Properties

Label 405.3.n.a.179.14
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(44,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.14
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.721015 - 0.262428i) q^{2} +(-2.61318 - 2.19272i) q^{4} +(-2.96988 + 4.02242i) q^{5} +(3.17548 + 3.78438i) q^{7} +(2.84329 + 4.92472i) q^{8} +(3.19692 - 2.12084i) q^{10} +(-7.37526 + 1.30046i) q^{11} +(-6.15844 - 16.9202i) q^{13} +(-1.29644 - 3.56193i) q^{14} +(1.61177 + 9.14083i) q^{16} +(10.2979 - 17.8366i) q^{17} +(13.4766 + 23.3422i) q^{19} +(16.5809 - 3.99920i) q^{20} +(5.65895 + 0.997825i) q^{22} +(10.0889 + 8.46563i) q^{23} +(-7.35967 - 23.8922i) q^{25} +13.8158i q^{26} -16.8522i q^{28} +(13.1765 - 36.2022i) q^{29} +(-34.2162 - 28.7108i) q^{31} +(5.18655 - 29.4144i) q^{32} +(-12.1058 + 10.1580i) q^{34} +(-24.6531 + 1.53393i) q^{35} +(-39.3279 - 22.7060i) q^{37} +(-3.59121 - 20.3667i) q^{38} +(-28.2535 - 3.18892i) q^{40} +(-18.6544 - 51.2525i) q^{41} +(27.9365 - 4.92596i) q^{43} +(22.1245 + 12.7736i) q^{44} +(-5.05266 - 8.75146i) q^{46} +(21.0849 - 17.6923i) q^{47} +(4.27084 - 24.2211i) q^{49} +(-0.963538 + 19.1580i) q^{50} +(-21.0081 + 57.7193i) q^{52} +44.0339 q^{53} +(16.6726 - 33.5286i) q^{55} +(-9.60824 + 26.3984i) q^{56} +(-19.0009 + 22.6444i) q^{58} +(15.0907 + 2.66091i) q^{59} +(-44.3135 + 37.1834i) q^{61} +(17.1359 + 29.6802i) q^{62} +(7.10495 - 12.3061i) q^{64} +(86.3498 + 25.4790i) q^{65} +(-7.91614 - 21.7494i) q^{67} +(-66.0210 + 24.0297i) q^{68} +(18.1778 + 5.36368i) q^{70} +(-91.6966 - 52.9411i) q^{71} +(67.6524 - 39.0591i) q^{73} +(22.3973 + 26.6921i) q^{74} +(15.9661 - 90.5481i) q^{76} +(-28.3414 - 23.7813i) q^{77} +(64.5660 + 23.5001i) q^{79} +(-41.5550 - 20.6639i) q^{80} +41.8492i q^{82} +(71.0404 + 25.8566i) q^{83} +(41.1625 + 94.3950i) q^{85} +(-21.4353 - 3.77963i) q^{86} +(-27.3744 - 32.6235i) q^{88} +(-95.3491 + 55.0498i) q^{89} +(44.4765 - 77.0355i) q^{91} +(-7.80150 - 44.2445i) q^{92} +(-19.8455 + 7.22317i) q^{94} +(-133.916 - 15.1149i) q^{95} +(86.5584 - 15.2626i) q^{97} +(-9.43564 + 16.3430i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.721015 0.262428i −0.360507 0.131214i 0.155415 0.987849i \(-0.450328\pi\)
−0.515922 + 0.856635i \(0.672551\pi\)
\(3\) 0 0
\(4\) −2.61318 2.19272i −0.653296 0.548180i
\(5\) −2.96988 + 4.02242i −0.593975 + 0.804483i
\(6\) 0 0
\(7\) 3.17548 + 3.78438i 0.453639 + 0.540626i 0.943587 0.331126i \(-0.107428\pi\)
−0.489947 + 0.871752i \(0.662984\pi\)
\(8\) 2.84329 + 4.92472i 0.355411 + 0.615590i
\(9\) 0 0
\(10\) 3.19692 2.12084i 0.319692 0.212084i
\(11\) −7.37526 + 1.30046i −0.670479 + 0.118223i −0.498517 0.866880i \(-0.666122\pi\)
−0.171962 + 0.985104i \(0.555011\pi\)
\(12\) 0 0
\(13\) −6.15844 16.9202i −0.473726 1.30155i −0.914737 0.404050i \(-0.867602\pi\)
0.441011 0.897502i \(-0.354620\pi\)
\(14\) −1.29644 3.56193i −0.0926026 0.254424i
\(15\) 0 0
\(16\) 1.61177 + 9.14083i 0.100736 + 0.571302i
\(17\) 10.2979 17.8366i 0.605761 1.04921i −0.386169 0.922428i \(-0.626202\pi\)
0.991931 0.126781i \(-0.0404647\pi\)
\(18\) 0 0
\(19\) 13.4766 + 23.3422i 0.709297 + 1.22854i 0.965118 + 0.261815i \(0.0843209\pi\)
−0.255821 + 0.966724i \(0.582346\pi\)
\(20\) 16.5809 3.99920i 0.829044 0.199960i
\(21\) 0 0
\(22\) 5.65895 + 0.997825i 0.257225 + 0.0453557i
\(23\) 10.0889 + 8.46563i 0.438650 + 0.368071i 0.835204 0.549940i \(-0.185350\pi\)
−0.396554 + 0.918011i \(0.629794\pi\)
\(24\) 0 0
\(25\) −7.35967 23.8922i −0.294387 0.955686i
\(26\) 13.8158i 0.531378i
\(27\) 0 0
\(28\) 16.8522i 0.601865i
\(29\) 13.1765 36.2022i 0.454363 1.24835i −0.475262 0.879845i \(-0.657647\pi\)
0.929625 0.368508i \(-0.120131\pi\)
\(30\) 0 0
\(31\) −34.2162 28.7108i −1.10375 0.926156i −0.106078 0.994358i \(-0.533829\pi\)
−0.997672 + 0.0682022i \(0.978274\pi\)
\(32\) 5.18655 29.4144i 0.162080 0.919199i
\(33\) 0 0
\(34\) −12.1058 + 10.1580i −0.356052 + 0.298763i
\(35\) −24.6531 + 1.53393i −0.704375 + 0.0438266i
\(36\) 0 0
\(37\) −39.3279 22.7060i −1.06292 0.613675i −0.136678 0.990615i \(-0.543643\pi\)
−0.926237 + 0.376941i \(0.876976\pi\)
\(38\) −3.59121 20.3667i −0.0945054 0.535967i
\(39\) 0 0
\(40\) −28.2535 3.18892i −0.706337 0.0797229i
\(41\) −18.6544 51.2525i −0.454985 1.25006i −0.929176 0.369638i \(-0.879482\pi\)
0.474191 0.880422i \(-0.342741\pi\)
\(42\) 0 0
\(43\) 27.9365 4.92596i 0.649686 0.114557i 0.160913 0.986969i \(-0.448556\pi\)
0.488772 + 0.872411i \(0.337445\pi\)
\(44\) 22.1245 + 12.7736i 0.502829 + 0.290308i
\(45\) 0 0
\(46\) −5.05266 8.75146i −0.109840 0.190249i
\(47\) 21.0849 17.6923i 0.448615 0.376433i −0.390307 0.920685i \(-0.627631\pi\)
0.838922 + 0.544252i \(0.183187\pi\)
\(48\) 0 0
\(49\) 4.27084 24.2211i 0.0871600 0.494309i
\(50\) −0.963538 + 19.1580i −0.0192708 + 0.383160i
\(51\) 0 0
\(52\) −21.0081 + 57.7193i −0.404002 + 1.10999i
\(53\) 44.0339 0.830828 0.415414 0.909633i \(-0.363637\pi\)
0.415414 + 0.909633i \(0.363637\pi\)
\(54\) 0 0
\(55\) 16.6726 33.5286i 0.303139 0.609611i
\(56\) −9.60824 + 26.3984i −0.171576 + 0.471400i
\(57\) 0 0
\(58\) −19.0009 + 22.6444i −0.327602 + 0.390421i
\(59\) 15.0907 + 2.66091i 0.255775 + 0.0451001i 0.300065 0.953919i \(-0.402991\pi\)
−0.0442901 + 0.999019i \(0.514103\pi\)
\(60\) 0 0
\(61\) −44.3135 + 37.1834i −0.726451 + 0.609564i −0.929161 0.369674i \(-0.879469\pi\)
0.202711 + 0.979239i \(0.435025\pi\)
\(62\) 17.1359 + 29.6802i 0.276385 + 0.478713i
\(63\) 0 0
\(64\) 7.10495 12.3061i 0.111015 0.192283i
\(65\) 86.3498 + 25.4790i 1.32846 + 0.391985i
\(66\) 0 0
\(67\) −7.91614 21.7494i −0.118151 0.324618i 0.866493 0.499189i \(-0.166369\pi\)
−0.984645 + 0.174571i \(0.944146\pi\)
\(68\) −66.0210 + 24.0297i −0.970897 + 0.353378i
\(69\) 0 0
\(70\) 18.1778 + 5.36368i 0.259683 + 0.0766240i
\(71\) −91.6966 52.9411i −1.29150 0.745649i −0.312582 0.949891i \(-0.601194\pi\)
−0.978920 + 0.204242i \(0.934527\pi\)
\(72\) 0 0
\(73\) 67.6524 39.0591i 0.926745 0.535056i 0.0409643 0.999161i \(-0.486957\pi\)
0.885781 + 0.464104i \(0.153624\pi\)
\(74\) 22.3973 + 26.6921i 0.302666 + 0.360703i
\(75\) 0 0
\(76\) 15.9661 90.5481i 0.210080 1.19142i
\(77\) −28.3414 23.7813i −0.368070 0.308848i
\(78\) 0 0
\(79\) 64.5660 + 23.5001i 0.817291 + 0.297470i 0.716632 0.697451i \(-0.245683\pi\)
0.100659 + 0.994921i \(0.467905\pi\)
\(80\) −41.5550 20.6639i −0.519437 0.258299i
\(81\) 0 0
\(82\) 41.8492i 0.510356i
\(83\) 71.0404 + 25.8566i 0.855908 + 0.311525i 0.732447 0.680824i \(-0.238378\pi\)
0.123461 + 0.992349i \(0.460601\pi\)
\(84\) 0 0
\(85\) 41.1625 + 94.3950i 0.484264 + 1.11053i
\(86\) −21.4353 3.77963i −0.249248 0.0439491i
\(87\) 0 0
\(88\) −27.3744 32.6235i −0.311073 0.370722i
\(89\) −95.3491 + 55.0498i −1.07134 + 0.618538i −0.928547 0.371215i \(-0.878941\pi\)
−0.142792 + 0.989753i \(0.545608\pi\)
\(90\) 0 0
\(91\) 44.4765 77.0355i 0.488752 0.846544i
\(92\) −7.80150 44.2445i −0.0847989 0.480919i
\(93\) 0 0
\(94\) −19.8455 + 7.22317i −0.211122 + 0.0768422i
\(95\) −133.916 15.1149i −1.40964 0.159104i
\(96\) 0 0
\(97\) 86.5584 15.2626i 0.892355 0.157346i 0.291373 0.956609i \(-0.405888\pi\)
0.600981 + 0.799263i \(0.294777\pi\)
\(98\) −9.43564 + 16.3430i −0.0962820 + 0.166765i
\(99\) 0 0
\(100\) −33.1567 + 78.5723i −0.331567 + 0.785723i
\(101\) 55.4210 + 66.0482i 0.548723 + 0.653942i 0.967120 0.254322i \(-0.0818524\pi\)
−0.418397 + 0.908264i \(0.637408\pi\)
\(102\) 0 0
\(103\) 64.4706 + 11.3679i 0.625928 + 0.110368i 0.477611 0.878572i \(-0.341503\pi\)
0.148318 + 0.988940i \(0.452614\pi\)
\(104\) 65.8169 78.4375i 0.632854 0.754207i
\(105\) 0 0
\(106\) −31.7491 11.5557i −0.299519 0.109016i
\(107\) 17.0726 0.159557 0.0797785 0.996813i \(-0.474579\pi\)
0.0797785 + 0.996813i \(0.474579\pi\)
\(108\) 0 0
\(109\) 72.2226 0.662592 0.331296 0.943527i \(-0.392514\pi\)
0.331296 + 0.943527i \(0.392514\pi\)
\(110\) −20.8200 + 19.7992i −0.189273 + 0.179993i
\(111\) 0 0
\(112\) −29.4743 + 35.1261i −0.263163 + 0.313625i
\(113\) 3.89736 22.1030i 0.0344899 0.195602i −0.962694 0.270591i \(-0.912781\pi\)
0.997184 + 0.0749887i \(0.0238921\pi\)
\(114\) 0 0
\(115\) −64.0152 + 15.4401i −0.556654 + 0.134261i
\(116\) −113.814 + 65.7106i −0.981156 + 0.566471i
\(117\) 0 0
\(118\) −10.1824 5.87878i −0.0862911 0.0498202i
\(119\) 100.201 17.6682i 0.842027 0.148472i
\(120\) 0 0
\(121\) −60.9995 + 22.2020i −0.504128 + 0.183488i
\(122\) 41.7086 15.1807i 0.341874 0.124432i
\(123\) 0 0
\(124\) 26.4585 + 150.053i 0.213375 + 1.21011i
\(125\) 117.962 + 41.3531i 0.943692 + 0.330825i
\(126\) 0 0
\(127\) −47.3382 + 27.3308i −0.372742 + 0.215203i −0.674656 0.738133i \(-0.735708\pi\)
0.301914 + 0.953335i \(0.402375\pi\)
\(128\) −99.8735 + 83.8039i −0.780262 + 0.654718i
\(129\) 0 0
\(130\) −55.5730 41.0313i −0.427485 0.315625i
\(131\) −26.7119 + 31.8340i −0.203908 + 0.243008i −0.858301 0.513147i \(-0.828480\pi\)
0.654393 + 0.756154i \(0.272924\pi\)
\(132\) 0 0
\(133\) −45.5412 + 125.124i −0.342415 + 0.940778i
\(134\) 17.7591i 0.132530i
\(135\) 0 0
\(136\) 117.120 0.861177
\(137\) −134.025 48.7812i −0.978286 0.356067i −0.197112 0.980381i \(-0.563156\pi\)
−0.781173 + 0.624314i \(0.785379\pi\)
\(138\) 0 0
\(139\) −143.525 120.432i −1.03256 0.866418i −0.0414040 0.999142i \(-0.513183\pi\)
−0.991153 + 0.132724i \(0.957628\pi\)
\(140\) 67.7867 + 50.0490i 0.484191 + 0.357493i
\(141\) 0 0
\(142\) 52.2214 + 62.2350i 0.367756 + 0.438275i
\(143\) 67.4241 + 116.782i 0.471497 + 0.816657i
\(144\) 0 0
\(145\) 106.488 + 160.518i 0.734398 + 1.10702i
\(146\) −59.0285 + 10.4083i −0.404305 + 0.0712899i
\(147\) 0 0
\(148\) 52.9831 + 145.570i 0.357994 + 0.983581i
\(149\) −7.98047 21.9262i −0.0535602 0.147155i 0.910028 0.414548i \(-0.136060\pi\)
−0.963588 + 0.267392i \(0.913838\pi\)
\(150\) 0 0
\(151\) −40.1381 227.635i −0.265815 1.50751i −0.766703 0.642002i \(-0.778104\pi\)
0.500888 0.865512i \(-0.333007\pi\)
\(152\) −76.6360 + 132.737i −0.504184 + 0.873272i
\(153\) 0 0
\(154\) 14.1937 + 24.5842i 0.0921669 + 0.159638i
\(155\) 217.105 52.3643i 1.40068 0.337834i
\(156\) 0 0
\(157\) 8.04210 + 1.41804i 0.0512236 + 0.00903209i 0.199201 0.979959i \(-0.436165\pi\)
−0.147978 + 0.988991i \(0.547276\pi\)
\(158\) −40.3860 33.8878i −0.255607 0.214480i
\(159\) 0 0
\(160\) 102.913 + 108.220i 0.643209 + 0.676372i
\(161\) 65.0629i 0.404117i
\(162\) 0 0
\(163\) 43.1204i 0.264542i −0.991214 0.132271i \(-0.957773\pi\)
0.991214 0.132271i \(-0.0422269\pi\)
\(164\) −63.6351 + 174.836i −0.388019 + 1.06607i
\(165\) 0 0
\(166\) −44.4356 37.2859i −0.267685 0.224614i
\(167\) −27.8841 + 158.139i −0.166971 + 0.946937i 0.780039 + 0.625731i \(0.215199\pi\)
−0.947009 + 0.321206i \(0.895912\pi\)
\(168\) 0 0
\(169\) −118.904 + 99.7725i −0.703575 + 0.590370i
\(170\) −4.90686 78.8623i −0.0288639 0.463896i
\(171\) 0 0
\(172\) −83.8044 48.3845i −0.487235 0.281305i
\(173\) −19.1710 108.724i −0.110815 0.628462i −0.988738 0.149660i \(-0.952182\pi\)
0.877923 0.478802i \(-0.158929\pi\)
\(174\) 0 0
\(175\) 67.0467 103.721i 0.383124 0.592690i
\(176\) −23.7745 65.3200i −0.135083 0.371136i
\(177\) 0 0
\(178\) 83.1947 14.6695i 0.467386 0.0824128i
\(179\) 173.652 + 100.258i 0.970122 + 0.560100i 0.899273 0.437387i \(-0.144096\pi\)
0.0708485 + 0.997487i \(0.477429\pi\)
\(180\) 0 0
\(181\) −45.7267 79.2010i −0.252634 0.437575i 0.711616 0.702568i \(-0.247963\pi\)
−0.964250 + 0.264994i \(0.914630\pi\)
\(182\) −52.2844 + 43.8718i −0.287277 + 0.241054i
\(183\) 0 0
\(184\) −13.0051 + 73.7555i −0.0706798 + 0.400845i
\(185\) 208.132 90.7592i 1.12504 0.490590i
\(186\) 0 0
\(187\) −52.7543 + 144.941i −0.282109 + 0.775088i
\(188\) −93.8932 −0.499432
\(189\) 0 0
\(190\) 92.5890 + 46.0414i 0.487310 + 0.242323i
\(191\) 74.8263 205.584i 0.391761 1.07635i −0.574436 0.818549i \(-0.694779\pi\)
0.966197 0.257804i \(-0.0829990\pi\)
\(192\) 0 0
\(193\) −124.937 + 148.894i −0.647341 + 0.771471i −0.985510 0.169614i \(-0.945748\pi\)
0.338170 + 0.941085i \(0.390192\pi\)
\(194\) −66.4152 11.7108i −0.342346 0.0603649i
\(195\) 0 0
\(196\) −64.2707 + 53.9295i −0.327912 + 0.275151i
\(197\) 55.9942 + 96.9847i 0.284234 + 0.492308i 0.972423 0.233223i \(-0.0749273\pi\)
−0.688189 + 0.725532i \(0.741594\pi\)
\(198\) 0 0
\(199\) 11.4037 19.7519i 0.0573053 0.0992556i −0.835950 0.548806i \(-0.815083\pi\)
0.893255 + 0.449551i \(0.148416\pi\)
\(200\) 96.7365 104.177i 0.483683 0.520883i
\(201\) 0 0
\(202\) −22.6265 62.1657i −0.112012 0.307751i
\(203\) 178.845 65.0942i 0.881009 0.320661i
\(204\) 0 0
\(205\) 261.560 + 77.1778i 1.27590 + 0.376477i
\(206\) −43.5010 25.1153i −0.211170 0.121919i
\(207\) 0 0
\(208\) 144.738 83.5647i 0.695857 0.401753i
\(209\) −129.749 154.629i −0.620811 0.739853i
\(210\) 0 0
\(211\) 22.0191 124.877i 0.104356 0.591833i −0.887119 0.461540i \(-0.847297\pi\)
0.991476 0.130293i \(-0.0415918\pi\)
\(212\) −115.069 96.5540i −0.542777 0.455444i
\(213\) 0 0
\(214\) −12.3096 4.48033i −0.0575215 0.0209361i
\(215\) −63.1537 + 127.002i −0.293738 + 0.590705i
\(216\) 0 0
\(217\) 220.658i 1.01686i
\(218\) −52.0735 18.9532i −0.238869 0.0869413i
\(219\) 0 0
\(220\) −117.088 + 51.0579i −0.532216 + 0.232081i
\(221\) −365.217 64.3976i −1.65256 0.291392i
\(222\) 0 0
\(223\) −265.212 316.068i −1.18929 1.41734i −0.885521 0.464600i \(-0.846198\pi\)
−0.303773 0.952744i \(-0.598246\pi\)
\(224\) 127.785 73.7767i 0.570469 0.329360i
\(225\) 0 0
\(226\) −8.61051 + 14.9138i −0.0380996 + 0.0659904i
\(227\) 18.5556 + 105.234i 0.0817428 + 0.463586i 0.998012 + 0.0630234i \(0.0200743\pi\)
−0.916269 + 0.400563i \(0.868815\pi\)
\(228\) 0 0
\(229\) 130.547 47.5153i 0.570076 0.207491i −0.0408682 0.999165i \(-0.513012\pi\)
0.610944 + 0.791674i \(0.290790\pi\)
\(230\) 50.2078 + 5.66686i 0.218295 + 0.0246385i
\(231\) 0 0
\(232\) 215.750 38.0426i 0.929959 0.163977i
\(233\) 53.0900 91.9546i 0.227854 0.394655i −0.729318 0.684175i \(-0.760162\pi\)
0.957172 + 0.289520i \(0.0934957\pi\)
\(234\) 0 0
\(235\) 8.54639 + 137.356i 0.0363676 + 0.584495i
\(236\) −33.6003 40.0433i −0.142374 0.169675i
\(237\) 0 0
\(238\) −76.8832 13.5566i −0.323039 0.0569604i
\(239\) −162.764 + 193.975i −0.681023 + 0.811611i −0.990239 0.139381i \(-0.955489\pi\)
0.309216 + 0.950992i \(0.399933\pi\)
\(240\) 0 0
\(241\) 3.56022 + 1.29581i 0.0147727 + 0.00537682i 0.349396 0.936975i \(-0.386387\pi\)
−0.334623 + 0.942352i \(0.608609\pi\)
\(242\) 49.8079 0.205818
\(243\) 0 0
\(244\) 197.332 0.808739
\(245\) 84.7436 + 89.1129i 0.345892 + 0.363726i
\(246\) 0 0
\(247\) 311.960 371.779i 1.26299 1.50518i
\(248\) 44.1062 250.138i 0.177847 1.00862i
\(249\) 0 0
\(250\) −74.1998 60.7726i −0.296799 0.243090i
\(251\) −155.039 + 89.5116i −0.617684 + 0.356620i −0.775967 0.630774i \(-0.782738\pi\)
0.158283 + 0.987394i \(0.449404\pi\)
\(252\) 0 0
\(253\) −85.4179 49.3160i −0.337620 0.194925i
\(254\) 41.3039 7.28299i 0.162614 0.0286732i
\(255\) 0 0
\(256\) 40.5910 14.7739i 0.158558 0.0577106i
\(257\) 151.112 55.0003i 0.587985 0.214009i −0.0308578 0.999524i \(-0.509824\pi\)
0.618843 + 0.785515i \(0.287602\pi\)
\(258\) 0 0
\(259\) −38.9566 220.934i −0.150412 0.853027i
\(260\) −169.779 255.922i −0.652998 0.984317i
\(261\) 0 0
\(262\) 27.6138 15.9428i 0.105396 0.0608505i
\(263\) −131.661 + 110.477i −0.500613 + 0.420064i −0.857811 0.513965i \(-0.828176\pi\)
0.357199 + 0.934028i \(0.383732\pi\)
\(264\) 0 0
\(265\) −130.775 + 177.123i −0.493491 + 0.668387i
\(266\) 65.6718 78.2646i 0.246886 0.294228i
\(267\) 0 0
\(268\) −27.0041 + 74.1931i −0.100761 + 0.276840i
\(269\) 352.895i 1.31188i −0.754814 0.655939i \(-0.772273\pi\)
0.754814 0.655939i \(-0.227727\pi\)
\(270\) 0 0
\(271\) −477.336 −1.76139 −0.880693 0.473687i \(-0.842923\pi\)
−0.880693 + 0.473687i \(0.842923\pi\)
\(272\) 179.639 + 65.3832i 0.660437 + 0.240379i
\(273\) 0 0
\(274\) 83.8325 + 70.3438i 0.305958 + 0.256729i
\(275\) 85.3503 + 166.640i 0.310365 + 0.605964i
\(276\) 0 0
\(277\) −293.699 350.017i −1.06028 1.26360i −0.963333 0.268309i \(-0.913535\pi\)
−0.0969521 0.995289i \(-0.530909\pi\)
\(278\) 71.8792 + 124.498i 0.258558 + 0.447836i
\(279\) 0 0
\(280\) −77.6502 117.048i −0.277322 0.418030i
\(281\) −409.029 + 72.1229i −1.45562 + 0.256665i −0.844791 0.535097i \(-0.820275\pi\)
−0.610830 + 0.791762i \(0.709164\pi\)
\(282\) 0 0
\(283\) 71.4696 + 196.361i 0.252543 + 0.693856i 0.999577 + 0.0290706i \(0.00925476\pi\)
−0.747034 + 0.664785i \(0.768523\pi\)
\(284\) 123.535 + 339.410i 0.434983 + 1.19511i
\(285\) 0 0
\(286\) −17.9669 101.895i −0.0628214 0.356278i
\(287\) 134.723 233.346i 0.469416 0.813053i
\(288\) 0 0
\(289\) −67.5952 117.078i −0.233893 0.405115i
\(290\) −34.6549 143.681i −0.119500 0.495451i
\(291\) 0 0
\(292\) −262.434 46.2742i −0.898746 0.158473i
\(293\) −115.593 96.9943i −0.394516 0.331038i 0.423853 0.905731i \(-0.360677\pi\)
−0.818369 + 0.574692i \(0.805122\pi\)
\(294\) 0 0
\(295\) −55.5209 + 52.7987i −0.188207 + 0.178979i
\(296\) 258.238i 0.872427i
\(297\) 0 0
\(298\) 17.9034i 0.0600784i
\(299\) 81.1078 222.842i 0.271263 0.745290i
\(300\) 0 0
\(301\) 107.353 + 90.0802i 0.356656 + 0.299270i
\(302\) −30.7975 + 174.661i −0.101978 + 0.578348i
\(303\) 0 0
\(304\) −191.646 + 160.810i −0.630415 + 0.528981i
\(305\) −17.9617 288.677i −0.0588907 0.946483i
\(306\) 0 0
\(307\) 302.653 + 174.737i 0.985842 + 0.569176i 0.904029 0.427472i \(-0.140596\pi\)
0.0818129 + 0.996648i \(0.473929\pi\)
\(308\) 21.9156 + 124.290i 0.0711546 + 0.403538i
\(309\) 0 0
\(310\) −170.278 19.2189i −0.549283 0.0619965i
\(311\) 7.30453 + 20.0690i 0.0234872 + 0.0645306i 0.950882 0.309553i \(-0.100179\pi\)
−0.927395 + 0.374084i \(0.877957\pi\)
\(312\) 0 0
\(313\) −383.992 + 67.7082i −1.22681 + 0.216320i −0.749256 0.662281i \(-0.769589\pi\)
−0.477557 + 0.878601i \(0.658477\pi\)
\(314\) −5.42634 3.13290i −0.0172813 0.00997738i
\(315\) 0 0
\(316\) −117.194 202.985i −0.370866 0.642359i
\(317\) 209.280 175.607i 0.660190 0.553965i −0.249954 0.968258i \(-0.580415\pi\)
0.910144 + 0.414293i \(0.135971\pi\)
\(318\) 0 0
\(319\) −50.1009 + 284.136i −0.157056 + 0.890710i
\(320\) 28.3996 + 65.1268i 0.0887487 + 0.203521i
\(321\) 0 0
\(322\) 17.0743 46.9113i 0.0530258 0.145687i
\(323\) 555.127 1.71866
\(324\) 0 0
\(325\) −358.935 + 271.665i −1.10442 + 0.835893i
\(326\) −11.3160 + 31.0904i −0.0347116 + 0.0953693i
\(327\) 0 0
\(328\) 199.364 237.593i 0.607818 0.724369i
\(329\) 133.909 + 23.6118i 0.407019 + 0.0717684i
\(330\) 0 0
\(331\) 231.258 194.049i 0.698665 0.586249i −0.222729 0.974880i \(-0.571496\pi\)
0.921393 + 0.388631i \(0.127052\pi\)
\(332\) −128.945 223.340i −0.388389 0.672710i
\(333\) 0 0
\(334\) 61.6048 106.703i 0.184445 0.319469i
\(335\) 110.995 + 32.7510i 0.331329 + 0.0977643i
\(336\) 0 0
\(337\) 52.9227 + 145.404i 0.157041 + 0.431466i 0.993114 0.117152i \(-0.0373764\pi\)
−0.836073 + 0.548618i \(0.815154\pi\)
\(338\) 111.915 40.7336i 0.331109 0.120514i
\(339\) 0 0
\(340\) 99.4169 336.929i 0.292403 0.990968i
\(341\) 289.691 + 167.253i 0.849534 + 0.490478i
\(342\) 0 0
\(343\) 314.861 181.785i 0.917962 0.529986i
\(344\) 103.690 + 123.573i 0.301426 + 0.359225i
\(345\) 0 0
\(346\) −14.7096 + 83.4225i −0.0425134 + 0.241106i
\(347\) 164.299 + 137.863i 0.473483 + 0.397300i 0.848063 0.529895i \(-0.177769\pi\)
−0.374580 + 0.927195i \(0.622213\pi\)
\(348\) 0 0
\(349\) 370.917 + 135.003i 1.06280 + 0.386827i 0.813479 0.581594i \(-0.197571\pi\)
0.249320 + 0.968421i \(0.419793\pi\)
\(350\) −75.5608 + 57.1893i −0.215888 + 0.163398i
\(351\) 0 0
\(352\) 223.684i 0.635465i
\(353\) −628.739 228.842i −1.78113 0.648278i −0.999705 0.0242794i \(-0.992271\pi\)
−0.781425 0.623999i \(-0.785507\pi\)
\(354\) 0 0
\(355\) 485.279 211.614i 1.36698 0.596095i
\(356\) 369.874 + 65.2187i 1.03897 + 0.183199i
\(357\) 0 0
\(358\) −98.8950 117.858i −0.276243 0.329214i
\(359\) 212.551 122.716i 0.592064 0.341828i −0.173849 0.984772i \(-0.555620\pi\)
0.765913 + 0.642944i \(0.222287\pi\)
\(360\) 0 0
\(361\) −182.740 + 316.515i −0.506205 + 0.876773i
\(362\) 12.1851 + 69.1050i 0.0336604 + 0.190898i
\(363\) 0 0
\(364\) −285.143 + 103.783i −0.783359 + 0.285119i
\(365\) −43.8071 + 388.127i −0.120020 + 1.06336i
\(366\) 0 0
\(367\) 458.235 80.7991i 1.24860 0.220161i 0.490000 0.871723i \(-0.336997\pi\)
0.758596 + 0.651561i \(0.225886\pi\)
\(368\) −61.1218 + 105.866i −0.166092 + 0.287679i
\(369\) 0 0
\(370\) −173.884 + 10.8191i −0.469956 + 0.0292409i
\(371\) 139.828 + 166.641i 0.376896 + 0.449167i
\(372\) 0 0
\(373\) 516.884 + 91.1405i 1.38575 + 0.244345i 0.816274 0.577665i \(-0.196036\pi\)
0.569473 + 0.822010i \(0.307147\pi\)
\(374\) 76.0733 90.6606i 0.203405 0.242408i
\(375\) 0 0
\(376\) 147.080 + 53.5328i 0.391171 + 0.142375i
\(377\) −693.694 −1.84004
\(378\) 0 0
\(379\) −368.487 −0.972262 −0.486131 0.873886i \(-0.661592\pi\)
−0.486131 + 0.873886i \(0.661592\pi\)
\(380\) 316.805 + 333.139i 0.833697 + 0.876681i
\(381\) 0 0
\(382\) −107.902 + 128.592i −0.282465 + 0.336629i
\(383\) 102.899 583.571i 0.268667 1.52368i −0.489720 0.871880i \(-0.662901\pi\)
0.758387 0.651805i \(-0.225988\pi\)
\(384\) 0 0
\(385\) 179.829 43.3735i 0.467087 0.112659i
\(386\) 129.155 74.5677i 0.334599 0.193181i
\(387\) 0 0
\(388\) −259.660 149.915i −0.669226 0.386378i
\(389\) −319.283 + 56.2982i −0.820778 + 0.144725i −0.568241 0.822862i \(-0.692376\pi\)
−0.252537 + 0.967587i \(0.581265\pi\)
\(390\) 0 0
\(391\) 254.893 92.7735i 0.651901 0.237272i
\(392\) 131.426 47.8350i 0.335269 0.122028i
\(393\) 0 0
\(394\) −14.9211 84.6218i −0.0378708 0.214776i
\(395\) −286.280 + 189.919i −0.724760 + 0.480808i
\(396\) 0 0
\(397\) −652.770 + 376.877i −1.64426 + 0.949313i −0.664962 + 0.746877i \(0.731552\pi\)
−0.979296 + 0.202436i \(0.935114\pi\)
\(398\) −13.4057 + 11.2487i −0.0336827 + 0.0282631i
\(399\) 0 0
\(400\) 206.532 105.782i 0.516330 0.264456i
\(401\) −197.570 + 235.455i −0.492693 + 0.587168i −0.953900 0.300124i \(-0.902972\pi\)
0.461207 + 0.887292i \(0.347416\pi\)
\(402\) 0 0
\(403\) −275.073 + 755.758i −0.682564 + 1.87533i
\(404\) 294.119i 0.728017i
\(405\) 0 0
\(406\) −146.032 −0.359685
\(407\) 319.582 + 116.318i 0.785213 + 0.285794i
\(408\) 0 0
\(409\) 379.249 + 318.228i 0.927260 + 0.778064i 0.975324 0.220781i \(-0.0708605\pi\)
−0.0480632 + 0.998844i \(0.515305\pi\)
\(410\) −168.335 124.287i −0.410573 0.303139i
\(411\) 0 0
\(412\) −143.547 171.073i −0.348415 0.415225i
\(413\) 37.8504 + 65.5588i 0.0916475 + 0.158738i
\(414\) 0 0
\(415\) −314.987 + 208.963i −0.759005 + 0.503526i
\(416\) −529.637 + 93.3893i −1.27317 + 0.224494i
\(417\) 0 0
\(418\) 52.9722 + 145.540i 0.126728 + 0.348182i
\(419\) −94.5066 259.655i −0.225553 0.619701i 0.774362 0.632743i \(-0.218071\pi\)
−0.999915 + 0.0130416i \(0.995849\pi\)
\(420\) 0 0
\(421\) −74.2093 420.862i −0.176269 0.999672i −0.936669 0.350217i \(-0.886108\pi\)
0.760400 0.649455i \(-0.225003\pi\)
\(422\) −48.6473 + 84.2595i −0.115278 + 0.199667i
\(423\) 0 0
\(424\) 125.201 + 216.854i 0.295285 + 0.511449i
\(425\) −501.943 114.769i −1.18104 0.270044i
\(426\) 0 0
\(427\) −281.433 49.6242i −0.659093 0.116216i
\(428\) −44.6139 37.4355i −0.104238 0.0874661i
\(429\) 0 0
\(430\) 78.8635 74.9968i 0.183403 0.174411i
\(431\) 243.191i 0.564247i 0.959378 + 0.282124i \(0.0910389\pi\)
−0.959378 + 0.282124i \(0.908961\pi\)
\(432\) 0 0
\(433\) 279.518i 0.645539i −0.946478 0.322769i \(-0.895386\pi\)
0.946478 0.322769i \(-0.104614\pi\)
\(434\) −57.9068 + 159.098i −0.133426 + 0.366584i
\(435\) 0 0
\(436\) −188.731 158.364i −0.432869 0.363220i
\(437\) −61.6416 + 349.587i −0.141056 + 0.799970i
\(438\) 0 0
\(439\) 420.534 352.870i 0.957937 0.803805i −0.0226791 0.999743i \(-0.507220\pi\)
0.980616 + 0.195938i \(0.0627752\pi\)
\(440\) 212.524 13.2234i 0.483009 0.0300531i
\(441\) 0 0
\(442\) 246.427 + 142.275i 0.557527 + 0.321888i
\(443\) 117.125 + 664.248i 0.264390 + 1.49943i 0.770766 + 0.637119i \(0.219874\pi\)
−0.506376 + 0.862313i \(0.669015\pi\)
\(444\) 0 0
\(445\) 61.7417 547.025i 0.138745 1.22927i
\(446\) 108.277 + 297.489i 0.242774 + 0.667015i
\(447\) 0 0
\(448\) 69.1328 12.1900i 0.154314 0.0272098i
\(449\) 277.596 + 160.270i 0.618255 + 0.356950i 0.776189 0.630500i \(-0.217150\pi\)
−0.157934 + 0.987450i \(0.550483\pi\)
\(450\) 0 0
\(451\) 204.233 + 353.741i 0.452844 + 0.784349i
\(452\) −58.6503 + 49.2135i −0.129757 + 0.108879i
\(453\) 0 0
\(454\) 14.2375 80.7448i 0.0313601 0.177852i
\(455\) 177.779 + 407.689i 0.390724 + 0.896019i
\(456\) 0 0
\(457\) −187.236 + 514.427i −0.409707 + 1.12566i 0.547638 + 0.836715i \(0.315527\pi\)
−0.957345 + 0.288946i \(0.906695\pi\)
\(458\) −106.596 −0.232742
\(459\) 0 0
\(460\) 201.139 + 100.020i 0.437259 + 0.217434i
\(461\) 147.291 404.678i 0.319503 0.877826i −0.671138 0.741332i \(-0.734194\pi\)
0.990641 0.136494i \(-0.0435835\pi\)
\(462\) 0 0
\(463\) −198.499 + 236.562i −0.428724 + 0.510933i −0.936554 0.350524i \(-0.886003\pi\)
0.507830 + 0.861457i \(0.330448\pi\)
\(464\) 352.156 + 62.0946i 0.758957 + 0.133825i
\(465\) 0 0
\(466\) −62.4101 + 52.3683i −0.133927 + 0.112378i
\(467\) −372.274 644.797i −0.797161 1.38072i −0.921458 0.388478i \(-0.873001\pi\)
0.124298 0.992245i \(-0.460332\pi\)
\(468\) 0 0
\(469\) 57.1706 99.0224i 0.121899 0.211135i
\(470\) 29.8841 101.279i 0.0635831 0.215487i
\(471\) 0 0
\(472\) 29.8031 + 81.8834i 0.0631422 + 0.173482i
\(473\) −199.633 + 72.6605i −0.422057 + 0.153616i
\(474\) 0 0
\(475\) 458.513 493.777i 0.965290 1.03953i
\(476\) −300.586 173.543i −0.631483 0.364587i
\(477\) 0 0
\(478\) 168.260 97.1449i 0.352008 0.203232i
\(479\) −419.779 500.273i −0.876365 1.04441i −0.998651 0.0519167i \(-0.983467\pi\)
0.122286 0.992495i \(-0.460977\pi\)
\(480\) 0 0
\(481\) −141.990 + 805.268i −0.295198 + 1.67415i
\(482\) −2.22691 1.86860i −0.00462015 0.00387677i
\(483\) 0 0
\(484\) 208.086 + 75.7370i 0.429929 + 0.156481i
\(485\) −195.675 + 393.502i −0.403454 + 0.811344i
\(486\) 0 0
\(487\) 645.774i 1.32603i 0.748608 + 0.663013i \(0.230722\pi\)
−0.748608 + 0.663013i \(0.769278\pi\)
\(488\) −309.114 112.508i −0.633430 0.230550i
\(489\) 0 0
\(490\) −37.7157 86.4908i −0.0769708 0.176512i
\(491\) 293.377 + 51.7303i 0.597509 + 0.105357i 0.464219 0.885720i \(-0.346335\pi\)
0.133289 + 0.991077i \(0.457446\pi\)
\(492\) 0 0
\(493\) −510.032 607.832i −1.03455 1.23293i
\(494\) −322.492 + 186.191i −0.652819 + 0.376905i
\(495\) 0 0
\(496\) 207.292 359.040i 0.417927 0.723871i
\(497\) −90.8310 515.128i −0.182759 1.03648i
\(498\) 0 0
\(499\) 24.0172 8.74156i 0.0481307 0.0175182i −0.317843 0.948143i \(-0.602958\pi\)
0.365973 + 0.930625i \(0.380736\pi\)
\(500\) −217.579 366.720i −0.435159 0.733440i
\(501\) 0 0
\(502\) 135.275 23.8527i 0.269473 0.0475154i
\(503\) −186.800 + 323.547i −0.371372 + 0.643234i −0.989777 0.142625i \(-0.954446\pi\)
0.618405 + 0.785859i \(0.287779\pi\)
\(504\) 0 0
\(505\) −430.267 + 26.7714i −0.852013 + 0.0530127i
\(506\) 48.6456 + 57.9736i 0.0961376 + 0.114572i
\(507\) 0 0
\(508\) 183.632 + 32.3793i 0.361481 + 0.0637388i
\(509\) −472.660 + 563.294i −0.928605 + 1.10667i 0.0654568 + 0.997855i \(0.479150\pi\)
−0.994062 + 0.108813i \(0.965295\pi\)
\(510\) 0 0
\(511\) 362.643 + 131.991i 0.709674 + 0.258300i
\(512\) 488.359 0.953826
\(513\) 0 0
\(514\) −123.388 −0.240054
\(515\) −237.196 + 225.566i −0.460575 + 0.437993i
\(516\) 0 0
\(517\) −132.499 + 157.906i −0.256284 + 0.305427i
\(518\) −29.8909 + 169.520i −0.0577045 + 0.327259i
\(519\) 0 0
\(520\) 120.040 + 497.692i 0.230847 + 0.957101i
\(521\) 817.489 471.978i 1.56908 0.905907i 0.572800 0.819695i \(-0.305857\pi\)
0.996277 0.0862122i \(-0.0274763\pi\)
\(522\) 0 0
\(523\) 433.608 + 250.343i 0.829077 + 0.478668i 0.853537 0.521033i \(-0.174453\pi\)
−0.0244592 + 0.999701i \(0.507786\pi\)
\(524\) 139.606 24.6163i 0.266424 0.0469777i
\(525\) 0 0
\(526\) 123.922 45.1038i 0.235593 0.0857487i
\(527\) −864.459 + 314.637i −1.64034 + 0.597035i
\(528\) 0 0
\(529\) −61.7400 350.145i −0.116711 0.661899i
\(530\) 140.773 93.3889i 0.265609 0.176205i
\(531\) 0 0
\(532\) 393.369 227.112i 0.739415 0.426901i
\(533\) −752.319 + 631.270i −1.41148 + 1.18437i
\(534\) 0 0
\(535\) −50.7035 + 68.6731i −0.0947729 + 0.128361i
\(536\) 84.6019 100.825i 0.157839 0.188106i
\(537\) 0 0
\(538\) −92.6095 + 254.443i −0.172137 + 0.472942i
\(539\) 184.191i 0.341728i
\(540\) 0 0
\(541\) 788.754 1.45796 0.728978 0.684538i \(-0.239996\pi\)
0.728978 + 0.684538i \(0.239996\pi\)
\(542\) 344.166 + 125.266i 0.634993 + 0.231118i
\(543\) 0 0
\(544\) −471.240 395.418i −0.866251 0.726871i
\(545\) −214.492 + 290.509i −0.393564 + 0.533045i
\(546\) 0 0
\(547\) 161.404 + 192.354i 0.295071 + 0.351652i 0.893129 0.449801i \(-0.148505\pi\)
−0.598058 + 0.801453i \(0.704061\pi\)
\(548\) 243.269 + 421.354i 0.443921 + 0.768894i
\(549\) 0 0
\(550\) −17.8078 142.548i −0.0323778 0.259178i
\(551\) 1022.62 180.315i 1.85593 0.327250i
\(552\) 0 0
\(553\) 116.094 + 318.967i 0.209936 + 0.576793i
\(554\) 119.907 + 329.442i 0.216439 + 0.594660i
\(555\) 0 0
\(556\) 110.984 + 629.423i 0.199612 + 1.13206i
\(557\) 250.586 434.027i 0.449884 0.779223i −0.548494 0.836155i \(-0.684798\pi\)
0.998378 + 0.0569320i \(0.0181318\pi\)
\(558\) 0 0
\(559\) −255.393 442.354i −0.456875 0.791331i
\(560\) −53.7567 222.878i −0.0959941 0.397996i
\(561\) 0 0
\(562\) 313.843 + 55.3390i 0.558440 + 0.0984680i
\(563\) −73.5000 61.6738i −0.130551 0.109545i 0.575174 0.818031i \(-0.304934\pi\)
−0.705725 + 0.708486i \(0.749379\pi\)
\(564\) 0 0
\(565\) 77.3329 + 81.3201i 0.136872 + 0.143929i
\(566\) 160.335i 0.283277i
\(567\) 0 0
\(568\) 602.107i 1.06005i
\(569\) −65.3089 + 179.435i −0.114778 + 0.315351i −0.983759 0.179496i \(-0.942553\pi\)
0.868980 + 0.494846i \(0.164776\pi\)
\(570\) 0 0
\(571\) 490.869 + 411.888i 0.859666 + 0.721345i 0.961896 0.273415i \(-0.0881534\pi\)
−0.102230 + 0.994761i \(0.532598\pi\)
\(572\) 79.8788 453.015i 0.139648 0.791984i
\(573\) 0 0
\(574\) −158.373 + 132.891i −0.275912 + 0.231518i
\(575\) 128.011 303.351i 0.222628 0.527567i
\(576\) 0 0
\(577\) −101.569 58.6408i −0.176029 0.101630i 0.409397 0.912357i \(-0.365739\pi\)
−0.585426 + 0.810726i \(0.699073\pi\)
\(578\) 18.0125 + 102.154i 0.0311635 + 0.176737i
\(579\) 0 0
\(580\) 73.6984 652.960i 0.127066 1.12579i
\(581\) 127.736 + 350.951i 0.219855 + 0.604046i
\(582\) 0 0
\(583\) −324.761 + 57.2642i −0.557052 + 0.0982233i
\(584\) 384.710 + 222.113i 0.658751 + 0.380330i
\(585\) 0 0
\(586\) 57.8904 + 100.269i 0.0987891 + 0.171108i
\(587\) 177.386 148.845i 0.302191 0.253569i −0.479064 0.877780i \(-0.659024\pi\)
0.781256 + 0.624211i \(0.214580\pi\)
\(588\) 0 0
\(589\) 209.055 1185.61i 0.354932 2.01292i
\(590\) 53.8872 23.4984i 0.0913343 0.0398278i
\(591\) 0 0
\(592\) 144.164 396.086i 0.243520 0.669065i
\(593\) 557.117 0.939489 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(594\) 0 0
\(595\) −226.517 + 455.523i −0.380700 + 0.765586i
\(596\) −27.2235 + 74.7960i −0.0456771 + 0.125497i
\(597\) 0 0
\(598\) −116.960 + 139.387i −0.195585 + 0.233089i
\(599\) −459.818 81.0783i −0.767642 0.135356i −0.223904 0.974611i \(-0.571880\pi\)
−0.543738 + 0.839255i \(0.682991\pi\)
\(600\) 0 0
\(601\) −568.779 + 477.262i −0.946387 + 0.794113i −0.978685 0.205365i \(-0.934162\pi\)
0.0322984 + 0.999478i \(0.489717\pi\)
\(602\) −53.7638 93.1216i −0.0893086 0.154687i
\(603\) 0 0
\(604\) −394.251 + 682.863i −0.652734 + 1.13057i
\(605\) 91.8552 311.302i 0.151827 0.514550i
\(606\) 0 0
\(607\) −61.7933 169.776i −0.101801 0.279696i 0.878327 0.478060i \(-0.158660\pi\)
−0.980129 + 0.198363i \(0.936437\pi\)
\(608\) 756.495 275.342i 1.24423 0.452864i
\(609\) 0 0
\(610\) −62.8064 + 212.854i −0.102961 + 0.348941i
\(611\) −429.208 247.803i −0.702467 0.405570i
\(612\) 0 0
\(613\) −259.241 + 149.673i −0.422905 + 0.244164i −0.696319 0.717732i \(-0.745180\pi\)
0.273414 + 0.961896i \(0.411847\pi\)
\(614\) −172.362 205.413i −0.280719 0.334548i
\(615\) 0 0
\(616\) 36.5333 207.190i 0.0593072 0.336348i
\(617\) 422.548 + 354.560i 0.684842 + 0.574651i 0.917417 0.397928i \(-0.130271\pi\)
−0.232575 + 0.972579i \(0.574715\pi\)
\(618\) 0 0
\(619\) −872.582 317.594i −1.40966 0.513076i −0.478633 0.878015i \(-0.658867\pi\)
−0.931031 + 0.364940i \(0.881090\pi\)
\(620\) −682.155 339.213i −1.10025 0.547118i
\(621\) 0 0
\(622\) 16.3870i 0.0263456i
\(623\) −511.109 186.028i −0.820399 0.298601i
\(624\) 0 0
\(625\) −516.671 + 351.677i −0.826673 + 0.562683i
\(626\) 294.632 + 51.9516i 0.470659 + 0.0829899i
\(627\) 0 0
\(628\) −17.9061 21.3397i −0.0285129 0.0339804i
\(629\) −809.992 + 467.649i −1.28775 + 0.743481i
\(630\) 0 0
\(631\) −144.104 + 249.596i −0.228374 + 0.395556i −0.957326 0.289009i \(-0.906674\pi\)
0.728952 + 0.684565i \(0.240008\pi\)
\(632\) 67.8483 + 384.787i 0.107355 + 0.608840i
\(633\) 0 0
\(634\) −196.978 + 71.6942i −0.310691 + 0.113082i
\(635\) 30.6531 271.583i 0.0482726 0.427690i
\(636\) 0 0
\(637\) −436.127 + 76.9010i −0.684659 + 0.120724i
\(638\) 110.689 191.719i 0.173493 0.300499i
\(639\) 0 0
\(640\) −40.4819 650.620i −0.0632530 1.01659i
\(641\) 589.951 + 703.077i 0.920361 + 1.09684i 0.995024 + 0.0996345i \(0.0317673\pi\)
−0.0746633 + 0.997209i \(0.523788\pi\)
\(642\) 0 0
\(643\) 814.024 + 143.534i 1.26598 + 0.223226i 0.766016 0.642822i \(-0.222236\pi\)
0.499962 + 0.866048i \(0.333347\pi\)
\(644\) 142.665 170.021i 0.221529 0.264008i
\(645\) 0 0
\(646\) −400.255 145.681i −0.619589 0.225512i
\(647\) −166.913 −0.257979 −0.128990 0.991646i \(-0.541173\pi\)
−0.128990 + 0.991646i \(0.541173\pi\)
\(648\) 0 0
\(649\) −114.759 −0.176824
\(650\) 330.090 101.680i 0.507831 0.156431i
\(651\) 0 0
\(652\) −94.5510 + 112.681i −0.145017 + 0.172824i
\(653\) 206.391 1170.50i 0.316067 1.79250i −0.250109 0.968218i \(-0.580466\pi\)
0.566175 0.824285i \(-0.308423\pi\)
\(654\) 0 0
\(655\) −48.7186 201.989i −0.0743795 0.308381i
\(656\) 438.423 253.124i 0.668328 0.385859i
\(657\) 0 0
\(658\) −90.3541 52.1660i −0.137316 0.0792796i
\(659\) −190.385 + 33.5700i −0.288900 + 0.0509408i −0.316220 0.948686i \(-0.602414\pi\)
0.0273202 + 0.999627i \(0.491303\pi\)
\(660\) 0 0
\(661\) −714.570 + 260.082i −1.08104 + 0.393468i −0.820296 0.571940i \(-0.806191\pi\)
−0.260747 + 0.965407i \(0.583969\pi\)
\(662\) −217.664 + 79.2233i −0.328798 + 0.119673i
\(663\) 0 0
\(664\) 74.6518 + 423.371i 0.112427 + 0.637608i
\(665\) −368.047 554.787i −0.553454 0.834267i
\(666\) 0 0
\(667\) 439.412 253.695i 0.658789 0.380352i
\(668\) 419.620 352.103i 0.628174 0.527100i
\(669\) 0 0
\(670\) −71.4343 52.7422i −0.106618 0.0787197i
\(671\) 278.468 331.865i 0.415005 0.494583i
\(672\) 0 0
\(673\) 259.131 711.958i 0.385039 1.05789i −0.584166 0.811634i \(-0.698578\pi\)
0.969206 0.246253i \(-0.0791993\pi\)
\(674\) 118.727i 0.176153i
\(675\) 0 0
\(676\) 529.492 0.783272
\(677\) 185.869 + 67.6509i 0.274549 + 0.0999275i 0.475625 0.879648i \(-0.342222\pi\)
−0.201077 + 0.979575i \(0.564444\pi\)
\(678\) 0 0
\(679\) 332.624 + 279.104i 0.489873 + 0.411052i
\(680\) −347.832 + 471.106i −0.511518 + 0.692802i
\(681\) 0 0
\(682\) −164.979 196.615i −0.241905 0.288292i
\(683\) 521.767 + 903.727i 0.763934 + 1.32317i 0.940808 + 0.338939i \(0.110068\pi\)
−0.176874 + 0.984233i \(0.556599\pi\)
\(684\) 0 0
\(685\) 594.256 394.231i 0.867527 0.575520i
\(686\) −274.725 + 48.4414i −0.400474 + 0.0706143i
\(687\) 0 0
\(688\) 90.0546 + 247.423i 0.130893 + 0.359627i
\(689\) −271.180 745.061i −0.393585 1.08137i
\(690\) 0 0
\(691\) 120.650 + 684.241i 0.174602 + 0.990219i 0.938602 + 0.345002i \(0.112122\pi\)
−0.764000 + 0.645217i \(0.776767\pi\)
\(692\) −188.304 + 326.152i −0.272116 + 0.471318i
\(693\) 0 0
\(694\) −82.2826 142.518i −0.118563 0.205357i
\(695\) 910.681 219.651i 1.31033 0.316044i
\(696\) 0 0
\(697\) −1106.27 195.065i −1.58719 0.279864i
\(698\) −232.008 194.678i −0.332390 0.278908i
\(699\) 0 0
\(700\) −402.636 + 124.027i −0.575194 + 0.177181i
\(701\) 1192.44i 1.70105i 0.525936 + 0.850524i \(0.323715\pi\)
−0.525936 + 0.850524i \(0.676285\pi\)
\(702\) 0 0
\(703\) 1224.00i 1.74111i
\(704\) −36.3973 + 100.001i −0.0517007 + 0.142046i
\(705\) 0 0
\(706\) 393.275 + 329.997i 0.557047 + 0.467418i
\(707\) −73.9636 + 419.469i −0.104616 + 0.593308i
\(708\) 0 0
\(709\) −128.669 + 107.966i −0.181479 + 0.152279i −0.729002 0.684512i \(-0.760015\pi\)
0.547523 + 0.836791i \(0.315571\pi\)
\(710\) −405.426 + 25.2259i −0.571023 + 0.0355294i
\(711\) 0 0
\(712\) −542.210 313.045i −0.761531 0.439670i
\(713\) −102.150 579.324i −0.143269 0.812516i
\(714\) 0 0
\(715\) −669.987 75.6201i −0.937044 0.105762i
\(716\) −233.946 642.763i −0.326741 0.897713i
\(717\) 0 0
\(718\) −185.457 + 32.7010i −0.258296 + 0.0455446i
\(719\) −35.4071 20.4423i −0.0492449 0.0284315i 0.475175 0.879891i \(-0.342385\pi\)
−0.524420 + 0.851460i \(0.675718\pi\)
\(720\) 0 0
\(721\) 161.704 + 280.080i 0.224278 + 0.388461i
\(722\) 214.821 180.256i 0.297535 0.249662i
\(723\) 0 0
\(724\) −54.1734 + 307.233i −0.0748252 + 0.424355i
\(725\) −961.924 48.3794i −1.32679 0.0667302i
\(726\) 0 0
\(727\) 315.233 866.096i 0.433608 1.19133i −0.509974 0.860190i \(-0.670345\pi\)
0.943582 0.331139i \(-0.107433\pi\)
\(728\) 505.837 0.694832
\(729\) 0 0
\(730\) 133.441 268.349i 0.182796 0.367601i
\(731\) 199.826 549.018i 0.273360 0.751051i
\(732\) 0 0
\(733\) −238.564 + 284.310i −0.325463 + 0.387871i −0.903820 0.427912i \(-0.859249\pi\)
0.578358 + 0.815783i \(0.303694\pi\)
\(734\) −351.598 61.9962i −0.479016 0.0844635i
\(735\) 0 0
\(736\) 301.338 252.853i 0.409427 0.343550i
\(737\) 86.6678 + 150.113i 0.117595 + 0.203681i
\(738\) 0 0
\(739\) 254.858 441.428i 0.344869 0.597331i −0.640461 0.767991i \(-0.721257\pi\)
0.985330 + 0.170660i \(0.0545899\pi\)
\(740\) −742.896 219.205i −1.00391 0.296222i
\(741\) 0 0
\(742\) −57.0871 156.846i −0.0769368 0.211382i
\(743\) 585.060 212.945i 0.787430 0.286601i 0.0831627 0.996536i \(-0.473498\pi\)
0.704267 + 0.709935i \(0.251276\pi\)
\(744\) 0 0
\(745\) 111.897 + 33.0172i 0.150198 + 0.0443184i
\(746\) −348.763 201.358i −0.467510 0.269917i
\(747\) 0 0
\(748\) 455.673 263.083i 0.609188 0.351715i
\(749\) 54.2136 + 64.6093i 0.0723814 + 0.0862607i
\(750\) 0 0
\(751\) 68.2732 387.196i 0.0909097 0.515575i −0.905015 0.425381i \(-0.860140\pi\)
0.995924 0.0901939i \(-0.0287487\pi\)
\(752\) 195.707 + 164.218i 0.260248 + 0.218374i
\(753\) 0 0
\(754\) 500.164 + 182.045i 0.663347 + 0.241439i
\(755\) 1034.85 + 514.594i 1.37066 + 0.681582i
\(756\) 0 0
\(757\) 480.153i 0.634283i −0.948378 0.317142i \(-0.897277\pi\)
0.948378 0.317142i \(-0.102723\pi\)
\(758\) 265.685 + 96.7013i 0.350508 + 0.127574i
\(759\) 0 0
\(760\) −306.326 702.475i −0.403060 0.924310i
\(761\) 13.3027 + 2.34562i 0.0174805 + 0.00308229i 0.182382 0.983228i \(-0.441619\pi\)
−0.164901 + 0.986310i \(0.552730\pi\)
\(762\) 0 0
\(763\) 229.341 + 273.318i 0.300578 + 0.358215i
\(764\) −646.322 + 373.154i −0.845972 + 0.488422i
\(765\) 0 0
\(766\) −227.337 + 393.760i −0.296785 + 0.514047i
\(767\) −47.9125 271.725i −0.0624673 0.354270i
\(768\) 0 0
\(769\) −54.1363 + 19.7040i −0.0703983 + 0.0256229i −0.376979 0.926222i \(-0.623037\pi\)
0.306581 + 0.951845i \(0.400815\pi\)
\(770\) −141.041 15.9191i −0.183171 0.0206741i
\(771\) 0 0
\(772\) 652.966 115.135i 0.845810 0.149139i
\(773\) −163.063 + 282.433i −0.210948 + 0.365372i −0.952011 0.306062i \(-0.900988\pi\)
0.741064 + 0.671435i \(0.234322\pi\)
\(774\) 0 0
\(775\) −434.143 + 1028.80i −0.560185 + 1.32749i
\(776\) 321.274 + 382.880i 0.414013 + 0.493402i
\(777\) 0 0
\(778\) 244.982 + 43.1969i 0.314887 + 0.0555230i
\(779\) 944.949 1126.15i 1.21303 1.44563i
\(780\) 0 0
\(781\) 745.135 + 271.207i 0.954078 + 0.347256i
\(782\) −208.128 −0.266148
\(783\) 0 0
\(784\) 228.285 0.291180
\(785\) −29.5880 + 28.1373i −0.0376917 + 0.0358437i
\(786\) 0 0
\(787\) 745.755 888.757i 0.947593 1.12930i −0.0438871 0.999036i \(-0.513974\pi\)
0.991480 0.130260i \(-0.0415814\pi\)
\(788\) 66.3375 376.219i 0.0841846 0.477435i
\(789\) 0 0
\(790\) 256.252 61.8064i 0.324370 0.0782360i
\(791\) 96.0224 55.4385i 0.121394 0.0700866i
\(792\) 0 0
\(793\) 902.052 + 520.800i 1.13752 + 0.656746i
\(794\) 569.560 100.429i 0.717330 0.126485i
\(795\) 0 0
\(796\) −73.1104 + 26.6100i −0.0918473 + 0.0334297i
\(797\) 438.957 159.767i 0.550762 0.200461i −0.0516233 0.998667i \(-0.516440\pi\)
0.602385 + 0.798206i \(0.294217\pi\)
\(798\) 0 0
\(799\) −98.4393 558.277i −0.123203 0.698720i
\(800\) −740.944 + 92.5623i −0.926180 + 0.115703i
\(801\) 0 0
\(802\) 204.241 117.918i 0.254664 0.147030i
\(803\) −448.159 + 376.050i −0.558106 + 0.468307i
\(804\) 0 0
\(805\) −261.710 193.229i −0.325105 0.240036i
\(806\) 396.664 472.726i 0.492139 0.586508i
\(807\) 0 0
\(808\) −167.691 + 460.727i −0.207538 + 0.570206i
\(809\) 1348.17i 1.66646i −0.552923 0.833232i \(-0.686488\pi\)
0.552923 0.833232i \(-0.313512\pi\)
\(810\) 0 0
\(811\) −802.634 −0.989685 −0.494842 0.868983i \(-0.664774\pi\)
−0.494842 + 0.868983i \(0.664774\pi\)
\(812\) −610.088 222.054i −0.751340 0.273465i
\(813\) 0 0
\(814\) −199.898 167.734i −0.245575 0.206062i
\(815\) 173.448 + 128.062i 0.212820 + 0.157131i
\(816\) 0 0
\(817\) 491.473 + 585.715i 0.601558 + 0.716909i
\(818\) −189.932 328.973i −0.232191 0.402167i
\(819\) 0 0
\(820\) −514.275 775.208i −0.627164 0.945376i
\(821\) −151.564 + 26.7248i −0.184609 + 0.0325515i −0.265188 0.964197i \(-0.585434\pi\)
0.0805793 + 0.996748i \(0.474323\pi\)
\(822\) 0 0
\(823\) −22.3175 61.3168i −0.0271172 0.0745040i 0.925395 0.379003i \(-0.123733\pi\)
−0.952513 + 0.304499i \(0.901511\pi\)
\(824\) 127.325 + 349.822i 0.154520 + 0.424541i
\(825\) 0 0
\(826\) −10.0862 57.2019i −0.0122109 0.0692517i
\(827\) −535.860 + 928.136i −0.647956 + 1.12229i 0.335654 + 0.941985i \(0.391043\pi\)
−0.983610 + 0.180307i \(0.942291\pi\)
\(828\) 0 0
\(829\) 377.159 + 653.259i 0.454957 + 0.788009i 0.998686 0.0512524i \(-0.0163213\pi\)
−0.543729 + 0.839261i \(0.682988\pi\)
\(830\) 281.948 68.0041i 0.339696 0.0819326i
\(831\) 0 0
\(832\) −251.977 44.4304i −0.302857 0.0534019i
\(833\) −388.041 325.605i −0.465835 0.390882i
\(834\) 0 0
\(835\) −553.287 581.813i −0.662619 0.696783i
\(836\) 688.579i 0.823660i
\(837\) 0 0
\(838\) 212.016i 0.253002i
\(839\) −88.8598 + 244.140i −0.105912 + 0.290990i −0.981316 0.192401i \(-0.938373\pi\)
0.875405 + 0.483390i \(0.160595\pi\)
\(840\) 0 0
\(841\) −492.736 413.455i −0.585893 0.491623i
\(842\) −56.9399 + 322.922i −0.0676246 + 0.383518i
\(843\) 0 0
\(844\) −331.360 + 278.044i −0.392607 + 0.329436i
\(845\) −48.1957 774.594i −0.0570363 0.916680i
\(846\) 0 0
\(847\) −277.723 160.344i −0.327890 0.189308i
\(848\) 70.9727 + 402.506i 0.0836942 + 0.474653i
\(849\) 0 0
\(850\) 331.790 + 214.474i 0.390341 + 0.252322i
\(851\) −204.557 562.015i −0.240372 0.660417i
\(852\) 0 0
\(853\) −287.962 + 50.7754i −0.337587 + 0.0595257i −0.339872 0.940472i \(-0.610384\pi\)
0.00228492 + 0.999997i \(0.499273\pi\)
\(854\) 189.894 + 109.636i 0.222359 + 0.128379i
\(855\) 0 0
\(856\) 48.5423 + 84.0778i 0.0567083 + 0.0982217i
\(857\) 554.776 465.512i 0.647346 0.543188i −0.258918 0.965899i \(-0.583366\pi\)
0.906264 + 0.422711i \(0.138922\pi\)
\(858\) 0 0
\(859\) −57.6146 + 326.749i −0.0670717 + 0.380383i 0.932732 + 0.360570i \(0.117418\pi\)
−0.999804 + 0.0198122i \(0.993693\pi\)
\(860\) 443.512 193.400i 0.515711 0.224884i
\(861\) 0 0
\(862\) 63.8200 175.344i 0.0740371 0.203415i
\(863\) 238.506 0.276369 0.138184 0.990407i \(-0.455873\pi\)
0.138184 + 0.990407i \(0.455873\pi\)
\(864\) 0 0
\(865\) 494.268 + 245.783i 0.571408 + 0.284142i
\(866\) −73.3533 + 201.537i −0.0847036 + 0.232721i
\(867\) 0 0
\(868\) −483.841 + 576.620i −0.557421 + 0.664308i
\(869\) −506.752 89.3541i −0.583144 0.102824i
\(870\) 0 0
\(871\) −319.253 + 267.885i −0.366536 + 0.307560i
\(872\) 205.350 + 355.676i 0.235493 + 0.407885i
\(873\) 0 0
\(874\) 136.186 235.881i 0.155819 0.269886i
\(875\) 218.088 + 577.728i 0.249243 + 0.660260i
\(876\) 0 0
\(877\) −31.9931 87.9005i −0.0364802 0.100229i 0.920115 0.391648i \(-0.128095\pi\)
−0.956595 + 0.291419i \(0.905873\pi\)
\(878\) −395.814 + 144.065i −0.450814 + 0.164083i
\(879\) 0 0
\(880\) 333.352 + 98.3612i 0.378809 + 0.111774i
\(881\) 1228.28 + 709.150i 1.39419 + 0.804937i 0.993776 0.111396i \(-0.0355322\pi\)
0.400416 + 0.916333i \(0.368865\pi\)
\(882\) 0 0
\(883\) 47.9457 27.6814i 0.0542986 0.0313493i −0.472605 0.881274i \(-0.656686\pi\)
0.526904 + 0.849925i \(0.323353\pi\)
\(884\) 813.173 + 969.102i 0.919879 + 1.09627i
\(885\) 0 0
\(886\) 89.8685 509.669i 0.101432 0.575248i
\(887\) −500.234 419.746i −0.563962 0.473220i 0.315674 0.948868i \(-0.397769\pi\)
−0.879636 + 0.475647i \(0.842214\pi\)
\(888\) 0 0
\(889\) −253.752 92.3580i −0.285435 0.103890i
\(890\) −188.071 + 378.210i −0.211316 + 0.424955i
\(891\) 0 0
\(892\) 1407.48i 1.57789i
\(893\) 697.133 + 253.736i 0.780664 + 0.284138i
\(894\) 0 0
\(895\) −919.004 + 400.746i −1.02682 + 0.447761i
\(896\) −634.292 111.843i −0.707915 0.124825i
\(897\) 0 0
\(898\) −158.092 188.406i −0.176049 0.209807i
\(899\) −1490.25 + 860.394i −1.65767 + 0.957057i
\(900\) 0 0
\(901\) 453.458 785.413i 0.503283 0.871712i
\(902\) −54.4231 308.649i −0.0603361 0.342183i
\(903\) 0 0
\(904\) 119.933 43.6519i 0.132669 0.0482875i
\(905\) 454.382 + 51.2853i 0.502080 + 0.0566688i
\(906\) 0 0
\(907\) −105.493 + 18.6012i −0.116309 + 0.0205085i −0.231500 0.972835i \(-0.574363\pi\)
0.115190 + 0.993343i \(0.463252\pi\)
\(908\) 182.260 315.683i 0.200727 0.347669i
\(909\) 0 0
\(910\) −21.1925 340.604i −0.0232885 0.374290i
\(911\) −427.389 509.342i −0.469142 0.559102i 0.478644 0.878009i \(-0.341129\pi\)
−0.947786 + 0.318907i \(0.896684\pi\)
\(912\) 0 0
\(913\) −557.567 98.3141i −0.610698 0.107682i
\(914\) 270.000 321.774i 0.295405 0.352050i
\(915\) 0 0
\(916\) −445.332 162.088i −0.486170 0.176952i
\(917\) −205.295 −0.223877
\(918\) 0 0
\(919\) 836.732 0.910481 0.455241 0.890368i \(-0.349553\pi\)
0.455241 + 0.890368i \(0.349553\pi\)
\(920\) −258.052 271.356i −0.280491 0.294953i
\(921\) 0 0
\(922\) −212.398 + 253.125i −0.230366 + 0.274540i
\(923\) −331.064 + 1877.56i −0.358683 + 2.03419i
\(924\) 0 0
\(925\) −253.054 + 1106.74i −0.273572 + 1.19647i
\(926\) 205.201 118.473i 0.221600 0.127941i
\(927\) 0 0
\(928\) −996.525 575.344i −1.07384 0.619983i
\(929\) 973.810 171.709i 1.04823 0.184832i 0.377104 0.926171i \(-0.376920\pi\)
0.671131 + 0.741339i \(0.265809\pi\)
\(930\) 0 0
\(931\) 622.932 226.729i 0.669100 0.243533i
\(932\) −340.365 + 123.883i −0.365198 + 0.132921i
\(933\) 0 0
\(934\) 99.2022 + 562.603i 0.106212 + 0.602359i
\(935\) −426.341 642.658i −0.455979 0.687335i
\(936\) 0 0
\(937\) −469.038 + 270.799i −0.500575 + 0.289007i −0.728951 0.684566i \(-0.759992\pi\)
0.228376 + 0.973573i \(0.426658\pi\)
\(938\) −67.2071 + 56.3934i −0.0716493 + 0.0601209i
\(939\) 0 0
\(940\) 278.851 377.677i 0.296650 0.401784i
\(941\) −166.260 + 198.142i −0.176685 + 0.210565i −0.847118 0.531406i \(-0.821664\pi\)
0.670433 + 0.741970i \(0.266109\pi\)
\(942\) 0 0
\(943\) 245.682 675.004i 0.260532 0.715805i
\(944\) 142.231i 0.150668i
\(945\) 0 0
\(946\) 163.006 0.172311
\(947\) −366.881 133.534i −0.387414 0.141007i 0.140967 0.990014i \(-0.454979\pi\)
−0.528382 + 0.849007i \(0.677201\pi\)
\(948\) 0 0
\(949\) −1077.52 904.146i −1.13543 0.952736i
\(950\) −460.175 + 235.694i −0.484395 + 0.248099i
\(951\) 0 0
\(952\) 371.912 + 443.227i 0.390664 + 0.465575i
\(953\) 232.132 + 402.064i 0.243580 + 0.421893i 0.961732 0.273994i \(-0.0883447\pi\)
−0.718151 + 0.695887i \(0.755011\pi\)
\(954\) 0 0
\(955\) 604.718 + 911.540i 0.633212 + 0.954492i
\(956\) 850.667 149.995i 0.889819 0.156899i
\(957\) 0 0
\(958\) 171.381 + 470.866i 0.178895 + 0.491509i
\(959\) −240.987 662.106i −0.251290 0.690413i
\(960\) 0 0
\(961\) 179.563 + 1018.35i 0.186850 + 1.05968i
\(962\) 313.702 543.347i 0.326093 0.564810i
\(963\) 0 0
\(964\) −6.46215 11.1928i −0.00670348 0.0116108i
\(965\) −227.866 944.744i −0.236131 0.979009i
\(966\) 0 0
\(967\) 641.635 + 113.138i 0.663532 + 0.116999i 0.495264 0.868743i \(-0.335071\pi\)
0.168268 + 0.985741i \(0.446183\pi\)
\(968\) −282.778 237.279i −0.292126 0.245123i
\(969\) 0 0
\(970\) 244.351 232.370i 0.251908 0.239557i
\(971\) 40.3111i 0.0415150i 0.999785 + 0.0207575i \(0.00660779\pi\)
−0.999785 + 0.0207575i \(0.993392\pi\)
\(972\) 0 0
\(973\) 925.585i 0.951269i
\(974\) 169.469 465.613i 0.173993 0.478042i
\(975\) 0 0
\(976\) −411.311 345.131i −0.421425 0.353617i
\(977\) 86.1735 488.714i 0.0882021 0.500219i −0.908417 0.418064i \(-0.862709\pi\)
0.996620 0.0821549i \(-0.0261802\pi\)
\(978\) 0 0
\(979\) 631.635 530.005i 0.645184 0.541374i
\(980\) −26.0510 418.688i −0.0265826 0.427232i
\(981\) 0 0
\(982\) −197.954 114.289i −0.201582 0.116383i
\(983\) −330.085 1872.00i −0.335793 1.90438i −0.419258 0.907867i \(-0.637710\pi\)
0.0834645 0.996511i \(-0.473401\pi\)
\(984\) 0 0
\(985\) −556.409 62.8008i −0.564882 0.0637572i
\(986\) 208.228 + 572.102i 0.211185 + 0.580226i
\(987\) 0 0
\(988\) −1630.42 + 287.486i −1.65022 + 0.290978i
\(989\) 323.551 + 186.802i 0.327150 + 0.188880i
\(990\) 0 0
\(991\) 200.715 + 347.649i 0.202538 + 0.350806i 0.949345 0.314234i \(-0.101748\pi\)
−0.746808 + 0.665040i \(0.768414\pi\)
\(992\) −1021.98 + 857.539i −1.03022 + 0.864455i
\(993\) 0 0
\(994\) −69.6935 + 395.252i −0.0701142 + 0.397638i
\(995\) 45.5825 + 104.531i 0.0458116 + 0.105057i
\(996\) 0 0
\(997\) −463.244 + 1272.75i −0.464638 + 1.27658i 0.457323 + 0.889300i \(0.348808\pi\)
−0.921961 + 0.387282i \(0.873414\pi\)
\(998\) −19.6108 −0.0196501
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.14 204
3.2 odd 2 135.3.n.a.104.21 yes 204
5.4 even 2 inner 405.3.n.a.179.21 204
15.14 odd 2 135.3.n.a.104.14 yes 204
27.7 even 9 135.3.n.a.74.14 204
27.20 odd 18 inner 405.3.n.a.224.21 204
135.34 even 18 135.3.n.a.74.21 yes 204
135.74 odd 18 inner 405.3.n.a.224.14 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.14 204 27.7 even 9
135.3.n.a.74.21 yes 204 135.34 even 18
135.3.n.a.104.14 yes 204 15.14 odd 2
135.3.n.a.104.21 yes 204 3.2 odd 2
405.3.n.a.179.14 204 1.1 even 1 trivial
405.3.n.a.179.21 204 5.4 even 2 inner
405.3.n.a.224.14 204 135.74 odd 18 inner
405.3.n.a.224.21 204 27.20 odd 18 inner