.000 + 90.0000i −1.20000 + 0.900000i
\(101\) 65.7267 + 37.9473i 0.650759 + 0.375716i 0.788747 0.614718i \(-0.210730\pi\)
−0.137988 + 0.990434i \(0.544063\pi\)
\(102\) 0 0
\(103\) −127.306 + 73.5000i −1.23598 + 0.713592i −0.968270 0.249908i \(-0.919600\pi\)
−0.267708 + 0.963500i \(0.586266\pi\)
\(104\) 115.022 66.4078i 1.10598 0.638537i
\(105\) 0 0
\(106\) −65.0000 + 112.583i −0.613208 + 1.06211i
\(107\) −22.1359 −0.206878 −0.103439 0.994636i \(-0.532985\pi\)
−0.103439 + 0.994636i \(0.532985\pi\)
\(108\) 0 0
\(109\) 104.000 0.954128 0.477064 0.878868i \(-0.341701\pi\)
0.477064 + 0.878868i \(0.341701\pi\)
\(110\) 30.0721 146.955i 0.273382 1.33595i
\(111\) 0 0
\(112\) −10.3923 + 6.00000i −0.0927884 + 0.0535714i
\(113\) 86.9626 + 150.624i 0.769581 + 1.33295i 0.937790 + 0.347202i \(0.112868\pi\)
−0.168210 + 0.985751i \(0.553799\pi\)
\(114\) 0 0
\(115\) −108.433 22.1891i −0.942893 0.192949i
\(116\) 284.605i 2.45349i
\(117\) 0 0
\(118\) 120.000i 1.01695i
\(119\) 32.8634 + 18.9737i 0.276163 + 0.159443i
\(120\) 0 0
\(121\) −15.5000 26.8468i −0.128099 0.221874i
\(122\) −1.58114 2.73861i −0.0129602 0.0224476i
\(123\) 0 0
\(124\) 48.0000 83.1384i 0.387097 0.670471i
\(125\) 102.774 + 71.1512i 0.822192 + 0.569210i
\(126\) 0 0
\(127\) 144.000i 1.13386i 0.823767 + 0.566929i \(0.191869\pi\)
−0.823767 + 0.566929i \(0.808131\pi\)
\(128\) −88.5438 + 153.362i −0.691748 + 1.19814i
\(129\) 0 0
\(130\) −248.433 220.298i −1.91102 1.69460i
\(131\) 65.7267 37.9473i 0.501731 0.289674i −0.227697 0.973732i \(-0.573120\pi\)
0.729428 + 0.684058i \(0.239786\pi\)
\(132\) 0 0
\(133\) 80.5404 + 46.5000i 0.605567 + 0.349624i
\(134\) 66.4078i 0.495581i
\(135\) 0 0
\(136\) 80.0000 0.588235
\(137\) −26.8794 + 46.5564i −0.196200 + 0.339828i −0.947293 0.320368i \(-0.896193\pi\)
0.751093 + 0.660196i \(0.229527\pi\)
\(138\) 0 0
\(139\) 0.500000 + 0.866025i 0.00359712 + 0.00623040i 0.867818 0.496882i \(-0.165522\pi\)
−0.864221 + 0.503112i \(0.832188\pi\)
\(140\) −67.3383 59.7123i −0.480988 0.426516i
\(141\) 0 0
\(142\) −77.9423 45.0000i −0.548889 0.316901i
\(143\) 199.223 1.39317
\(144\) 0 0
\(145\) −225.000 + 75.0000i −1.55172 + 0.517241i
\(146\) −73.9425 42.6907i −0.506456 0.292402i
\(147\) 0 0
\(148\) −140.296 + 81.0000i −0.947947 + 0.547297i
\(149\) 65.7267 37.9473i 0.441119 0.254680i −0.262953 0.964809i \(-0.584697\pi\)
0.704072 + 0.710128i \(0.251363\pi\)
\(150\) 0 0
\(151\) 15.5000 26.8468i 0.102649 0.177793i −0.810126 0.586255i \(-0.800601\pi\)
0.912775 + 0.408462i \(0.133935\pi\)
\(152\) 196.061 1.28988
\(153\) 0 0
\(154\) 90.0000 0.584416
\(155\) −78.3758 16.0384i −0.505650 0.103474i
\(156\) 0 0
\(157\) −88.3346 + 51.0000i −0.562641 + 0.324841i −0.754205 0.656639i \(-0.771977\pi\)
0.191564 + 0.981480i \(0.438644\pi\)
\(158\) −1.58114 2.73861i −0.0100072 0.0173330i
\(159\) 0 0
\(160\) 185.885 + 38.0385i 1.16178 + 0.237740i
\(161\) 66.4078i 0.412471i
\(162\) 0 0
\(163\) 171.000i 1.04908i −0.851386 0.524540i \(-0.824237\pi\)
0.851386 0.524540i \(-0.175763\pi\)
\(164\) −246.475 142.302i −1.50290 0.867698i
\(165\) 0 0
\(166\) 175.000 + 303.109i 1.05422 + 1.82596i
\(167\) −145.465 251.952i −0.871047 1.50870i −0.860915 0.508748i \(-0.830108\pi\)
−0.0101312 0.999949i \(-0.503225\pi\)
\(168\) 0 0
\(169\) 136.000 235.559i 0.804734 1.39384i
\(170\) −63.2456 189.737i −0.372033 1.11610i
\(171\) 0 0
\(172\) 288.000i 1.67442i
\(173\) −12.6491 + 21.9089i −0.0731162 + 0.126641i −0.900266 0.435341i \(-0.856628\pi\)
0.827149 + 0.561982i \(0.189961\pi\)
\(174\) 0 0
\(175\) −29.4615 + 68.9711i −0.168352 + 0.394121i
\(176\) −32.8634 + 18.9737i −0.186724 + 0.107805i
\(177\) 0 0
\(178\) −311.769 180.000i −1.75151 1.01124i
\(179\) 199.223i 1.11298i −0.830854 0.556490i \(-0.812148\pi\)
0.830854 0.556490i \(-0.187852\pi\)
\(180\) 0 0
\(181\) −103.000 −0.569061 −0.284530 0.958667i \(-0.591838\pi\)
−0.284530 + 0.958667i \(0.591838\pi\)
\(182\) 99.6117 172.533i 0.547317 0.947981i
\(183\) 0 0
\(184\) −70.0000 121.244i −0.380435 0.658932i
\(185\) 101.007 + 89.5684i 0.545986 + 0.484154i
\(186\) 0 0
\(187\) 103.923 + 60.0000i 0.555738 + 0.320856i
\(188\) −75.8947 −0.403695
\(189\) 0 0
\(190\) −155.000 465.000i −0.815789 2.44737i
\(191\) −230.043 132.816i −1.20442 0.695370i −0.242882 0.970056i \(-0.578093\pi\)
−0.961534 + 0.274686i \(0.911426\pi\)
\(192\) 0 0
\(193\) 184.463 106.500i 0.955769 0.551813i 0.0609007 0.998144i \(-0.480603\pi\)
0.894868 + 0.446330i \(0.147269\pi\)
\(194\) −254.691 + 147.046i −1.31284 + 0.757969i
\(195\) 0 0
\(196\) −120.000 + 207.846i −0.612245 + 1.06044i
\(197\) −240.333 −1.21996 −0.609982 0.792415i \(-0.708824\pi\)
−0.609982 + 0.792415i \(0.708824\pi\)
\(198\) 0 0
\(199\) 47.0000 0.236181 0.118090 0.993003i \(-0.462323\pi\)
0.118090 + 0.993003i \(0.462323\pi\)
\(200\) 18.9128 + 156.979i 0.0945642 + 0.784893i
\(201\) 0 0
\(202\) 207.846 120.000i 1.02894 0.594059i
\(203\) −71.1512 123.238i −0.350499 0.607082i
\(204\) 0 0
\(205\) −47.5481 + 232.356i −0.231942 + 1.13344i
\(206\) 464.855i 2.25658i
\(207\) 0 0
\(208\) 84.0000i 0.403846i
\(209\) 254.691 + 147.046i 1.21862 + 0.703569i
\(210\) 0 0
\(211\) 111.500 + 193.124i 0.528436 + 0.915278i 0.999450 + 0.0331525i \(0.0105547\pi\)
−0.471014 + 0.882126i \(0.656112\pi\)
\(212\) 123.329 + 213.612i 0.581740 + 1.00760i
\(213\) 0 0
\(214\) −35.0000 + 60.6218i −0.163551 + 0.283279i
\(215\) 227.684 75.8947i 1.05900 0.352998i
\(216\) 0 0
\(217\) 48.0000i 0.221198i
\(218\) 164.438 284.816i 0.754305 1.30649i
\(219\) 0 0
\(220\) −212.942 188.827i −0.967919 0.858304i
\(221\) 230.043 132.816i 1.04092 0.600976i
\(222\) 0 0
\(223\) 270.200 + 156.000i 1.21166 + 0.699552i 0.963120 0.269070i \(-0.0867165\pi\)
0.248538 + 0.968622i \(0.420050\pi\)
\(224\) 113.842i 0.508223i
\(225\) 0 0
\(226\) 550.000 2.43363
\(227\) −169.182 + 293.032i −0.745295 + 1.29089i 0.204763 + 0.978812i \(0.434358\pi\)
−0.950057 + 0.312076i \(0.898976\pi\)
\(228\) 0 0
\(229\) 8.00000 + 13.8564i 0.0349345 + 0.0605083i 0.882964 0.469441i \(-0.155544\pi\)
−0.848030 + 0.529949i \(0.822211\pi\)
\(230\) −232.214 + 261.871i −1.00963 + 1.13857i
\(231\) 0 0
\(232\) −259.808 150.000i −1.11986 0.646552i
\(233\) −50.5964 −0.217152 −0.108576 0.994088i \(-0.534629\pi\)
−0.108576 + 0.994088i \(0.534629\pi\)
\(234\) 0 0
\(235\) 20.0000 + 60.0000i 0.0851064 + 0.255319i
\(236\) 197.180 + 113.842i 0.835509 + 0.482381i
\(237\) 0 0
\(238\) 103.923 60.0000i 0.436651 0.252101i
\(239\) 90.3742 52.1776i 0.378135 0.218316i −0.298872 0.954293i \(-0.596610\pi\)
0.677006 + 0.735977i \(0.263277\pi\)
\(240\) 0 0
\(241\) −143.500 + 248.549i −0.595436 + 1.03132i 0.398050 + 0.917364i \(0.369687\pi\)
−0.993485 + 0.113961i \(0.963646\pi\)
\(242\) −98.0306 −0.405085
\(243\) 0 0
\(244\) −6.00000 −0.0245902
\(245\) 195.940 + 40.0961i 0.799753 + 0.163657i
\(246\) 0 0
\(247\) 563.783 325.500i 2.28252 1.31781i
\(248\) −50.5964 87.6356i −0.204018 0.353369i
\(249\) 0 0
\(250\) 357.356 168.958i 1.42942 0.675833i
\(251\) 256.144i 1.02050i 0.860027 + 0.510248i \(0.170446\pi\)
−0.860027 + 0.510248i \(0.829554\pi\)
\(252\) 0 0
\(253\) 210.000i 0.830040i
\(254\) 394.360 + 227.684i 1.55260 + 0.896394i
\(255\) 0 0
\(256\) 72.0000 + 124.708i 0.281250 + 0.487139i
\(257\) 139.140 + 240.998i 0.541402 + 0.937735i 0.998824 + 0.0484855i \(0.0154395\pi\)
−0.457422 + 0.889250i \(0.651227\pi\)
\(258\) 0 0
\(259\) −40.5000 + 70.1481i −0.156371 + 0.270842i
\(260\) −597.670 + 199.223i −2.29873 + 0.766244i
\(261\) 0 0
\(262\) 240.000i 0.916031i
\(263\) 177.088 306.725i 0.673337 1.16625i −0.303615 0.952795i \(-0.598194\pi\)
0.976952 0.213459i \(-0.0684729\pi\)
\(264\) 0 0
\(265\) 136.375 153.792i 0.514622 0.580346i
\(266\) 254.691 147.046i 0.957485 0.552804i
\(267\) 0 0
\(268\) 109.119 + 63.0000i 0.407161 + 0.235075i
\(269\) 113.842i 0.423204i 0.977356 + 0.211602i \(0.0678681\pi\)
−0.977356 + 0.211602i \(0.932132\pi\)
\(270\) 0 0
\(271\) −121.000 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(272\) −25.2982 + 43.8178i −0.0930082 + 0.161095i
\(273\) 0 0
\(274\) 85.0000 + 147.224i 0.310219 + 0.537315i
\(275\) −93.1655 + 218.106i −0.338784 + 0.793112i
\(276\) 0 0
\(277\) −41.5692 24.0000i −0.150069 0.0866426i 0.423085 0.906090i \(-0.360947\pi\)
−0.573154 + 0.819447i \(0.694280\pi\)
\(278\) 3.16228 0.0113751
\(279\) 0 0
\(280\) −90.0000 + 30.0000i −0.321429 + 0.107143i
\(281\) 262.907 + 151.789i 0.935611 + 0.540176i 0.888582 0.458718i \(-0.151691\pi\)
0.0470296 + 0.998893i \(0.485025\pi\)
\(282\) 0 0
\(283\) −166.277 + 96.0000i −0.587551 + 0.339223i −0.764128 0.645064i \(-0.776831\pi\)
0.176578 + 0.984287i \(0.443497\pi\)
\(284\) −147.885 + 85.3815i −0.520722 + 0.300639i
\(285\) 0 0
\(286\) 315.000 545.596i 1.10140 1.90768i
\(287\) −142.302 −0.495828
\(288\) 0 0
\(289\) −129.000 −0.446367
\(290\) −150.360 + 734.773i −0.518484 + 2.53370i
\(291\) 0 0
\(292\) −140.296 + 81.0000i −0.480466 + 0.277397i
\(293\) −102.774 178.010i −0.350765 0.607542i 0.635619 0.772003i \(-0.280745\pi\)
−0.986384 + 0.164461i \(0.947412\pi\)
\(294\) 0 0
\(295\) 38.0385 185.885i 0.128944 0.630117i
\(296\) 170.763i 0.576902i
\(297\) 0 0
\(298\) 240.000i 0.805369i
\(299\) −402.576 232.427i −1.34641 0.777349i
\(300\) 0 0
\(301\) 72.0000 + 124.708i 0.239203 + 0.414311i
\(302\) −49.0153 84.8970i −0.162302 0.281116i
\(303\) 0 0
\(304\) −62.0000 + 107.387i −0.203947 + 0.353247i
\(305\) 1.58114 + 4.74342i 0.00518406 + 0.0155522i
\(306\) 0 0
\(307\) 198.000i 0.644951i 0.946578 + 0.322476i \(0.104515\pi\)
−0.946578 + 0.322476i \(0.895485\pi\)
\(308\) 85.3815 147.885i 0.277213 0.480146i
\(309\) 0 0
\(310\) −167.846 + 189.282i −0.541439 + 0.610587i
\(311\) −427.224 + 246.658i −1.37371 + 0.793111i −0.991393 0.130920i \(-0.958207\pi\)
−0.382316 + 0.924031i \(0.624874\pi\)
\(312\) 0 0
\(313\) 355.936 + 205.500i 1.13718 + 0.656550i 0.945730 0.324953i \(-0.105349\pi\)
0.191447 + 0.981503i \(0.438682\pi\)
\(314\) 322.552i 1.02724i
\(315\) 0 0
\(316\) −6.00000 −0.0189873
\(317\) −126.491 + 219.089i −0.399026 + 0.691133i −0.993606 0.112904i \(-0.963985\pi\)
0.594580 + 0.804036i \(0.297318\pi\)
\(318\) 0 0
\(319\) −225.000 389.711i −0.705329 1.22167i
\(320\) 345.004 389.066i 1.07814 1.21583i
\(321\) 0 0
\(322\) −181.865 105.000i −0.564799 0.326087i
\(323\) 392.122 1.21400
\(324\) 0 0
\(325\) 315.000 + 420.000i 0.969231 + 1.29231i
\(326\) −468.303 270.375i −1.43651 0.829370i
\(327\) 0 0
\(328\) −259.808 + 150.000i −0.792096 + 0.457317i
\(329\) −32.8634 + 18.9737i −0.0998886 + 0.0576707i
\(330\) 0 0
\(331\) −164.500 + 284.922i −0.496979 + 0.860793i −0.999994 0.00348502i \(-0.998891\pi\)
0.503015 + 0.864278i \(0.332224\pi\)
\(332\) 664.078 2.00024
\(333\) 0 0
\(334\) −920.000 −2.75449
\(335\) 21.0504 102.868i 0.0628371 0.307069i
\(336\) 0 0
\(337\) −329.956 + 190.500i −0.979097 + 0.565282i −0.901997 0.431741i \(-0.857899\pi\)
−0.0770996 + 0.997023i \(0.524566\pi\)
\(338\) −430.070 744.903i −1.27240 2.20385i
\(339\) 0 0
\(340\) −371.769 76.0770i −1.09344 0.223756i
\(341\) 151.789i 0.445130i
\(342\) 0 0
\(343\) 267.000i 0.778426i
\(344\) 262.907 + 151.789i 0.764264 + 0.441248i
\(345\) 0 0
\(346\) 40.0000 + 69.2820i 0.115607 + 0.200237i
\(347\) 58.5021 + 101.329i 0.168594 + 0.292013i 0.937926 0.346836i \(-0.112744\pi\)
−0.769332 + 0.638850i \(0.779411\pi\)
\(348\) 0 0
\(349\) −44.5000 + 77.0763i −0.127507 + 0.220849i −0.922710 0.385494i \(-0.874031\pi\)
0.795203 + 0.606343i \(0.207364\pi\)
\(350\) 142.302 + 189.737i 0.406579 + 0.542105i
\(351\) 0 0
\(352\) 360.000i 1.02273i
\(353\) 290.930 503.905i 0.824163 1.42749i −0.0783943 0.996922i \(-0.524979\pi\)
0.902557 0.430570i \(-0.141687\pi\)
\(354\) 0 0
\(355\) 106.471 + 94.4134i 0.299919 + 0.265953i
\(356\) −591.540 + 341.526i −1.66163 + 0.959343i
\(357\) 0 0
\(358\) −545.596 315.000i −1.52401 0.879888i
\(359\) 85.3815i 0.237831i 0.992904 + 0.118916i \(0.0379418\pi\)
−0.992904 + 0.118916i \(0.962058\pi\)
\(360\) 0 0
\(361\) 600.000 1.66205
\(362\) −162.857 + 282.077i −0.449882 + 0.779219i
\(363\) 0 0
\(364\) −189.000 327.358i −0.519231 0.899334i
\(365\) 101.007 + 89.5684i 0.276733 + 0.245393i
\(366\) 0 0
\(367\) 44.1673 + 25.5000i 0.120347 + 0.0694823i 0.558965 0.829191i \(-0.311199\pi\)
−0.438618 + 0.898674i \(0.644532\pi\)
\(368\) 88.5438 0.240608
\(369\) 0 0
\(370\) 405.000 135.000i 1.09459 0.364865i
\(371\) 106.806 + 61.6644i 0.287887 + 0.166211i
\(372\) 0 0
\(373\) −205.248 + 118.500i −0.550263 + 0.317694i −0.749228 0.662312i \(-0.769575\pi\)
0.198965 + 0.980007i \(0.436242\pi\)
\(374\) 328.634 189.737i 0.878699 0.507317i
\(375\) 0 0
\(376\) −40.0000 + 69.2820i −0.106383 + 0.184261i
\(377\) −996.117 −2.64222
\(378\) 0 0
\(379\) −103.000 −0.271768 −0.135884 0.990725i \(-0.543387\pi\)
−0.135884 + 0.990725i \(0.543387\pi\)
\(380\) −911.119 186.447i −2.39768 0.490649i
\(381\) 0 0
\(382\) −727.461 + 420.000i −1.90435 + 1.09948i
\(383\) 25.2982 + 43.8178i 0.0660528 + 0.114407i 0.897161 0.441705i \(-0.145626\pi\)
−0.831108 + 0.556111i \(0.812293\pi\)
\(384\) 0 0
\(385\) −139.413 28.5289i −0.362113 0.0741009i
\(386\) 673.565i 1.74499i
\(387\) 0 0
\(388\) 558.000i 1.43814i
\(389\) −230.043 132.816i −0.591371 0.341428i 0.174268 0.984698i \(-0.444244\pi\)
−0.765640 + 0.643270i \(0.777577\pi\)
\(390\) 0 0
\(391\) −140.000 242.487i −0.358056 0.620172i
\(392\) 126.491 + 219.089i 0.322681 + 0.558901i
\(393\) 0 0
\(394\) −380.000 + 658.179i −0.964467 + 1.67051i
\(395\) 1.58114 + 4.74342i 0.00400288 + 0.0120086i
\(396\) 0 0
\(397\) 72.0000i 0.181360i −0.995880 0.0906801i \(-0.971096\pi\)
0.995880 0.0906801i \(-0.0289041\pi\)
\(398\) 74.3135 128.715i 0.186717 0.323404i
\(399\) 0 0
\(400\) −91.9615 39.2820i −0.229904 0.0982051i
\(401\) 90.3742 52.1776i 0.225372 0.130119i −0.383063 0.923722i \(-0.625131\pi\)
0.608435 + 0.793603i \(0.291798\pi\)
\(402\) 0 0
\(403\) −290.985 168.000i −0.722046 0.416873i
\(404\) 455.368i 1.12715i
\(405\) 0 0
\(406\) −450.000 −1.10837
\(407\) −128.072 + 221.828i −0.314674 + 0.545031i
\(408\) 0 0
\(409\) −68.5000 118.645i −0.167482 0.290087i 0.770052 0.637981i \(-0.220230\pi\)
−0.937534 + 0.347894i \(0.886897\pi\)
\(410\) 561.152 + 497.602i 1.36866 + 1.21366i
\(411\) 0 0
\(412\) 763.834 + 441.000i 1.85397 + 1.07039i
\(413\) 113.842 0.275646
\(414\) 0 0
\(415\) −175.000 525.000i −0.421687 1.26506i
\(416\) 690.130 + 398.447i 1.65897 + 0.957805i
\(417\) 0 0
\(418\) 805.404 465.000i 1.92680 1.11244i
\(419\) −32.8634 + 18.9737i −0.0784328 + 0.0452832i −0.538704 0.842495i \(-0.681086\pi\)
0.460271 + 0.887779i \(0.347752\pi\)
\(420\) 0 0
\(421\) 315.500 546.462i 0.749406 1.29801i −0.198701 0.980060i \(-0.563672\pi\)
0.948108 0.317950i \(-0.102994\pi\)
\(422\) 705.188 1.67106
\(423\) 0 0
\(424\) 260.000 0.613208
\(425\) 37.8257 + 313.957i 0.0890016 + 0.738723i
\(426\) 0 0
\(427\) −2.59808 + 1.50000i −0.00608449 + 0.00351288i
\(428\) 66.4078 + 115.022i 0.155158 + 0.268742i
\(429\) 0 0
\(430\) 152.154 743.538i 0.353846 1.72916i
\(431\) 540.749i 1.25464i −0.778762 0.627320i \(-0.784152\pi\)
0.778762 0.627320i \(-0.215848\pi\)
\(432\) 0 0
\(433\) 288.000i 0.665127i 0.943081 + 0.332564i \(0.107914\pi\)
−0.943081 + 0.332564i \(0.892086\pi\)
\(434\) −131.453 75.8947i −0.302888 0.174872i
\(435\) 0 0
\(436\) −312.000 540.400i −0.715596 1.23945i
\(437\) −343.107 594.279i −0.785142 1.35991i
\(438\) 0 0
\(439\) 428.000 741.318i 0.974943 1.68865i 0.294820 0.955553i \(-0.404740\pi\)
0.680123 0.733098i \(-0.261926\pi\)
\(440\) −284.605 + 94.8683i −0.646830 + 0.215610i
\(441\) 0 0
\(442\) 840.000i 1.90045i
\(443\) 215.035 372.451i 0.485406 0.840748i −0.514453 0.857518i \(-0.672005\pi\)
0.999859 + 0.0167704i \(0.00533845\pi\)
\(444\) 0 0
\(445\) 425.885 + 377.654i 0.957044 + 0.848660i
\(446\) 854.447 493.315i 1.91580 1.10609i
\(447\) 0 0
\(448\) 270.200 + 156.000i 0.603125 + 0.348214i
\(449\) 796.894i 1.77482i 0.460981 + 0.887410i \(0.347497\pi\)
−0.460981 + 0.887410i \(0.652503\pi\)
\(450\) 0 0
\(451\) −450.000 −0.997783
\(452\) 521.776 903.742i 1.15437 1.99943i
\(453\) 0 0
\(454\) 535.000 + 926.647i 1.17841 + 2.04107i
\(455\) −208.993 + 235.684i −0.459325 + 0.517987i
\(456\) 0 0
\(457\) 83.1384 + 48.0000i 0.181922 + 0.105033i 0.588195 0.808719i \(-0.299839\pi\)
−0.406273 + 0.913752i \(0.633172\pi\)
\(458\) 50.5964 0.110473
\(459\) 0 0
\(460\) 210.000 + 630.000i 0.456522 + 1.36957i
\(461\) 361.497 + 208.710i 0.784158 + 0.452734i 0.837902 0.545821i \(-0.183782\pi\)
−0.0537438 + 0.998555i \(0.517115\pi\)
\(462\) 0 0
\(463\) −205.248 + 118.500i −0.443300 + 0.255940i −0.704997 0.709211i \(-0.749051\pi\)
0.261696 + 0.965150i \(0.415718\pi\)
\(464\) 164.317 94.8683i 0.354131 0.204458i
\(465\) 0 0
\(466\) −80.0000 + 138.564i −0.171674 + 0.297348i
\(467\) −468.017 −1.00218 −0.501089 0.865396i \(-0.667067\pi\)
−0.501089 + 0.865396i \(0.667067\pi\)
\(468\) 0 0
\(469\) 63.0000 0.134328
\(470\) 195.940 + 40.0961i 0.416893 + 0.0853108i
\(471\) 0 0
\(472\) 207.846 120.000i 0.440352 0.254237i
\(473\) 227.684 + 394.360i 0.481362 + 0.833743i
\(474\) 0 0
\(475\) 92.7018 + 769.436i 0.195162 + 1.61986i
\(476\) 227.684i 0.478328i
\(477\) 0 0
\(478\) 330.000i 0.690377i
\(479\) −353.281 203.967i −0.737539 0.425818i 0.0836350 0.996496i \(-0.473347\pi\)
−0.821174 + 0.570678i \(0.806680\pi\)
\(480\) 0 0
\(481\) 283.500 + 491.036i 0.589397 + 1.02087i
\(482\) 453.787 + 785.982i 0.941466 + 1.63067i
\(483\) 0 0
\(484\) −93.0000 + 161.081i −0.192149 + 0.332811i
\(485\) 441.138 147.046i 0.909562 0.303187i
\(486\) 0 0
\(487\) 261.000i 0.535934i −0.963428 0.267967i \(-0.913648\pi\)
0.963428 0.267967i \(-0.0863519\pi\)
\(488\) −3.16228 + 5.47723i −0.00648008 + 0.0112238i
\(489\) 0 0
\(490\) 419.615 473.205i 0.856358 0.965725i
\(491\) −649.051 + 374.730i −1.32190 + 0.763197i −0.984031 0.177997i \(-0.943038\pi\)
−0.337866 + 0.941194i \(0.609705\pi\)
\(492\) 0 0
\(493\) −519.615 300.000i −1.05399 0.608519i
\(494\) 2058.64i 4.16729i
\(495\) 0 0
\(496\) 64.0000 0.129032
\(497\) −42.6907 + 73.9425i −0.0858969 + 0.148778i
\(498\) 0 0
\(499\) 53.0000 + 91.7987i 0.106212 + 0.183965i 0.914233 0.405189i \(-0.132794\pi\)
−0.808020 + 0.589154i \(0.799461\pi\)
\(500\) 61.3907 747.483i 0.122781 1.49497i
\(501\) 0 0
\(502\) 701.481 + 405.000i 1.39737 + 0.806773i
\(503\) −382.636 −0.760707 −0.380353 0.924841i \(-0.624198\pi\)
−0.380353 + 0.924841i \(0.624198\pi\)
\(504\) 0 0
\(505\) −360.000 + 120.000i −0.712871 + 0.237624i
\(506\) −575.109 332.039i −1.13658 0.656204i
\(507\) 0 0
\(508\) 748.246 432.000i 1.47293 0.850394i
\(509\) 139.669 80.6381i 0.274399 0.158425i −0.356486 0.934301i \(-0.616025\pi\)
0.630885 + 0.775876i \(0.282692\pi\)
\(510\) 0 0
\(511\) −40.5000 + 70.1481i −0.0792564 + 0.137276i
\(512\) −252.982 −0.494106
\(513\) 0 0
\(514\) 880.000 1.71206
\(515\) 147.353 720.078i 0.286122 1.39821i
\(516\) 0 0
\(517\) −103.923 + 60.0000i −0.201012 + 0.116054i
\(518\) 128.072 + 221.828i 0.247244 + 0.428239i
\(519\) 0 0
\(520\) −133.135 + 650.596i −0.256028 + 1.25115i
\(521\) 369.986i 0.710147i 0.934838 + 0.355073i \(0.115544\pi\)
−0.934838 + 0.355073i \(0.884456\pi\)
\(522\) 0 0
\(523\) 837.000i 1.60038i −0.599745 0.800191i \(-0.704731\pi\)
0.599745 0.800191i \(-0.295269\pi\)
\(524\) −394.360 227.684i −0.752596 0.434511i
\(525\) 0 0
\(526\) −560.000 969.948i −1.06464 1.84401i
\(527\) −101.193 175.271i −0.192017 0.332583i
\(528\) 0 0
\(529\) 19.5000 33.7750i 0.0368620 0.0638469i
\(530\) −205.548 616.644i −0.387827 1.16348i
\(531\) 0 0
\(532\) 558.000i 1.04887i
\(533\) −498.059 + 862.663i −0.934444 + 1.61850i
\(534\) 0 0
\(535\) 73.4327 82.8109i 0.137257 0.154787i
\(536\) 115.022 66.4078i 0.214593 0.123895i
\(537\) 0 0
\(538\) 311.769 + 180.000i 0.579497 + 0.334572i
\(539\) 379.473i 0.704032i
\(540\) 0 0
\(541\) −511.000 −0.944547 −0.472274 0.881452i \(-0.656567\pi\)
−0.472274 + 0.881452i \(0.656567\pi\)
\(542\) −191.318 + 331.372i −0.352985 + 0.611388i
\(543\) 0 0
\(544\) 240.000 + 415.692i 0.441176 + 0.764140i
\(545\) −345.004 + 389.066i −0.633036 + 0.713882i
\(546\) 0 0
\(547\) −937.906 541.500i −1.71464 0.989945i −0.928044 0.372472i \(-0.878510\pi\)
−0.786592 0.617473i \(-0.788156\pi\)
\(548\) 322.552 0.588599
\(549\) 0 0
\(550\) 450.000 + 600.000i 0.818182 + 1.09091i
\(551\) −1273.45 735.230i −2.31117 1.33435i
\(552\) 0 0
\(553\) −2.59808 + 1.50000i −0.00469815 + 0.00271248i
\(554\) −131.453 + 75.8947i −0.237281 + 0.136994i
\(555\) 0 0
\(556\) 3.00000 5.19615i 0.00539568 0.00934560i
\(557\) 973.982 1.74862 0.874310 0.485368i \(-0.161314\pi\)
0.874310 + 0.485368i \(0.161314\pi\)
\(558\) 0 0
\(559\) 1008.00 1.80322
\(560\) 12.0288 58.7819i 0.0214800 0.104968i
\(561\) 0 0
\(562\) 831.384 480.000i 1.47933 0.854093i
\(563\) −240.333 416.269i −0.426879 0.739377i 0.569714 0.821843i \(-0.307054\pi\)
−0.996594 + 0.0824659i \(0.973720\pi\)
\(564\) 0 0
\(565\) −851.971 174.343i −1.50791 0.308572i
\(566\) 607.157i 1.07272i
\(567\) 0 0
\(568\) 180.000i 0.316901i
\(569\) 558.677 + 322.552i 0.981858 + 0.566876i 0.902830 0.429997i \(-0.141485\pi\)
0.0790272 + 0.996872i \(0.474819\pi\)
\(570\) 0 0
\(571\) −284.500 492.768i −0.498249 0.862992i 0.501749 0.865013i \(-0.332690\pi\)
−0.999998 + 0.00202106i \(0.999357\pi\)
\(572\) −597.670 1035.20i −1.04488 1.80978i
\(573\) 0 0
\(574\) −225.000 + 389.711i −0.391986 + 0.678940i
\(575\) 442.719 332.039i 0.769946 0.577459i
\(576\) 0 0
\(577\) 837.000i 1.45061i −0.688429 0.725303i \(-0.741700\pi\)
0.688429 0.725303i \(-0.258300\pi\)
\(578\) −203.967 + 353.281i −0.352884 + 0.611213i
\(579\) 0 0
\(580\) 1064.71 + 944.134i 1.83571 + 1.62782i
\(581\) 287.554 166.020i 0.494930 0.285748i
\(582\) 0 0
\(583\) 337.750 + 195.000i 0.579331 + 0.334477i
\(584\) 170.763i 0.292402i
\(585\) 0 0
\(586\) −650.000 −1.10922
\(587\) 314.647 544.984i 0.536025 0.928422i −0.463088 0.886312i \(-0.653259\pi\)
0.999113 0.0421101i \(-0.0134080\pi\)
\(588\) 0 0
\(589\) −248.000 429.549i −0.421053 0.729285i
\(590\) −448.922 398.082i −0.760884 0.674715i
\(591\) 0 0
\(592\) −93.5307 54.0000i −0.157991 0.0912162i
\(593\) 641.942 1.08253 0.541267 0.840851i \(-0.317945\pi\)
0.541267 + 0.840851i \(0.317945\pi\)
\(594\) 0 0
\(595\) −180.000 + 60.0000i −0.302521 + 0.100840i
\(596\) −394.360 227.684i −0.661678 0.382020i
\(597\) 0 0
\(598\) −1273.06 + 735.000i −2.12886 + 1.22910i
\(599\) −550.461 + 317.809i −0.918967 + 0.530566i −0.883305 0.468798i \(-0.844687\pi\)
−0.0356616 + 0.999364i \(0.511354\pi\)
\(600\) 0 0
\(601\) −112.000 + 193.990i −0.186356 + 0.322778i −0.944033 0.329852i \(-0.893001\pi\)
0.757677 + 0.652630i \(0.226334\pi\)
\(602\) 455.368 0.756425
\(603\) 0 0
\(604\) −186.000 −0.307947
\(605\) 151.853 + 31.0745i 0.250997 + 0.0513627i
\(606\) 0 0
\(607\) −127.306 + 73.5000i −0.209729 + 0.121087i −0.601186 0.799109i \(-0.705305\pi\)
0.391456 + 0.920197i \(0.371971\pi\)
\(608\) 588.184 + 1018.76i 0.967407 + 1.67560i
\(609\) 0 0
\(610\) 15.4904 + 3.16987i 0.0253941 + 0.00519651i
\(611\) 265.631i 0.434748i
\(612\) 0 0
\(613\) 243.000i 0.396411i 0.980160 + 0.198206i \(0.0635114\pi\)
−0.980160 + 0.198206i \(0.936489\pi\)
\(614\) 542.245 + 313.065i 0.883136 + 0.509879i
\(615\) 0 0
\(616\) −90.0000 155.885i −0.146104 0.253059i
\(617\) 39.5285 + 68.4653i 0.0640656 + 0.110965i 0.896279 0.443490i \(-0.146260\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(618\) 0 0
\(619\) 600.500 1040.10i 0.970113 1.68029i 0.274913 0.961469i \(-0.411351\pi\)
0.695200 0.718816i \(-0.255316\pi\)
\(620\) 151.789 + 455.368i 0.244821 + 0.734464i
\(621\) 0 0
\(622\) 1560.00i 2.50804i
\(623\) −170.763 + 295.770i −0.274098 + 0.474751i
\(624\) 0 0
\(625\) −607.115 + 148.446i −0.971384 + 0.237513i
\(626\) 1125.57 649.848i 1.79803 1.03810i
\(627\) 0 0
\(628\) 530.008 + 306.000i 0.843961 + 0.487261i
\(629\) 341.526i 0.542967i
\(630\) 0 0
\(631\) −193.000 −0.305864 −0.152932 0.988237i \(-0.548872\pi\)
−0.152932 + 0.988237i \(0.548872\pi\)
\(632\) −3.16228 + 5.47723i −0.00500360 + 0.00866650i
\(633\) 0 0
\(634\) 400.000 + 692.820i 0.630915 + 1.09278i
\(635\) −538.706 477.698i −0.848356 0.752281i
\(636\) 0 0
\(637\) 727.461 + 420.000i 1.14201 + 0.659341i
\(638\) −1423.02 −2.23045
\(639\) 0 0
\(640\) −280.000 840.000i −0.437500 1.31250i
\(641\) 262.907 + 151.789i 0.410151 + 0.236801i 0.690855 0.722994i \(-0.257234\pi\)
−0.280704 + 0.959795i \(0.590568\pi\)
\(642\) 0 0
\(643\) 20.7846 12.0000i 0.0323244 0.0186625i −0.483751 0.875206i \(-0.660726\pi\)
0.516075 + 0.856543i \(0.327393\pi\)
\(644\) −345.065 + 199.223i −0.535816 + 0.309353i
\(645\) 0 0
\(646\) 620.000 1073.87i 0.959752 1.66234i
\(647\) −667.241 −1.03128 −0.515642 0.856804i \(-0.672446\pi\)
−0.515642 + 0.856804i \(0.672446\pi\)
\(648\) 0 0
\(649\) 360.000 0.554700
\(650\) 1648.28 198.585i 2.53581 0.305515i
\(651\) 0 0
\(652\) −888.542 + 513.000i −1.36279 + 0.786810i
\(653\) −202.386 350.542i −0.309932 0.536818i 0.668415 0.743789i \(-0.266973\pi\)
−0.978347 + 0.206970i \(0.933640\pi\)
\(654\) 0 0
\(655\) −76.0770 + 371.769i −0.116148 + 0.567586i
\(656\) 189.737i 0.289233i
\(657\) 0 0
\(658\) 120.000i 0.182371i
\(659\) −131.453 75.8947i −0.199474 0.115166i 0.396936 0.917846i \(-0.370073\pi\)
−0.596410 + 0.802680i \(0.703407\pi\)
\(660\) 0 0
\(661\) −359.500 622.672i −0.543873 0.942016i −0.998677 0.0514240i \(-0.983624\pi\)
0.454804 0.890592i \(-0.349709\pi\)
\(662\) 520.195 + 901.004i 0.785793 + 1.36103i
\(663\) 0 0
\(664\) 350.000 606.218i 0.527108 0.912979i
\(665\) −441.138 + 147.046i −0.663365 + 0.221122i
\(666\) 0 0
\(667\) 1050.00i 1.57421i
\(668\) −872.789 + 1511.71i −1.30657 + 2.26305i
\(669\) 0 0
\(670\) −248.433 220.298i −0.370795 0.328803i
\(671\) −8.21584 + 4.74342i −0.0122442 + 0.00706918i
\(672\) 0 0
\(673\) −1015.85 586.500i −1.50943 0.871471i −0.999940 0.0109960i \(-0.996500\pi\)
−0.509493 0.860475i \(-0.670167\pi\)
\(674\) 1204.83i 1.78758i
\(675\) 0 0
\(676\) −1632.00 −2.41420
\(677\) −562.885 + 974.946i −0.831441 + 1.44010i 0.0654549 + 0.997856i \(0.479150\pi\)
−0.896896 + 0.442242i \(0.854183\pi\)
\(678\) 0 0
\(679\) 139.500 + 241.621i 0.205449 + 0.355848i
\(680\) −265.388 + 299.281i −0.390276 + 0.440119i
\(681\) 0 0
\(682\) −415.692 240.000i −0.609519 0.351906i
\(683\) −894.925 −1.31028 −0.655142 0.755505i \(-0.727391\pi\)
−0.655142 + 0.755505i \(0.727391\pi\)
\(684\) 0 0
\(685\) −85.0000 255.000i −0.124088 0.372263i
\(686\) 731.210 + 422.164i 1.06590 + 0.615400i
\(687\) 0 0
\(688\) −166.277 + 96.0000i −0.241682 + 0.139535i
\(689\) 747.641 431.651i 1.08511 0.626489i
\(690\) 0 0
\(691\) −436.000 + 755.174i −0.630970 + 1.09287i 0.356384 + 0.934339i \(0.384009\pi\)
−0.987354 + 0.158532i \(0.949324\pi\)
\(692\) 151.789 0.219349
\(693\) 0 0
\(694\) 370.000 0.533141
\(695\) −4.89849 1.00240i −0.00704819 0.00144230i
\(696\) 0 0
\(697\) −519.615 + 300.000i −0.745502 + 0.430416i
\(698\) 140.721 + 243.737i 0.201607 + 0.349193i
\(699\) 0 0
\(700\) 446.769 53.8269i 0.638242 0.0768955i
\(701\) 1280.72i 1.82699i 0.406846 + 0.913497i \(0.366629\pi\)
−0.406846 + 0.913497i \(0.633371\pi\)
\(702\) 0 0
\(703\) 837.000i 1.19061i
\(704\) 854.447 + 493.315i 1.21370 + 0.700732i
\(705\) 0 0
\(706\) −920.000 1593.49i −1.30312 2.25706i
\(707\) −113.842 197.180i −0.161021 0.278897i
\(708\) 0 0
\(709\) 240.500 416.558i 0.339210 0.587529i −0.645074 0.764120i \(-0.723174\pi\)
0.984284 + 0.176591i \(0.0565069\pi\)
\(710\) 426.907 142.302i 0.601278 0.200426i
\(711\) 0 0
\(712\) 720.000i 1.01124i
\(713\) −177.088 + 306.725i −0.248370 + 0.430189i
\(714\) 0 0
\(715\) −660.894 + 745.298i −0.924327 + 1.04237i
\(716\) −1035.20 + 597.670i −1.44580 + 0.834735i
\(717\) 0 0
\(718\) 233.827 + 135.000i 0.325664 + 0.188022i
\(719\) 939.196i 1.30625i −0.757248 0.653127i \(-0.773457\pi\)
0.757248 0.653127i \(-0.226543\pi\)
\(720\) 0 0
\(721\) 441.000 0.611650
\(722\) 948.683 1643.17i 1.31397 2.27586i
\(723\) 0 0
\(724\) 309.000 + 535.204i 0.426796 + 0.739232i
\(725\) 465.828 1090.53i 0.642521 1.50418i
\(726\) 0 0
\(727\) −665.108 384.000i −0.914866 0.528198i −0.0328724 0.999460i \(-0.510465\pi\)
−0.881994 + 0.471261i \(0.843799\pi\)
\(728\) −398.447 −0.547317
\(729\) 0 0
\(730\) 405.000 135.000i 0.554795 0.184932i
\(731\) 525.814 + 303.579i 0.719307 + 0.415292i
\(732\) 0 0
\(733\) 956.092 552.000i 1.30435 0.753070i 0.323207 0.946328i \(-0.395239\pi\)
0.981148 + 0.193259i \(0.0619057\pi\)
\(734\) 139.669 80.6381i 0.190285 0.109861i
\(735\) 0 0
\(736\) 420.000 727.461i 0.570652 0.988399i
\(737\) 199.223 0.270317
\(738\) 0 0
\(739\) 392.000 0.530447 0.265223 0.964187i \(-0.414554\pi\)
0.265223 + 0.964187i \(0.414554\pi\)
\(740\) 162.389 793.555i 0.219445 1.07237i
\(741\) 0 0
\(742\) 337.750 195.000i 0.455189 0.262803i
\(743\) 499.640 + 865.402i 0.672463 + 1.16474i 0.977204 + 0.212304i \(0.0680968\pi\)
−0.304741 + 0.952435i \(0.598570\pi\)
\(744\) 0 0
\(745\) −76.0770 + 371.769i −0.102117 + 0.499019i
\(746\) 749.460i 1.00464i
\(747\) 0 0
\(748\) 720.000i 0.962567i
\(749\) 57.5109 + 33.2039i 0.0767835 + 0.0443310i
\(750\) 0 0
\(751\) 120.500 + 208.712i 0.160453 + 0.277912i 0.935031 0.354566i \(-0.115371\pi\)
−0.774578 + 0.632478i \(0.782038\pi\)
\(752\) −25.2982 43.8178i −0.0336413 0.0582684i
\(753\) 0 0
\(754\) −1575.00 + 2727.98i −2.08886 + 3.61801i
\(755\) 49.0153 + 147.046i 0.0649209 + 0.194763i
\(756\) 0 0
\(757\) 27.0000i 0.0356671i −0.999841 0.0178336i \(-0.994323\pi\)
0.999841 0.0178336i \(-0.00567690\pi\)
\(758\) −162.857 + 282.077i −0.214851 + 0.372133i
\(759\) 0 0
\(760\) −650.404 + 733.468i −0.855794 + 0.965089i
\(761\) −599.756 + 346.269i −0.788116 + 0.455019i −0.839299 0.543670i \(-0.817034\pi\)
0.0511829 + 0.998689i \(0.483701\pi\)
\(762\) 0 0
\(763\) −270.200 156.000i −0.354128 0.204456i
\(764\) 1593.79i 2.08611i
\(765\) 0 0
\(766\) 160.000 0.208877
\(767\) 398.447 690.130i 0.519488 0.899779i
\(768\) 0 0
\(769\) −563.500 976.011i −0.732770 1.26919i −0.955695 0.294359i \(-0.904894\pi\)
0.222925 0.974836i \(-0.428439\pi\)
\(770\) −298.561 + 336.691i −0.387742 + 0.437261i
\(771\) 0 0
\(772\) −1106.78 639.000i −1.43365 0.827720i
\(773\) 243.495 0.315000 0.157500 0.987519i \(-0.449656\pi\)
0.157500 + 0.987519i \(0.449656\pi\)
\(774\) 0 0
\(775\) 320.000 240.000i 0.412903 0.309677i
\(776\) 509.382 + 294.092i 0.656420 + 0.378984i
\(777\) 0 0
\(778\) −727.461 + 420.000i −0.935040 + 0.539846i
\(779\) −1273.45 + 735.230i −1.63473 + 0.943812i
\(780\) 0 0
\(781\) −135.000 + 233.827i −0.172855 + 0.299394i
\(782\) −885.438 −1.13227
\(783\) 0 0
\(784\) −160.000 −0.204082
\(785\) 102.245 499.646i 0.130248 0.636492i
\(786\) 0 0
\(787\) 496.233 286.500i 0.630537 0.364041i −0.150423 0.988622i \(-0.548064\pi\)
0.780960 + 0.624581i \(0.214730\pi\)
\(788\) 720.999 + 1248.81i 0.914974 + 1.58478i
\(789\) 0 0
\(790\) 15.4904 + 3.16987i 0.0196081 + 0.00401250i
\(791\) 521.776i 0.659641i
\(792\) 0 0
\(793\) 21.0000i 0.0264817i
\(794\) −197.180 113.842i −0.248338 0.143378i
\(795\) 0 0
\(796\) −141.000 244.219i −0.177136 0.306808i
\(797\) −316.228 547.723i −0.396773 0.687230i 0.596553 0.802574i \(-0.296537\pi\)
−0.993326 + 0.115343i \(0.963203\pi\)
\(798\) 0 0
\(799\) −80.0000 + 138.564i −0.100125 + 0.173422i
\(800\) −758.947 + 569.210i −0.948683 + 0.711512i
\(801\) 0 0
\(802\) 330.000i 0.411471i
\(803\) −128.072 + 221.828i −0.159492 + 0.276249i
\(804\) 0 0
\(805\) 248.433 + 220.298i 0.308612 + 0.273662i
\(806\) −920.174 + 531.263i −1.14165 + 0.659135i
\(807\) 0 0
\(808\) −415.692 240.000i −0.514471 0.297030i
\(809\) 1138.42i 1.40719i −0.710599 0.703597i \(-0.751576\pi\)
0.710599 0.703597i \(-0.248424\pi\)
\(810\) 0 0
\(811\) −376.000 −0.463625 −0.231813 0.972760i \(-0.574466\pi\)
−0.231813 + 0.972760i \(0.574466\pi\)
\(812\) −426.907 + 739.425i −0.525748 + 0.910622i
\(813\) 0 0
\(814\) 405.000 + 701.481i 0.497543 + 0.861770i
\(815\) 639.714 + 567.267i 0.784925 + 0.696033i
\(816\) 0 0
\(817\) 1288.65 + 744.000i 1.57729 + 0.910649i
\(818\) −433.232 −0.529624
\(819\) 0 0
\(820\) 1350.00 450.000i 1.64634 0.548780i
\(821\) −32.8634 18.9737i −0.0400284 0.0231104i 0.479852 0.877349i \(-0.340690\pi\)
−0.519881 + 0.854239i \(0.674024\pi\)
\(822\) 0 0
\(823\) 293.583 169.500i 0.356722 0.205954i −0.310920 0.950436i \(-0.600637\pi\)
0.667642 + 0.744482i \(0.267304\pi\)
\(824\) 805.152 464.855i 0.977126 0.564144i
\(825\) 0 0
\(826\) 180.000 311.769i 0.217918 0.377444i
\(827\) 442.719 0.535331 0.267666 0.963512i \(-0.413748\pi\)
0.267666 + 0.963512i \(0.413748\pi\)
\(828\) 0 0
\(829\) −961.000 −1.15923 −0.579614 0.814891i \(-0.696797\pi\)
−0.579614 + 0.814891i \(0.696797\pi\)
\(830\) −1714.47 350.841i −2.06563 0.422700i
\(831\) 0 0
\(832\) 1891.40 1092.00i 2.27332 1.31250i
\(833\) 252.982 + 438.178i 0.303700 + 0.526024i
\(834\) 0 0
\(835\) 1425.12 + 291.628i 1.70672 + 0.349255i
\(836\) 1764.55i 2.11071i
\(837\) 0 0
\(838\) 120.000i 0.143198i
\(839\) −920.174 531.263i −1.09675 0.633209i −0.161385 0.986892i \(-0.551596\pi\)
−0.935366 + 0.353682i \(0.884929\pi\)
\(840\) 0 0
\(841\) 704.500 + 1220.23i 0.837693 + 1.45093i
\(842\) −997.699 1728.06i −1.18492 2.05233i
\(843\) 0 0
\(844\) 669.000 1158.74i 0.792654 1.37292i
\(845\) 430.070 + 1290.21i 0.508958 + 1.52687i
\(846\) 0 0
\(847\) 93.0000i 0.109799i
\(848\) −82.2192 + 142.408i −0.0969566 + 0.167934i
\(849\) 0 0
\(850\) 919.615 + 392.820i 1.08190 + 0.462142i
\(851\) 517.598 298.835i 0.608223 0.351158i
\(852\) 0 0
\(853\) 1057.42 + 610.500i 1.23964 + 0.715709i 0.969022 0.246976i \(-0.0794369\pi\)
0.270623 + 0.962685i \(0.412770\pi\)
\(854\) 9.48683i 0.0111087i
\(855\) 0 0
\(856\) 140.000 0.163551
\(857\) 286.186 495.689i 0.333939 0.578400i −0.649341 0.760497i \(-0.724955\pi\)
0.983281 + 0.182097i \(0.0582886\pi\)
\(858\) 0 0
\(859\) −59.5000 103.057i −0.0692666 0.119973i 0.829312 0.558786i \(-0.188733\pi\)
−0.898579 + 0.438812i \(0.855399\pi\)
\(860\) −1077.41 955.397i −1.25280 1.11093i
\(861\) 0 0
\(862\) −1480.90 855.000i −1.71799 0.991879i
\(863\) 442.719 0.513000 0.256500 0.966544i \(-0.417431\pi\)
0.256500 + 0.966544i \(0.417431\pi\)
\(864\) 0 0
\(865\) −40.0000 120.000i −0.0462428 0.138728i
\(866\) 788.720 + 455.368i 0.910763 + 0.525829i
\(867\) 0 0
\(868\) −249.415 + 144.000i −0.287345 + 0.165899i
\(869\) −8.21584 + 4.74342i −0.00945436 + 0.00545848i
\(870\) 0 0
\(871\) 220.500 381.917i 0.253157 0.438481i
\(872\) −657.754 −0.754305
\(873\) 0 0
\(874\) −2170.00 −2.48284
\(875\) −160.288 339.017i −0.183186 0.387448i
\(876\) 0 0
\(877\) 106.521 61.5000i 0.121461 0.0701254i −0.438039 0.898956i \(-0.644327\pi\)
0.559499 + 0.828831i \(0.310993\pi\)
\(878\) −1353.45 2344.25i −1.54152 2.66999i
\(879\) 0 0
\(880\) 38.0385 185.885i 0.0432255 0.211232i
\(881\) 996.117i 1.13067i −0.824862 0.565333i \(-0.808748\pi\)
0.824862 0.565333i \(-0.191252\pi\)
\(882\) 0 0
\(883\) 387.000i 0.438279i −0.975694 0.219139i \(-0.929675\pi\)
0.975694 0.219139i \(-0.0703249\pi\)
\(884\) −1380.26 796.894i −1.56138 0.901464i
\(885\) 0 0
\(886\) −680.000 1177.79i −0.767494 1.32934i
\(887\) 480.666 + 832.538i 0.541901 + 0.938600i 0.998795 + 0.0490789i \(0.0156286\pi\)
−0.456894 + 0.889521i \(0.651038\pi\)
\(888\) 0 0
\(889\) 216.000 374.123i 0.242970 0.420836i
\(890\) 1707.63 569.210i 1.91869 0.639562i
\(891\) 0 0
\(892\) 1872.00i 2.09865i
\(893\) −196.061 + 339.588i −0.219553 + 0.380278i
\(894\) 0 0
\(895\) 745.298 + 660.894i 0.832735 + 0.738429i
\(896\) 460.087 265.631i 0.513490 0.296464i
\(897\) 0 0
\(898\) 2182.38 + 1260.00i 2.43027 + 1.40312i
\(899\) 758.947i 0.844212i
\(900\) 0 0
\(901\) 520.000 0.577137
\(902\) −711.512 + 1232.38i −0.788816 + 1.36627i
\(903\) 0 0
\(904\) −550.000 952.628i −0.608407 1.05379i
\(905\) 341.687 385.325i 0.377555 0.425773i
\(906\) 0 0
\(907\) −80.5404 46.5000i −0.0887986 0.0512679i 0.454943 0.890520i \(-0.349660\pi\)
−0.543742 + 0.839253i \(0.682993\pi\)
\(908\) 2030.18 2.23588
\(909\) 0 0
\(910\) 315.000 + 945.000i 0.346154 + 1.03846i
\(911\) 460.087 + 265.631i 0.505035 + 0.291582i 0.730790 0.682602i \(-0.239152\pi\)
−0.225755 + 0.974184i \(0.572485\pi\)
\(912\) 0 0
\(913\) 909.327 525.000i 0.995977 0.575027i
\(914\) 262.907 151.789i 0.287644 0.166071i
\(915\) 0 0
\(916\) 48.0000 83.1384i 0.0524017 0.0907625i
\(917\) −227.684 −0.248292
\(918\) 0 0
\(919\) −376.000 −0.409140 −0.204570 0.978852i \(-0.565580\pi\)
−0.204570 + 0.978852i \(0.565580\pi\)
\(920\) 685.788 + 140.336i 0.745422 + 0.152539i
\(921\) 0 0
\(922\) 1143.15 660.000i 1.23986 0.715835i
\(923\) 298.835 + 517.598i 0.323765 + 0.560778i
\(924\) 0 0
\(925\) −670.154 + 80.7403i −0.724491 + 0.0872868i
\(926\) 749.460i 0.809352i
\(927\) 0 0
\(928\) 1800.00i 1.93966i
\(929\) 1224.16 + 706.769i 1.31772 + 0.760785i 0.983361 0.181662i \(-0.0581476\pi\)
0.334357 + 0.942447i \(0.391481\pi\)
\(930\) 0 0
\(931\) 620.000 + 1073.87i 0.665951 + 1.15346i
\(932\) 151.789 + 262.907i 0.162864 + 0.282089i
\(933\) 0 0
\(934\) −740.000 + 1281.72i −0.792291 + 1.37229i
\(935\) −569.210 + 189.737i −0.608781 + 0.202927i
\(936\) 0 0
\(937\) 243.000i 0.259338i 0.991557 + 0.129669i \(0.0413915\pi\)
−0.991557 + 0.129669i \(0.958608\pi\)
\(938\) 99.6117 172.533i 0.106196 0.183937i
\(939\) 0 0
\(940\) 251.769 283.923i 0.267840 0.302046i
\(941\) 336.849 194.480i 0.357970 0.206674i −0.310220 0.950665i \(-0.600403\pi\)
0.668190 + 0.743991i \(0.267069\pi\)
\(942\) 0 0
\(943\) 909.327 + 525.000i 0.964291 + 0.556734i
\(944\) 151.789i 0.160794i
\(945\) 0 0
\(946\) 1440.00 1.52220
\(947\) 158.114 273.861i 0.166963 0.289188i −0.770388 0.637576i \(-0.779937\pi\)
0.937351 + 0.348387i \(0.113271\pi\)
\(948\) 0 0
\(949\) 283.500 + 491.036i 0.298736 + 0.517425i
\(950\) 2253.76 + 962.710i 2.37238 + 1.01338i
\(951\) 0 0
\(952\) −207.846 120.000i −0.218326 0.126050i
\(953\) −1530.54 −1.60603 −0.803013 0.595962i \(-0.796771\pi\)
−0.803013 + 0.595962i \(0.796771\pi\)
\(954\) 0 0
\(955\) 1260.00 420.000i 1.31937 0.439791i
\(956\) −542.245 313.065i −0.567202 0.327474i
\(957\) 0 0
\(958\) −1117.17 + 645.000i −1.16615 + 0.673278i
\(959\) 139.669 80.6381i 0.145641 0.0840856i
\(960\) 0 0
\(961\) 352.500 610.548i 0.366805 0.635326i
\(962\) 1793.01 1.86384
\(963\) 0 0
\(964\) 1722.00 1.78631
\(965\) −213.512 + 1043.38i −0.221256 + 1.08122i
\(966\) 0 0
\(967\) −205.248 + 118.500i −0.212252 + 0.122544i −0.602358 0.798226i \(-0.705772\pi\)
0.390105 + 0.920770i \(0.372439\pi\)
\(968\) 98.0306 + 169.794i 0.101271 + 0.175407i
\(969\) 0 0
\(970\) 294.798 1440.61i 0.303916 1.48516i
\(971\) 569.210i 0.586210i −0.956080 0.293105i \(-0.905311\pi\)
0.956080 0.293105i \(-0.0946886\pi\)
\(972\) 0 0
\(973\) 3.00000i 0.00308325i
\(974\) −714.778 412.677i −0.733858 0.423693i
\(975\) 0 0
\(976\) −2.00000 3.46410i −0.00204918 0.00354928i
\(977\) 257.726 + 446.394i 0.263793 + 0.456903i 0.967247 0.253838i \(-0.0816931\pi\)
−0.703454 + 0.710741i \(0.748360\pi\)
\(978\) 0 0
\(979\) −540.000 + 935.307i −0.551583 + 0.955370i
\(980\) −379.473 1138.42i −0.387218 1.16165i
\(981\) 0 0
\(982\) 2370.00i 2.41344i
\(983\) 314.647 544.984i 0.320088 0.554409i −0.660418 0.750898i \(-0.729621\pi\)
0.980506 + 0.196489i \(0.0629541\pi\)
\(984\) 0 0
\(985\) 797.269 899.090i 0.809410 0.912781i
\(986\) −1643.17 + 948.683i −1.66650 + 0.962153i
\(987\) 0 0
\(988\) −3382.70 1953.00i −3.42378 1.97672i
\(989\) 1062.53i 1.07434i
\(990\) 0 0
\(991\) −751.000 −0.757820 −0.378910 0.925433i \(-0.623701\pi\)
−0.378910 + 0.925433i \(0.623701\pi\)
\(992\) 303.579 525.814i 0.306027 0.530054i
\(993\) 0 0
\(994\) 135.000 + 233.827i 0.135815 + 0.235238i
\(995\) −155.915 + 175.828i −0.156699 + 0.176711i
\(996\) 0 0
\(997\) 1330.22 + 768.000i 1.33422 + 0.770311i 0.985943 0.167082i \(-0.0534343\pi\)
0.348275 + 0.937393i \(0.386768\pi\)
\(998\) 335.201 0.335873
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.i.269.3 8
3.2 odd 2 inner 405.3.h.i.269.2 8
5.4 even 2 inner 405.3.h.i.269.1 8
9.2 odd 6 135.3.d.g.134.4 yes 4
9.4 even 3 inner 405.3.h.i.134.4 8
9.5 odd 6 inner 405.3.h.i.134.1 8
9.7 even 3 135.3.d.g.134.1 4
15.14 odd 2 inner 405.3.h.i.269.4 8
36.7 odd 6 2160.3.c.k.1889.1 4
36.11 even 6 2160.3.c.k.1889.4 4
45.2 even 12 675.3.c.f.26.2 2
45.4 even 6 inner 405.3.h.i.134.2 8
45.7 odd 12 675.3.c.f.26.1 2
45.14 odd 6 inner 405.3.h.i.134.3 8
45.29 odd 6 135.3.d.g.134.2 yes 4
45.34 even 6 135.3.d.g.134.3 yes 4
45.38 even 12 675.3.c.g.26.1 2
45.43 odd 12 675.3.c.g.26.2 2
180.79 odd 6 2160.3.c.k.1889.3 4
180.119 even 6 2160.3.c.k.1889.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.d.g.134.1 4 9.7 even 3
135.3.d.g.134.2 yes 4 45.29 odd 6
135.3.d.g.134.3 yes 4 45.34 even 6
135.3.d.g.134.4 yes 4 9.2 odd 6
405.3.h.i.134.1 8 9.5 odd 6 inner
405.3.h.i.134.2 8 45.4 even 6 inner
405.3.h.i.134.3 8 45.14 odd 6 inner
405.3.h.i.134.4 8 9.4 even 3 inner
405.3.h.i.269.1 8 5.4 even 2 inner
405.3.h.i.269.2 8 3.2 odd 2 inner
405.3.h.i.269.3 8 1.1 even 1 trivial
405.3.h.i.269.4 8 15.14 odd 2 inner
675.3.c.f.26.1 2 45.7 odd 12
675.3.c.f.26.2 2 45.2 even 12
675.3.c.g.26.1 2 45.38 even 12
675.3.c.g.26.2 2 45.43 odd 12
2160.3.c.k.1889.1 4 36.7 odd 6
2160.3.c.k.1889.2 4 180.119 even 6
2160.3.c.k.1889.3 4 180.79 odd 6
2160.3.c.k.1889.4 4 36.11 even 6