Properties

Label 135.3.n.a.74.33
Level $135$
Weight $3$
Character 135.74
Analytic conductor $3.678$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(14,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([17, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.n (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 74.33
Character \(\chi\) \(=\) 135.74
Dual form 135.3.n.a.104.33

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.50983 - 1.27747i) q^{2} +(-2.46859 - 1.70472i) q^{3} +(7.62280 - 6.39629i) q^{4} +(-4.44069 - 2.29788i) q^{5} +(-10.8421 - 2.82972i) q^{6} +(-1.03030 + 1.22786i) q^{7} +(11.1135 - 19.2491i) q^{8} +(3.18787 + 8.41650i) q^{9} +(-18.5216 - 2.39229i) q^{10} +(11.9341 + 2.10430i) q^{11} +(-29.7214 + 2.79508i) q^{12} +(4.71168 - 12.9452i) q^{13} +(-2.04761 + 5.62576i) q^{14} +(7.04501 + 13.2427i) q^{15} +(7.50440 - 42.5596i) q^{16} +(8.93265 + 15.4718i) q^{17} +(21.9407 + 25.4681i) q^{18} +(-14.5705 + 25.2368i) q^{19} +(-48.5484 + 10.8877i) q^{20} +(4.63654 - 1.27472i) q^{21} +(44.5747 - 7.85972i) q^{22} +(22.0238 - 18.4801i) q^{23} +(-60.2489 + 28.5728i) q^{24} +(14.4395 + 20.4083i) q^{25} -51.4546i q^{26} +(6.47822 - 26.2113i) q^{27} +15.9498i q^{28} +(-6.96737 - 19.1427i) q^{29} +(41.6440 + 37.4796i) q^{30} +(-5.05373 + 4.24059i) q^{31} +(-12.5909 - 71.4065i) q^{32} +(-25.8730 - 25.5388i) q^{33} +(51.1169 + 42.8922i) q^{34} +(7.39671 - 3.08506i) q^{35} +(78.1349 + 43.7668i) q^{36} +(-33.0454 + 19.0788i) q^{37} +(-18.9005 + 107.190i) q^{38} +(-33.6992 + 23.9244i) q^{39} +(-93.5837 + 59.9420i) q^{40} +(-16.8042 + 46.1691i) q^{41} +(14.6451 - 10.3971i) q^{42} +(-23.8547 - 4.20622i) q^{43} +(104.431 - 60.2930i) q^{44} +(5.18374 - 44.7004i) q^{45} +(53.6918 - 92.9970i) q^{46} +(-5.12070 - 4.29678i) q^{47} +(-91.0774 + 92.2692i) q^{48} +(8.06263 + 45.7255i) q^{49} +(76.7514 + 53.1837i) q^{50} +(4.32402 - 53.4212i) q^{51} +(-46.8852 - 128.816i) q^{52} -35.3575 q^{53} +(-10.7468 - 100.273i) q^{54} +(-48.1601 - 36.7675i) q^{55} +(12.1850 + 33.4781i) q^{56} +(78.9901 - 37.4607i) q^{57} +(-48.9086 - 58.2870i) q^{58} +(81.0242 - 14.2868i) q^{59} +(138.407 + 55.8841i) q^{60} +(-42.3934 - 35.5723i) q^{61} +(-12.3205 + 21.3398i) q^{62} +(-13.6188 - 4.75724i) q^{63} +(-48.9797 - 84.8352i) q^{64} +(-50.6696 + 46.6589i) q^{65} +(-123.435 - 56.5849i) q^{66} +(-10.5187 + 28.8998i) q^{67} +(167.054 + 60.8026i) q^{68} +(-85.8711 + 8.07555i) q^{69} +(22.0201 - 20.2771i) q^{70} +(46.8725 - 27.0619i) q^{71} +(197.438 + 32.1729i) q^{72} +(-80.6986 - 46.5914i) q^{73} +(-91.6111 + 109.178i) q^{74} +(-0.854746 - 74.9951i) q^{75} +(50.3540 + 285.572i) q^{76} +(-14.8794 + 12.4853i) q^{77} +(-87.7156 + 127.020i) q^{78} +(27.1542 - 9.88334i) q^{79} +(-131.121 + 171.750i) q^{80} +(-60.6750 + 53.6614i) q^{81} +183.513i q^{82} +(25.7526 - 9.37318i) q^{83} +(27.1900 - 39.3736i) q^{84} +(-4.11484 - 89.2317i) q^{85} +(-89.0992 + 15.7106i) q^{86} +(-15.4333 + 59.1328i) q^{87} +(173.135 - 206.334i) q^{88} +(41.9166 + 24.2006i) q^{89} +(-38.9096 - 163.513i) q^{90} +(11.0405 + 19.1227i) q^{91} +(49.6785 - 281.741i) q^{92} +(19.7046 - 1.85307i) q^{93} +(-23.4618 - 8.53941i) q^{94} +(122.694 - 78.5876i) q^{95} +(-90.6463 + 197.737i) q^{96} +(-133.103 - 23.4697i) q^{97} +(86.7116 + 150.189i) q^{98} +(20.3334 + 107.151i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} + 3 q^{5} - 24 q^{6} - 18 q^{9} - 3 q^{10} + 6 q^{11} - 48 q^{14} - 3 q^{15} + 12 q^{16} - 6 q^{19} + 63 q^{20} - 192 q^{21} + 42 q^{24} - 15 q^{25} + 96 q^{29} - 177 q^{30} - 102 q^{31}+ \cdots + 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.50983 1.27747i 1.75492 0.638737i 0.755059 0.655657i \(-0.227608\pi\)
0.999857 + 0.0169199i \(0.00538603\pi\)
\(3\) −2.46859 1.70472i −0.822863 0.568239i
\(4\) 7.62280 6.39629i 1.90570 1.59907i
\(5\) −4.44069 2.29788i −0.888139 0.459576i
\(6\) −10.8421 2.82972i −1.80701 0.471619i
\(7\) −1.03030 + 1.22786i −0.147185 + 0.175409i −0.834600 0.550857i \(-0.814301\pi\)
0.687415 + 0.726265i \(0.258746\pi\)
\(8\) 11.1135 19.2491i 1.38918 2.40614i
\(9\) 3.18787 + 8.41650i 0.354208 + 0.935167i
\(10\) −18.5216 2.39229i −1.85216 0.239229i
\(11\) 11.9341 + 2.10430i 1.08491 + 0.191300i 0.687387 0.726291i \(-0.258758\pi\)
0.397527 + 0.917591i \(0.369869\pi\)
\(12\) −29.7214 + 2.79508i −2.47679 + 0.232924i
\(13\) 4.71168 12.9452i 0.362437 0.995786i −0.615729 0.787958i \(-0.711138\pi\)
0.978165 0.207828i \(-0.0666395\pi\)
\(14\) −2.04761 + 5.62576i −0.146258 + 0.401840i
\(15\) 7.04501 + 13.2427i 0.469668 + 0.882843i
\(16\) 7.50440 42.5596i 0.469025 2.65997i
\(17\) 8.93265 + 15.4718i 0.525450 + 0.910106i 0.999561 + 0.0296407i \(0.00943630\pi\)
−0.474111 + 0.880465i \(0.657230\pi\)
\(18\) 21.9407 + 25.4681i 1.21893 + 1.41489i
\(19\) −14.5705 + 25.2368i −0.766866 + 1.32825i 0.172388 + 0.985029i \(0.444852\pi\)
−0.939254 + 0.343222i \(0.888482\pi\)
\(20\) −48.5484 + 10.8877i −2.42742 + 0.544384i
\(21\) 4.63654 1.27472i 0.220788 0.0607008i
\(22\) 44.5747 7.85972i 2.02612 0.357260i
\(23\) 22.0238 18.4801i 0.957555 0.803484i −0.0229985 0.999735i \(-0.507321\pi\)
0.980554 + 0.196251i \(0.0628769\pi\)
\(24\) −60.2489 + 28.5728i −2.51037 + 1.19053i
\(25\) 14.4395 + 20.4083i 0.577580 + 0.816334i
\(26\) 51.4546i 1.97902i
\(27\) 6.47822 26.2113i 0.239934 0.970789i
\(28\) 15.9498i 0.569636i
\(29\) −6.96737 19.1427i −0.240254 0.660092i −0.999952 0.00981620i \(-0.996875\pi\)
0.759698 0.650276i \(-0.225347\pi\)
\(30\) 41.6440 + 37.4796i 1.38813 + 1.24932i
\(31\) −5.05373 + 4.24059i −0.163024 + 0.136793i −0.720650 0.693299i \(-0.756157\pi\)
0.557626 + 0.830092i \(0.311712\pi\)
\(32\) −12.5909 71.4065i −0.393466 2.23145i
\(33\) −25.8730 25.5388i −0.784032 0.773904i
\(34\) 51.1169 + 42.8922i 1.50344 + 1.26153i
\(35\) 7.39671 3.08506i 0.211335 0.0881444i
\(36\) 78.1349 + 43.7668i 2.17041 + 1.21574i
\(37\) −33.0454 + 19.0788i −0.893118 + 0.515642i −0.874961 0.484193i \(-0.839113\pi\)
−0.0181570 + 0.999835i \(0.505780\pi\)
\(38\) −18.9005 + 107.190i −0.497382 + 2.82080i
\(39\) −33.6992 + 23.9244i −0.864081 + 0.613445i
\(40\) −93.5837 + 59.9420i −2.33959 + 1.49855i
\(41\) −16.8042 + 46.1691i −0.409858 + 1.12608i 0.547408 + 0.836866i \(0.315615\pi\)
−0.957266 + 0.289210i \(0.906607\pi\)
\(42\) 14.6451 10.3971i 0.348692 0.247550i
\(43\) −23.8547 4.20622i −0.554760 0.0978191i −0.110762 0.993847i \(-0.535329\pi\)
−0.443998 + 0.896028i \(0.646440\pi\)
\(44\) 104.431 60.2930i 2.37342 1.37030i
\(45\) 5.18374 44.7004i 0.115194 0.993343i
\(46\) 53.6918 92.9970i 1.16721 2.02167i
\(47\) −5.12070 4.29678i −0.108951 0.0914209i 0.586685 0.809815i \(-0.300433\pi\)
−0.695636 + 0.718395i \(0.744877\pi\)
\(48\) −91.0774 + 92.2692i −1.89745 + 1.92228i
\(49\) 8.06263 + 45.7255i 0.164543 + 0.933173i
\(50\) 76.7514 + 53.1837i 1.53503 + 1.06367i
\(51\) 4.32402 53.4212i 0.0847847 1.04747i
\(52\) −46.8852 128.816i −0.901639 2.47723i
\(53\) −35.3575 −0.667123 −0.333562 0.942728i \(-0.608251\pi\)
−0.333562 + 0.942728i \(0.608251\pi\)
\(54\) −10.7468 100.273i −0.199015 1.85691i
\(55\) −48.1601 36.7675i −0.875637 0.668501i
\(56\) 12.1850 + 33.4781i 0.217590 + 0.597824i
\(57\) 78.9901 37.4607i 1.38579 0.657206i
\(58\) −48.9086 58.2870i −0.843251 1.00495i
\(59\) 81.0242 14.2868i 1.37329 0.242148i 0.562168 0.827023i \(-0.309967\pi\)
0.811124 + 0.584874i \(0.198856\pi\)
\(60\) 138.407 + 55.8841i 2.30678 + 0.931402i
\(61\) −42.3934 35.5723i −0.694974 0.583153i 0.225365 0.974274i \(-0.427643\pi\)
−0.920339 + 0.391122i \(0.872087\pi\)
\(62\) −12.3205 + 21.3398i −0.198718 + 0.344190i
\(63\) −13.6188 4.75724i −0.216171 0.0755118i
\(64\) −48.9797 84.8352i −0.765307 1.32555i
\(65\) −50.6696 + 46.6589i −0.779533 + 0.717829i
\(66\) −123.435 56.5849i −1.87023 0.857347i
\(67\) −10.5187 + 28.8998i −0.156995 + 0.431340i −0.993106 0.117220i \(-0.962602\pi\)
0.836111 + 0.548560i \(0.184824\pi\)
\(68\) 167.054 + 60.8026i 2.45667 + 0.894156i
\(69\) −85.8711 + 8.07555i −1.24451 + 0.117037i
\(70\) 22.0201 20.2771i 0.314573 0.289673i
\(71\) 46.8725 27.0619i 0.660176 0.381153i −0.132168 0.991227i \(-0.542194\pi\)
0.792344 + 0.610074i \(0.208860\pi\)
\(72\) 197.438 + 32.1729i 2.74220 + 0.446846i
\(73\) −80.6986 46.5914i −1.10546 0.638238i −0.167811 0.985819i \(-0.553670\pi\)
−0.937650 + 0.347581i \(0.887003\pi\)
\(74\) −91.6111 + 109.178i −1.23799 + 1.47538i
\(75\) −0.854746 74.9951i −0.0113966 0.999935i
\(76\) 50.3540 + 285.572i 0.662553 + 3.75752i
\(77\) −14.8794 + 12.4853i −0.193239 + 0.162147i
\(78\) −87.7156 + 127.020i −1.12456 + 1.62846i
\(79\) 27.1542 9.88334i 0.343725 0.125106i −0.164389 0.986396i \(-0.552565\pi\)
0.508114 + 0.861290i \(0.330343\pi\)
\(80\) −131.121 + 171.750i −1.63902 + 2.14687i
\(81\) −60.6750 + 53.6614i −0.749074 + 0.662487i
\(82\) 183.513i 2.23796i
\(83\) 25.7526 9.37318i 0.310272 0.112930i −0.182191 0.983263i \(-0.558319\pi\)
0.492463 + 0.870333i \(0.336097\pi\)
\(84\) 27.1900 39.3736i 0.323690 0.468733i
\(85\) −4.11484 89.2317i −0.0484098 1.04978i
\(86\) −89.0992 + 15.7106i −1.03604 + 0.182681i
\(87\) −15.4333 + 59.1328i −0.177394 + 0.679688i
\(88\) 173.135 206.334i 1.96744 2.34470i
\(89\) 41.9166 + 24.2006i 0.470973 + 0.271917i 0.716647 0.697436i \(-0.245676\pi\)
−0.245674 + 0.969353i \(0.579009\pi\)
\(90\) −38.9096 163.513i −0.432329 1.81681i
\(91\) 11.0405 + 19.1227i 0.121324 + 0.210140i
\(92\) 49.6785 281.741i 0.539984 3.06240i
\(93\) 19.7046 1.85307i 0.211877 0.0199255i
\(94\) −23.4618 8.53941i −0.249594 0.0908448i
\(95\) 122.694 78.5876i 1.29152 0.827238i
\(96\) −90.6463 + 197.737i −0.944232 + 2.05976i
\(97\) −133.103 23.4697i −1.37220 0.241956i −0.561528 0.827458i \(-0.689786\pi\)
−0.810671 + 0.585502i \(0.800897\pi\)
\(98\) 86.7116 + 150.189i 0.884812 + 1.53254i
\(99\) 20.3334 + 107.151i 0.205388 + 1.08234i
\(100\) 240.607 + 63.2094i 2.40607 + 0.632094i
\(101\) 93.6071 111.557i 0.926803 1.10452i −0.0674781 0.997721i \(-0.521495\pi\)
0.994281 0.106799i \(-0.0340603\pi\)
\(102\) −53.0676 193.023i −0.520270 1.89238i
\(103\) 13.4708 2.37526i 0.130784 0.0230608i −0.107873 0.994165i \(-0.534404\pi\)
0.238657 + 0.971104i \(0.423293\pi\)
\(104\) −196.821 234.562i −1.89251 2.25540i
\(105\) −23.5186 4.99358i −0.223987 0.0475579i
\(106\) −124.099 + 45.1683i −1.17075 + 0.426116i
\(107\) −123.329 −1.15261 −0.576306 0.817234i \(-0.695506\pi\)
−0.576306 + 0.817234i \(0.695506\pi\)
\(108\) −118.273 241.240i −1.09512 2.23370i
\(109\) −135.797 −1.24584 −0.622920 0.782285i \(-0.714054\pi\)
−0.622920 + 0.782285i \(0.714054\pi\)
\(110\) −216.003 67.5246i −1.96367 0.613860i
\(111\) 114.099 + 9.23544i 1.02792 + 0.0832022i
\(112\) 44.5255 + 53.0634i 0.397549 + 0.473780i
\(113\) 16.9029 + 95.8613i 0.149584 + 0.848330i 0.963572 + 0.267449i \(0.0861808\pi\)
−0.813988 + 0.580881i \(0.802708\pi\)
\(114\) 229.387 232.389i 2.01217 2.03850i
\(115\) −140.266 + 31.4567i −1.21970 + 0.273536i
\(116\) −175.553 101.356i −1.51339 0.873755i
\(117\) 123.974 1.61186i 1.05960 0.0137766i
\(118\) 266.130 153.650i 2.25534 1.30212i
\(119\) −28.2005 4.97251i −0.236979 0.0417858i
\(120\) 333.204 + 11.5617i 2.77670 + 0.0963472i
\(121\) 24.2908 + 8.84111i 0.200750 + 0.0730671i
\(122\) −194.236 70.6963i −1.59210 0.579478i
\(123\) 120.188 85.3262i 0.977138 0.693709i
\(124\) −11.3996 + 64.6503i −0.0919322 + 0.521373i
\(125\) −17.2255 123.807i −0.137804 0.990459i
\(126\) −53.8768 + 0.700487i −0.427593 + 0.00555942i
\(127\) 192.478 + 111.127i 1.51558 + 0.875019i 0.999833 + 0.0182767i \(0.00581798\pi\)
0.515745 + 0.856742i \(0.327515\pi\)
\(128\) −58.1075 48.7580i −0.453965 0.380922i
\(129\) 51.7169 + 51.0489i 0.400907 + 0.395728i
\(130\) −118.236 + 228.494i −0.909511 + 1.75765i
\(131\) 10.0305 + 11.9539i 0.0765690 + 0.0912514i 0.802969 0.596021i \(-0.203252\pi\)
−0.726400 + 0.687272i \(0.758808\pi\)
\(132\) −360.579 29.1860i −2.73166 0.221106i
\(133\) −15.9753 43.8919i −0.120115 0.330014i
\(134\) 114.871i 0.857245i
\(135\) −88.9982 + 101.510i −0.659246 + 0.751927i
\(136\) 397.091 2.91979
\(137\) −6.93037 + 2.52245i −0.0505867 + 0.0184120i −0.367190 0.930146i \(-0.619680\pi\)
0.316603 + 0.948558i \(0.397458\pi\)
\(138\) −291.077 + 138.042i −2.10925 + 1.00030i
\(139\) 114.438 96.0245i 0.823292 0.690824i −0.130449 0.991455i \(-0.541642\pi\)
0.953740 + 0.300631i \(0.0971974\pi\)
\(140\) 36.6507 70.8283i 0.261791 0.505916i
\(141\) 5.31612 + 19.3363i 0.0377029 + 0.137137i
\(142\) 129.944 154.861i 0.915097 1.09057i
\(143\) 83.4700 144.574i 0.583706 1.01101i
\(144\) 382.126 72.5136i 2.65365 0.503567i
\(145\) −13.0476 + 101.017i −0.0899836 + 0.696669i
\(146\) −342.758 60.4375i −2.34766 0.413955i
\(147\) 58.0457 126.622i 0.394869 0.861373i
\(148\) −129.865 + 356.801i −0.877466 + 2.41082i
\(149\) −74.0973 + 203.581i −0.497297 + 1.36631i 0.396579 + 0.918000i \(0.370197\pi\)
−0.893877 + 0.448313i \(0.852025\pi\)
\(150\) −98.8044 262.128i −0.658696 1.74752i
\(151\) 2.21211 12.5455i 0.0146497 0.0830828i −0.976606 0.215035i \(-0.931013\pi\)
0.991256 + 0.131952i \(0.0421245\pi\)
\(152\) 323.857 + 560.937i 2.13064 + 3.69037i
\(153\) −101.742 + 124.504i −0.664982 + 0.813750i
\(154\) −36.2746 + 62.8294i −0.235549 + 0.407983i
\(155\) 32.1864 7.21828i 0.207654 0.0465695i
\(156\) −103.855 + 397.920i −0.665736 + 2.55077i
\(157\) 85.3324 15.0464i 0.543519 0.0958370i 0.104854 0.994488i \(-0.466563\pi\)
0.438665 + 0.898651i \(0.355451\pi\)
\(158\) 82.6811 69.3777i 0.523298 0.439099i
\(159\) 87.2832 + 60.2746i 0.548951 + 0.379086i
\(160\) −108.171 + 346.027i −0.676070 + 2.16267i
\(161\) 46.0822i 0.286225i
\(162\) −144.408 + 265.853i −0.891406 + 1.64107i
\(163\) 44.5111i 0.273075i 0.990635 + 0.136537i \(0.0435973\pi\)
−0.990635 + 0.136537i \(0.956403\pi\)
\(164\) 167.216 + 459.422i 1.01961 + 2.80136i
\(165\) 56.2091 + 172.863i 0.340661 + 1.04766i
\(166\) 78.4133 65.7965i 0.472369 0.396365i
\(167\) −11.7528 66.6535i −0.0703761 0.399123i −0.999564 0.0295159i \(-0.990603\pi\)
0.929188 0.369607i \(-0.120508\pi\)
\(168\) 26.9909 103.416i 0.160660 0.615570i
\(169\) −15.9174 13.3563i −0.0941856 0.0790311i
\(170\) −128.434 307.931i −0.755491 1.81136i
\(171\) −258.854 42.1807i −1.51377 0.246671i
\(172\) −208.743 + 120.518i −1.21362 + 0.700687i
\(173\) 1.72745 9.79683i 0.00998523 0.0566291i −0.979408 0.201891i \(-0.935291\pi\)
0.989393 + 0.145262i \(0.0464025\pi\)
\(174\) 21.3723 + 227.262i 0.122829 + 1.30610i
\(175\) −39.9356 3.29696i −0.228203 0.0188398i
\(176\) 179.116 492.117i 1.01770 2.79612i
\(177\) −224.370 102.855i −1.26763 0.581104i
\(178\) 178.036 + 31.3925i 1.00020 + 0.176363i
\(179\) 183.909 106.180i 1.02743 0.593184i 0.111179 0.993800i \(-0.464537\pi\)
0.916246 + 0.400616i \(0.131204\pi\)
\(180\) −246.402 373.899i −1.36890 2.07722i
\(181\) −76.4143 + 132.353i −0.422178 + 0.731234i −0.996152 0.0876392i \(-0.972068\pi\)
0.573974 + 0.818874i \(0.305401\pi\)
\(182\) 63.1791 + 53.0136i 0.347138 + 0.291283i
\(183\) 44.0112 + 160.082i 0.240498 + 0.874767i
\(184\) −110.965 629.316i −0.603073 3.42020i
\(185\) 190.585 8.78865i 1.03019 0.0475062i
\(186\) 66.7926 31.6761i 0.359100 0.170302i
\(187\) 74.0455 + 203.438i 0.395965 + 1.08790i
\(188\) −66.5175 −0.353817
\(189\) 25.5093 + 34.9598i 0.134970 + 0.184973i
\(190\) 330.242 432.568i 1.73811 2.27667i
\(191\) 25.7878 + 70.8514i 0.135015 + 0.370950i 0.988714 0.149817i \(-0.0478684\pi\)
−0.853699 + 0.520767i \(0.825646\pi\)
\(192\) −23.7095 + 292.920i −0.123487 + 1.52562i
\(193\) −86.3157 102.867i −0.447231 0.532990i 0.494580 0.869132i \(-0.335322\pi\)
−0.941811 + 0.336143i \(0.890878\pi\)
\(194\) −497.152 + 87.6613i −2.56264 + 0.451862i
\(195\) 204.623 28.8042i 1.04935 0.147714i
\(196\) 353.933 + 296.985i 1.80578 + 1.51523i
\(197\) −34.3090 + 59.4249i −0.174157 + 0.301649i −0.939869 0.341534i \(-0.889053\pi\)
0.765712 + 0.643184i \(0.222387\pi\)
\(198\) 208.250 + 350.107i 1.05177 + 1.76822i
\(199\) 30.4787 + 52.7906i 0.153159 + 0.265279i 0.932387 0.361461i \(-0.117722\pi\)
−0.779228 + 0.626740i \(0.784389\pi\)
\(200\) 553.316 51.1400i 2.76658 0.255700i
\(201\) 75.2323 53.4104i 0.374290 0.265723i
\(202\) 186.034 511.125i 0.920962 2.53032i
\(203\) 30.6830 + 11.1677i 0.151148 + 0.0550133i
\(204\) −308.736 434.877i −1.51341 2.13175i
\(205\) 180.713 166.409i 0.881528 0.811751i
\(206\) 44.2458 25.5453i 0.214785 0.124006i
\(207\) 225.747 + 126.451i 1.09057 + 0.610873i
\(208\) −515.585 297.673i −2.47877 1.43112i
\(209\) −226.990 + 270.517i −1.08608 + 1.29434i
\(210\) −88.9255 + 12.5178i −0.423455 + 0.0596085i
\(211\) −65.8918 373.691i −0.312284 1.77105i −0.587064 0.809541i \(-0.699716\pi\)
0.274780 0.961507i \(-0.411395\pi\)
\(212\) −269.523 + 226.157i −1.27134 + 1.06678i
\(213\) −161.842 13.0998i −0.759821 0.0615015i
\(214\) −432.866 + 157.550i −2.02274 + 0.736216i
\(215\) 96.2659 + 73.4936i 0.447748 + 0.341831i
\(216\) −432.549 415.999i −2.00254 1.92592i
\(217\) 10.5744i 0.0487297i
\(218\) −476.623 + 173.477i −2.18634 + 0.795764i
\(219\) 119.787 + 252.583i 0.546971 + 1.15335i
\(220\) −602.290 + 27.7741i −2.73768 + 0.126246i
\(221\) 242.374 42.7370i 1.09671 0.193380i
\(222\) 412.268 113.344i 1.85706 0.510559i
\(223\) −192.748 + 229.708i −0.864339 + 1.03008i 0.134891 + 0.990860i \(0.456932\pi\)
−0.999231 + 0.0392192i \(0.987513\pi\)
\(224\) 100.650 + 58.1101i 0.449329 + 0.259420i
\(225\) −125.736 + 186.589i −0.558825 + 0.829286i
\(226\) 181.787 + 314.864i 0.804367 + 1.39320i
\(227\) −20.9629 + 118.887i −0.0923476 + 0.523729i 0.903180 + 0.429261i \(0.141226\pi\)
−0.995528 + 0.0944679i \(0.969885\pi\)
\(228\) 362.516 790.799i 1.58998 3.46842i
\(229\) 175.173 + 63.7578i 0.764948 + 0.278418i 0.694882 0.719124i \(-0.255457\pi\)
0.0700666 + 0.997542i \(0.477679\pi\)
\(230\) −452.125 + 289.594i −1.96576 + 1.25910i
\(231\) 58.0151 5.45590i 0.251148 0.0236186i
\(232\) −445.911 78.6262i −1.92203 0.338906i
\(233\) −73.0177 126.470i −0.313381 0.542791i 0.665711 0.746209i \(-0.268128\pi\)
−0.979092 + 0.203418i \(0.934795\pi\)
\(234\) 433.068 164.031i 1.85072 0.700985i
\(235\) 12.8660 + 30.8474i 0.0547489 + 0.131266i
\(236\) 526.249 627.159i 2.22987 2.65746i
\(237\) −83.8810 21.8924i −0.353928 0.0923732i
\(238\) −105.331 + 18.5727i −0.442568 + 0.0780368i
\(239\) −135.434 161.404i −0.566668 0.675329i 0.404275 0.914637i \(-0.367524\pi\)
−0.970944 + 0.239308i \(0.923079\pi\)
\(240\) 616.470 200.455i 2.56863 0.835228i
\(241\) 73.8445 26.8772i 0.306409 0.111524i −0.184240 0.982881i \(-0.558982\pi\)
0.490648 + 0.871358i \(0.336760\pi\)
\(242\) 96.5508 0.398970
\(243\) 241.259 29.0343i 0.992836 0.119483i
\(244\) −550.687 −2.25691
\(245\) 69.2679 221.580i 0.282726 0.904407i
\(246\) 312.838 453.018i 1.27170 1.84153i
\(247\) 258.044 + 307.525i 1.04471 + 1.24504i
\(248\) 25.4629 + 144.408i 0.102673 + 0.582288i
\(249\) −79.5512 20.7624i −0.319483 0.0833831i
\(250\) −218.620 412.538i −0.874478 1.65015i
\(251\) −28.4525 16.4271i −0.113357 0.0654465i 0.442250 0.896892i \(-0.354180\pi\)
−0.555606 + 0.831445i \(0.687514\pi\)
\(252\) −134.242 + 50.8460i −0.532705 + 0.201770i
\(253\) 301.720 174.198i 1.19257 0.688531i
\(254\) 817.529 + 144.152i 3.21862 + 0.567529i
\(255\) −141.957 + 227.291i −0.556694 + 0.891337i
\(256\) 101.972 + 37.1147i 0.398328 + 0.144979i
\(257\) −267.150 97.2345i −1.03949 0.378344i −0.234805 0.972043i \(-0.575445\pi\)
−0.804688 + 0.593698i \(0.797667\pi\)
\(258\) 246.731 + 113.106i 0.956323 + 0.438395i
\(259\) 10.6205 60.2319i 0.0410058 0.232556i
\(260\) −87.8008 + 679.769i −0.337695 + 2.61450i
\(261\) 138.903 119.665i 0.532197 0.458487i
\(262\) 50.4763 + 29.1425i 0.192658 + 0.111231i
\(263\) −219.036 183.793i −0.832838 0.698834i 0.123102 0.992394i \(-0.460716\pi\)
−0.955941 + 0.293560i \(0.905160\pi\)
\(264\) −779.140 + 214.208i −2.95129 + 0.811393i
\(265\) 157.012 + 81.2473i 0.592498 + 0.306594i
\(266\) −112.142 133.645i −0.421585 0.502425i
\(267\) −62.2198 131.197i −0.233033 0.491376i
\(268\) 104.670 + 287.578i 0.390559 + 1.07305i
\(269\) 143.973i 0.535215i −0.963528 0.267607i \(-0.913767\pi\)
0.963528 0.267607i \(-0.0862330\pi\)
\(270\) −182.692 + 469.977i −0.676637 + 1.74065i
\(271\) −386.716 −1.42699 −0.713497 0.700658i \(-0.752890\pi\)
−0.713497 + 0.700658i \(0.752890\pi\)
\(272\) 725.508 264.063i 2.66731 0.970820i
\(273\) 5.34437 66.0271i 0.0195764 0.241857i
\(274\) −21.1021 + 17.7068i −0.0770149 + 0.0646232i
\(275\) 129.377 + 273.939i 0.470461 + 0.996143i
\(276\) −602.924 + 610.814i −2.18451 + 2.21310i
\(277\) −132.179 + 157.524i −0.477179 + 0.568680i −0.949909 0.312528i \(-0.898824\pi\)
0.472730 + 0.881208i \(0.343269\pi\)
\(278\) 278.988 483.221i 1.00355 1.73820i
\(279\) −51.8015 29.0163i −0.185669 0.104001i
\(280\) 22.8186 176.666i 0.0814951 0.630949i
\(281\) −498.789 87.9499i −1.77505 0.312989i −0.812271 0.583280i \(-0.801769\pi\)
−0.962779 + 0.270291i \(0.912880\pi\)
\(282\) 43.3604 + 61.0761i 0.153760 + 0.216582i
\(283\) 146.487 402.471i 0.517623 1.42216i −0.355508 0.934673i \(-0.615692\pi\)
0.873131 0.487485i \(-0.162086\pi\)
\(284\) 184.204 506.097i 0.648607 1.78203i
\(285\) −436.851 15.1581i −1.53281 0.0531862i
\(286\) 108.276 614.062i 0.378586 2.14707i
\(287\) −39.3759 68.2011i −0.137198 0.237635i
\(288\) 560.855 333.606i 1.94741 1.15835i
\(289\) −15.0844 + 26.1269i −0.0521952 + 0.0904047i
\(290\) 83.2516 + 371.220i 0.287074 + 1.28007i
\(291\) 288.568 + 284.841i 0.991643 + 0.978834i
\(292\) −913.161 + 161.015i −3.12726 + 0.551421i
\(293\) 258.409 216.831i 0.881942 0.740037i −0.0846357 0.996412i \(-0.526973\pi\)
0.966577 + 0.256375i \(0.0825282\pi\)
\(294\) 41.9744 518.573i 0.142770 1.76386i
\(295\) −392.633 122.741i −1.33096 0.416070i
\(296\) 848.125i 2.86529i
\(297\) 132.468 299.175i 0.446019 1.00732i
\(298\) 809.191i 2.71541i
\(299\) −135.461 372.175i −0.453046 1.24473i
\(300\) −486.206 566.206i −1.62069 1.88735i
\(301\) 29.7421 24.9566i 0.0988108 0.0829121i
\(302\) −8.26242 46.8585i −0.0273590 0.155161i
\(303\) −421.250 + 115.814i −1.39026 + 0.382223i
\(304\) 964.724 + 809.500i 3.17343 + 2.66283i
\(305\) 106.515 + 255.381i 0.349231 + 0.837313i
\(306\) −198.048 + 566.960i −0.647216 + 1.85281i
\(307\) −90.5911 + 52.3028i −0.295085 + 0.170367i −0.640233 0.768181i \(-0.721162\pi\)
0.345148 + 0.938548i \(0.387829\pi\)
\(308\) −33.5631 + 190.346i −0.108971 + 0.618007i
\(309\) −37.3030 17.1003i −0.120722 0.0553409i
\(310\) 103.748 66.4523i 0.334670 0.214362i
\(311\) −124.512 + 342.094i −0.400360 + 1.09998i 0.561748 + 0.827309i \(0.310129\pi\)
−0.962107 + 0.272671i \(0.912093\pi\)
\(312\) 86.0078 + 914.561i 0.275666 + 2.93129i
\(313\) −259.852 45.8188i −0.830197 0.146386i −0.257629 0.966244i \(-0.582941\pi\)
−0.572567 + 0.819858i \(0.694052\pi\)
\(314\) 280.281 161.820i 0.892615 0.515351i
\(315\) 49.5451 + 52.4197i 0.157286 + 0.166412i
\(316\) 143.775 249.025i 0.454983 0.788054i
\(317\) −319.270 267.899i −1.00716 0.845107i −0.0191996 0.999816i \(-0.506112\pi\)
−0.987960 + 0.154708i \(0.950556\pi\)
\(318\) 383.349 + 100.052i 1.20550 + 0.314628i
\(319\) −42.8671 243.111i −0.134380 0.762104i
\(320\) 22.5625 + 489.277i 0.0705079 + 1.52899i
\(321\) 304.450 + 210.242i 0.948442 + 0.654959i
\(322\) 58.8688 + 161.741i 0.182822 + 0.502300i
\(323\) −520.611 −1.61180
\(324\) −119.279 + 797.145i −0.368146 + 2.46032i
\(325\) 332.225 90.7652i 1.02223 0.279277i
\(326\) 56.8618 + 156.227i 0.174423 + 0.479223i
\(327\) 335.226 + 231.495i 1.02516 + 0.707936i
\(328\) 701.961 + 836.565i 2.14013 + 2.55050i
\(329\) 10.5517 1.86055i 0.0320720 0.00565517i
\(330\) 418.113 + 534.915i 1.26701 + 1.62096i
\(331\) −55.6735 46.7156i −0.168198 0.141135i 0.554803 0.831982i \(-0.312793\pi\)
−0.723001 + 0.690847i \(0.757238\pi\)
\(332\) 136.353 236.171i 0.410703 0.711358i
\(333\) −265.921 217.306i −0.798561 0.652570i
\(334\) −126.399 218.929i −0.378439 0.655475i
\(335\) 113.118 104.165i 0.337667 0.310939i
\(336\) −19.4570 206.895i −0.0579077 0.615760i
\(337\) 30.3392 83.3563i 0.0900273 0.247348i −0.886505 0.462719i \(-0.846874\pi\)
0.976532 + 0.215371i \(0.0690961\pi\)
\(338\) −72.9296 26.5442i −0.215768 0.0785331i
\(339\) 121.690 265.457i 0.358968 0.783059i
\(340\) −602.118 653.875i −1.77093 1.92316i
\(341\) −69.2350 + 39.9728i −0.203035 + 0.117222i
\(342\) −962.419 + 182.632i −2.81409 + 0.534012i
\(343\) −132.469 76.4811i −0.386207 0.222977i
\(344\) −346.074 + 412.435i −1.00603 + 1.19894i
\(345\) 399.884 + 161.460i 1.15908 + 0.468001i
\(346\) −6.45215 36.5920i −0.0186478 0.105757i
\(347\) 305.192 256.086i 0.879515 0.738001i −0.0865644 0.996246i \(-0.527589\pi\)
0.966079 + 0.258246i \(0.0831444\pi\)
\(348\) 260.586 + 549.474i 0.748809 + 1.57895i
\(349\) 414.030 150.695i 1.18633 0.431790i 0.327899 0.944713i \(-0.393660\pi\)
0.858435 + 0.512923i \(0.171437\pi\)
\(350\) −144.379 + 39.4449i −0.412512 + 0.112700i
\(351\) −308.788 207.361i −0.879738 0.590773i
\(352\) 878.664i 2.49621i
\(353\) 361.633 131.624i 1.02446 0.372871i 0.225488 0.974246i \(-0.427602\pi\)
0.798967 + 0.601375i \(0.205380\pi\)
\(354\) −918.898 74.3775i −2.59576 0.210106i
\(355\) −270.331 + 12.4661i −0.761497 + 0.0351157i
\(356\) 474.316 83.6347i 1.33235 0.234929i
\(357\) 61.1388 + 60.3490i 0.171257 + 0.169045i
\(358\) 509.848 607.613i 1.42416 1.69724i
\(359\) 88.2741 + 50.9651i 0.245889 + 0.141964i 0.617880 0.786272i \(-0.287992\pi\)
−0.371991 + 0.928236i \(0.621325\pi\)
\(360\) −802.834 596.560i −2.23009 1.65711i
\(361\) −244.097 422.788i −0.676168 1.17116i
\(362\) −99.1232 + 562.155i −0.273821 + 1.55292i
\(363\) −44.8923 63.2340i −0.123670 0.174198i
\(364\) 206.474 + 75.1504i 0.567236 + 0.206457i
\(365\) 251.297 + 392.334i 0.688484 + 1.07489i
\(366\) 358.973 + 505.639i 0.980800 + 1.38153i
\(367\) 513.441 + 90.5336i 1.39902 + 0.246686i 0.821742 0.569860i \(-0.193003\pi\)
0.577281 + 0.816545i \(0.304114\pi\)
\(368\) −621.232 1076.00i −1.68813 2.92393i
\(369\) −442.152 + 5.74870i −1.19824 + 0.0155791i
\(370\) 657.694 274.314i 1.77755 0.741389i
\(371\) 36.4288 43.4141i 0.0981908 0.117019i
\(372\) 138.351 140.162i 0.371912 0.376779i
\(373\) −62.8021 + 11.0737i −0.168370 + 0.0296882i −0.257198 0.966359i \(-0.582799\pi\)
0.0888274 + 0.996047i \(0.471688\pi\)
\(374\) 519.774 + 619.443i 1.38977 + 1.65626i
\(375\) −168.534 + 334.994i −0.449424 + 0.893319i
\(376\) −139.618 + 50.8168i −0.371325 + 0.135151i
\(377\) −280.634 −0.744388
\(378\) 134.194 + 90.1155i 0.355010 + 0.238401i
\(379\) 270.107 0.712684 0.356342 0.934356i \(-0.384024\pi\)
0.356342 + 0.934356i \(0.384024\pi\)
\(380\) 432.602 1383.84i 1.13843 3.64169i
\(381\) −285.709 602.449i −0.749893 1.58123i
\(382\) 181.022 + 215.733i 0.473879 + 0.564746i
\(383\) 5.06194 + 28.7077i 0.0132165 + 0.0749547i 0.990703 0.136045i \(-0.0434392\pi\)
−0.977486 + 0.211000i \(0.932328\pi\)
\(384\) 60.3250 + 219.420i 0.157096 + 0.571407i
\(385\) 94.7646 21.2523i 0.246142 0.0552009i
\(386\) −434.363 250.780i −1.12529 0.649689i
\(387\) −40.6439 214.182i −0.105023 0.553441i
\(388\) −1164.74 + 672.462i −3.00190 + 1.73315i
\(389\) −497.062 87.6455i −1.27780 0.225310i −0.506752 0.862092i \(-0.669154\pi\)
−0.771044 + 0.636782i \(0.780265\pi\)
\(390\) 681.395 362.498i 1.74717 0.929483i
\(391\) 482.652 + 175.671i 1.23440 + 0.449286i
\(392\) 969.778 + 352.970i 2.47392 + 0.900435i
\(393\) −4.38320 46.6086i −0.0111532 0.118597i
\(394\) −44.5050 + 252.400i −0.112957 + 0.640610i
\(395\) −143.294 18.5083i −0.362771 0.0468564i
\(396\) 840.367 + 686.734i 2.12214 + 1.73418i
\(397\) 172.126 + 99.3771i 0.433567 + 0.250320i 0.700865 0.713294i \(-0.252797\pi\)
−0.267298 + 0.963614i \(0.586131\pi\)
\(398\) 174.414 + 146.350i 0.438225 + 0.367715i
\(399\) −35.3868 + 135.585i −0.0886886 + 0.339811i
\(400\) 976.930 461.387i 2.44233 1.15347i
\(401\) 243.584 + 290.292i 0.607440 + 0.723919i 0.978857 0.204547i \(-0.0655722\pi\)
−0.371416 + 0.928466i \(0.621128\pi\)
\(402\) 195.822 283.569i 0.487120 0.705395i
\(403\) 31.0838 + 85.4020i 0.0771310 + 0.211916i
\(404\) 1449.11i 3.58691i
\(405\) 392.746 98.8702i 0.969744 0.244124i
\(406\) 121.959 0.300391
\(407\) −434.513 + 158.150i −1.06760 + 0.388574i
\(408\) −980.255 676.929i −2.40259 1.65914i
\(409\) 126.040 105.760i 0.308167 0.258583i −0.475567 0.879680i \(-0.657757\pi\)
0.783734 + 0.621097i \(0.213313\pi\)
\(410\) 421.690 814.924i 1.02851 1.98762i
\(411\) 21.4083 + 5.58744i 0.0520884 + 0.0135948i
\(412\) 87.4921 104.269i 0.212360 0.253080i
\(413\) −65.9369 + 114.206i −0.159654 + 0.276528i
\(414\) 953.871 + 155.435i 2.30404 + 0.375447i
\(415\) −135.898 17.5529i −0.327465 0.0422962i
\(416\) −983.697 173.452i −2.36466 0.416953i
\(417\) −446.194 + 41.9613i −1.07001 + 0.100627i
\(418\) −451.120 + 1239.44i −1.07923 + 2.96517i
\(419\) 166.490 457.429i 0.397352 1.09172i −0.566217 0.824256i \(-0.691594\pi\)
0.963569 0.267460i \(-0.0861842\pi\)
\(420\) −211.218 + 112.367i −0.502900 + 0.267540i
\(421\) −109.527 + 621.157i −0.260159 + 1.47543i 0.522317 + 0.852751i \(0.325068\pi\)
−0.782476 + 0.622681i \(0.786043\pi\)
\(422\) −708.650 1227.42i −1.67927 2.90857i
\(423\) 19.8397 56.7960i 0.0469024 0.134269i
\(424\) −392.945 + 680.601i −0.926757 + 1.60519i
\(425\) −186.771 + 405.706i −0.439461 + 0.954602i
\(426\) −584.772 + 160.771i −1.37271 + 0.377396i
\(427\) 87.3557 15.4032i 0.204580 0.0360730i
\(428\) −940.116 + 788.851i −2.19653 + 1.84311i
\(429\) −452.511 + 214.602i −1.05481 + 0.500237i
\(430\) 431.763 + 134.973i 1.00410 + 0.313891i
\(431\) 538.952i 1.25047i −0.780437 0.625235i \(-0.785003\pi\)
0.780437 0.625235i \(-0.214997\pi\)
\(432\) −1066.93 472.411i −2.46974 1.09354i
\(433\) 142.952i 0.330144i −0.986282 0.165072i \(-0.947214\pi\)
0.986282 0.165072i \(-0.0527856\pi\)
\(434\) −13.5085 37.1142i −0.0311255 0.0855166i
\(435\) 204.415 227.127i 0.469919 0.522131i
\(436\) −1035.15 + 868.594i −2.37420 + 1.99219i
\(437\) 145.483 + 825.073i 0.332912 + 1.88804i
\(438\) 743.100 + 733.501i 1.69657 + 1.67466i
\(439\) 120.959 + 101.496i 0.275532 + 0.231199i 0.770074 0.637955i \(-0.220219\pi\)
−0.494541 + 0.869154i \(0.664664\pi\)
\(440\) −1242.97 + 518.423i −2.82493 + 1.17823i
\(441\) −359.146 + 213.626i −0.814389 + 0.484413i
\(442\) 796.095 459.626i 1.80112 1.03988i
\(443\) 33.6677 190.939i 0.0759993 0.431013i −0.922939 0.384946i \(-0.874220\pi\)
0.998938 0.0460672i \(-0.0146688\pi\)
\(444\) 928.829 659.412i 2.09196 1.48516i
\(445\) −130.529 203.787i −0.293323 0.457947i
\(446\) −383.066 + 1052.47i −0.858893 + 2.35979i
\(447\) 529.964 376.242i 1.18560 0.841705i
\(448\) 154.630 + 27.2654i 0.345155 + 0.0608602i
\(449\) −34.7894 + 20.0857i −0.0774820 + 0.0447343i −0.538240 0.842791i \(-0.680911\pi\)
0.460758 + 0.887526i \(0.347577\pi\)
\(450\) −202.948 + 815.521i −0.450995 + 1.81227i
\(451\) −297.695 + 515.624i −0.660079 + 1.14329i
\(452\) 742.004 + 622.616i 1.64160 + 1.37747i
\(453\) −26.8474 + 27.1987i −0.0592657 + 0.0600412i
\(454\) 78.2982 + 444.051i 0.172463 + 0.978087i
\(455\) −5.08582 110.288i −0.0111776 0.242391i
\(456\) 156.769 1936.81i 0.343792 4.24739i
\(457\) 75.2035 + 206.620i 0.164559 + 0.452122i 0.994375 0.105915i \(-0.0337770\pi\)
−0.829816 + 0.558037i \(0.811555\pi\)
\(458\) 696.277 1.52026
\(459\) 463.404 133.907i 1.00959 0.291736i
\(460\) −868.013 + 1136.97i −1.88698 + 2.47167i
\(461\) 239.621 + 658.355i 0.519786 + 1.42810i 0.870757 + 0.491714i \(0.163630\pi\)
−0.350970 + 0.936387i \(0.614148\pi\)
\(462\) 196.653 93.2621i 0.425657 0.201866i
\(463\) 93.8008 + 111.787i 0.202593 + 0.241441i 0.857769 0.514035i \(-0.171850\pi\)
−0.655176 + 0.755477i \(0.727405\pi\)
\(464\) −866.990 + 152.874i −1.86851 + 0.329469i
\(465\) −91.7602 37.0498i −0.197334 0.0796771i
\(466\) −417.842 350.611i −0.896658 0.752385i
\(467\) −137.204 + 237.644i −0.293798 + 0.508873i −0.974705 0.223497i \(-0.928253\pi\)
0.680907 + 0.732370i \(0.261586\pi\)
\(468\) 934.716 805.258i 1.99726 1.72064i
\(469\) −24.6476 42.6909i −0.0525535 0.0910253i
\(470\) 84.5643 + 91.8333i 0.179924 + 0.195390i
\(471\) −236.301 108.324i −0.501700 0.229988i
\(472\) 625.454 1718.42i 1.32511 3.64072i
\(473\) −275.832 100.395i −0.583154 0.212251i
\(474\) −322.375 + 30.3170i −0.680116 + 0.0639600i
\(475\) −725.431 + 67.0478i −1.52722 + 0.141153i
\(476\) −246.772 + 142.474i −0.518429 + 0.299315i
\(477\) −112.715 297.587i −0.236300 0.623871i
\(478\) −681.539 393.487i −1.42581 0.823194i
\(479\) 68.8982 82.1097i 0.143838 0.171419i −0.689316 0.724461i \(-0.742089\pi\)
0.833153 + 0.553042i \(0.186533\pi\)
\(480\) 856.909 669.797i 1.78523 1.39541i
\(481\) 91.2796 + 517.673i 0.189771 + 1.07624i
\(482\) 224.847 188.669i 0.466487 0.391429i
\(483\) 78.5571 113.758i 0.162644 0.235524i
\(484\) 241.714 87.9767i 0.499409 0.181770i
\(485\) 537.140 + 410.077i 1.10751 + 0.845519i
\(486\) 809.689 410.108i 1.66603 0.843843i
\(487\) 532.318i 1.09305i −0.837441 0.546527i \(-0.815949\pi\)
0.837441 0.546527i \(-0.184051\pi\)
\(488\) −1155.87 + 420.704i −2.36859 + 0.862097i
\(489\) 75.8790 109.880i 0.155172 0.224703i
\(490\) −39.9438 866.195i −0.0815179 1.76775i
\(491\) −203.492 + 35.8811i −0.414444 + 0.0730776i −0.376982 0.926220i \(-0.623038\pi\)
−0.0374614 + 0.999298i \(0.511927\pi\)
\(492\) 370.398 1419.18i 0.752841 2.88451i
\(493\) 233.935 278.793i 0.474513 0.565502i
\(494\) 1298.55 + 749.717i 2.62864 + 1.51765i
\(495\) 155.926 522.549i 0.315002 1.05566i
\(496\) 142.552 + 246.908i 0.287404 + 0.497798i
\(497\) −15.0644 + 85.4347i −0.0303108 + 0.171901i
\(498\) −305.735 + 28.7521i −0.613925 + 0.0577352i
\(499\) −554.526 201.831i −1.11127 0.404471i −0.279813 0.960054i \(-0.590273\pi\)
−0.831461 + 0.555584i \(0.812495\pi\)
\(500\) −923.215 833.580i −1.84643 1.66716i
\(501\) −84.6126 + 184.575i −0.168887 + 0.368414i
\(502\) −120.849 21.3089i −0.240734 0.0424480i
\(503\) 366.904 + 635.497i 0.729432 + 1.26341i 0.957123 + 0.289680i \(0.0935490\pi\)
−0.227691 + 0.973733i \(0.573118\pi\)
\(504\) −242.924 + 209.279i −0.481993 + 0.415237i
\(505\) −672.024 + 280.291i −1.33074 + 0.555031i
\(506\) 836.454 996.847i 1.65307 1.97005i
\(507\) 16.5248 + 60.1057i 0.0325933 + 0.118552i
\(508\) 2178.03 384.045i 4.28745 0.755994i
\(509\) −572.292 682.031i −1.12435 1.33994i −0.933605 0.358303i \(-0.883355\pi\)
−0.190741 0.981640i \(-0.561089\pi\)
\(510\) −207.887 + 979.099i −0.407621 + 1.91980i
\(511\) 140.351 51.0837i 0.274660 0.0999681i
\(512\) 708.733 1.38424
\(513\) 567.098 + 545.400i 1.10545 + 1.06316i
\(514\) −1061.86 −2.06588
\(515\) −65.2776 20.4064i −0.126753 0.0396241i
\(516\) 720.751 + 58.3391i 1.39681 + 0.113060i
\(517\) −52.0691 62.0535i −0.100714 0.120026i
\(518\) −39.6685 224.971i −0.0765802 0.434308i
\(519\) −20.9652 + 21.2395i −0.0403954 + 0.0409240i
\(520\) 335.026 + 1493.89i 0.644281 + 2.87286i
\(521\) −173.520 100.182i −0.333052 0.192288i 0.324143 0.946008i \(-0.394924\pi\)
−0.657195 + 0.753720i \(0.728257\pi\)
\(522\) 334.658 597.450i 0.641107 1.14454i
\(523\) −514.780 + 297.208i −0.984283 + 0.568276i −0.903560 0.428461i \(-0.859056\pi\)
−0.0807223 + 0.996737i \(0.525723\pi\)
\(524\) 152.922 + 26.9642i 0.291835 + 0.0514584i
\(525\) 92.9643 + 76.2178i 0.177075 + 0.145177i
\(526\) −1003.57 365.271i −1.90793 0.694431i
\(527\) −110.753 40.3107i −0.210157 0.0764909i
\(528\) −1281.08 + 909.492i −2.42630 + 1.72252i
\(529\) 51.6711 293.041i 0.0976769 0.553953i
\(530\) 654.877 + 84.5856i 1.23562 + 0.159596i
\(531\) 378.539 + 636.396i 0.712880 + 1.19849i
\(532\) −402.522 232.396i −0.756621 0.436835i
\(533\) 518.494 + 435.068i 0.972783 + 0.816262i
\(534\) −385.982 380.996i −0.722813 0.713476i
\(535\) 547.668 + 283.396i 1.02368 + 0.529712i
\(536\) 439.396 + 523.652i 0.819770 + 0.976963i
\(537\) −635.003 51.3985i −1.18250 0.0957141i
\(538\) −183.921 505.320i −0.341861 0.939257i
\(539\) 562.656i 1.04389i
\(540\) −29.1268 + 1343.05i −0.0539385 + 2.48713i
\(541\) 446.693 0.825681 0.412840 0.910803i \(-0.364537\pi\)
0.412840 + 0.910803i \(0.364537\pi\)
\(542\) −1357.31 + 494.019i −2.50426 + 0.911475i
\(543\) 414.261 196.461i 0.762911 0.361807i
\(544\) 992.317 832.653i 1.82411 1.53061i
\(545\) 603.031 + 312.044i 1.10648 + 0.572558i
\(546\) −65.5901 238.571i −0.120128 0.436944i
\(547\) −341.647 + 407.160i −0.624584 + 0.744350i −0.981851 0.189652i \(-0.939264\pi\)
0.357267 + 0.934002i \(0.383708\pi\)
\(548\) −36.6945 + 63.5568i −0.0669608 + 0.115980i
\(549\) 164.250 470.204i 0.299180 0.856474i
\(550\) 804.041 + 796.205i 1.46189 + 1.44765i
\(551\) 584.617 + 103.084i 1.06101 + 0.187085i
\(552\) −798.879 + 1742.69i −1.44724 + 3.15705i
\(553\) −15.8416 + 43.5244i −0.0286466 + 0.0787060i
\(554\) −262.691 + 721.738i −0.474172 + 1.30278i
\(555\) −485.458 303.198i −0.874700 0.546303i
\(556\) 258.134 1463.95i 0.464270 2.63301i
\(557\) −128.583 222.713i −0.230850 0.399844i 0.727209 0.686417i \(-0.240817\pi\)
−0.958058 + 0.286573i \(0.907484\pi\)
\(558\) −218.882 35.6673i −0.392262 0.0639198i
\(559\) −166.846 + 288.986i −0.298472 + 0.516969i
\(560\) −75.7908 337.952i −0.135341 0.603487i
\(561\) 164.017 628.432i 0.292365 1.12020i
\(562\) −1863.02 + 328.500i −3.31498 + 0.584520i
\(563\) 361.325 303.188i 0.641786 0.538522i −0.262780 0.964856i \(-0.584639\pi\)
0.904566 + 0.426333i \(0.140195\pi\)
\(564\) 164.205 + 113.394i 0.291143 + 0.201053i
\(565\) 145.217 464.532i 0.257021 0.822180i
\(566\) 1599.74i 2.82639i
\(567\) −3.37548 129.788i −0.00595322 0.228902i
\(568\) 1203.01i 2.11797i
\(569\) −35.4016 97.2651i −0.0622173 0.170941i 0.904689 0.426073i \(-0.140103\pi\)
−0.966906 + 0.255132i \(0.917881\pi\)
\(570\) −1552.64 + 504.864i −2.72393 + 0.885726i
\(571\) 462.971 388.479i 0.810807 0.680348i −0.139993 0.990153i \(-0.544708\pi\)
0.950800 + 0.309804i \(0.100264\pi\)
\(572\) −288.464 1635.96i −0.504307 2.86007i
\(573\) 57.1222 218.864i 0.0996897 0.381961i
\(574\) −225.328 189.073i −0.392558 0.329395i
\(575\) 695.161 + 182.625i 1.20898 + 0.317608i
\(576\) 557.875 682.681i 0.968533 1.18521i
\(577\) 219.729 126.861i 0.380813 0.219863i −0.297359 0.954766i \(-0.596106\pi\)
0.678172 + 0.734903i \(0.262772\pi\)
\(578\) −19.5672 + 110.971i −0.0338533 + 0.191992i
\(579\) 37.7187 + 401.080i 0.0651445 + 0.692712i
\(580\) 546.674 + 853.488i 0.942541 + 1.47153i
\(581\) −15.0239 + 41.2778i −0.0258587 + 0.0710461i
\(582\) 1376.70 + 631.104i 2.36547 + 1.08437i
\(583\) −421.959 74.4027i −0.723771 0.127620i
\(584\) −1793.68 + 1035.58i −3.07138 + 1.77326i
\(585\) −554.233 277.719i −0.947407 0.474733i
\(586\) 629.976 1091.15i 1.07504 1.86203i
\(587\) 402.386 + 337.642i 0.685496 + 0.575199i 0.917606 0.397490i \(-0.130119\pi\)
−0.232111 + 0.972689i \(0.574563\pi\)
\(588\) −367.439 1336.49i −0.624897 2.27294i
\(589\) −33.3835 189.327i −0.0566783 0.321439i
\(590\) −1534.87 + 70.7793i −2.60148 + 0.119965i
\(591\) 185.998 88.2086i 0.314717 0.149253i
\(592\) 563.998 + 1549.57i 0.952699 + 2.61752i
\(593\) 841.771 1.41951 0.709757 0.704447i \(-0.248805\pi\)
0.709757 + 0.704447i \(0.248805\pi\)
\(594\) 82.7512 1219.28i 0.139312 2.05266i
\(595\) 113.804 + 86.8827i 0.191267 + 0.146021i
\(596\) 737.332 + 2025.80i 1.23713 + 3.39900i
\(597\) 14.7538 182.276i 0.0247132 0.305320i
\(598\) −950.888 1133.22i −1.59011 1.89502i
\(599\) 607.717 107.157i 1.01455 0.178893i 0.358437 0.933554i \(-0.383310\pi\)
0.656115 + 0.754661i \(0.272199\pi\)
\(600\) −1453.09 817.004i −2.42181 1.36167i
\(601\) 687.872 + 577.193i 1.14455 + 0.960388i 0.999578 0.0290485i \(-0.00924772\pi\)
0.144968 + 0.989436i \(0.453692\pi\)
\(602\) 72.5083 125.588i 0.120446 0.208618i
\(603\) −276.767 + 3.59843i −0.458984 + 0.00596755i
\(604\) −63.3822 109.781i −0.104937 0.181757i
\(605\) −87.5520 95.0779i −0.144714 0.157154i
\(606\) −1330.57 + 944.622i −2.19566 + 1.55878i
\(607\) −305.379 + 839.023i −0.503096 + 1.38225i 0.385140 + 0.922858i \(0.374153\pi\)
−0.888236 + 0.459388i \(0.848069\pi\)
\(608\) 1985.53 + 722.672i 3.26567 + 1.18861i
\(609\) −56.7060 79.8744i −0.0931133 0.131157i
\(610\) 700.093 + 760.272i 1.14769 + 1.24635i
\(611\) −79.7499 + 46.0436i −0.130524 + 0.0753578i
\(612\) 20.8006 + 1599.84i 0.0339878 + 2.61412i
\(613\) 499.634 + 288.464i 0.815063 + 0.470577i 0.848711 0.528857i \(-0.177379\pi\)
−0.0336481 + 0.999434i \(0.510713\pi\)
\(614\) −251.144 + 299.302i −0.409029 + 0.487462i
\(615\) −729.787 + 102.730i −1.18665 + 0.167041i
\(616\) 74.9691 + 425.171i 0.121703 + 0.690212i
\(617\) −235.192 + 197.349i −0.381186 + 0.319853i −0.813168 0.582029i \(-0.802259\pi\)
0.431982 + 0.901882i \(0.357815\pi\)
\(618\) −152.772 12.3657i −0.247204 0.0200092i
\(619\) −278.964 + 101.535i −0.450668 + 0.164030i −0.557375 0.830261i \(-0.688192\pi\)
0.106707 + 0.994291i \(0.465969\pi\)
\(620\) 199.181 260.897i 0.321259 0.420802i
\(621\) −341.714 696.990i −0.550264 1.12237i
\(622\) 1359.75i 2.18610i
\(623\) −72.9016 + 26.5340i −0.117017 + 0.0425907i
\(624\) 765.319 + 1613.76i 1.22647 + 2.58615i
\(625\) −208.001 + 589.373i −0.332802 + 0.942997i
\(626\) −970.567 + 171.137i −1.55043 + 0.273382i
\(627\) 1021.50 280.840i 1.62919 0.447910i
\(628\) 554.231 660.507i 0.882533 1.05176i
\(629\) −590.365 340.848i −0.938578 0.541888i
\(630\) 240.860 + 120.692i 0.382317 + 0.191574i
\(631\) −152.227 263.664i −0.241247 0.417851i 0.719823 0.694158i \(-0.244223\pi\)
−0.961070 + 0.276306i \(0.910890\pi\)
\(632\) 111.533 632.533i 0.176476 1.00084i
\(633\) −474.378 + 1034.82i −0.749413 + 1.63478i
\(634\) −1462.82 532.422i −2.30728 0.839782i
\(635\) −599.380 935.775i −0.943905 1.47366i
\(636\) 1050.88 98.8273i 1.65232 0.155389i
\(637\) 629.915 + 111.071i 0.988877 + 0.174366i
\(638\) −461.024 798.518i −0.722609 1.25160i
\(639\) 377.190 + 308.233i 0.590281 + 0.482368i
\(640\) 145.998 + 350.043i 0.228121 + 0.546943i
\(641\) 710.009 846.156i 1.10766 1.32006i 0.165001 0.986293i \(-0.447237\pi\)
0.942657 0.333762i \(-0.108318\pi\)
\(642\) 1337.15 + 348.987i 2.08278 + 0.543594i
\(643\) 421.371 74.2990i 0.655320 0.115551i 0.163905 0.986476i \(-0.447591\pi\)
0.491415 + 0.870926i \(0.336480\pi\)
\(644\) 294.755 + 351.275i 0.457694 + 0.545458i
\(645\) −112.355 345.532i −0.174194 0.535708i
\(646\) −1827.26 + 665.067i −2.82857 + 1.02952i
\(647\) −839.214 −1.29709 −0.648543 0.761178i \(-0.724621\pi\)
−0.648543 + 0.761178i \(0.724621\pi\)
\(648\) 358.624 + 1764.30i 0.553433 + 2.72269i
\(649\) 997.011 1.53623
\(650\) 1050.10 742.979i 1.61554 1.14304i
\(651\) −18.0263 + 26.1037i −0.0276902 + 0.0400979i
\(652\) 284.706 + 339.300i 0.436666 + 0.520398i
\(653\) 218.407 + 1238.65i 0.334468 + 1.89686i 0.432426 + 0.901670i \(0.357658\pi\)
−0.0979579 + 0.995191i \(0.531231\pi\)
\(654\) 1472.32 + 384.266i 2.25125 + 0.587562i
\(655\) −17.0739 76.1327i −0.0260670 0.116233i
\(656\) 1838.83 + 1061.65i 2.80310 + 1.61837i
\(657\) 134.880 827.727i 0.205296 1.25986i
\(658\) 34.6579 20.0097i 0.0526716 0.0304099i
\(659\) 102.328 + 18.0433i 0.155278 + 0.0273798i 0.250747 0.968053i \(-0.419324\pi\)
−0.0954686 + 0.995432i \(0.530435\pi\)
\(660\) 1534.15 + 958.172i 2.32448 + 1.45178i
\(661\) −528.130 192.224i −0.798986 0.290807i −0.0899200 0.995949i \(-0.528661\pi\)
−0.709066 + 0.705142i \(0.750883\pi\)
\(662\) −255.083 92.8425i −0.385321 0.140245i
\(663\) −671.176 307.679i −1.01233 0.464070i
\(664\) 105.776 599.883i 0.159301 0.903438i
\(665\) −29.9166 + 231.620i −0.0449874 + 0.348301i
\(666\) −1210.94 423.000i −1.81823 0.635135i
\(667\) −507.207 292.836i −0.760430 0.439035i
\(668\) −515.924 432.912i −0.772342 0.648072i
\(669\) 867.402 238.474i 1.29657 0.356463i
\(670\) 263.959 510.106i 0.393969 0.761352i
\(671\) −431.071 513.730i −0.642430 0.765619i
\(672\) −149.401 315.029i −0.222323 0.468794i
\(673\) 83.8135 + 230.276i 0.124537 + 0.342163i 0.986256 0.165222i \(-0.0528342\pi\)
−0.861719 + 0.507386i \(0.830612\pi\)
\(674\) 331.324i 0.491579i
\(675\) 628.472 246.269i 0.931069 0.364842i
\(676\) −206.765 −0.305866
\(677\) 1015.64 369.663i 1.50021 0.546031i 0.544094 0.839024i \(-0.316873\pi\)
0.956115 + 0.292992i \(0.0946511\pi\)
\(678\) 87.9975 1087.17i 0.129790 1.60349i
\(679\) 165.953 139.252i 0.244409 0.205083i
\(680\) −1763.36 912.467i −2.59318 1.34186i
\(681\) 254.417 257.746i 0.373593 0.378482i
\(682\) −191.939 + 228.744i −0.281435 + 0.335401i
\(683\) −428.494 + 742.173i −0.627370 + 1.08664i 0.360707 + 0.932679i \(0.382535\pi\)
−0.988077 + 0.153958i \(0.950798\pi\)
\(684\) −2242.99 + 1334.17i −3.27923 + 1.95054i
\(685\) 36.5720 + 4.72373i 0.0533897 + 0.00689596i
\(686\) −562.647 99.2098i −0.820185 0.144621i
\(687\) −323.742 456.013i −0.471240 0.663774i
\(688\) −358.030 + 983.679i −0.520392 + 1.42977i
\(689\) −166.593 + 457.711i −0.241790 + 0.664312i
\(690\) 1609.79 + 55.8571i 2.33302 + 0.0809524i
\(691\) −214.349 + 1215.63i −0.310201 + 1.75924i 0.287749 + 0.957706i \(0.407093\pi\)
−0.597951 + 0.801533i \(0.704018\pi\)
\(692\) −49.4954 85.7285i −0.0715251 0.123885i
\(693\) −152.516 85.4310i −0.220081 0.123277i
\(694\) 744.028 1288.69i 1.07209 1.85691i
\(695\) −728.835 + 163.452i −1.04868 + 0.235182i
\(696\) 966.736 + 954.249i 1.38899 + 1.37105i
\(697\) −864.425 + 152.421i −1.24021 + 0.218682i
\(698\) 1260.67 1057.83i 1.80611 1.51551i
\(699\) −35.3456 + 436.678i −0.0505660 + 0.624718i
\(700\) −325.509 + 230.308i −0.465013 + 0.329011i
\(701\) 691.765i 0.986826i 0.869795 + 0.493413i \(0.164251\pi\)
−0.869795 + 0.493413i \(0.835749\pi\)
\(702\) −1348.69 333.334i −1.92121 0.474835i
\(703\) 1111.95i 1.58171i
\(704\) −406.007 1115.50i −0.576715 1.58451i
\(705\) 20.8253 98.0826i 0.0295395 0.139124i
\(706\) 1101.12 923.953i 1.55967 1.30871i
\(707\) 40.5328 + 229.873i 0.0573307 + 0.325139i
\(708\) −2368.22 + 651.092i −3.34495 + 0.919622i
\(709\) 199.020 + 166.998i 0.280705 + 0.235540i 0.772259 0.635307i \(-0.219127\pi\)
−0.491554 + 0.870847i \(0.663571\pi\)
\(710\) −932.892 + 389.095i −1.31393 + 0.548021i
\(711\) 169.747 + 197.037i 0.238744 + 0.277126i
\(712\) 931.679 537.905i 1.30854 0.755485i
\(713\) −32.9357 + 186.787i −0.0461931 + 0.261974i
\(714\) 291.681 + 133.712i 0.408517 + 0.187271i
\(715\) −702.878 + 450.206i −0.983047 + 0.629659i
\(716\) 722.744 1985.72i 1.00942 2.77336i
\(717\) 59.1826 + 629.316i 0.0825419 + 0.877707i
\(718\) 374.934 + 66.1110i 0.522192 + 0.0920765i
\(719\) −687.917 + 397.169i −0.956769 + 0.552391i −0.895177 0.445711i \(-0.852951\pi\)
−0.0615920 + 0.998101i \(0.519618\pi\)
\(720\) −1863.53 556.068i −2.58824 0.772317i
\(721\) −10.9624 + 18.9875i −0.0152045 + 0.0263349i
\(722\) −1396.84 1172.09i −1.93468 1.62339i
\(723\) −228.110 59.5353i −0.315504 0.0823448i
\(724\) 264.080 + 1497.67i 0.364751 + 2.06861i
\(725\) 290.065 418.603i 0.400090 0.577384i
\(726\) −238.344 164.592i −0.328298 0.226711i
\(727\) −29.4405 80.8871i −0.0404959 0.111261i 0.917797 0.397051i \(-0.129966\pi\)
−0.958292 + 0.285790i \(0.907744\pi\)
\(728\) 490.794 0.674167
\(729\) −645.065 339.605i −0.884863 0.465851i
\(730\) 1383.20 + 1056.00i 1.89480 + 1.44658i
\(731\) −148.007 406.647i −0.202473 0.556289i
\(732\) 1359.42 + 938.767i 1.85713 + 1.28247i
\(733\) −166.327 198.220i −0.226912 0.270423i 0.640561 0.767907i \(-0.278702\pi\)
−0.867473 + 0.497484i \(0.834257\pi\)
\(734\) 1917.75 338.151i 2.61273 0.460696i
\(735\) −548.725 + 428.907i −0.746564 + 0.583547i
\(736\) −1596.90 1339.96i −2.16970 1.82060i
\(737\) −186.344 + 322.757i −0.252841 + 0.437934i
\(738\) −1544.53 + 585.015i −2.09287 + 0.792703i
\(739\) −157.730 273.197i −0.213438 0.369685i 0.739350 0.673321i \(-0.235133\pi\)
−0.952788 + 0.303636i \(0.901799\pi\)
\(740\) 1396.58 1286.03i 1.88727 1.73788i
\(741\) −112.762 1199.05i −0.152175 1.61815i
\(742\) 72.3985 198.913i 0.0975721 0.268077i
\(743\) −219.384 79.8494i −0.295268 0.107469i 0.190139 0.981757i \(-0.439106\pi\)
−0.485407 + 0.874288i \(0.661328\pi\)
\(744\) 183.317 399.890i 0.246393 0.537487i
\(745\) 796.847 733.773i 1.06959 0.984930i
\(746\) −206.278 + 119.095i −0.276513 + 0.159645i
\(747\) 160.985 + 186.866i 0.215509 + 0.250156i
\(748\) 1865.68 + 1077.15i 2.49423 + 1.44004i
\(749\) 127.066 151.431i 0.169648 0.202178i
\(750\) −163.579 + 1391.07i −0.218106 + 1.85476i
\(751\) −163.837 929.165i −0.218158 1.23724i −0.875341 0.483506i \(-0.839363\pi\)
0.657183 0.753731i \(-0.271748\pi\)
\(752\) −221.297 + 185.690i −0.294278 + 0.246929i
\(753\) 42.2341 + 89.0552i 0.0560877 + 0.118267i
\(754\) −984.979 + 358.503i −1.30634 + 0.475468i
\(755\) −38.6514 + 50.6276i −0.0511939 + 0.0670564i
\(756\) 418.066 + 103.326i 0.552997 + 0.136675i
\(757\) 197.402i 0.260769i −0.991464 0.130384i \(-0.958379\pi\)
0.991464 0.130384i \(-0.0416211\pi\)
\(758\) 948.031 345.055i 1.25070 0.455218i
\(759\) −1041.78 84.3241i −1.37257 0.111099i
\(760\) −149.185 3235.13i −0.196296 4.25675i
\(761\) 7.30341 1.28779i 0.00959713 0.00169223i −0.168848 0.985642i \(-0.554005\pi\)
0.178445 + 0.983950i \(0.442893\pi\)
\(762\) −1772.40 1749.51i −2.32599 2.29594i
\(763\) 139.911 166.739i 0.183369 0.218531i
\(764\) 649.761 + 375.140i 0.850472 + 0.491020i
\(765\) 737.901 319.091i 0.964576 0.417113i
\(766\) 54.4398 + 94.2926i 0.0710703 + 0.123097i
\(767\) 196.815 1116.19i 0.256603 1.45527i
\(768\) −188.457 265.454i −0.245386 0.345644i
\(769\) 1240.22 + 451.405i 1.61278 + 0.587003i 0.981986 0.188951i \(-0.0605088\pi\)
0.630790 + 0.775954i \(0.282731\pi\)
\(770\) 305.459 195.652i 0.396699 0.254093i
\(771\) 493.725 + 695.447i 0.640370 + 0.902006i
\(772\) −1315.93 232.035i −1.70458 0.300563i
\(773\) −238.322 412.785i −0.308307 0.534004i 0.669685 0.742645i \(-0.266429\pi\)
−0.977992 + 0.208641i \(0.933096\pi\)
\(774\) −416.265 699.820i −0.537810 0.904160i
\(775\) −159.517 41.9064i −0.205828 0.0540727i
\(776\) −1931.01 + 2301.29i −2.48842 + 2.96558i
\(777\) −128.896 + 130.583i −0.165890 + 0.168060i
\(778\) −1856.57 + 327.363i −2.38634 + 0.420776i
\(779\) −920.315 1096.79i −1.18141 1.40794i
\(780\) 1375.56 1528.40i 1.76354 1.95948i
\(781\) 616.325 224.324i 0.789149 0.287227i
\(782\) 1918.44 2.45325
\(783\) −546.891 + 58.6132i −0.698456 + 0.0748573i
\(784\) 2006.56 2.55939
\(785\) −413.510 129.267i −0.526764 0.164671i
\(786\) −74.9256 157.989i −0.0953251 0.201004i
\(787\) 470.940 + 561.245i 0.598400 + 0.713145i 0.977197 0.212335i \(-0.0681067\pi\)
−0.378797 + 0.925480i \(0.623662\pi\)
\(788\) 118.568 + 672.434i 0.150467 + 0.853343i
\(789\) 227.395 + 827.106i 0.288207 + 1.04830i
\(790\) −526.583 + 118.094i −0.666561 + 0.149486i
\(791\) −135.119 78.0113i −0.170821 0.0986236i
\(792\) 2288.54 + 799.422i 2.88957 + 1.00937i
\(793\) −660.235 + 381.187i −0.832579 + 0.480690i
\(794\) 731.086 + 128.910i 0.920763 + 0.162355i
\(795\) −249.094 468.227i −0.313326 0.588965i
\(796\) 569.997 + 207.462i 0.716076 + 0.260630i
\(797\) −545.314 198.478i −0.684209 0.249032i −0.0235551 0.999723i \(-0.507498\pi\)
−0.660653 + 0.750691i \(0.729721\pi\)
\(798\) 49.0042 + 521.085i 0.0614088 + 0.652988i
\(799\) 20.7375 117.608i 0.0259543 0.147194i
\(800\) 1275.48 1288.03i 1.59435 1.61004i
\(801\) −70.0594 + 429.940i −0.0874649 + 0.536754i
\(802\) 1225.78 + 707.703i 1.52840 + 0.882423i
\(803\) −865.020 725.838i −1.07723 0.903907i
\(804\) 231.853 888.344i 0.288374 1.10491i
\(805\) 105.891 204.637i 0.131542 0.254207i
\(806\) 218.198 + 260.038i 0.270717 + 0.322628i
\(807\) −245.433 + 355.410i −0.304130 + 0.440409i
\(808\) −1107.06 3041.63i −1.37013 3.76440i
\(809\) 459.833i 0.568397i 0.958765 + 0.284199i \(0.0917275\pi\)
−0.958765 + 0.284199i \(0.908272\pi\)
\(810\) 1252.17 848.741i 1.54589 1.04783i
\(811\) −1419.14 −1.74986 −0.874931 0.484248i \(-0.839093\pi\)
−0.874931 + 0.484248i \(0.839093\pi\)
\(812\) 305.322 111.128i 0.376013 0.136857i
\(813\) 954.642 + 659.241i 1.17422 + 0.810875i
\(814\) −1323.03 + 1110.16i −1.62535 + 1.36383i
\(815\) 102.281 197.660i 0.125498 0.242528i
\(816\) −2241.13 584.923i −2.74649 0.716817i
\(817\) 453.725 540.728i 0.555355 0.661846i
\(818\) 307.274 532.215i 0.375641 0.650629i
\(819\) −125.751 + 153.883i −0.153542 + 0.187892i
\(820\) 313.141 2424.40i 0.381880 2.95658i
\(821\) 1297.62 + 228.805i 1.58053 + 0.278691i 0.893884 0.448299i \(-0.147970\pi\)
0.686649 + 0.726989i \(0.259081\pi\)
\(822\) 82.2774 7.73759i 0.100094 0.00941313i
\(823\) −49.4573 + 135.883i −0.0600940 + 0.165107i −0.966106 0.258144i \(-0.916889\pi\)
0.906012 + 0.423251i \(0.139111\pi\)
\(824\) 103.985 285.698i 0.126196 0.346721i
\(825\) 147.611 896.795i 0.178923 1.08702i
\(826\) −85.5322 + 485.077i −0.103550 + 0.587260i
\(827\) 548.614 + 950.226i 0.663378 + 1.14900i 0.979722 + 0.200360i \(0.0642111\pi\)
−0.316345 + 0.948644i \(0.602456\pi\)
\(828\) 2529.64 480.034i 3.05512 0.579751i
\(829\) 562.861 974.904i 0.678964 1.17600i −0.296329 0.955086i \(-0.595763\pi\)
0.975293 0.220914i \(-0.0709041\pi\)
\(830\) −499.402 + 111.998i −0.601689 + 0.134937i
\(831\) 594.829 163.536i 0.715799 0.196794i
\(832\) −1328.99 + 234.336i −1.59734 + 0.281654i
\(833\) −635.434 + 533.193i −0.762826 + 0.640087i
\(834\) −1512.46 + 717.278i −1.81350 + 0.860046i
\(835\) −100.971 + 322.994i −0.120923 + 0.386820i
\(836\) 3513.99i 4.20334i
\(837\) 78.4121 + 159.936i 0.0936823 + 0.191083i
\(838\) 1818.19i 2.16967i
\(839\) 204.373 + 561.510i 0.243591 + 0.669261i 0.999887 + 0.0150315i \(0.00478486\pi\)
−0.756296 + 0.654230i \(0.772993\pi\)
\(840\) −357.495 + 397.216i −0.425590 + 0.472876i
\(841\) 326.345 273.836i 0.388044 0.325608i
\(842\) 409.092 + 2320.07i 0.485857 + 2.75543i
\(843\) 1081.38 + 1067.41i 1.28277 + 1.26620i
\(844\) −2892.52 2427.11i −3.42715 2.87572i
\(845\) 39.9931 + 95.8872i 0.0473291 + 0.113476i
\(846\) −2.92133 224.689i −0.00345311 0.265590i
\(847\) −35.8824 + 20.7167i −0.0423641 + 0.0244589i
\(848\) −265.337 + 1504.80i −0.312898 + 1.77453i
\(849\) −1047.72 + 743.815i −1.23406 + 0.876108i
\(850\) −137.255 + 1662.55i −0.161477 + 1.95595i
\(851\) −375.206 + 1030.87i −0.440900 + 1.21136i
\(852\) −1317.48 + 935.330i −1.54634 + 1.09781i
\(853\) 53.6769 + 9.46469i 0.0629272 + 0.0110958i 0.205023 0.978757i \(-0.434273\pi\)
−0.142096 + 0.989853i \(0.545384\pi\)
\(854\) 286.927 165.657i 0.335980 0.193978i
\(855\) 1052.57 + 782.127i 1.23107 + 0.914768i
\(856\) −1370.62 + 2373.98i −1.60119 + 2.77334i
\(857\) −218.563 183.396i −0.255033 0.213998i 0.506303 0.862356i \(-0.331012\pi\)
−0.761336 + 0.648358i \(0.775456\pi\)
\(858\) −1314.09 + 1331.29i −1.53157 + 1.55162i
\(859\) 177.600 + 1007.22i 0.206752 + 1.17255i 0.894659 + 0.446749i \(0.147418\pi\)
−0.687908 + 0.725798i \(0.741471\pi\)
\(860\) 1203.90 55.5168i 1.39989 0.0645544i
\(861\) −19.0607 + 235.486i −0.0221379 + 0.273502i
\(862\) −688.498 1891.63i −0.798721 2.19447i
\(863\) 649.495 0.752601 0.376300 0.926498i \(-0.377196\pi\)
0.376300 + 0.926498i \(0.377196\pi\)
\(864\) −1953.22 132.563i −2.26068 0.153430i
\(865\) −30.1830 + 39.5353i −0.0348936 + 0.0457055i
\(866\) −182.618 501.739i −0.210875 0.579375i
\(867\) 81.7763 38.7821i 0.0943210 0.0447313i
\(868\) −67.6366 80.6062i −0.0779223 0.0928642i
\(869\) 344.858 60.8077i 0.396844 0.0699744i
\(870\) 427.312 1058.31i 0.491164 1.21645i
\(871\) 324.554 + 272.333i 0.372622 + 0.312667i
\(872\) −1509.17 + 2613.96i −1.73070 + 2.99766i
\(873\) −226.783 1195.08i −0.259774 1.36894i
\(874\) 1564.63 + 2710.02i 1.79019 + 3.10071i
\(875\) 169.766 + 106.408i 0.194018 + 0.121609i
\(876\) 2528.71 + 1159.20i 2.88665 + 1.32329i
\(877\) 551.626 1515.58i 0.628992 1.72814i −0.0548340 0.998495i \(-0.517463\pi\)
0.683826 0.729645i \(-0.260315\pi\)
\(878\) 554.204 + 201.714i 0.631212 + 0.229742i
\(879\) −1007.54 + 94.7519i −1.14624 + 0.107795i
\(880\) −1926.22 + 1773.75i −2.18889 + 2.01563i
\(881\) −969.613 + 559.806i −1.10058 + 0.635421i −0.936374 0.351004i \(-0.885840\pi\)
−0.164208 + 0.986426i \(0.552507\pi\)
\(882\) −987.639 + 1208.59i −1.11977 + 1.37028i
\(883\) 328.990 + 189.942i 0.372582 + 0.215110i 0.674586 0.738196i \(-0.264322\pi\)
−0.302004 + 0.953307i \(0.597656\pi\)
\(884\) 1574.21 1876.07i 1.78078 2.12225i
\(885\) 760.011 + 972.325i 0.858770 + 1.09867i
\(886\) −125.752 713.173i −0.141932 0.804936i
\(887\) 321.634 269.883i 0.362609 0.304265i −0.443221 0.896413i \(-0.646164\pi\)
0.805830 + 0.592148i \(0.201720\pi\)
\(888\) 1445.81 2093.67i 1.62817 2.35774i
\(889\) −334.759 + 121.842i −0.376557 + 0.137056i
\(890\) −718.467 548.509i −0.807266 0.616303i
\(891\) −837.018 + 512.720i −0.939414 + 0.575443i
\(892\) 2983.89i 3.34516i
\(893\) 183.048 66.6240i 0.204981 0.0746069i
\(894\) 1379.44 1997.56i 1.54300 2.23441i
\(895\) −1060.67 + 48.9119i −1.18511 + 0.0546502i
\(896\) 119.736 21.1127i 0.133634 0.0235633i
\(897\) −300.057 + 1149.67i −0.334512 + 1.28168i
\(898\) −96.4460 + 114.940i −0.107401 + 0.127995i
\(899\) 116.387 + 67.1963i 0.129463 + 0.0747456i
\(900\) 235.022 + 2226.57i 0.261135 + 2.47397i
\(901\) −315.836 547.045i −0.350540 0.607153i
\(902\) −386.165 + 2190.05i −0.428121 + 2.42799i
\(903\) −115.965 + 10.9056i −0.128422 + 0.0120771i
\(904\) 2033.10 + 739.986i 2.24900 + 0.818569i
\(905\) 643.464 412.150i 0.711010 0.455415i
\(906\) −59.4841 + 129.760i −0.0656557 + 0.143223i
\(907\) 816.196 + 143.917i 0.899885 + 0.158674i 0.604407 0.796675i \(-0.293410\pi\)
0.295478 + 0.955350i \(0.404521\pi\)
\(908\) 600.637 + 1040.33i 0.661494 + 1.14574i
\(909\) 1237.32 + 432.216i 1.36119 + 0.475485i
\(910\) −158.740 380.595i −0.174440 0.418236i
\(911\) −240.268 + 286.340i −0.263740 + 0.314314i −0.881621 0.471959i \(-0.843547\pi\)
0.617880 + 0.786272i \(0.287992\pi\)
\(912\) −1001.54 3642.91i −1.09818 3.99441i
\(913\) 327.057 57.6689i 0.358222 0.0631642i
\(914\) 527.903 + 629.130i 0.577574 + 0.688326i
\(915\) 172.409 812.009i 0.188426 0.887441i
\(916\) 1743.12 634.445i 1.90297 0.692626i
\(917\) −25.0122 −0.0272761
\(918\) 1455.41 1061.98i 1.58541 1.15684i
\(919\) 670.084 0.729144 0.364572 0.931175i \(-0.381215\pi\)
0.364572 + 0.931175i \(0.381215\pi\)
\(920\) −953.329 + 3049.59i −1.03623 + 3.31477i
\(921\) 312.794 + 25.3182i 0.339624 + 0.0274899i
\(922\) 1682.06 + 2004.60i 1.82436 + 2.17419i
\(923\) −129.474 734.282i −0.140275 0.795538i
\(924\) 407.340 412.670i 0.440844 0.446613i
\(925\) −866.525 398.913i −0.936784 0.431258i
\(926\) 472.030 + 272.527i 0.509752 + 0.294305i
\(927\) 62.9344 + 105.805i 0.0678904 + 0.114137i
\(928\) −1279.19 + 738.539i −1.37843 + 0.795839i
\(929\) −254.515 44.8778i −0.273966 0.0483076i 0.0349770 0.999388i \(-0.488864\pi\)
−0.308943 + 0.951080i \(0.599975\pi\)
\(930\) −369.393 12.8174i −0.397197 0.0137821i
\(931\) −1271.44 462.766i −1.36567 0.497064i
\(932\) −1365.54 497.016i −1.46517 0.533279i
\(933\) 890.542 632.231i 0.954493 0.677632i
\(934\) −177.978 + 1009.36i −0.190555 + 1.08069i
\(935\) 138.663 1073.55i 0.148303 1.14819i
\(936\) 1346.75 2404.30i 1.43884 2.56869i
\(937\) −1183.51 683.299i −1.26308 0.729241i −0.289413 0.957204i \(-0.593460\pi\)
−0.973670 + 0.227963i \(0.926794\pi\)
\(938\) −141.045 118.351i −0.150368 0.126174i
\(939\) 563.359 + 556.082i 0.599956 + 0.592206i
\(940\) 295.384 + 152.849i 0.314238 + 0.162606i
\(941\) −404.676 482.275i −0.430049 0.512513i 0.506887 0.862012i \(-0.330796\pi\)
−0.936937 + 0.349500i \(0.886352\pi\)
\(942\) −967.757 78.3323i −1.02734 0.0831553i
\(943\) 483.120 + 1327.36i 0.512322 + 1.40759i
\(944\) 3555.57i 3.76649i
\(945\) −32.9458 213.863i −0.0348633 0.226310i
\(946\) −1096.37 −1.15896
\(947\) 449.992 163.784i 0.475177 0.172950i −0.0933193 0.995636i \(-0.529748\pi\)
0.568496 + 0.822686i \(0.307526\pi\)
\(948\) −779.438 + 369.645i −0.822192 + 0.389921i
\(949\) −983.361 + 825.138i −1.03621 + 0.869482i
\(950\) −2460.49 + 1162.05i −2.58999 + 1.22321i
\(951\) 331.453 + 1205.60i 0.348531 + 1.26772i
\(952\) −409.122 + 487.573i −0.429750 + 0.512156i
\(953\) 243.506 421.765i 0.255516 0.442566i −0.709520 0.704685i \(-0.751088\pi\)
0.965035 + 0.262120i \(0.0844215\pi\)
\(954\) −775.771 900.488i −0.813177 0.943908i
\(955\) 48.2922 373.886i 0.0505677 0.391504i
\(956\) −2064.77 364.074i −2.15980 0.380831i
\(957\) −308.615 + 673.218i −0.322482 + 0.703467i
\(958\) 136.928 376.207i 0.142931 0.392700i
\(959\) 4.04313 11.1084i 0.00421599 0.0115833i
\(960\) 778.381 1246.29i 0.810814 1.29821i
\(961\) −159.318 + 903.539i −0.165784 + 0.940207i
\(962\) 981.689 + 1700.34i 1.02047 + 1.76750i
\(963\) −393.158 1038.00i −0.408264 1.07788i
\(964\) 390.987 677.210i 0.405588 0.702500i
\(965\) 146.926 + 655.144i 0.152254 + 0.678905i
\(966\) 130.399 499.626i 0.134989 0.517211i
\(967\) 159.464 28.1178i 0.164906 0.0290774i −0.0905855 0.995889i \(-0.528874\pi\)
0.255491 + 0.966811i \(0.417763\pi\)
\(968\) 440.138 369.320i 0.454688 0.381529i
\(969\) 1285.18 + 887.496i 1.32629 + 0.915888i
\(970\) 2409.13 + 753.118i 2.48364 + 0.776410i
\(971\) 1357.14i 1.39768i −0.715280 0.698838i \(-0.753701\pi\)
0.715280 0.698838i \(-0.246299\pi\)
\(972\) 1653.36 1764.49i 1.70099 1.81531i
\(973\) 239.447i 0.246092i
\(974\) −680.022 1868.34i −0.698174 1.91822i
\(975\) −974.856 342.288i −0.999852 0.351064i
\(976\) −1832.08 + 1537.30i −1.87713 + 1.57510i
\(977\) −244.318 1385.60i −0.250070 1.41822i −0.808418 0.588609i \(-0.799676\pi\)
0.558348 0.829607i \(-0.311435\pi\)
\(978\) 125.954 482.593i 0.128787 0.493449i
\(979\) 449.310 + 377.016i 0.458948 + 0.385103i
\(980\) −889.272 2132.11i −0.907421 2.17563i
\(981\) −432.902 1142.93i −0.441286 1.16507i
\(982\) −668.385 + 385.892i −0.680636 + 0.392966i
\(983\) 147.248 835.086i 0.149795 0.849528i −0.813597 0.581430i \(-0.802494\pi\)
0.963391 0.268099i \(-0.0863953\pi\)
\(984\) −306.747 3261.78i −0.311735 3.31482i
\(985\) 288.907 185.050i 0.293307 0.187868i
\(986\) 464.921 1277.36i 0.471522 1.29550i
\(987\) −29.2195 13.3947i −0.0296044 0.0135712i
\(988\) 3934.04 + 693.678i 3.98182 + 0.702103i
\(989\) −603.101 + 348.201i −0.609809 + 0.352073i
\(990\) −120.269 2033.25i −0.121484 2.05379i
\(991\) 161.951 280.507i 0.163422 0.283055i −0.772672 0.634805i \(-0.781080\pi\)
0.936094 + 0.351751i \(0.114414\pi\)
\(992\) 366.437 + 307.477i 0.369392 + 0.309956i
\(993\) 57.7981 + 210.229i 0.0582055 + 0.211711i
\(994\) 56.2670 + 319.106i 0.0566066 + 0.321032i
\(995\) −14.0400 304.463i −0.0141106 0.305993i
\(996\) −739.205 + 350.565i −0.742174 + 0.351973i
\(997\) −148.115 406.943i −0.148561 0.408168i 0.842983 0.537940i \(-0.180797\pi\)
−0.991544 + 0.129773i \(0.958575\pi\)
\(998\) −2204.13 −2.20854
\(999\) 286.004 + 989.759i 0.286290 + 0.990750i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.n.a.74.33 yes 204
3.2 odd 2 405.3.n.a.224.2 204
5.4 even 2 inner 135.3.n.a.74.2 204
15.14 odd 2 405.3.n.a.224.33 204
27.4 even 9 405.3.n.a.179.33 204
27.23 odd 18 inner 135.3.n.a.104.2 yes 204
135.4 even 18 405.3.n.a.179.2 204
135.104 odd 18 inner 135.3.n.a.104.33 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.2 204 5.4 even 2 inner
135.3.n.a.74.33 yes 204 1.1 even 1 trivial
135.3.n.a.104.2 yes 204 27.23 odd 18 inner
135.3.n.a.104.33 yes 204 135.104 odd 18 inner
405.3.n.a.179.2 204 135.4 even 18
405.3.n.a.179.33 204 27.4 even 9
405.3.n.a.224.2 204 3.2 odd 2
405.3.n.a.224.33 204 15.14 odd 2