Properties

Label 135.3.n.a.74.21
Level $135$
Weight $3$
Character 135.74
Analytic conductor $3.678$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(14,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([17, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.n (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 74.21
Character \(\chi\) \(=\) 135.74
Dual form 135.3.n.a.104.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.721015 - 0.262428i) q^{2} +(2.90489 - 0.749413i) q^{3} +(-2.61318 + 2.19272i) q^{4} +(2.96988 + 4.02242i) q^{5} +(1.89780 - 1.30266i) q^{6} +(3.17548 - 3.78438i) q^{7} +(-2.84329 + 4.92472i) q^{8} +(7.87676 - 4.35392i) q^{9} +(3.19692 + 2.12084i) q^{10} +(7.37526 + 1.30046i) q^{11} +(-5.94776 + 8.32797i) q^{12} +(-6.15844 + 16.9202i) q^{13} +(1.29644 - 3.56193i) q^{14} +(11.6416 + 9.45901i) q^{15} +(1.61177 - 9.14083i) q^{16} +(-10.2979 - 17.8366i) q^{17} +(4.53667 - 5.20632i) q^{18} +(13.4766 - 23.3422i) q^{19} +(-16.5809 - 3.99920i) q^{20} +(6.38834 - 13.3730i) q^{21} +(5.65895 - 0.997825i) q^{22} +(-10.0889 + 8.46563i) q^{23} +(-4.56879 + 16.4366i) q^{24} +(-7.35967 + 23.8922i) q^{25} +13.8158i q^{26} +(19.6182 - 18.5506i) q^{27} +16.8522i q^{28} +(-13.1765 - 36.2022i) q^{29} +(10.8761 + 3.76500i) q^{30} +(-34.2162 + 28.7108i) q^{31} +(-5.18655 - 29.4144i) q^{32} +(22.3989 - 1.74943i) q^{33} +(-12.1058 - 10.1580i) q^{34} +(24.6531 + 1.53393i) q^{35} +(-11.0365 + 28.6491i) q^{36} +(-39.3279 + 22.7060i) q^{37} +(3.59121 - 20.3667i) q^{38} +(-5.20939 + 53.7664i) q^{39} +(-28.2535 + 3.18892i) q^{40} +(18.6544 - 51.2525i) q^{41} +(1.09665 - 11.3186i) q^{42} +(27.9365 + 4.92596i) q^{43} +(-22.1245 + 12.7736i) q^{44} +(40.9063 + 18.7530i) q^{45} +(-5.05266 + 8.75146i) q^{46} +(-21.0849 - 17.6923i) q^{47} +(-2.16823 - 27.7610i) q^{48} +(4.27084 + 24.2211i) q^{49} +(0.963538 + 19.1580i) q^{50} +(-43.2813 - 44.0958i) q^{51} +(-21.0081 - 57.7193i) q^{52} -44.0339 q^{53} +(9.27683 - 18.5236i) q^{54} +(16.6726 + 33.5286i) q^{55} +(9.60824 + 26.3984i) q^{56} +(21.6552 - 77.9062i) q^{57} +(-19.0009 - 22.6444i) q^{58} +(-15.0907 + 2.66091i) q^{59} +(-51.1627 + 0.808679i) q^{60} +(-44.3135 - 37.1834i) q^{61} +(-17.1359 + 29.6802i) q^{62} +(8.53555 - 43.6345i) q^{63} +(7.10495 + 12.3061i) q^{64} +(-86.3498 + 25.4790i) q^{65} +(15.6908 - 7.13946i) q^{66} +(-7.91614 + 21.7494i) q^{67} +(66.0210 + 24.0297i) q^{68} +(-22.9630 + 32.1525i) q^{69} +(18.1778 - 5.36368i) q^{70} +(91.6966 - 52.9411i) q^{71} +(-0.954056 + 51.1703i) q^{72} +(67.6524 + 39.0591i) q^{73} +(-22.3973 + 26.6921i) q^{74} +(-3.47394 + 74.9195i) q^{75} +(15.9661 + 90.5481i) q^{76} +(28.3414 - 23.7813i) q^{77} +(10.3538 + 40.1335i) q^{78} +(64.5660 - 23.5001i) q^{79} +(41.5550 - 20.6639i) q^{80} +(43.0867 - 68.5896i) q^{81} -41.8492i q^{82} +(-71.0404 + 25.8566i) q^{83} +(12.6293 + 48.9539i) q^{84} +(41.1625 - 94.3950i) q^{85} +(21.4353 - 3.77963i) q^{86} +(-65.4068 - 95.2888i) q^{87} +(-27.3744 + 32.6235i) q^{88} +(95.3491 + 55.0498i) q^{89} +(34.4153 + 2.78624i) q^{90} +(44.4765 + 77.0355i) q^{91} +(7.80150 - 44.2445i) q^{92} +(-77.8781 + 109.044i) q^{93} +(-19.8455 - 7.22317i) q^{94} +(133.916 - 15.1149i) q^{95} +(-37.1099 - 81.5586i) q^{96} +(86.5584 + 15.2626i) q^{97} +(9.43564 + 16.3430i) q^{98} +(63.7553 - 21.8679i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} + 3 q^{5} - 24 q^{6} - 18 q^{9} - 3 q^{10} + 6 q^{11} - 48 q^{14} - 3 q^{15} + 12 q^{16} - 6 q^{19} + 63 q^{20} - 192 q^{21} + 42 q^{24} - 15 q^{25} + 96 q^{29} - 177 q^{30} - 102 q^{31}+ \cdots + 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.721015 0.262428i 0.360507 0.131214i −0.155415 0.987849i \(-0.549672\pi\)
0.515922 + 0.856635i \(0.327449\pi\)
\(3\) 2.90489 0.749413i 0.968296 0.249804i
\(4\) −2.61318 + 2.19272i −0.653296 + 0.548180i
\(5\) 2.96988 + 4.02242i 0.593975 + 0.804483i
\(6\) 1.89780 1.30266i 0.316300 0.217110i
\(7\) 3.17548 3.78438i 0.453639 0.540626i −0.489947 0.871752i \(-0.662984\pi\)
0.943587 + 0.331126i \(0.107428\pi\)
\(8\) −2.84329 + 4.92472i −0.355411 + 0.615590i
\(9\) 7.87676 4.35392i 0.875196 0.483769i
\(10\) 3.19692 + 2.12084i 0.319692 + 0.212084i
\(11\) 7.37526 + 1.30046i 0.670479 + 0.118223i 0.498517 0.866880i \(-0.333878\pi\)
0.171962 + 0.985104i \(0.444989\pi\)
\(12\) −5.94776 + 8.32797i −0.495646 + 0.693997i
\(13\) −6.15844 + 16.9202i −0.473726 + 1.30155i 0.441011 + 0.897502i \(0.354620\pi\)
−0.914737 + 0.404050i \(0.867602\pi\)
\(14\) 1.29644 3.56193i 0.0926026 0.254424i
\(15\) 11.6416 + 9.45901i 0.776107 + 0.630601i
\(16\) 1.61177 9.14083i 0.100736 0.571302i
\(17\) −10.2979 17.8366i −0.605761 1.04921i −0.991931 0.126781i \(-0.959535\pi\)
0.386169 0.922428i \(-0.373798\pi\)
\(18\) 4.53667 5.20632i 0.252037 0.289240i
\(19\) 13.4766 23.3422i 0.709297 1.22854i −0.255821 0.966724i \(-0.582346\pi\)
0.965118 0.261815i \(-0.0843209\pi\)
\(20\) −16.5809 3.99920i −0.829044 0.199960i
\(21\) 6.38834 13.3730i 0.304207 0.636808i
\(22\) 5.65895 0.997825i 0.257225 0.0453557i
\(23\) −10.0889 + 8.46563i −0.438650 + 0.368071i −0.835204 0.549940i \(-0.814650\pi\)
0.396554 + 0.918011i \(0.370206\pi\)
\(24\) −4.56879 + 16.4366i −0.190366 + 0.684857i
\(25\) −7.35967 + 23.8922i −0.294387 + 0.955686i
\(26\) 13.8158i 0.531378i
\(27\) 19.6182 18.5506i 0.726601 0.687059i
\(28\) 16.8522i 0.601865i
\(29\) −13.1765 36.2022i −0.454363 1.24835i −0.929625 0.368508i \(-0.879869\pi\)
0.475262 0.879845i \(-0.342353\pi\)
\(30\) 10.8761 + 3.76500i 0.362536 + 0.125500i
\(31\) −34.2162 + 28.7108i −1.10375 + 0.926156i −0.997672 0.0682022i \(-0.978274\pi\)
−0.106078 + 0.994358i \(0.533829\pi\)
\(32\) −5.18655 29.4144i −0.162080 0.919199i
\(33\) 22.3989 1.74943i 0.678755 0.0530131i
\(34\) −12.1058 10.1580i −0.356052 0.298763i
\(35\) 24.6531 + 1.53393i 0.704375 + 0.0438266i
\(36\) −11.0365 + 28.6491i −0.306569 + 0.795810i
\(37\) −39.3279 + 22.7060i −1.06292 + 0.613675i −0.926237 0.376941i \(-0.876976\pi\)
−0.136678 + 0.990615i \(0.543643\pi\)
\(38\) 3.59121 20.3667i 0.0945054 0.535967i
\(39\) −5.20939 + 53.7664i −0.133574 + 1.37863i
\(40\) −28.2535 + 3.18892i −0.706337 + 0.0797229i
\(41\) 18.6544 51.2525i 0.454985 1.25006i −0.474191 0.880422i \(-0.657259\pi\)
0.929176 0.369638i \(-0.120518\pi\)
\(42\) 1.09665 11.3186i 0.0261107 0.269490i
\(43\) 27.9365 + 4.92596i 0.649686 + 0.114557i 0.488772 0.872411i \(-0.337445\pi\)
0.160913 + 0.986969i \(0.448556\pi\)
\(44\) −22.1245 + 12.7736i −0.502829 + 0.290308i
\(45\) 40.9063 + 18.7530i 0.909029 + 0.416733i
\(46\) −5.05266 + 8.75146i −0.109840 + 0.190249i
\(47\) −21.0849 17.6923i −0.448615 0.376433i 0.390307 0.920685i \(-0.372369\pi\)
−0.838922 + 0.544252i \(0.816813\pi\)
\(48\) −2.16823 27.7610i −0.0451714 0.578354i
\(49\) 4.27084 + 24.2211i 0.0871600 + 0.494309i
\(50\) 0.963538 + 19.1580i 0.0192708 + 0.383160i
\(51\) −43.2813 44.0958i −0.848653 0.864624i
\(52\) −21.0081 57.7193i −0.404002 1.10999i
\(53\) −44.0339 −0.830828 −0.415414 0.909633i \(-0.636363\pi\)
−0.415414 + 0.909633i \(0.636363\pi\)
\(54\) 9.27683 18.5236i 0.171793 0.343030i
\(55\) 16.6726 + 33.5286i 0.303139 + 0.609611i
\(56\) 9.60824 + 26.3984i 0.171576 + 0.471400i
\(57\) 21.6552 77.9062i 0.379916 1.36678i
\(58\) −19.0009 22.6444i −0.327602 0.390421i
\(59\) −15.0907 + 2.66091i −0.255775 + 0.0451001i −0.300065 0.953919i \(-0.597009\pi\)
0.0442901 + 0.999019i \(0.485897\pi\)
\(60\) −51.1627 + 0.808679i −0.852711 + 0.0134780i
\(61\) −44.3135 37.1834i −0.726451 0.609564i 0.202711 0.979239i \(-0.435025\pi\)
−0.929161 + 0.369674i \(0.879469\pi\)
\(62\) −17.1359 + 29.6802i −0.276385 + 0.478713i
\(63\) 8.53555 43.6345i 0.135485 0.692611i
\(64\) 7.10495 + 12.3061i 0.111015 + 0.192283i
\(65\) −86.3498 + 25.4790i −1.32846 + 0.391985i
\(66\) 15.6908 7.13946i 0.237740 0.108174i
\(67\) −7.91614 + 21.7494i −0.118151 + 0.324618i −0.984645 0.174571i \(-0.944146\pi\)
0.866493 + 0.499189i \(0.166369\pi\)
\(68\) 66.0210 + 24.0297i 0.970897 + 0.353378i
\(69\) −22.9630 + 32.1525i −0.332797 + 0.465978i
\(70\) 18.1778 5.36368i 0.259683 0.0766240i
\(71\) 91.6966 52.9411i 1.29150 0.745649i 0.312582 0.949891i \(-0.398806\pi\)
0.978920 + 0.204242i \(0.0654729\pi\)
\(72\) −0.954056 + 51.1703i −0.0132508 + 0.710698i
\(73\) 67.6524 + 39.0591i 0.926745 + 0.535056i 0.885781 0.464104i \(-0.153624\pi\)
0.0409643 + 0.999161i \(0.486957\pi\)
\(74\) −22.3973 + 26.6921i −0.302666 + 0.360703i
\(75\) −3.47394 + 74.9195i −0.0463191 + 0.998927i
\(76\) 15.9661 + 90.5481i 0.210080 + 1.19142i
\(77\) 28.3414 23.7813i 0.368070 0.308848i
\(78\) 10.3538 + 40.1335i 0.132741 + 0.514532i
\(79\) 64.5660 23.5001i 0.817291 0.297470i 0.100659 0.994921i \(-0.467905\pi\)
0.716632 + 0.697451i \(0.245683\pi\)
\(80\) 41.5550 20.6639i 0.519437 0.258299i
\(81\) 43.0867 68.5896i 0.531935 0.846785i
\(82\) 41.8492i 0.510356i
\(83\) −71.0404 + 25.8566i −0.855908 + 0.311525i −0.732447 0.680824i \(-0.761622\pi\)
−0.123461 + 0.992349i \(0.539399\pi\)
\(84\) 12.6293 + 48.9539i 0.150349 + 0.582784i
\(85\) 41.1625 94.3950i 0.484264 1.11053i
\(86\) 21.4353 3.77963i 0.249248 0.0439491i
\(87\) −65.4068 95.2888i −0.751802 1.09527i
\(88\) −27.3744 + 32.6235i −0.311073 + 0.370722i
\(89\) 95.3491 + 55.0498i 1.07134 + 0.618538i 0.928547 0.371215i \(-0.121059\pi\)
0.142792 + 0.989753i \(0.454392\pi\)
\(90\) 34.4153 + 2.78624i 0.382393 + 0.0309582i
\(91\) 44.4765 + 77.0355i 0.488752 + 0.846544i
\(92\) 7.80150 44.2445i 0.0847989 0.480919i
\(93\) −77.8781 + 109.044i −0.837399 + 1.17251i
\(94\) −19.8455 7.22317i −0.211122 0.0768422i
\(95\) 133.916 15.1149i 1.40964 0.159104i
\(96\) −37.1099 81.5586i −0.386561 0.849569i
\(97\) 86.5584 + 15.2626i 0.892355 + 0.157346i 0.600981 0.799263i \(-0.294777\pi\)
0.291373 + 0.956609i \(0.405888\pi\)
\(98\) 9.43564 + 16.3430i 0.0962820 + 0.166765i
\(99\) 63.7553 21.8679i 0.643993 0.220888i
\(100\) −33.1567 78.5723i −0.331567 0.785723i
\(101\) −55.4210 + 66.0482i −0.548723 + 0.653942i −0.967120 0.254322i \(-0.918148\pi\)
0.418397 + 0.908264i \(0.362592\pi\)
\(102\) −42.7784 20.4355i −0.419396 0.200348i
\(103\) 64.4706 11.3679i 0.625928 0.110368i 0.148318 0.988940i \(-0.452614\pi\)
0.477611 + 0.878572i \(0.341503\pi\)
\(104\) −65.8169 78.4375i −0.632854 0.754207i
\(105\) 72.7642 14.0195i 0.692992 0.133519i
\(106\) −31.7491 + 11.5557i −0.299519 + 0.109016i
\(107\) −17.0726 −0.159557 −0.0797785 0.996813i \(-0.525421\pi\)
−0.0797785 + 0.996813i \(0.525421\pi\)
\(108\) −10.5897 + 91.4935i −0.0980531 + 0.847162i
\(109\) 72.2226 0.662592 0.331296 0.943527i \(-0.392514\pi\)
0.331296 + 0.943527i \(0.392514\pi\)
\(110\) 20.8200 + 19.7992i 0.189273 + 0.179993i
\(111\) −97.2270 + 95.4311i −0.875919 + 0.859740i
\(112\) −29.4743 35.1261i −0.263163 0.313625i
\(113\) −3.89736 22.1030i −0.0344899 0.195602i 0.962694 0.270591i \(-0.0872190\pi\)
−0.997184 + 0.0749887i \(0.976108\pi\)
\(114\) −4.83104 61.8544i −0.0423776 0.542583i
\(115\) −64.0152 15.4401i −0.556654 0.134261i
\(116\) 113.814 + 65.7106i 0.981156 + 0.566471i
\(117\) 25.1606 + 160.089i 0.215047 + 1.36829i
\(118\) −10.1824 + 5.87878i −0.0862911 + 0.0498202i
\(119\) −100.201 17.6682i −0.842027 0.148472i
\(120\) −79.6834 + 30.4370i −0.664028 + 0.253641i
\(121\) −60.9995 22.2020i −0.504128 0.183488i
\(122\) −41.7086 15.1807i −0.341874 0.124432i
\(123\) 15.7796 162.863i 0.128290 1.32409i
\(124\) 26.4585 150.053i 0.213375 1.21011i
\(125\) −117.962 + 41.3531i −0.943692 + 0.330825i
\(126\) −5.29664 33.7010i −0.0420369 0.267469i
\(127\) −47.3382 27.3308i −0.372742 0.215203i 0.301914 0.953335i \(-0.402375\pi\)
−0.674656 + 0.738133i \(0.735708\pi\)
\(128\) 99.8735 + 83.8039i 0.780262 + 0.654718i
\(129\) 84.8440 6.62660i 0.657705 0.0513690i
\(130\) −55.5730 + 41.0313i −0.427485 + 0.315625i
\(131\) 26.7119 + 31.8340i 0.203908 + 0.243008i 0.858301 0.513147i \(-0.171520\pi\)
−0.654393 + 0.756154i \(0.727076\pi\)
\(132\) −54.6964 + 53.6862i −0.414367 + 0.406713i
\(133\) −45.5412 125.124i −0.342415 0.940778i
\(134\) 17.7591i 0.132530i
\(135\) 132.882 + 23.8197i 0.984311 + 0.176442i
\(136\) 117.120 0.861177
\(137\) 134.025 48.7812i 0.978286 0.356067i 0.197112 0.980381i \(-0.436844\pi\)
0.781173 + 0.624314i \(0.214621\pi\)
\(138\) −8.11896 + 29.2086i −0.0588330 + 0.211656i
\(139\) −143.525 + 120.432i −1.03256 + 0.866418i −0.991153 0.132724i \(-0.957628\pi\)
−0.0414040 + 0.999142i \(0.513183\pi\)
\(140\) −67.7867 + 50.0490i −0.484191 + 0.357493i
\(141\) −74.5082 35.5930i −0.528427 0.252433i
\(142\) 52.2214 62.2350i 0.367756 0.438275i
\(143\) −67.4241 + 116.782i −0.471497 + 0.816657i
\(144\) −27.1029 79.0177i −0.188215 0.548734i
\(145\) 106.488 160.518i 0.734398 1.10702i
\(146\) 59.0285 + 10.4083i 0.404305 + 0.0712899i
\(147\) 30.5579 + 67.1591i 0.207877 + 0.456865i
\(148\) 52.9831 145.570i 0.357994 0.983581i
\(149\) 7.98047 21.9262i 0.0535602 0.147155i −0.910028 0.414548i \(-0.863940\pi\)
0.963588 + 0.267392i \(0.0861620\pi\)
\(150\) 17.1562 + 54.9297i 0.114375 + 0.366198i
\(151\) −40.1381 + 227.635i −0.265815 + 1.50751i 0.500888 + 0.865512i \(0.333007\pi\)
−0.766703 + 0.642002i \(0.778104\pi\)
\(152\) 76.6360 + 132.737i 0.504184 + 0.873272i
\(153\) −158.773 95.6579i −1.03773 0.625215i
\(154\) 14.1937 24.5842i 0.0921669 0.159638i
\(155\) −217.105 52.3643i −1.40068 0.337834i
\(156\) −104.282 151.924i −0.668473 0.973874i
\(157\) 8.04210 1.41804i 0.0512236 0.00903209i −0.147978 0.988991i \(-0.547276\pi\)
0.199201 + 0.979959i \(0.436165\pi\)
\(158\) 40.3860 33.8878i 0.255607 0.214480i
\(159\) −127.914 + 32.9995i −0.804488 + 0.207544i
\(160\) 102.913 108.220i 0.643209 0.676372i
\(161\) 65.0629i 0.404117i
\(162\) 13.0663 60.7613i 0.0806564 0.375069i
\(163\) 43.1204i 0.264542i 0.991214 + 0.132271i \(0.0422269\pi\)
−0.991214 + 0.132271i \(0.957773\pi\)
\(164\) 63.6351 + 174.836i 0.388019 + 1.06607i
\(165\) 73.5589 + 84.9021i 0.445812 + 0.514558i
\(166\) −44.4356 + 37.2859i −0.267685 + 0.224614i
\(167\) 27.8841 + 158.139i 0.166971 + 0.946937i 0.947009 + 0.321206i \(0.104088\pi\)
−0.780039 + 0.625731i \(0.784801\pi\)
\(168\) 47.6942 + 69.4839i 0.283894 + 0.413595i
\(169\) −118.904 99.7725i −0.703575 0.590370i
\(170\) 4.90686 78.8623i 0.0288639 0.463896i
\(171\) 4.52204 242.538i 0.0264447 1.41835i
\(172\) −83.8044 + 48.3845i −0.487235 + 0.281305i
\(173\) 19.1710 108.724i 0.110815 0.628462i −0.877923 0.478802i \(-0.841071\pi\)
0.988738 0.149660i \(-0.0478178\pi\)
\(174\) −72.1657 51.5400i −0.414745 0.296207i
\(175\) 67.0467 + 103.721i 0.383124 + 0.592690i
\(176\) 23.7745 65.3200i 0.135083 0.371136i
\(177\) −41.8428 + 19.0388i −0.236400 + 0.107564i
\(178\) 83.1947 + 14.6695i 0.467386 + 0.0824128i
\(179\) −173.652 + 100.258i −0.970122 + 0.560100i −0.899273 0.437387i \(-0.855904\pi\)
−0.0708485 + 0.997487i \(0.522571\pi\)
\(180\) −148.016 + 40.6911i −0.822310 + 0.226062i
\(181\) −45.7267 + 79.2010i −0.252634 + 0.437575i −0.964250 0.264994i \(-0.914630\pi\)
0.711616 + 0.702568i \(0.247963\pi\)
\(182\) 52.2844 + 43.8718i 0.287277 + 0.241054i
\(183\) −156.591 74.8046i −0.855691 0.408769i
\(184\) −13.0051 73.7555i −0.0706798 0.400845i
\(185\) −208.132 90.7592i −1.12504 0.490590i
\(186\) −27.5351 + 99.0596i −0.148038 + 0.532578i
\(187\) −52.7543 144.941i −0.282109 0.775088i
\(188\) 93.8932 0.499432
\(189\) −7.90541 133.150i −0.0418276 0.704497i
\(190\) 92.5890 46.0414i 0.487310 0.242323i
\(191\) −74.8263 205.584i −0.391761 1.07635i −0.966197 0.257804i \(-0.917001\pi\)
0.574436 0.818549i \(-0.305221\pi\)
\(192\) 29.8615 + 30.4234i 0.155529 + 0.158455i
\(193\) −124.937 148.894i −0.647341 0.771471i 0.338170 0.941085i \(-0.390192\pi\)
−0.985510 + 0.169614i \(0.945748\pi\)
\(194\) 66.4152 11.7108i 0.342346 0.0603649i
\(195\) −231.742 + 138.725i −1.18842 + 0.711412i
\(196\) −64.2707 53.9295i −0.327912 0.275151i
\(197\) −55.9942 + 96.9847i −0.284234 + 0.492308i −0.972423 0.233223i \(-0.925073\pi\)
0.688189 + 0.725532i \(0.258406\pi\)
\(198\) 40.2297 32.4983i 0.203180 0.164133i
\(199\) 11.4037 + 19.7519i 0.0573053 + 0.0992556i 0.893255 0.449551i \(-0.148416\pi\)
−0.835950 + 0.548806i \(0.815083\pi\)
\(200\) −96.7365 104.177i −0.483683 0.520883i
\(201\) −6.69622 + 69.1121i −0.0333145 + 0.343841i
\(202\) −22.6265 + 62.1657i −0.112012 + 0.307751i
\(203\) −178.845 65.0942i −0.881009 0.320661i
\(204\) 209.792 + 20.3266i 1.02839 + 0.0996401i
\(205\) 261.560 77.1778i 1.27590 0.376477i
\(206\) 43.5010 25.1153i 0.211170 0.121919i
\(207\) −42.6095 + 110.608i −0.205843 + 0.534339i
\(208\) 144.738 + 83.5647i 0.695857 + 0.401753i
\(209\) 129.749 154.629i 0.620811 0.739853i
\(210\) 48.7849 29.2036i 0.232309 0.139065i
\(211\) 22.0191 + 124.877i 0.104356 + 0.591833i 0.991476 + 0.130293i \(0.0415918\pi\)
−0.887119 + 0.461540i \(0.847297\pi\)
\(212\) 115.069 96.5540i 0.542777 0.455444i
\(213\) 226.694 222.507i 1.06429 1.04463i
\(214\) −12.3096 + 4.48033i −0.0575215 + 0.0209361i
\(215\) 63.1537 + 127.002i 0.293738 + 0.590705i
\(216\) 35.5762 + 149.359i 0.164705 + 0.691477i
\(217\) 220.658i 1.01686i
\(218\) 52.0735 18.9532i 0.238869 0.0869413i
\(219\) 225.794 + 62.7628i 1.03102 + 0.286588i
\(220\) −117.088 51.0579i −0.532216 0.232081i
\(221\) 365.217 64.3976i 1.65256 0.291392i
\(222\) −45.0583 + 94.3223i −0.202965 + 0.424875i
\(223\) −265.212 + 316.068i −1.18929 + 1.41734i −0.303773 + 0.952744i \(0.598246\pi\)
−0.885521 + 0.464600i \(0.846198\pi\)
\(224\) −127.785 73.7767i −0.570469 0.329360i
\(225\) 46.0542 + 220.236i 0.204685 + 0.978828i
\(226\) −8.61051 14.9138i −0.0380996 0.0659904i
\(227\) −18.5556 + 105.234i −0.0817428 + 0.463586i 0.916269 + 0.400563i \(0.131185\pi\)
−0.998012 + 0.0630234i \(0.979926\pi\)
\(228\) 114.238 + 251.067i 0.501042 + 1.10117i
\(229\) 130.547 + 47.5153i 0.570076 + 0.207491i 0.610944 0.791674i \(-0.290790\pi\)
−0.0408682 + 0.999165i \(0.513012\pi\)
\(230\) −50.2078 + 5.66686i −0.218295 + 0.0246385i
\(231\) 64.5067 90.3213i 0.279250 0.391001i
\(232\) 215.750 + 38.0426i 0.929959 + 0.163977i
\(233\) −53.0900 91.9546i −0.227854 0.394655i 0.729318 0.684175i \(-0.239838\pi\)
−0.957172 + 0.289520i \(0.906504\pi\)
\(234\) 60.1531 + 108.824i 0.257064 + 0.465060i
\(235\) 8.54639 137.356i 0.0363676 0.584495i
\(236\) 33.6003 40.0433i 0.142374 0.169675i
\(237\) 169.946 116.652i 0.717071 0.492202i
\(238\) −76.8832 + 13.5566i −0.323039 + 0.0569604i
\(239\) 162.764 + 193.975i 0.681023 + 0.811611i 0.990239 0.139381i \(-0.0445112\pi\)
−0.309216 + 0.950992i \(0.600067\pi\)
\(240\) 105.227 91.1682i 0.438445 0.379867i
\(241\) 3.56022 1.29581i 0.0147727 0.00537682i −0.334623 0.942352i \(-0.608609\pi\)
0.349396 + 0.936975i \(0.386387\pi\)
\(242\) −49.8079 −0.205818
\(243\) 73.7602 231.535i 0.303540 0.952819i
\(244\) 197.332 0.808739
\(245\) −84.7436 + 89.1129i −0.345892 + 0.363726i
\(246\) −31.3623 121.567i −0.127489 0.494176i
\(247\) 311.960 + 371.779i 1.26299 + 1.50518i
\(248\) −44.1062 250.138i −0.177847 1.00862i
\(249\) −186.987 + 128.349i −0.750952 + 0.515458i
\(250\) −74.1998 + 60.7726i −0.296799 + 0.243090i
\(251\) 155.039 + 89.5116i 0.617684 + 0.356620i 0.775967 0.630774i \(-0.217262\pi\)
−0.158283 + 0.987394i \(0.550596\pi\)
\(252\) 73.3733 + 132.741i 0.291164 + 0.526750i
\(253\) −85.4179 + 49.3160i −0.337620 + 0.194925i
\(254\) −41.3039 7.28299i −0.162614 0.0286732i
\(255\) 48.8316 305.055i 0.191496 1.19629i
\(256\) 40.5910 + 14.7739i 0.158558 + 0.0577106i
\(257\) −151.112 55.0003i −0.587985 0.214009i 0.0308578 0.999524i \(-0.490176\pi\)
−0.618843 + 0.785515i \(0.712398\pi\)
\(258\) 59.4347 27.0433i 0.230367 0.104819i
\(259\) −38.9566 + 220.934i −0.150412 + 0.853027i
\(260\) 169.779 255.922i 0.652998 0.984317i
\(261\) −261.410 227.787i −1.00157 0.872746i
\(262\) 27.6138 + 15.9428i 0.105396 + 0.0608505i
\(263\) 131.661 + 110.477i 0.500613 + 0.420064i 0.857811 0.513965i \(-0.171824\pi\)
−0.357199 + 0.934028i \(0.616268\pi\)
\(264\) −55.0711 + 115.282i −0.208603 + 0.436676i
\(265\) −130.775 177.123i −0.493491 0.668387i
\(266\) −65.6718 78.2646i −0.246886 0.294228i
\(267\) 318.234 + 88.4578i 1.19189 + 0.331303i
\(268\) −27.0041 74.1931i −0.100761 0.276840i
\(269\) 352.895i 1.31188i −0.754814 0.655939i \(-0.772273\pi\)
0.754814 0.655939i \(-0.227727\pi\)
\(270\) 102.061 17.6976i 0.378003 0.0655466i
\(271\) −477.336 −1.76139 −0.880693 0.473687i \(-0.842923\pi\)
−0.880693 + 0.473687i \(0.842923\pi\)
\(272\) −179.639 + 65.3832i −0.660437 + 0.240379i
\(273\) 186.931 + 190.448i 0.684727 + 0.697613i
\(274\) 83.8325 70.3438i 0.305958 0.256729i
\(275\) −85.3503 + 166.640i −0.310365 + 0.605964i
\(276\) −10.4949 134.372i −0.0380250 0.486855i
\(277\) −293.699 + 350.017i −1.06028 + 1.26360i −0.0969521 + 0.995289i \(0.530909\pi\)
−0.963333 + 0.268309i \(0.913535\pi\)
\(278\) −71.8792 + 124.498i −0.258558 + 0.447836i
\(279\) −144.508 + 375.123i −0.517951 + 1.34453i
\(280\) −77.6502 + 117.048i −0.277322 + 0.418030i
\(281\) 409.029 + 72.1229i 1.45562 + 0.256665i 0.844791 0.535097i \(-0.179725\pi\)
0.610830 + 0.791762i \(0.290836\pi\)
\(282\) −63.0621 6.11004i −0.223624 0.0216668i
\(283\) 71.4696 196.361i 0.252543 0.693856i −0.747034 0.664785i \(-0.768523\pi\)
0.999577 0.0290706i \(-0.00925476\pi\)
\(284\) −123.535 + 339.410i −0.434983 + 1.19511i
\(285\) 377.684 144.266i 1.32521 0.506195i
\(286\) −17.9669 + 101.895i −0.0628214 + 0.356278i
\(287\) −134.723 233.346i −0.469416 0.813053i
\(288\) −168.921 209.108i −0.586532 0.726070i
\(289\) −67.5952 + 117.078i −0.233893 + 0.405115i
\(290\) 34.6549 143.681i 0.119500 0.495451i
\(291\) 262.881 20.5319i 0.903369 0.0705562i
\(292\) −262.434 + 46.2742i −0.898746 + 0.158473i
\(293\) 115.593 96.9943i 0.394516 0.331038i −0.423853 0.905731i \(-0.639323\pi\)
0.818369 + 0.574692i \(0.194878\pi\)
\(294\) 39.6571 + 40.4034i 0.134888 + 0.137427i
\(295\) −55.5209 52.7987i −0.188207 0.178979i
\(296\) 258.238i 0.872427i
\(297\) 168.814 111.303i 0.568397 0.374757i
\(298\) 17.9034i 0.0600784i
\(299\) −81.1078 222.842i −0.271263 0.745290i
\(300\) −155.200 203.396i −0.517332 0.677986i
\(301\) 107.353 90.0802i 0.356656 0.299270i
\(302\) 30.7975 + 174.661i 0.101978 + 0.578348i
\(303\) −111.494 + 233.396i −0.367969 + 0.770283i
\(304\) −191.646 160.810i −0.630415 0.528981i
\(305\) 17.9617 288.677i 0.0588907 0.946483i
\(306\) −139.581 27.3042i −0.456148 0.0892293i
\(307\) 302.653 174.737i 0.985842 0.569176i 0.0818129 0.996648i \(-0.473929\pi\)
0.904029 + 0.427472i \(0.140596\pi\)
\(308\) −21.9156 + 124.290i −0.0711546 + 0.403538i
\(309\) 178.761 81.3376i 0.578514 0.263229i
\(310\) −170.278 + 19.2189i −0.549283 + 0.0619965i
\(311\) −7.30453 + 20.0690i −0.0234872 + 0.0645306i −0.950882 0.309553i \(-0.899821\pi\)
0.927395 + 0.374084i \(0.122043\pi\)
\(312\) −249.973 178.528i −0.801195 0.572206i
\(313\) −383.992 67.7082i −1.22681 0.216320i −0.477557 0.878601i \(-0.658477\pi\)
−0.749256 + 0.662281i \(0.769589\pi\)
\(314\) 5.42634 3.13290i 0.0172813 0.00997738i
\(315\) 200.866 95.2554i 0.637668 0.302398i
\(316\) −117.194 + 202.985i −0.370866 + 0.642359i
\(317\) −209.280 175.607i −0.660190 0.553965i 0.249954 0.968258i \(-0.419585\pi\)
−0.910144 + 0.414293i \(0.864029\pi\)
\(318\) −83.5675 + 57.3612i −0.262791 + 0.180381i
\(319\) −50.1009 284.136i −0.157056 0.890710i
\(320\) −28.3996 + 65.1268i −0.0887487 + 0.203521i
\(321\) −49.5940 + 12.7944i −0.154499 + 0.0398580i
\(322\) 17.0743 + 46.9113i 0.0530258 + 0.145687i
\(323\) −555.127 −1.71866
\(324\) 37.8044 + 273.714i 0.116680 + 0.844798i
\(325\) −358.935 271.665i −1.10442 0.835893i
\(326\) 11.3160 + 31.0904i 0.0347116 + 0.0953693i
\(327\) 209.799 54.1245i 0.641586 0.165518i
\(328\) 199.364 + 237.593i 0.607818 + 0.724369i
\(329\) −133.909 + 23.6118i −0.407019 + 0.0717684i
\(330\) 75.3177 + 41.9118i 0.228236 + 0.127005i
\(331\) 231.258 + 194.049i 0.698665 + 0.586249i 0.921393 0.388631i \(-0.127052\pi\)
−0.222729 + 0.974880i \(0.571496\pi\)
\(332\) 128.945 223.340i 0.388389 0.672710i
\(333\) −210.916 + 350.080i −0.633382 + 1.05129i
\(334\) 61.6048 + 106.703i 0.184445 + 0.319469i
\(335\) −110.995 + 32.7510i −0.331329 + 0.0977643i
\(336\) −111.943 79.9489i −0.333165 0.237943i
\(337\) 52.9227 145.404i 0.157041 0.431466i −0.836073 0.548618i \(-0.815154\pi\)
0.993114 + 0.117152i \(0.0373764\pi\)
\(338\) −111.915 40.7336i −0.331109 0.120514i
\(339\) −27.8857 61.2861i −0.0822587 0.180785i
\(340\) 99.4169 + 336.929i 0.292403 + 0.990968i
\(341\) −289.691 + 167.253i −0.849534 + 0.490478i
\(342\) −60.3881 176.060i −0.176573 0.514795i
\(343\) 314.861 + 181.785i 0.917962 + 0.529986i
\(344\) −103.690 + 123.573i −0.301426 + 0.359225i
\(345\) −197.528 + 3.12214i −0.572545 + 0.00904968i
\(346\) −14.7096 83.4225i −0.0425134 0.241106i
\(347\) −164.299 + 137.863i −0.473483 + 0.397300i −0.848063 0.529895i \(-0.822231\pi\)
0.374580 + 0.927195i \(0.377787\pi\)
\(348\) 379.862 + 105.588i 1.09156 + 0.303415i
\(349\) 370.917 135.003i 1.06280 0.386827i 0.249320 0.968421i \(-0.419793\pi\)
0.813479 + 0.581594i \(0.197571\pi\)
\(350\) 75.5608 + 57.1893i 0.215888 + 0.163398i
\(351\) 193.062 + 446.187i 0.550033 + 1.27119i
\(352\) 223.684i 0.635465i
\(353\) 628.739 228.842i 1.78113 0.648278i 0.781425 0.623999i \(-0.214493\pi\)
0.999705 0.0242794i \(-0.00772913\pi\)
\(354\) −25.1730 + 24.7080i −0.0711101 + 0.0697966i
\(355\) 485.279 + 211.614i 1.36698 + 0.596095i
\(356\) −369.874 + 65.2187i −1.03897 + 0.183199i
\(357\) −304.314 + 23.7680i −0.852421 + 0.0665770i
\(358\) −98.8950 + 117.858i −0.276243 + 0.329214i
\(359\) −212.551 122.716i −0.592064 0.341828i 0.173849 0.984772i \(-0.444380\pi\)
−0.765913 + 0.642944i \(0.777713\pi\)
\(360\) −208.662 + 148.132i −0.579616 + 0.411477i
\(361\) −182.740 316.515i −0.506205 0.876773i
\(362\) −12.1851 + 69.1050i −0.0336604 + 0.190898i
\(363\) −193.835 18.7805i −0.533981 0.0517370i
\(364\) −285.143 103.783i −0.783359 0.285119i
\(365\) 43.8071 + 388.127i 0.120020 + 1.06336i
\(366\) −132.536 12.8413i −0.362119 0.0350854i
\(367\) 458.235 + 80.7991i 1.24860 + 0.220161i 0.758596 0.651561i \(-0.225886\pi\)
0.490000 + 0.871723i \(0.336997\pi\)
\(368\) 61.1218 + 105.866i 0.166092 + 0.287679i
\(369\) −76.2132 484.923i −0.206540 1.31415i
\(370\) −173.884 10.8191i −0.469956 0.0292409i
\(371\) −139.828 + 166.641i −0.376896 + 0.449167i
\(372\) −35.5930 455.717i −0.0956802 1.22504i
\(373\) 516.884 91.1405i 1.38575 0.244345i 0.569473 0.822010i \(-0.307147\pi\)
0.816274 + 0.577665i \(0.196036\pi\)
\(374\) −76.0733 90.6606i −0.203405 0.242408i
\(375\) −311.675 + 208.528i −0.831132 + 0.556075i
\(376\) 147.080 53.5328i 0.391171 0.142375i
\(377\) 693.694 1.84004
\(378\) −40.6422 93.9284i −0.107519 0.248488i
\(379\) −368.487 −0.972262 −0.486131 0.873886i \(-0.661592\pi\)
−0.486131 + 0.873886i \(0.661592\pi\)
\(380\) −316.805 + 333.139i −0.833697 + 0.876681i
\(381\) −157.994 43.9169i −0.414683 0.115267i
\(382\) −107.902 128.592i −0.282465 0.336629i
\(383\) −102.899 583.571i −0.268667 1.52368i −0.758387 0.651805i \(-0.774012\pi\)
0.489720 0.871880i \(-0.337099\pi\)
\(384\) 352.925 + 168.594i 0.919076 + 0.439048i
\(385\) 179.829 + 43.3735i 0.467087 + 0.112659i
\(386\) −129.155 74.5677i −0.334599 0.193181i
\(387\) 241.496 82.8327i 0.624021 0.214038i
\(388\) −259.660 + 149.915i −0.669226 + 0.386378i
\(389\) 319.283 + 56.2982i 0.820778 + 0.144725i 0.568241 0.822862i \(-0.307624\pi\)
0.252537 + 0.967587i \(0.418735\pi\)
\(390\) −130.684 + 160.839i −0.335087 + 0.412407i
\(391\) 254.893 + 92.7735i 0.651901 + 0.237272i
\(392\) −131.426 47.8350i −0.335269 0.122028i
\(393\) 101.452 + 72.4560i 0.258147 + 0.184366i
\(394\) −14.9211 + 84.6218i −0.0378708 + 0.214776i
\(395\) 286.280 + 189.919i 0.724760 + 0.480808i
\(396\) −118.654 + 196.943i −0.299631 + 0.497330i
\(397\) −652.770 376.877i −1.64426 0.949313i −0.979296 0.202436i \(-0.935114\pi\)
−0.664962 0.746877i \(-0.731552\pi\)
\(398\) 13.4057 + 11.2487i 0.0336827 + 0.0282631i
\(399\) −226.061 329.341i −0.566570 0.825415i
\(400\) 206.532 + 105.782i 0.516330 + 0.264456i
\(401\) 197.570 + 235.455i 0.492693 + 0.587168i 0.953900 0.300124i \(-0.0970280\pi\)
−0.461207 + 0.887292i \(0.652584\pi\)
\(402\) 13.3089 + 51.5881i 0.0331066 + 0.128329i
\(403\) −275.073 755.758i −0.682564 1.87533i
\(404\) 294.119i 0.728017i
\(405\) 403.858 30.3899i 0.997181 0.0750368i
\(406\) −146.032 −0.359685
\(407\) −319.582 + 116.318i −0.785213 + 0.285794i
\(408\) 340.221 87.7713i 0.833874 0.215126i
\(409\) 379.249 318.228i 0.927260 0.778064i −0.0480632 0.998844i \(-0.515305\pi\)
0.975324 + 0.220781i \(0.0708605\pi\)
\(410\) 168.335 124.287i 0.410573 0.303139i
\(411\) 352.771 242.144i 0.858323 0.589158i
\(412\) −143.547 + 171.073i −0.348415 + 0.415225i
\(413\) −37.8504 + 65.5588i −0.0916475 + 0.158738i
\(414\) −1.69540 + 90.9321i −0.00409518 + 0.219643i
\(415\) −314.987 208.963i −0.759005 0.503526i
\(416\) 529.637 + 93.3893i 1.27317 + 0.224494i
\(417\) −326.672 + 457.402i −0.783386 + 1.09689i
\(418\) 52.9722 145.540i 0.126728 0.348182i
\(419\) 94.5066 259.655i 0.225553 0.619701i −0.774362 0.632743i \(-0.781929\pi\)
0.999915 + 0.0130416i \(0.00415138\pi\)
\(420\) −159.405 + 196.187i −0.379537 + 0.467112i
\(421\) −74.2093 + 420.862i −0.176269 + 0.999672i 0.760400 + 0.649455i \(0.225003\pi\)
−0.936669 + 0.350217i \(0.886108\pi\)
\(422\) 48.6473 + 84.2595i 0.115278 + 0.199667i
\(423\) −243.112 47.5563i −0.574733 0.112426i
\(424\) 125.201 216.854i 0.295285 0.511449i
\(425\) 501.943 114.769i 1.18104 0.270044i
\(426\) 105.058 219.921i 0.246614 0.516247i
\(427\) −281.433 + 49.6242i −0.659093 + 0.116216i
\(428\) 44.6139 37.4355i 0.104238 0.0874661i
\(429\) −108.342 + 389.767i −0.252545 + 0.908548i
\(430\) 78.8635 + 74.9968i 0.183403 + 0.174411i
\(431\) 243.191i 0.564247i 0.959378 + 0.282124i \(0.0910389\pi\)
−0.959378 + 0.282124i \(0.908961\pi\)
\(432\) −137.948 209.226i −0.319323 0.484320i
\(433\) 279.518i 0.645539i 0.946478 + 0.322769i \(0.104614\pi\)
−0.946478 + 0.322769i \(0.895386\pi\)
\(434\) 57.9068 + 159.098i 0.133426 + 0.366584i
\(435\) 189.041 546.089i 0.434577 1.25538i
\(436\) −188.731 + 158.364i −0.432869 + 0.363220i
\(437\) 61.6416 + 349.587i 0.141056 + 0.799970i
\(438\) 179.272 14.0017i 0.409296 0.0319674i
\(439\) 420.534 + 352.870i 0.957937 + 0.803805i 0.980616 0.195938i \(-0.0627752\pi\)
−0.0226791 + 0.999743i \(0.507220\pi\)
\(440\) −212.524 13.2234i −0.483009 0.0300531i
\(441\) 139.097 + 172.189i 0.315413 + 0.390452i
\(442\) 246.427 142.275i 0.557527 0.321888i
\(443\) −117.125 + 664.248i −0.264390 + 1.49943i 0.506376 + 0.862313i \(0.330985\pi\)
−0.770766 + 0.637119i \(0.780126\pi\)
\(444\) 44.8181 462.571i 0.100942 1.04183i
\(445\) 61.7417 + 547.025i 0.138745 + 1.22927i
\(446\) −108.277 + 297.489i −0.242774 + 0.667015i
\(447\) 6.75063 69.6737i 0.0151021 0.155870i
\(448\) 69.1328 + 12.1900i 0.154314 + 0.0272098i
\(449\) −277.596 + 160.270i −0.618255 + 0.356950i −0.776189 0.630500i \(-0.782850\pi\)
0.157934 + 0.987450i \(0.449517\pi\)
\(450\) 91.0019 + 146.708i 0.202226 + 0.326017i
\(451\) 204.233 353.741i 0.452844 0.784349i
\(452\) 58.6503 + 49.2135i 0.129757 + 0.108879i
\(453\) 53.9955 + 691.333i 0.119195 + 1.52612i
\(454\) 14.2375 + 80.7448i 0.0313601 + 0.177852i
\(455\) −177.779 + 407.689i −0.390724 + 0.896019i
\(456\) 322.094 + 328.155i 0.706347 + 0.719639i
\(457\) −187.236 514.427i −0.409707 1.12566i −0.957345 0.288946i \(-0.906695\pi\)
0.547638 0.836715i \(-0.315527\pi\)
\(458\) 106.596 0.232742
\(459\) −532.906 158.889i −1.16102 0.346163i
\(460\) 201.139 100.020i 0.437259 0.217434i
\(461\) −147.291 404.678i −0.319503 0.877826i −0.990641 0.136494i \(-0.956417\pi\)
0.671138 0.741332i \(-0.265806\pi\)
\(462\) 22.8074 82.0513i 0.0493667 0.177600i
\(463\) −198.499 236.562i −0.428724 0.510933i 0.507830 0.861457i \(-0.330448\pi\)
−0.936554 + 0.350524i \(0.886003\pi\)
\(464\) −352.156 + 62.0946i −0.758957 + 0.133825i
\(465\) −669.908 + 10.5886i −1.44066 + 0.0227712i
\(466\) −62.4101 52.3683i −0.133927 0.112378i
\(467\) 372.274 644.797i 0.797161 1.38072i −0.124298 0.992245i \(-0.539668\pi\)
0.921458 0.388478i \(-0.126999\pi\)
\(468\) −416.781 363.173i −0.890557 0.776011i
\(469\) 57.1706 + 99.0224i 0.121899 + 0.211135i
\(470\) −29.8841 101.279i −0.0635831 0.215487i
\(471\) 22.2987 10.1461i 0.0473433 0.0215416i
\(472\) 29.8031 81.8834i 0.0631422 0.173482i
\(473\) 199.633 + 72.6605i 0.422057 + 0.153616i
\(474\) 91.9207 128.706i 0.193926 0.271532i
\(475\) 458.513 + 493.777i 0.965290 + 1.03953i
\(476\) 300.586 173.543i 0.631483 0.364587i
\(477\) −346.844 + 191.720i −0.727137 + 0.401929i
\(478\) 168.260 + 97.1449i 0.352008 + 0.203232i
\(479\) 419.779 500.273i 0.876365 1.04441i −0.122286 0.992495i \(-0.539023\pi\)
0.998651 0.0519167i \(-0.0165330\pi\)
\(480\) 217.851 391.490i 0.453857 0.815605i
\(481\) −141.990 805.268i −0.295198 1.67415i
\(482\) 2.22691 1.86860i 0.00462015 0.00387677i
\(483\) 48.7589 + 189.000i 0.100950 + 0.391305i
\(484\) 208.086 75.7370i 0.429929 0.156481i
\(485\) 195.675 + 393.502i 0.403454 + 0.811344i
\(486\) −7.57902 186.297i −0.0155947 0.383327i
\(487\) 645.774i 1.32603i −0.748608 0.663013i \(-0.769278\pi\)
0.748608 0.663013i \(-0.230722\pi\)
\(488\) 309.114 112.508i 0.633430 0.230550i
\(489\) 32.3149 + 125.260i 0.0660837 + 0.256155i
\(490\) −37.7157 + 86.4908i −0.0769708 + 0.176512i
\(491\) −293.377 + 51.7303i −0.597509 + 0.105357i −0.464219 0.885720i \(-0.653665\pi\)
−0.133289 + 0.991077i \(0.542554\pi\)
\(492\) 315.877 + 460.190i 0.642027 + 0.935346i
\(493\) −510.032 + 607.832i −1.03455 + 1.23293i
\(494\) 322.492 + 186.191i 0.652819 + 0.376905i
\(495\) 277.307 + 191.505i 0.560217 + 0.386879i
\(496\) 207.292 + 359.040i 0.417927 + 0.723871i
\(497\) 90.8310 515.128i 0.182759 1.03648i
\(498\) −101.138 + 141.612i −0.203088 + 0.284362i
\(499\) 24.0172 + 8.74156i 0.0481307 + 0.0175182i 0.365973 0.930625i \(-0.380736\pi\)
−0.317843 + 0.948143i \(0.602958\pi\)
\(500\) 217.579 366.720i 0.435159 0.733440i
\(501\) 199.511 + 438.478i 0.398226 + 0.875206i
\(502\) 135.275 + 23.8527i 0.269473 + 0.0475154i
\(503\) 186.800 + 323.547i 0.371372 + 0.643234i 0.989777 0.142625i \(-0.0455543\pi\)
−0.618405 + 0.785859i \(0.712221\pi\)
\(504\) 190.618 + 166.101i 0.378211 + 0.329564i
\(505\) −430.267 26.7714i −0.852013 0.0530127i
\(506\) −48.6456 + 57.9736i −0.0961376 + 0.114572i
\(507\) −420.174 200.720i −0.828746 0.395897i
\(508\) 183.632 32.3793i 0.361481 0.0637388i
\(509\) 472.660 + 563.294i 0.928605 + 1.10667i 0.994062 + 0.108813i \(0.0347051\pi\)
−0.0654568 + 0.997855i \(0.520850\pi\)
\(510\) −44.8466 232.764i −0.0879344 0.456399i
\(511\) 362.643 131.991i 0.709674 0.258300i
\(512\) −488.359 −0.953826
\(513\) −168.625 707.933i −0.328703 1.37999i
\(514\) −123.388 −0.240054
\(515\) 237.196 + 225.566i 0.460575 + 0.437993i
\(516\) −207.183 + 203.356i −0.401517 + 0.394100i
\(517\) −132.499 157.906i −0.256284 0.305427i
\(518\) 29.8909 + 169.520i 0.0577045 + 0.327259i
\(519\) −25.7896 330.198i −0.0496909 0.636220i
\(520\) 120.040 497.692i 0.230847 0.957101i
\(521\) −817.489 471.978i −1.56908 0.905907i −0.996277 0.0862122i \(-0.972524\pi\)
−0.572800 0.819695i \(-0.694143\pi\)
\(522\) −248.258 95.6362i −0.475590 0.183211i
\(523\) 433.608 250.343i 0.829077 0.478668i −0.0244592 0.999701i \(-0.507786\pi\)
0.853537 + 0.521033i \(0.174453\pi\)
\(524\) −139.606 24.6163i −0.266424 0.0469777i
\(525\) 272.493 + 251.052i 0.519034 + 0.478194i
\(526\) 123.922 + 45.1038i 0.235593 + 0.0857487i
\(527\) 864.459 + 314.637i 1.64034 + 0.597035i
\(528\) 20.1107 207.564i 0.0380885 0.393114i
\(529\) −61.7400 + 350.145i −0.116711 + 0.661899i
\(530\) −140.773 93.3889i −0.265609 0.176205i
\(531\) −107.281 + 86.6633i −0.202035 + 0.163208i
\(532\) 393.369 + 227.112i 0.739415 + 0.426901i
\(533\) 752.319 + 631.270i 1.41148 + 1.18437i
\(534\) 252.665 19.7340i 0.473155 0.0369550i
\(535\) −50.7035 68.6731i −0.0947729 0.128361i
\(536\) −84.6019 100.825i −0.157839 0.188106i
\(537\) −429.305 + 421.375i −0.799450 + 0.784684i
\(538\) −92.6095 254.443i −0.172137 0.472942i
\(539\) 184.191i 0.341728i
\(540\) −399.475 + 229.128i −0.739769 + 0.424311i
\(541\) 788.754 1.45796 0.728978 0.684538i \(-0.239996\pi\)
0.728978 + 0.684538i \(0.239996\pi\)
\(542\) −344.166 + 125.266i −0.634993 + 0.231118i
\(543\) −73.4768 + 264.338i −0.135316 + 0.486811i
\(544\) −471.240 + 395.418i −0.866251 + 0.726871i
\(545\) 214.492 + 290.509i 0.393564 + 0.533045i
\(546\) 184.759 + 88.2602i 0.338386 + 0.161649i
\(547\) 161.404 192.354i 0.295071 0.351652i −0.598058 0.801453i \(-0.704061\pi\)
0.893129 + 0.449801i \(0.148505\pi\)
\(548\) −243.269 + 421.354i −0.443921 + 0.768894i
\(549\) −510.940 99.9475i −0.930675 0.182054i
\(550\) −17.8078 + 142.548i −0.0323778 + 0.259178i
\(551\) −1022.62 180.315i −1.85593 0.327250i
\(552\) −93.0516 204.505i −0.168572 0.370481i
\(553\) 116.094 318.967i 0.209936 0.576793i
\(554\) −119.907 + 329.442i −0.216439 + 0.594660i
\(555\) −672.616 107.669i −1.21192 0.193998i
\(556\) 110.984 629.423i 0.199612 1.13206i
\(557\) −250.586 434.027i −0.449884 0.779223i 0.548494 0.836155i \(-0.315202\pi\)
−0.998378 + 0.0569320i \(0.981868\pi\)
\(558\) −5.74989 + 308.392i −0.0103045 + 0.552674i
\(559\) −255.393 + 442.354i −0.456875 + 0.791331i
\(560\) 53.7567 222.878i 0.0959941 0.397996i
\(561\) −261.866 381.504i −0.466785 0.680042i
\(562\) 313.843 55.3390i 0.558440 0.0984680i
\(563\) 73.5000 61.6738i 0.130551 0.109545i −0.575174 0.818031i \(-0.695066\pi\)
0.705725 + 0.708486i \(0.250621\pi\)
\(564\) 272.749 70.3647i 0.483598 0.124760i
\(565\) 77.3329 81.3201i 0.136872 0.143929i
\(566\) 160.335i 0.283277i
\(567\) −122.749 380.861i −0.216488 0.671713i
\(568\) 602.107i 1.06005i
\(569\) 65.3089 + 179.435i 0.114778 + 0.315351i 0.983759 0.179496i \(-0.0574465\pi\)
−0.868980 + 0.494846i \(0.835224\pi\)
\(570\) 234.457 203.132i 0.411327 0.356373i
\(571\) 490.869 411.888i 0.859666 0.721345i −0.102230 0.994761i \(-0.532598\pi\)
0.961896 + 0.273415i \(0.0881534\pi\)
\(572\) −79.8788 453.015i −0.139648 0.791984i
\(573\) −371.429 541.122i −0.648218 0.944366i
\(574\) −158.373 132.891i −0.275912 0.231518i
\(575\) −128.011 303.351i −0.222628 0.527567i
\(576\) 109.544 + 65.9981i 0.190181 + 0.114580i
\(577\) −101.569 + 58.6408i −0.176029 + 0.101630i −0.585426 0.810726i \(-0.699073\pi\)
0.409397 + 0.912357i \(0.365739\pi\)
\(578\) −18.0125 + 102.154i −0.0311635 + 0.176737i
\(579\) −474.510 338.891i −0.819534 0.585304i
\(580\) 73.6984 + 652.960i 0.127066 + 1.12579i
\(581\) −127.736 + 350.951i −0.219855 + 0.604046i
\(582\) 184.153 83.7909i 0.316413 0.143971i
\(583\) −324.761 57.2642i −0.557052 0.0982233i
\(584\) −384.710 + 222.113i −0.658751 + 0.380330i
\(585\) −569.223 + 576.652i −0.973031 + 0.985730i
\(586\) 57.8904 100.269i 0.0987891 0.171108i
\(587\) −177.386 148.845i −0.302191 0.253569i 0.479064 0.877780i \(-0.340976\pi\)
−0.781256 + 0.624211i \(0.785420\pi\)
\(588\) −227.115 108.494i −0.386250 0.184514i
\(589\) 209.055 + 1185.61i 0.354932 + 2.01292i
\(590\) −53.8872 23.4984i −0.0913343 0.0398278i
\(591\) −89.9752 + 323.693i −0.152242 + 0.547703i
\(592\) 144.164 + 396.086i 0.243520 + 0.669065i
\(593\) −557.117 −0.939489 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(594\) 92.5083 124.553i 0.155738 0.209684i
\(595\) −226.517 455.523i −0.380700 0.765586i
\(596\) 27.2235 + 74.7960i 0.0456771 + 0.125497i
\(597\) 47.9289 + 48.8309i 0.0802829 + 0.0817938i
\(598\) −116.960 139.387i −0.195585 0.233089i
\(599\) 459.818 81.0783i 0.767642 0.135356i 0.223904 0.974611i \(-0.428120\pi\)
0.543738 + 0.839255i \(0.317009\pi\)
\(600\) −359.080 230.126i −0.598467 0.383543i
\(601\) −568.779 477.262i −0.946387 0.794113i 0.0322984 0.999478i \(-0.489717\pi\)
−0.978685 + 0.205365i \(0.934162\pi\)
\(602\) 53.7638 93.1216i 0.0893086 0.154687i
\(603\) 32.3417 + 205.781i 0.0536347 + 0.341262i
\(604\) −394.251 682.863i −0.652734 1.13057i
\(605\) −91.8552 311.302i −0.151827 0.514550i
\(606\) −19.1396 + 197.541i −0.0315835 + 0.325975i
\(607\) −61.7933 + 169.776i −0.101801 + 0.279696i −0.980129 0.198363i \(-0.936437\pi\)
0.878327 + 0.478060i \(0.158660\pi\)
\(608\) −756.495 275.342i −1.24423 0.452864i
\(609\) −568.307 55.0628i −0.933181 0.0904151i
\(610\) −62.8064 212.854i −0.102961 0.348941i
\(611\) 429.208 247.803i 0.702467 0.405570i
\(612\) 624.655 98.1743i 1.02068 0.160416i
\(613\) −259.241 149.673i −0.422905 0.244164i 0.273414 0.961896i \(-0.411847\pi\)
−0.696319 + 0.717732i \(0.745180\pi\)
\(614\) 172.362 205.413i 0.280719 0.334548i
\(615\) 701.965 420.209i 1.14141 0.683267i
\(616\) 36.5333 + 207.190i 0.0593072 + 0.336348i
\(617\) −422.548 + 354.560i −0.684842 + 0.574651i −0.917417 0.397928i \(-0.869729\pi\)
0.232575 + 0.972579i \(0.425285\pi\)
\(618\) 107.544 105.557i 0.174019 0.170805i
\(619\) −872.582 + 317.594i −1.40966 + 0.513076i −0.931031 0.364940i \(-0.881090\pi\)
−0.478633 + 0.878015i \(0.658867\pi\)
\(620\) 682.155 339.213i 1.10025 0.547118i
\(621\) −40.8847 + 353.237i −0.0658369 + 0.568819i
\(622\) 16.3870i 0.0263456i
\(623\) 511.109 186.028i 0.820399 0.298601i
\(624\) 483.073 + 134.277i 0.774156 + 0.215188i
\(625\) −516.671 351.677i −0.826673 0.562683i
\(626\) −294.632 + 51.9516i −0.470659 + 0.0829899i
\(627\) 261.027 546.417i 0.416310 0.871479i
\(628\) −17.9061 + 21.3397i −0.0285129 + 0.0339804i
\(629\) 809.992 + 467.649i 1.28775 + 0.743481i
\(630\) 119.829 121.393i 0.190205 0.192688i
\(631\) −144.104 249.596i −0.228374 0.395556i 0.728952 0.684565i \(-0.240008\pi\)
−0.957326 + 0.289009i \(0.906674\pi\)
\(632\) −67.8483 + 384.787i −0.107355 + 0.608840i
\(633\) 157.547 + 346.252i 0.248890 + 0.547001i
\(634\) −196.978 71.6942i −0.310691 0.113082i
\(635\) −30.6531 271.583i −0.0482726 0.427690i
\(636\) 261.903 366.713i 0.411797 0.576592i
\(637\) −436.127 76.9010i −0.684659 0.120724i
\(638\) −110.689 191.719i −0.173493 0.300499i
\(639\) 491.771 816.244i 0.769595 1.27738i
\(640\) −40.4819 + 650.620i −0.0632530 + 1.01659i
\(641\) −589.951 + 703.077i −0.920361 + 1.09684i 0.0746633 + 0.997209i \(0.476212\pi\)
−0.995024 + 0.0996345i \(0.968233\pi\)
\(642\) −32.4004 + 22.2398i −0.0504679 + 0.0346415i
\(643\) 814.024 143.534i 1.26598 0.223226i 0.499962 0.866048i \(-0.333347\pi\)
0.766016 + 0.642822i \(0.222236\pi\)
\(644\) −142.665 170.021i −0.221529 0.264008i
\(645\) 278.631 + 321.598i 0.431986 + 0.498601i
\(646\) −400.255 + 145.681i −0.619589 + 0.225512i
\(647\) 166.913 0.257979 0.128990 0.991646i \(-0.458827\pi\)
0.128990 + 0.991646i \(0.458827\pi\)
\(648\) 215.277 + 407.210i 0.332217 + 0.628410i
\(649\) −114.759 −0.176824
\(650\) −330.090 101.680i −0.507831 0.156431i
\(651\) 165.364 + 640.987i 0.254015 + 0.984619i
\(652\) −94.5510 112.681i −0.145017 0.172824i
\(653\) −206.391 1170.50i −0.316067 1.79250i −0.566175 0.824285i \(-0.691577\pi\)
0.250109 0.968218i \(-0.419534\pi\)
\(654\) 137.064 94.0815i 0.209578 0.143856i
\(655\) −48.7186 + 201.989i −0.0743795 + 0.308381i
\(656\) −438.423 253.124i −0.668328 0.385859i
\(657\) 702.942 + 13.1062i 1.06993 + 0.0199485i
\(658\) −90.3541 + 52.1660i −0.137316 + 0.0792796i
\(659\) 190.385 + 33.5700i 0.288900 + 0.0509408i 0.316220 0.948686i \(-0.397586\pi\)
−0.0273202 + 0.999627i \(0.508697\pi\)
\(660\) −378.390 60.5707i −0.573318 0.0917737i
\(661\) −714.570 260.082i −1.08104 0.393468i −0.260747 0.965407i \(-0.583969\pi\)
−0.820296 + 0.571940i \(0.806191\pi\)
\(662\) 217.664 + 79.2233i 0.328798 + 0.119673i
\(663\) 1012.65 460.766i 1.52738 0.694971i
\(664\) 74.6518 423.371i 0.112427 0.637608i
\(665\) 368.047 554.787i 0.553454 0.834267i
\(666\) −60.2030 + 307.763i −0.0903949 + 0.462107i
\(667\) 439.412 + 253.695i 0.658789 + 0.380352i
\(668\) −419.620 352.103i −0.628174 0.527100i
\(669\) −533.547 + 1116.90i −0.797530 + 1.66950i
\(670\) −71.4343 + 52.7422i −0.106618 + 0.0787197i
\(671\) −278.468 331.865i −0.415005 0.494583i
\(672\) −426.491 118.549i −0.634659 0.176413i
\(673\) 259.131 + 711.958i 0.385039 + 1.05789i 0.969206 + 0.246253i \(0.0791993\pi\)
−0.584166 + 0.811634i \(0.698578\pi\)
\(674\) 118.727i 0.176153i
\(675\) 298.830 + 605.248i 0.442712 + 0.896664i
\(676\) 529.492 0.783272
\(677\) −185.869 + 67.6509i −0.274549 + 0.0999275i −0.475625 0.879648i \(-0.657778\pi\)
0.201077 + 0.979575i \(0.435556\pi\)
\(678\) −36.1892 36.8702i −0.0533764 0.0543808i
\(679\) 332.624 279.104i 0.489873 0.411052i
\(680\) 347.832 + 471.106i 0.511518 + 0.692802i
\(681\) 24.9618 + 319.599i 0.0366546 + 0.469309i
\(682\) −164.979 + 196.615i −0.241905 + 0.288292i
\(683\) −521.767 + 903.727i −0.763934 + 1.32317i 0.176874 + 0.984233i \(0.443401\pi\)
−0.940808 + 0.338939i \(0.889932\pi\)
\(684\) 520.000 + 643.711i 0.760234 + 0.941098i
\(685\) 594.256 + 394.231i 0.867527 + 0.575520i
\(686\) 274.725 + 48.4414i 0.400474 + 0.0706143i
\(687\) 414.834 + 40.1930i 0.603834 + 0.0585050i
\(688\) 90.0546 247.423i 0.130893 0.359627i
\(689\) 271.180 745.061i 0.393585 1.08137i
\(690\) −141.601 + 54.0880i −0.205219 + 0.0783884i
\(691\) 120.650 684.241i 0.174602 0.990219i −0.764000 0.645217i \(-0.776767\pi\)
0.938602 0.345002i \(-0.112122\pi\)
\(692\) 188.304 + 326.152i 0.272116 + 0.471318i
\(693\) 119.697 310.716i 0.172723 0.448363i
\(694\) −82.2826 + 142.518i −0.118563 + 0.205357i
\(695\) −910.681 219.651i −1.31033 0.316044i
\(696\) 655.241 51.1765i 0.941438 0.0735295i
\(697\) −1106.27 + 195.065i −1.58719 + 0.279864i
\(698\) 232.008 194.678i 0.332390 0.278908i
\(699\) −223.133 227.332i −0.319217 0.325224i
\(700\) −402.636 124.027i −0.575194 0.177181i
\(701\) 1192.44i 1.70105i 0.525936 + 0.850524i \(0.323715\pi\)
−0.525936 + 0.850524i \(0.676285\pi\)
\(702\) 256.292 + 271.042i 0.365088 + 0.386100i
\(703\) 1224.00i 1.74111i
\(704\) 36.3973 + 100.001i 0.0517007 + 0.142046i
\(705\) −78.1103 405.410i −0.110795 0.575049i
\(706\) 393.275 329.997i 0.557047 0.467418i
\(707\) 73.9636 + 419.469i 0.104616 + 0.593308i
\(708\) 67.5962 141.502i 0.0954748 0.199861i
\(709\) −128.669 107.966i −0.181479 0.152279i 0.547523 0.836791i \(-0.315571\pi\)
−0.729002 + 0.684512i \(0.760015\pi\)
\(710\) 405.426 + 25.2259i 0.571023 + 0.0355294i
\(711\) 406.253 466.220i 0.571383 0.655725i
\(712\) −542.210 + 313.045i −0.761531 + 0.439670i
\(713\) 102.150 579.324i 0.143269 0.812516i
\(714\) −213.178 + 96.9976i −0.298568 + 0.135851i
\(715\) −669.987 + 75.6201i −0.937044 + 0.105762i
\(716\) 233.946 642.763i 0.326741 0.897713i
\(717\) 618.180 + 441.498i 0.862176 + 0.615758i
\(718\) −185.457 32.7010i −0.258296 0.0455446i
\(719\) 35.4071 20.4423i 0.0492449 0.0284315i −0.475175 0.879891i \(-0.657615\pi\)
0.524420 + 0.851460i \(0.324282\pi\)
\(720\) 237.350 343.692i 0.329652 0.477350i
\(721\) 161.704 280.080i 0.224278 0.388461i
\(722\) −214.821 180.256i −0.297535 0.249662i
\(723\) 9.37095 6.43227i 0.0129612 0.00889664i
\(724\) −54.1734 307.233i −0.0748252 0.424355i
\(725\) 961.924 48.3794i 1.32679 0.0667302i
\(726\) −144.687 + 37.3267i −0.199293 + 0.0514142i
\(727\) 315.233 + 866.096i 0.433608 + 1.19133i 0.943582 + 0.331139i \(0.107433\pi\)
−0.509974 + 0.860190i \(0.670345\pi\)
\(728\) −505.837 −0.694832
\(729\) 40.7500 727.860i 0.0558985 0.998436i
\(730\) 133.441 + 268.349i 0.182796 + 0.367601i
\(731\) −199.826 549.018i −0.273360 0.751051i
\(732\) 573.228 147.883i 0.783099 0.202026i
\(733\) −238.564 284.310i −0.325463 0.387871i 0.578358 0.815783i \(-0.303694\pi\)
−0.903820 + 0.427912i \(0.859249\pi\)
\(734\) 351.598 61.9962i 0.479016 0.0844635i
\(735\) −179.389 + 322.371i −0.244066 + 0.438600i
\(736\) 301.338 + 252.853i 0.409427 + 0.343550i
\(737\) −86.6678 + 150.113i −0.117595 + 0.203681i
\(738\) −182.208 329.636i −0.246895 0.446661i
\(739\) 254.858 + 441.428i 0.344869 + 0.597331i 0.985330 0.170660i \(-0.0545899\pi\)
−0.640461 + 0.767991i \(0.721257\pi\)
\(740\) 742.896 219.205i 1.00391 0.296222i
\(741\) 1184.82 + 846.190i 1.59895 + 1.14196i
\(742\) −57.0871 + 156.846i −0.0769368 + 0.211382i
\(743\) −585.060 212.945i −0.787430 0.286601i −0.0831627 0.996536i \(-0.526502\pi\)
−0.704267 + 0.709935i \(0.748724\pi\)
\(744\) −315.580 693.571i −0.424167 0.932219i
\(745\) 111.897 33.0172i 0.150198 0.0443184i
\(746\) 348.763 201.358i 0.467510 0.269917i
\(747\) −446.990 + 512.970i −0.598381 + 0.686707i
\(748\) 455.673 + 263.083i 0.609188 + 0.351715i
\(749\) −54.2136 + 64.6093i −0.0723814 + 0.0862607i
\(750\) −169.998 + 232.144i −0.226664 + 0.309525i
\(751\) 68.2732 + 387.196i 0.0909097 + 0.515575i 0.995924 + 0.0901939i \(0.0287487\pi\)
−0.905015 + 0.425381i \(0.860140\pi\)
\(752\) −195.707 + 164.218i −0.260248 + 0.218374i
\(753\) 517.451 + 143.833i 0.687186 + 0.191014i
\(754\) 500.164 182.045i 0.663347 0.241439i
\(755\) −1034.85 + 514.594i −1.37066 + 0.681582i
\(756\) 312.619 + 330.611i 0.413517 + 0.437316i
\(757\) 480.153i 0.634283i 0.948378 + 0.317142i \(0.102723\pi\)
−0.948378 + 0.317142i \(0.897277\pi\)
\(758\) −265.685 + 96.7013i −0.350508 + 0.127574i
\(759\) −211.171 + 207.271i −0.278223 + 0.273084i
\(760\) −306.326 + 702.475i −0.403060 + 0.924310i
\(761\) −13.3027 + 2.34562i −0.0174805 + 0.00308229i −0.182382 0.983228i \(-0.558381\pi\)
0.164901 + 0.986310i \(0.447270\pi\)
\(762\) −125.441 + 9.79739i −0.164621 + 0.0128575i
\(763\) 229.341 273.318i 0.300578 0.358215i
\(764\) 646.322 + 373.154i 0.845972 + 0.488422i
\(765\) −86.7616 922.745i −0.113414 1.20620i
\(766\) −227.337 393.760i −0.296785 0.514047i
\(767\) 47.9125 271.725i 0.0624673 0.354270i
\(768\) 128.984 + 12.4972i 0.167948 + 0.0162723i
\(769\) −54.1363 19.7040i −0.0703983 0.0256229i 0.306581 0.951845i \(-0.400815\pi\)
−0.376979 + 0.926222i \(0.623037\pi\)
\(770\) 141.041 15.9191i 0.183171 0.0206741i
\(771\) −480.182 46.5245i −0.622804 0.0603430i
\(772\) 652.966 + 115.135i 0.845810 + 0.149139i
\(773\) 163.063 + 282.433i 0.210948 + 0.365372i 0.952011 0.306062i \(-0.0990116\pi\)
−0.741064 + 0.671435i \(0.765678\pi\)
\(774\) 152.385 123.099i 0.196879 0.159043i
\(775\) −434.143 1028.80i −0.560185 1.32749i
\(776\) −321.274 + 382.880i −0.414013 + 0.493402i
\(777\) 52.4061 + 670.983i 0.0674467 + 0.863557i
\(778\) 244.982 43.1969i 0.314887 0.0555230i
\(779\) −944.949 1126.15i −1.21303 1.44563i
\(780\) 301.399 870.661i 0.386409 1.11623i
\(781\) 745.135 271.207i 0.954078 0.347256i
\(782\) 208.128 0.266148
\(783\) −930.073 465.791i −1.18783 0.594880i
\(784\) 228.285 0.291180
\(785\) 29.5880 + 28.1373i 0.0376917 + 0.0358437i
\(786\) 92.1627 + 25.6180i 0.117255 + 0.0325929i
\(787\) 745.755 + 888.757i 0.947593 + 1.12930i 0.991480 + 0.130260i \(0.0415814\pi\)
−0.0438871 + 0.999036i \(0.513974\pi\)
\(788\) −66.3375 376.219i −0.0841846 0.477435i
\(789\) 465.254 + 222.254i 0.589675 + 0.281691i
\(790\) 256.252 + 61.8064i 0.324370 + 0.0782360i
\(791\) −96.0224 55.4385i −0.121394 0.0700866i
\(792\) −73.5812 + 376.154i −0.0929056 + 0.474942i
\(793\) 902.052 520.800i 1.13752 0.656746i
\(794\) −569.560 100.429i −0.717330 0.126485i
\(795\) −512.625 416.517i −0.644812 0.523921i
\(796\) −73.1104 26.6100i −0.0918473 0.0334297i
\(797\) −438.957 159.767i −0.550762 0.200461i 0.0516233 0.998667i \(-0.483560\pi\)
−0.602385 + 0.798206i \(0.705783\pi\)
\(798\) −249.422 178.135i −0.312559 0.223226i
\(799\) −98.4393 + 558.277i −0.123203 + 0.698720i
\(800\) 740.944 + 92.5623i 0.926180 + 0.115703i
\(801\) 990.725 + 18.4718i 1.23686 + 0.0230609i
\(802\) 204.241 + 117.918i 0.254664 + 0.147030i
\(803\) 448.159 + 376.050i 0.558106 + 0.468307i
\(804\) −134.045 195.286i −0.166723 0.242892i
\(805\) −261.710 + 193.229i −0.325105 + 0.240036i
\(806\) −396.664 472.726i −0.492139 0.586508i
\(807\) −264.464 1025.12i −0.327713 1.27029i
\(808\) −167.691 460.727i −0.207538 0.570206i
\(809\) 1348.17i 1.66646i −0.552923 0.833232i \(-0.686488\pi\)
0.552923 0.833232i \(-0.313512\pi\)
\(810\) 283.212 127.895i 0.349645 0.157895i
\(811\) −802.634 −0.989685 −0.494842 0.868983i \(-0.664774\pi\)
−0.494842 + 0.868983i \(0.664774\pi\)
\(812\) 610.088 222.054i 0.751340 0.273465i
\(813\) −1386.61 + 357.722i −1.70554 + 0.440002i
\(814\) −199.898 + 167.734i −0.245575 + 0.206062i
\(815\) −173.448 + 128.062i −0.212820 + 0.157131i
\(816\) −472.832 + 324.555i −0.579451 + 0.397738i
\(817\) 491.473 585.715i 0.601558 0.716909i
\(818\) 189.932 328.973i 0.232191 0.402167i
\(819\) 685.737 + 413.143i 0.837286 + 0.504448i
\(820\) −514.275 + 775.208i −0.627164 + 0.945376i
\(821\) 151.564 + 26.7248i 0.184609 + 0.0325515i 0.265188 0.964197i \(-0.414566\pi\)
−0.0805793 + 0.996748i \(0.525677\pi\)
\(822\) 190.808 267.166i 0.232126 0.325020i
\(823\) −22.3175 + 61.3168i −0.0271172 + 0.0745040i −0.952513 0.304499i \(-0.901511\pi\)
0.925395 + 0.379003i \(0.123733\pi\)
\(824\) −127.325 + 349.822i −0.154520 + 0.424541i
\(825\) −123.051 + 548.033i −0.149153 + 0.664283i
\(826\) −10.0862 + 57.2019i −0.0122109 + 0.0692517i
\(827\) 535.860 + 928.136i 0.647956 + 1.12229i 0.983610 + 0.180307i \(0.0577092\pi\)
−0.335654 + 0.941985i \(0.608957\pi\)
\(828\) −131.187 382.471i −0.158438 0.461921i
\(829\) 377.159 653.259i 0.454957 0.788009i −0.543729 0.839261i \(-0.682988\pi\)
0.998686 + 0.0512524i \(0.0163213\pi\)
\(830\) −281.948 68.0041i −0.339696 0.0819326i
\(831\) −590.856 + 1236.86i −0.711018 + 1.48840i
\(832\) −251.977 + 44.4304i −0.302857 + 0.0534019i
\(833\) 388.041 325.605i 0.465835 0.390882i
\(834\) −115.500 + 415.521i −0.138490 + 0.498227i
\(835\) −553.287 + 581.813i −0.662619 + 0.696783i
\(836\) 688.579i 0.823660i
\(837\) −138.659 + 1197.99i −0.165662 + 1.43129i
\(838\) 212.016i 0.253002i
\(839\) 88.8598 + 244.140i 0.105912 + 0.290990i 0.981316 0.192401i \(-0.0616274\pi\)
−0.875405 + 0.483390i \(0.839405\pi\)
\(840\) −137.848 + 398.205i −0.164104 + 0.474053i
\(841\) −492.736 + 413.455i −0.585893 + 0.491623i
\(842\) 56.9399 + 322.922i 0.0676246 + 0.383518i
\(843\) 1242.23 97.0228i 1.47359 0.115092i
\(844\) −331.360 278.044i −0.392607 0.329436i
\(845\) 48.1957 774.594i 0.0570363 0.916680i
\(846\) −187.767 + 29.5106i −0.221947 + 0.0348825i
\(847\) −277.723 + 160.344i −0.327890 + 0.189308i
\(848\) −70.9727 + 402.506i −0.0836942 + 0.474653i
\(849\) 60.4558 623.968i 0.0712082 0.734944i
\(850\) 331.790 214.474i 0.390341 0.252322i
\(851\) 204.557 562.015i 0.240372 0.660417i
\(852\) −104.498 + 1078.53i −0.122650 + 1.26588i
\(853\) −287.962 50.7754i −0.337587 0.0595257i 0.00228492 0.999997i \(-0.499273\pi\)
−0.339872 + 0.940472i \(0.610384\pi\)
\(854\) −189.894 + 109.636i −0.222359 + 0.128379i
\(855\) 989.017 702.117i 1.15674 0.821189i
\(856\) 48.5423 84.0778i 0.0567083 0.0982217i
\(857\) −554.776 465.512i −0.647346 0.543188i 0.258918 0.965899i \(-0.416634\pi\)
−0.906264 + 0.422711i \(0.861078\pi\)
\(858\) 24.1698 + 309.460i 0.0281700 + 0.360675i
\(859\) −57.6146 326.749i −0.0670717 0.380383i −0.999804 0.0198122i \(-0.993693\pi\)
0.932732 0.360570i \(-0.117418\pi\)
\(860\) −443.512 193.400i −0.515711 0.224884i
\(861\) −566.227 576.882i −0.657638 0.670014i
\(862\) 63.8200 + 175.344i 0.0740371 + 0.203415i
\(863\) −238.506 −0.276369 −0.138184 0.990407i \(-0.544127\pi\)
−0.138184 + 0.990407i \(0.544127\pi\)
\(864\) −647.405 480.844i −0.749312 0.556533i
\(865\) 494.268 245.783i 0.571408 0.284142i
\(866\) 73.3533 + 201.537i 0.0847036 + 0.232721i
\(867\) −108.617 + 390.756i −0.125279 + 0.450699i
\(868\) −483.841 576.620i −0.557421 0.664308i
\(869\) 506.752 89.3541i 0.583144 0.102824i
\(870\) −7.00758 443.348i −0.00805469 0.509595i
\(871\) −319.253 267.885i −0.366536 0.307560i
\(872\) −205.350 + 355.676i −0.235493 + 0.407885i
\(873\) 748.252 256.649i 0.857104 0.293985i
\(874\) 136.186 + 235.881i 0.155819 + 0.269886i
\(875\) −218.088 + 577.728i −0.249243 + 0.660260i
\(876\) −727.663 + 331.093i −0.830665 + 0.377960i
\(877\) −31.9931 + 87.9005i −0.0364802 + 0.100229i −0.956595 0.291419i \(-0.905873\pi\)
0.920115 + 0.391648i \(0.128095\pi\)
\(878\) 395.814 + 144.065i 0.450814 + 0.164083i
\(879\) 263.097 368.385i 0.299314 0.419095i
\(880\) 333.352 98.3612i 0.378809 0.111774i
\(881\) −1228.28 + 709.150i −1.39419 + 0.804937i −0.993776 0.111396i \(-0.964468\pi\)
−0.400416 + 0.916333i \(0.631135\pi\)
\(882\) 145.478 + 87.6479i 0.164942 + 0.0993741i
\(883\) 47.9457 + 27.6814i 0.0542986 + 0.0313493i 0.526904 0.849925i \(-0.323353\pi\)
−0.472605 + 0.881274i \(0.656686\pi\)
\(884\) −813.173 + 969.102i −0.919879 + 1.09627i
\(885\) −200.850 111.766i −0.226949 0.126290i
\(886\) 89.8685 + 509.669i 0.101432 + 0.575248i
\(887\) 500.234 419.746i 0.563962 0.473220i −0.315674 0.948868i \(-0.602231\pi\)
0.879636 + 0.475647i \(0.157786\pi\)
\(888\) −193.527 750.154i −0.217936 0.844768i
\(889\) −253.752 + 92.3580i −0.285435 + 0.103890i
\(890\) 188.071 + 378.210i 0.211316 + 0.424955i
\(891\) 406.974 449.834i 0.456761 0.504864i
\(892\) 1407.48i 1.57789i
\(893\) −697.133 + 253.736i −0.780664 + 0.284138i
\(894\) −13.4170 52.0073i −0.0150079 0.0581737i
\(895\) −919.004 400.746i −1.02682 0.447761i
\(896\) 634.292 111.843i 0.707915 0.124825i
\(897\) −402.610 586.547i −0.448840 0.653899i
\(898\) −158.092 + 188.406i −0.176049 + 0.209807i
\(899\) 1490.25 + 860.394i 1.65767 + 0.957057i
\(900\) −603.265 474.534i −0.670295 0.527260i
\(901\) 453.458 + 785.413i 0.503283 + 0.871712i
\(902\) 54.4231 308.649i 0.0603361 0.342183i
\(903\) 244.342 342.125i 0.270590 0.378876i
\(904\) 119.933 + 43.6519i 0.132669 + 0.0482875i
\(905\) −454.382 + 51.2853i −0.502080 + 0.0566688i
\(906\) 220.357 + 484.291i 0.243219 + 0.534538i
\(907\) −105.493 18.6012i −0.116309 0.0205085i 0.115190 0.993343i \(-0.463252\pi\)
−0.231500 + 0.972835i \(0.574363\pi\)
\(908\) −182.260 315.683i −0.200727 0.347669i
\(909\) −148.969 + 761.544i −0.163883 + 0.837782i
\(910\) −21.1925 + 340.604i −0.0232885 + 0.374290i
\(911\) 427.389 509.342i 0.469142 0.559102i −0.478644 0.878009i \(-0.658871\pi\)
0.947786 + 0.318907i \(0.103316\pi\)
\(912\) −677.224 323.514i −0.742570 0.354730i
\(913\) −557.567 + 98.3141i −0.610698 + 0.107682i
\(914\) −270.000 321.774i −0.295405 0.352050i
\(915\) −164.162 852.037i −0.179412 0.931188i
\(916\) −445.332 + 162.088i −0.486170 + 0.176952i
\(917\) 205.295 0.223877
\(918\) −425.930 + 25.2884i −0.463976 + 0.0275473i
\(919\) 836.732 0.910481 0.455241 0.890368i \(-0.349553\pi\)
0.455241 + 0.890368i \(0.349553\pi\)
\(920\) 258.052 271.356i 0.280491 0.294953i
\(921\) 748.224 734.404i 0.812404 0.797398i
\(922\) −212.398 253.125i −0.230366 0.274540i
\(923\) 331.064 + 1877.56i 0.358683 + 2.03419i
\(924\) 29.4818 + 377.471i 0.0319067 + 0.408519i
\(925\) −253.054 1106.74i −0.273572 1.19647i
\(926\) −205.201 118.473i −0.221600 0.127941i
\(927\) 458.325 370.242i 0.494417 0.399398i
\(928\) −996.525 + 575.344i −1.07384 + 0.619983i
\(929\) −973.810 171.709i −1.04823 0.184832i −0.377104 0.926171i \(-0.623080\pi\)
−0.671131 + 0.741339i \(0.734191\pi\)
\(930\) −480.235 + 183.437i −0.516381 + 0.197244i
\(931\) 622.932 + 226.729i 0.669100 + 0.243533i
\(932\) 340.365 + 123.883i 0.365198 + 0.132921i
\(933\) −6.17886 + 63.7724i −0.00662257 + 0.0683520i
\(934\) 99.2022 562.603i 0.106212 0.602359i
\(935\) 426.341 642.658i 0.455979 0.687335i
\(936\) −859.934 331.272i −0.918733 0.353923i
\(937\) −469.038 270.799i −0.500575 0.289007i 0.228376 0.973573i \(-0.426658\pi\)
−0.728951 + 0.684566i \(0.759992\pi\)
\(938\) 67.2071 + 56.3934i 0.0716493 + 0.0601209i
\(939\) −1166.20 + 91.0839i −1.24196 + 0.0970010i
\(940\) 278.851 + 377.677i 0.296650 + 0.401784i
\(941\) 166.260 + 198.142i 0.176685 + 0.210565i 0.847118 0.531406i \(-0.178336\pi\)
−0.670433 + 0.741970i \(0.733891\pi\)
\(942\) 13.4151 13.1673i 0.0142411 0.0139780i
\(943\) 245.682 + 675.004i 0.260532 + 0.715805i
\(944\) 142.231i 0.150668i
\(945\) 512.106 427.238i 0.541912 0.452103i
\(946\) 163.006 0.172311
\(947\) 366.881 133.534i 0.387414 0.141007i −0.140967 0.990014i \(-0.545021\pi\)
0.528382 + 0.849007i \(0.322799\pi\)
\(948\) −188.315 + 677.477i −0.198644 + 0.714638i
\(949\) −1077.52 + 904.146i −1.13543 + 0.952736i
\(950\) 460.175 + 235.694i 0.484395 + 0.248099i
\(951\) −739.538 353.281i −0.777642 0.371484i
\(952\) 371.912 443.227i 0.390664 0.465575i
\(953\) −232.132 + 402.064i −0.243580 + 0.421893i −0.961732 0.273994i \(-0.911655\pi\)
0.718151 + 0.695887i \(0.244989\pi\)
\(954\) −199.767 + 229.255i −0.209399 + 0.240309i
\(955\) 604.718 911.540i 0.633212 0.954492i
\(956\) −850.667 149.995i −0.889819 0.156899i
\(957\) −358.473 787.839i −0.374580 0.823238i
\(958\) 171.381 470.866i 0.178895 0.491509i
\(959\) 240.987 662.106i 0.251290 0.690413i
\(960\) −33.6908 + 210.469i −0.0350946 + 0.219239i
\(961\) 179.563 1018.35i 0.186850 1.05968i
\(962\) −313.702 543.347i −0.326093 0.564810i
\(963\) −134.477 + 74.3328i −0.139644 + 0.0771888i
\(964\) −6.46215 + 11.1928i −0.00670348 + 0.0116108i
\(965\) 227.866 944.744i 0.236131 0.979009i
\(966\) 84.7549 + 123.476i 0.0877380 + 0.127822i
\(967\) 641.635 113.138i 0.663532 0.116999i 0.168268 0.985741i \(-0.446183\pi\)
0.495264 + 0.868743i \(0.335071\pi\)
\(968\) 282.778 237.279i 0.292126 0.245123i
\(969\) −1612.58 + 416.019i −1.66417 + 0.429328i
\(970\) 244.351 + 232.370i 0.251908 + 0.239557i
\(971\) 40.3111i 0.0415150i 0.999785 + 0.0207575i \(0.00660779\pi\)
−0.999785 + 0.0207575i \(0.993392\pi\)
\(972\) 314.943 + 766.779i 0.324015 + 0.788867i
\(973\) 925.585i 0.951269i
\(974\) −169.469 465.613i −0.173993 0.478042i
\(975\) −1246.26 520.167i −1.27821 0.533504i
\(976\) −411.311 + 345.131i −0.421425 + 0.353617i
\(977\) −86.1735 488.714i −0.0882021 0.500219i −0.996620 0.0821549i \(-0.973820\pi\)
0.908417 0.418064i \(-0.137291\pi\)
\(978\) 56.1712 + 81.8338i 0.0574348 + 0.0836747i
\(979\) 631.635 + 530.005i 0.645184 + 0.541374i
\(980\) 26.0510 418.688i 0.0265826 0.427232i
\(981\) 568.880 314.451i 0.579898 0.320542i
\(982\) −197.954 + 114.289i −0.201582 + 0.116383i
\(983\) 330.085 1872.00i 0.335793 1.90438i −0.0834645 0.996511i \(-0.526599\pi\)
0.419258 0.907867i \(-0.362290\pi\)
\(984\) 757.186 + 540.775i 0.769498 + 0.549568i
\(985\) −556.409 + 62.8008i −0.564882 + 0.0637572i
\(986\) −208.228 + 572.102i −0.211185 + 0.580226i
\(987\) −371.297 + 168.943i −0.376187 + 0.171168i
\(988\) −1630.42 287.486i −1.65022 0.290978i
\(989\) −323.551 + 186.802i −0.327150 + 0.188880i
\(990\) 250.199 + 65.3050i 0.252726 + 0.0659646i
\(991\) 200.715 347.649i 0.202538 0.350806i −0.746808 0.665040i \(-0.768414\pi\)
0.949345 + 0.314234i \(0.101748\pi\)
\(992\) 1021.98 + 857.539i 1.03022 + 0.864455i
\(993\) 817.201 + 390.382i 0.822962 + 0.393134i
\(994\) −69.6935 395.252i −0.0701142 0.397638i
\(995\) −45.5825 + 104.531i −0.0458116 + 0.105057i
\(996\) 207.198 745.410i 0.208030 0.748404i
\(997\) −463.244 1272.75i −0.464638 1.27658i −0.921961 0.387282i \(-0.873414\pi\)
0.457323 0.889300i \(-0.348808\pi\)
\(998\) 19.6108 0.0196501
\(999\) −350.334 + 1175.01i −0.350685 + 1.17618i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.n.a.74.21 yes 204
3.2 odd 2 405.3.n.a.224.14 204
5.4 even 2 inner 135.3.n.a.74.14 204
15.14 odd 2 405.3.n.a.224.21 204
27.4 even 9 405.3.n.a.179.21 204
27.23 odd 18 inner 135.3.n.a.104.14 yes 204
135.4 even 18 405.3.n.a.179.14 204
135.104 odd 18 inner 135.3.n.a.104.21 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.14 204 5.4 even 2 inner
135.3.n.a.74.21 yes 204 1.1 even 1 trivial
135.3.n.a.104.14 yes 204 27.23 odd 18 inner
135.3.n.a.104.21 yes 204 135.104 odd 18 inner
405.3.n.a.179.14 204 135.4 even 18
405.3.n.a.179.21 204 27.4 even 9
405.3.n.a.224.14 204 3.2 odd 2
405.3.n.a.224.21 204 15.14 odd 2