Properties

Label 405.3.n.a.179.33
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(44,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.33
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.33

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.50983 + 1.27747i) q^{2} +(7.62280 + 6.39629i) q^{4} +(3.38697 + 3.67811i) q^{5} +(1.03030 + 1.22786i) q^{7} +(11.1135 + 19.2491i) q^{8} +(7.18899 + 17.2363i) q^{10} +(-11.9341 + 2.10430i) q^{11} +(-4.71168 - 12.9452i) q^{13} +(2.04761 + 5.62576i) q^{14} +(7.50440 + 42.5596i) q^{16} +(8.93265 - 15.4718i) q^{17} +(-14.5705 - 25.2368i) q^{19} +(2.29194 + 49.7015i) q^{20} +(-44.5747 - 7.85972i) q^{22} +(22.0238 + 18.4801i) q^{23} +(-2.05692 + 24.9152i) q^{25} -51.4546i q^{26} +15.9498i q^{28} +(6.96737 - 19.1427i) q^{29} +(-5.05373 - 4.24059i) q^{31} +(-12.5909 + 71.4065i) q^{32} +(51.1169 - 42.8922i) q^{34} +(-1.02662 + 7.94827i) q^{35} +(33.0454 + 19.0788i) q^{37} +(-18.9005 - 107.190i) q^{38} +(-33.1593 + 106.073i) q^{40} +(16.8042 + 46.1691i) q^{41} +(23.8547 - 4.20622i) q^{43} +(-104.431 - 60.2930i) q^{44} +(53.6918 + 92.9970i) q^{46} +(-5.12070 + 4.29678i) q^{47} +(8.06263 - 45.7255i) q^{49} +(-39.0480 + 84.8206i) q^{50} +(46.8852 - 128.816i) q^{52} -35.3575 q^{53} +(-48.1601 - 36.7675i) q^{55} +(-12.1850 + 33.4781i) q^{56} +(48.9086 - 58.2870i) q^{58} +(-81.0242 - 14.2868i) q^{59} +(-42.3934 + 35.5723i) q^{61} +(-12.3205 - 21.3398i) q^{62} +(-48.9797 + 84.8352i) q^{64} +(31.6556 - 61.1751i) q^{65} +(10.5187 + 28.8998i) q^{67} +(167.054 - 60.8026i) q^{68} +(-13.7570 + 26.5856i) q^{70} +(-46.8725 - 27.0619i) q^{71} +(80.6986 - 46.5914i) q^{73} +(91.6111 + 109.178i) q^{74} +(50.3540 - 285.572i) q^{76} +(-14.8794 - 12.4853i) q^{77} +(27.1542 + 9.88334i) q^{79} +(-131.121 + 171.750i) q^{80} +183.513i q^{82} +(25.7526 + 9.37318i) q^{83} +(87.1615 - 19.5472i) q^{85} +(89.0992 + 15.7106i) q^{86} +(-173.135 - 206.334i) q^{88} +(-41.9166 + 24.2006i) q^{89} +(11.0405 - 19.1227i) q^{91} +(49.6785 + 281.741i) q^{92} +(-23.4618 + 8.53941i) q^{94} +(43.4739 - 139.068i) q^{95} +(133.103 - 23.4697i) q^{97} +(86.7116 - 150.189i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.50983 + 1.27747i 1.75492 + 0.638737i 0.999857 0.0169199i \(-0.00538603\pi\)
0.755059 + 0.655657i \(0.227608\pi\)
\(3\) 0 0
\(4\) 7.62280 + 6.39629i 1.90570 + 1.59907i
\(5\) 3.38697 + 3.67811i 0.677393 + 0.735621i
\(6\) 0 0
\(7\) 1.03030 + 1.22786i 0.147185 + 0.175409i 0.834600 0.550857i \(-0.185699\pi\)
−0.687415 + 0.726265i \(0.741254\pi\)
\(8\) 11.1135 + 19.2491i 1.38918 + 2.40614i
\(9\) 0 0
\(10\) 7.18899 + 17.2363i 0.718899 + 1.72363i
\(11\) −11.9341 + 2.10430i −1.08491 + 0.191300i −0.687387 0.726291i \(-0.741242\pi\)
−0.397527 + 0.917591i \(0.630131\pi\)
\(12\) 0 0
\(13\) −4.71168 12.9452i −0.362437 0.995786i −0.978165 0.207828i \(-0.933361\pi\)
0.615729 0.787958i \(-0.288862\pi\)
\(14\) 2.04761 + 5.62576i 0.146258 + 0.401840i
\(15\) 0 0
\(16\) 7.50440 + 42.5596i 0.469025 + 2.65997i
\(17\) 8.93265 15.4718i 0.525450 0.910106i −0.474111 0.880465i \(-0.657230\pi\)
0.999561 0.0296407i \(-0.00943630\pi\)
\(18\) 0 0
\(19\) −14.5705 25.2368i −0.766866 1.32825i −0.939254 0.343222i \(-0.888482\pi\)
0.172388 0.985029i \(-0.444852\pi\)
\(20\) 2.29194 + 49.7015i 0.114597 + 2.48507i
\(21\) 0 0
\(22\) −44.5747 7.85972i −2.02612 0.357260i
\(23\) 22.0238 + 18.4801i 0.957555 + 0.803484i 0.980554 0.196251i \(-0.0628769\pi\)
−0.0229985 + 0.999735i \(0.507321\pi\)
\(24\) 0 0
\(25\) −2.05692 + 24.9152i −0.0822769 + 0.996610i
\(26\) 51.4546i 1.97902i
\(27\) 0 0
\(28\) 15.9498i 0.569636i
\(29\) 6.96737 19.1427i 0.240254 0.660092i −0.759698 0.650276i \(-0.774653\pi\)
0.999952 0.00981620i \(-0.00312464\pi\)
\(30\) 0 0
\(31\) −5.05373 4.24059i −0.163024 0.136793i 0.557626 0.830092i \(-0.311712\pi\)
−0.720650 + 0.693299i \(0.756157\pi\)
\(32\) −12.5909 + 71.4065i −0.393466 + 2.23145i
\(33\) 0 0
\(34\) 51.1169 42.8922i 1.50344 1.26153i
\(35\) −1.02662 + 7.94827i −0.0293320 + 0.227093i
\(36\) 0 0
\(37\) 33.0454 + 19.0788i 0.893118 + 0.515642i 0.874961 0.484193i \(-0.160887\pi\)
0.0181570 + 0.999835i \(0.494220\pi\)
\(38\) −18.9005 107.190i −0.497382 2.82080i
\(39\) 0 0
\(40\) −33.1593 + 106.073i −0.828982 + 2.65182i
\(41\) 16.8042 + 46.1691i 0.409858 + 1.12608i 0.957266 + 0.289210i \(0.0933925\pi\)
−0.547408 + 0.836866i \(0.684385\pi\)
\(42\) 0 0
\(43\) 23.8547 4.20622i 0.554760 0.0978191i 0.110762 0.993847i \(-0.464671\pi\)
0.443998 + 0.896028i \(0.353560\pi\)
\(44\) −104.431 60.2930i −2.37342 1.37030i
\(45\) 0 0
\(46\) 53.6918 + 92.9970i 1.16721 + 2.02167i
\(47\) −5.12070 + 4.29678i −0.108951 + 0.0914209i −0.695636 0.718395i \(-0.744877\pi\)
0.586685 + 0.809815i \(0.300433\pi\)
\(48\) 0 0
\(49\) 8.06263 45.7255i 0.164543 0.933173i
\(50\) −39.0480 + 84.8206i −0.780961 + 1.69641i
\(51\) 0 0
\(52\) 46.8852 128.816i 0.901639 2.47723i
\(53\) −35.3575 −0.667123 −0.333562 0.942728i \(-0.608251\pi\)
−0.333562 + 0.942728i \(0.608251\pi\)
\(54\) 0 0
\(55\) −48.1601 36.7675i −0.875637 0.668501i
\(56\) −12.1850 + 33.4781i −0.217590 + 0.597824i
\(57\) 0 0
\(58\) 48.9086 58.2870i 0.843251 1.00495i
\(59\) −81.0242 14.2868i −1.37329 0.242148i −0.562168 0.827023i \(-0.690033\pi\)
−0.811124 + 0.584874i \(0.801144\pi\)
\(60\) 0 0
\(61\) −42.3934 + 35.5723i −0.694974 + 0.583153i −0.920339 0.391122i \(-0.872087\pi\)
0.225365 + 0.974274i \(0.427643\pi\)
\(62\) −12.3205 21.3398i −0.198718 0.344190i
\(63\) 0 0
\(64\) −48.9797 + 84.8352i −0.765307 + 1.32555i
\(65\) 31.6556 61.1751i 0.487009 0.941155i
\(66\) 0 0
\(67\) 10.5187 + 28.8998i 0.156995 + 0.431340i 0.993106 0.117220i \(-0.0373983\pi\)
−0.836111 + 0.548560i \(0.815176\pi\)
\(68\) 167.054 60.8026i 2.45667 0.894156i
\(69\) 0 0
\(70\) −13.7570 + 26.5856i −0.196528 + 0.379794i
\(71\) −46.8725 27.0619i −0.660176 0.381153i 0.132168 0.991227i \(-0.457806\pi\)
−0.792344 + 0.610074i \(0.791140\pi\)
\(72\) 0 0
\(73\) 80.6986 46.5914i 1.10546 0.638238i 0.167811 0.985819i \(-0.446330\pi\)
0.937650 + 0.347581i \(0.112997\pi\)
\(74\) 91.6111 + 109.178i 1.23799 + 1.47538i
\(75\) 0 0
\(76\) 50.3540 285.572i 0.662553 3.75752i
\(77\) −14.8794 12.4853i −0.193239 0.162147i
\(78\) 0 0
\(79\) 27.1542 + 9.88334i 0.343725 + 0.125106i 0.508114 0.861290i \(-0.330343\pi\)
−0.164389 + 0.986396i \(0.552565\pi\)
\(80\) −131.121 + 171.750i −1.63902 + 2.14687i
\(81\) 0 0
\(82\) 183.513i 2.23796i
\(83\) 25.7526 + 9.37318i 0.310272 + 0.112930i 0.492463 0.870333i \(-0.336097\pi\)
−0.182191 + 0.983263i \(0.558319\pi\)
\(84\) 0 0
\(85\) 87.1615 19.5472i 1.02543 0.229967i
\(86\) 89.0992 + 15.7106i 1.03604 + 0.182681i
\(87\) 0 0
\(88\) −173.135 206.334i −1.96744 2.34470i
\(89\) −41.9166 + 24.2006i −0.470973 + 0.271917i −0.716647 0.697436i \(-0.754324\pi\)
0.245674 + 0.969353i \(0.420991\pi\)
\(90\) 0 0
\(91\) 11.0405 19.1227i 0.121324 0.210140i
\(92\) 49.6785 + 281.741i 0.539984 + 3.06240i
\(93\) 0 0
\(94\) −23.4618 + 8.53941i −0.249594 + 0.0908448i
\(95\) 43.4739 139.068i 0.457620 1.46387i
\(96\) 0 0
\(97\) 133.103 23.4697i 1.37220 0.241956i 0.561528 0.827458i \(-0.310214\pi\)
0.810671 + 0.585502i \(0.199103\pi\)
\(98\) 86.7116 150.189i 0.884812 1.53254i
\(99\) 0 0
\(100\) −175.045 + 176.767i −1.75045 + 1.76767i
\(101\) −93.6071 111.557i −0.926803 1.10452i −0.994281 0.106799i \(-0.965940\pi\)
0.0674781 0.997721i \(-0.478505\pi\)
\(102\) 0 0
\(103\) −13.4708 2.37526i −0.130784 0.0230608i 0.107873 0.994165i \(-0.465596\pi\)
−0.238657 + 0.971104i \(0.576707\pi\)
\(104\) 196.821 234.562i 1.89251 2.25540i
\(105\) 0 0
\(106\) −124.099 45.1683i −1.17075 0.426116i
\(107\) −123.329 −1.15261 −0.576306 0.817234i \(-0.695506\pi\)
−0.576306 + 0.817234i \(0.695506\pi\)
\(108\) 0 0
\(109\) −135.797 −1.24584 −0.622920 0.782285i \(-0.714054\pi\)
−0.622920 + 0.782285i \(0.714054\pi\)
\(110\) −122.064 190.571i −1.10967 1.73246i
\(111\) 0 0
\(112\) −44.5255 + 53.0634i −0.397549 + 0.473780i
\(113\) 16.9029 95.8613i 0.149584 0.848330i −0.813988 0.580881i \(-0.802708\pi\)
0.963572 0.267449i \(-0.0861808\pi\)
\(114\) 0 0
\(115\) 6.62186 + 143.597i 0.0575814 + 1.24867i
\(116\) 175.553 101.356i 1.51339 0.873755i
\(117\) 0 0
\(118\) −266.130 153.650i −2.25534 1.30212i
\(119\) 28.2005 4.97251i 0.236979 0.0417858i
\(120\) 0 0
\(121\) 24.2908 8.84111i 0.200750 0.0730671i
\(122\) −194.236 + 70.6963i −1.59210 + 0.579478i
\(123\) 0 0
\(124\) −11.3996 64.6503i −0.0919322 0.521373i
\(125\) −98.6076 + 76.8215i −0.788861 + 0.614572i
\(126\) 0 0
\(127\) −192.478 + 111.127i −1.51558 + 0.875019i −0.515745 + 0.856742i \(0.672485\pi\)
−0.999833 + 0.0182767i \(0.994182\pi\)
\(128\) −58.1075 + 48.7580i −0.453965 + 0.380922i
\(129\) 0 0
\(130\) 189.255 174.275i 1.45581 1.34058i
\(131\) −10.0305 + 11.9539i −0.0765690 + 0.0912514i −0.802969 0.596021i \(-0.796748\pi\)
0.726400 + 0.687272i \(0.241192\pi\)
\(132\) 0 0
\(133\) 15.9753 43.8919i 0.120115 0.330014i
\(134\) 114.871i 0.857245i
\(135\) 0 0
\(136\) 397.091 2.91979
\(137\) −6.93037 2.52245i −0.0505867 0.0184120i 0.316603 0.948558i \(-0.397458\pi\)
−0.367190 + 0.930146i \(0.619680\pi\)
\(138\) 0 0
\(139\) 114.438 + 96.0245i 0.823292 + 0.690824i 0.953740 0.300631i \(-0.0971974\pi\)
−0.130449 + 0.991455i \(0.541642\pi\)
\(140\) −58.6651 + 54.0215i −0.419037 + 0.385868i
\(141\) 0 0
\(142\) −129.944 154.861i −0.915097 1.09057i
\(143\) 83.4700 + 144.574i 0.583706 + 1.01101i
\(144\) 0 0
\(145\) 94.0070 39.2089i 0.648324 0.270406i
\(146\) 342.758 60.4375i 2.34766 0.413955i
\(147\) 0 0
\(148\) 129.865 + 356.801i 0.877466 + 2.41082i
\(149\) 74.0973 + 203.581i 0.497297 + 1.36631i 0.893877 + 0.448313i \(0.147975\pi\)
−0.396579 + 0.918000i \(0.629803\pi\)
\(150\) 0 0
\(151\) 2.21211 + 12.5455i 0.0146497 + 0.0830828i 0.991256 0.131952i \(-0.0421245\pi\)
−0.976606 + 0.215035i \(0.931013\pi\)
\(152\) 323.857 560.937i 2.13064 3.69037i
\(153\) 0 0
\(154\) −36.2746 62.8294i −0.235549 0.407983i
\(155\) −1.51950 32.9509i −0.00980323 0.212586i
\(156\) 0 0
\(157\) −85.3324 15.0464i −0.543519 0.0958370i −0.104854 0.994488i \(-0.533437\pi\)
−0.438665 + 0.898651i \(0.644549\pi\)
\(158\) 82.6811 + 69.3777i 0.523298 + 0.439099i
\(159\) 0 0
\(160\) −305.286 + 195.541i −1.90804 + 1.22213i
\(161\) 46.0822i 0.286225i
\(162\) 0 0
\(163\) 44.5111i 0.273075i 0.990635 + 0.136537i \(0.0435973\pi\)
−0.990635 + 0.136537i \(0.956403\pi\)
\(164\) −167.216 + 459.422i −1.01961 + 2.80136i
\(165\) 0 0
\(166\) 78.4133 + 65.7965i 0.472369 + 0.396365i
\(167\) −11.7528 + 66.6535i −0.0703761 + 0.399123i 0.929188 + 0.369607i \(0.120508\pi\)
−0.999564 + 0.0295159i \(0.990603\pi\)
\(168\) 0 0
\(169\) −15.9174 + 13.3563i −0.0941856 + 0.0790311i
\(170\) 330.893 + 42.7391i 1.94643 + 0.251406i
\(171\) 0 0
\(172\) 208.743 + 120.518i 1.21362 + 0.700687i
\(173\) 1.72745 + 9.79683i 0.00998523 + 0.0566291i 0.989393 0.145262i \(-0.0464025\pi\)
−0.979408 + 0.201891i \(0.935291\pi\)
\(174\) 0 0
\(175\) −32.7117 + 23.1445i −0.186924 + 0.132254i
\(176\) −179.116 492.117i −1.01770 2.79612i
\(177\) 0 0
\(178\) −178.036 + 31.3925i −1.00020 + 0.176363i
\(179\) −183.909 106.180i −1.02743 0.593184i −0.111179 0.993800i \(-0.535463\pi\)
−0.916246 + 0.400616i \(0.868796\pi\)
\(180\) 0 0
\(181\) −76.4143 132.353i −0.422178 0.731234i 0.573974 0.818874i \(-0.305401\pi\)
−0.996152 + 0.0876392i \(0.972068\pi\)
\(182\) 63.1791 53.0136i 0.347138 0.291283i
\(183\) 0 0
\(184\) −110.965 + 629.316i −0.603073 + 3.42020i
\(185\) 41.7499 + 186.163i 0.225675 + 1.00629i
\(186\) 0 0
\(187\) −74.0455 + 203.438i −0.395965 + 1.08790i
\(188\) −66.5175 −0.353817
\(189\) 0 0
\(190\) 330.242 432.568i 1.73811 2.27667i
\(191\) −25.7878 + 70.8514i −0.135015 + 0.370950i −0.988714 0.149817i \(-0.952132\pi\)
0.853699 + 0.520767i \(0.174354\pi\)
\(192\) 0 0
\(193\) 86.3157 102.867i 0.447231 0.532990i −0.494580 0.869132i \(-0.664678\pi\)
0.941811 + 0.336143i \(0.109122\pi\)
\(194\) 497.152 + 87.6613i 2.56264 + 0.451862i
\(195\) 0 0
\(196\) 353.933 296.985i 1.80578 1.51523i
\(197\) −34.3090 59.4249i −0.174157 0.301649i 0.765712 0.643184i \(-0.222387\pi\)
−0.939869 + 0.341534i \(0.889053\pi\)
\(198\) 0 0
\(199\) 30.4787 52.7906i 0.153159 0.265279i −0.779228 0.626740i \(-0.784389\pi\)
0.932387 + 0.361461i \(0.117722\pi\)
\(200\) −502.456 + 237.301i −2.51228 + 1.18650i
\(201\) 0 0
\(202\) −186.034 511.125i −0.920962 2.53032i
\(203\) 30.6830 11.1677i 0.151148 0.0550133i
\(204\) 0 0
\(205\) −112.900 + 218.181i −0.550730 + 1.06430i
\(206\) −44.2458 25.5453i −0.214785 0.124006i
\(207\) 0 0
\(208\) 515.585 297.673i 2.47877 1.43112i
\(209\) 226.990 + 270.517i 1.08608 + 1.29434i
\(210\) 0 0
\(211\) −65.8918 + 373.691i −0.312284 + 1.77105i 0.274780 + 0.961507i \(0.411395\pi\)
−0.587064 + 0.809541i \(0.699716\pi\)
\(212\) −269.523 226.157i −1.27134 1.06678i
\(213\) 0 0
\(214\) −432.866 157.550i −2.02274 0.736216i
\(215\) 96.2659 + 73.4936i 0.447748 + 0.341831i
\(216\) 0 0
\(217\) 10.5744i 0.0487297i
\(218\) −476.623 173.477i −2.18634 0.795764i
\(219\) 0 0
\(220\) −131.939 588.317i −0.599721 2.67417i
\(221\) −242.374 42.7370i −1.09671 0.193380i
\(222\) 0 0
\(223\) 192.748 + 229.708i 0.864339 + 1.03008i 0.999231 + 0.0392192i \(0.0124871\pi\)
−0.134891 + 0.990860i \(0.543068\pi\)
\(224\) −100.650 + 58.1101i −0.449329 + 0.259420i
\(225\) 0 0
\(226\) 181.787 314.864i 0.804367 1.39320i
\(227\) −20.9629 118.887i −0.0923476 0.523729i −0.995528 0.0944679i \(-0.969885\pi\)
0.903180 0.429261i \(-0.141226\pi\)
\(228\) 0 0
\(229\) 175.173 63.7578i 0.764948 0.278418i 0.0700666 0.997542i \(-0.477679\pi\)
0.694882 + 0.719124i \(0.255457\pi\)
\(230\) −160.200 + 512.462i −0.696523 + 2.22809i
\(231\) 0 0
\(232\) 445.911 78.6262i 1.92203 0.338906i
\(233\) −73.0177 + 126.470i −0.313381 + 0.542791i −0.979092 0.203418i \(-0.934795\pi\)
0.665711 + 0.746209i \(0.268128\pi\)
\(234\) 0 0
\(235\) −33.1477 4.28144i −0.141054 0.0182189i
\(236\) −526.249 627.159i −2.22987 2.65746i
\(237\) 0 0
\(238\) 105.331 + 18.5727i 0.442568 + 0.0780368i
\(239\) 135.434 161.404i 0.566668 0.675329i −0.404275 0.914637i \(-0.632476\pi\)
0.970944 + 0.239308i \(0.0769206\pi\)
\(240\) 0 0
\(241\) 73.8445 + 26.8772i 0.306409 + 0.111524i 0.490648 0.871358i \(-0.336760\pi\)
−0.184240 + 0.982881i \(0.558982\pi\)
\(242\) 96.5508 0.398970
\(243\) 0 0
\(244\) −550.687 −2.25691
\(245\) 195.491 125.215i 0.797922 0.511083i
\(246\) 0 0
\(247\) −258.044 + 307.525i −1.04471 + 1.24504i
\(248\) 25.4629 144.408i 0.102673 0.582288i
\(249\) 0 0
\(250\) −444.234 + 143.662i −1.77693 + 0.574647i
\(251\) 28.4525 16.4271i 0.113357 0.0654465i −0.442250 0.896892i \(-0.645820\pi\)
0.555606 + 0.831445i \(0.312486\pi\)
\(252\) 0 0
\(253\) −301.720 174.198i −1.19257 0.688531i
\(254\) −817.529 + 144.152i −3.21862 + 0.567529i
\(255\) 0 0
\(256\) 101.972 37.1147i 0.398328 0.144979i
\(257\) −267.150 + 97.2345i −1.03949 + 0.378344i −0.804688 0.593698i \(-0.797667\pi\)
−0.234805 + 0.972043i \(0.575445\pi\)
\(258\) 0 0
\(259\) 10.6205 + 60.2319i 0.0410058 + 0.232556i
\(260\) 632.598 263.847i 2.43307 1.01480i
\(261\) 0 0
\(262\) −50.4763 + 29.1425i −0.192658 + 0.111231i
\(263\) −219.036 + 183.793i −0.832838 + 0.698834i −0.955941 0.293560i \(-0.905160\pi\)
0.123102 + 0.992394i \(0.460716\pi\)
\(264\) 0 0
\(265\) −119.755 130.049i −0.451905 0.490750i
\(266\) 112.142 133.645i 0.421585 0.502425i
\(267\) 0 0
\(268\) −104.670 + 287.578i −0.390559 + 1.07305i
\(269\) 143.973i 0.535215i −0.963528 0.267607i \(-0.913767\pi\)
0.963528 0.267607i \(-0.0862330\pi\)
\(270\) 0 0
\(271\) −386.716 −1.42699 −0.713497 0.700658i \(-0.752890\pi\)
−0.713497 + 0.700658i \(0.752890\pi\)
\(272\) 725.508 + 264.063i 2.66731 + 0.970820i
\(273\) 0 0
\(274\) −21.1021 17.7068i −0.0770149 0.0646232i
\(275\) −27.8816 301.668i −0.101388 1.09698i
\(276\) 0 0
\(277\) 132.179 + 157.524i 0.477179 + 0.568680i 0.949909 0.312528i \(-0.101176\pi\)
−0.472730 + 0.881208i \(0.656731\pi\)
\(278\) 278.988 + 483.221i 1.00355 + 1.73820i
\(279\) 0 0
\(280\) −164.406 + 68.5714i −0.587166 + 0.244898i
\(281\) 498.789 87.9499i 1.77505 0.312989i 0.812271 0.583280i \(-0.198231\pi\)
0.962779 + 0.270291i \(0.0871200\pi\)
\(282\) 0 0
\(283\) −146.487 402.471i −0.517623 1.42216i −0.873131 0.487485i \(-0.837914\pi\)
0.355508 0.934673i \(-0.384308\pi\)
\(284\) −184.204 506.097i −0.648607 1.78203i
\(285\) 0 0
\(286\) 108.276 + 614.062i 0.378586 + 2.14707i
\(287\) −39.3759 + 68.2011i −0.137198 + 0.237635i
\(288\) 0 0
\(289\) −15.0844 26.1269i −0.0521952 0.0904047i
\(290\) 380.037 17.5251i 1.31047 0.0604313i
\(291\) 0 0
\(292\) 913.161 + 161.015i 3.12726 + 0.551421i
\(293\) 258.409 + 216.831i 0.881942 + 0.740037i 0.966577 0.256375i \(-0.0825282\pi\)
−0.0846357 + 0.996412i \(0.526973\pi\)
\(294\) 0 0
\(295\) −221.878 346.404i −0.752129 1.17425i
\(296\) 848.125i 2.86529i
\(297\) 0 0
\(298\) 809.191i 2.71541i
\(299\) 135.461 372.175i 0.453046 1.24473i
\(300\) 0 0
\(301\) 29.7421 + 24.9566i 0.0988108 + 0.0829121i
\(302\) −8.26242 + 46.8585i −0.0273590 + 0.155161i
\(303\) 0 0
\(304\) 964.724 809.500i 3.17343 2.66283i
\(305\) −274.424 35.4453i −0.899750 0.116214i
\(306\) 0 0
\(307\) 90.5911 + 52.3028i 0.295085 + 0.170367i 0.640233 0.768181i \(-0.278838\pi\)
−0.345148 + 0.938548i \(0.612171\pi\)
\(308\) −33.5631 190.346i −0.108971 0.618007i
\(309\) 0 0
\(310\) 36.7607 117.593i 0.118583 0.379333i
\(311\) 124.512 + 342.094i 0.400360 + 1.09998i 0.962107 + 0.272671i \(0.0879070\pi\)
−0.561748 + 0.827309i \(0.689871\pi\)
\(312\) 0 0
\(313\) 259.852 45.8188i 0.830197 0.146386i 0.257629 0.966244i \(-0.417059\pi\)
0.572567 + 0.819858i \(0.305948\pi\)
\(314\) −280.281 161.820i −0.892615 0.515351i
\(315\) 0 0
\(316\) 143.775 + 249.025i 0.454983 + 0.788054i
\(317\) −319.270 + 267.899i −1.00716 + 0.845107i −0.987960 0.154708i \(-0.950556\pi\)
−0.0191996 + 0.999816i \(0.506112\pi\)
\(318\) 0 0
\(319\) −42.8671 + 243.111i −0.134380 + 0.762104i
\(320\) −477.925 + 107.182i −1.49352 + 0.334943i
\(321\) 0 0
\(322\) −58.8688 + 161.741i −0.182822 + 0.502300i
\(323\) −520.611 −1.61180
\(324\) 0 0
\(325\) 332.225 90.7652i 1.02223 0.279277i
\(326\) −56.8618 + 156.227i −0.174423 + 0.479223i
\(327\) 0 0
\(328\) −701.961 + 836.565i −2.14013 + 2.55050i
\(329\) −10.5517 1.86055i −0.0320720 0.00565517i
\(330\) 0 0
\(331\) −55.6735 + 46.7156i −0.168198 + 0.141135i −0.723001 0.690847i \(-0.757238\pi\)
0.554803 + 0.831982i \(0.312793\pi\)
\(332\) 136.353 + 236.171i 0.410703 + 0.711358i
\(333\) 0 0
\(334\) −126.399 + 218.929i −0.378439 + 0.655475i
\(335\) −70.6702 + 136.571i −0.210956 + 0.407676i
\(336\) 0 0
\(337\) −30.3392 83.3563i −0.0900273 0.247348i 0.886505 0.462719i \(-0.153126\pi\)
−0.976532 + 0.215371i \(0.930904\pi\)
\(338\) −72.9296 + 26.5442i −0.215768 + 0.0785331i
\(339\) 0 0
\(340\) 789.444 + 408.505i 2.32189 + 1.20149i
\(341\) 69.2350 + 39.9728i 0.203035 + 0.117222i
\(342\) 0 0
\(343\) 132.469 76.4811i 0.386207 0.222977i
\(344\) 346.074 + 412.435i 1.00603 + 1.19894i
\(345\) 0 0
\(346\) −6.45215 + 36.5920i −0.0186478 + 0.105757i
\(347\) 305.192 + 256.086i 0.879515 + 0.738001i 0.966079 0.258246i \(-0.0831444\pi\)
−0.0865644 + 0.996246i \(0.527589\pi\)
\(348\) 0 0
\(349\) 414.030 + 150.695i 1.18633 + 0.431790i 0.858435 0.512923i \(-0.171437\pi\)
0.327899 + 0.944713i \(0.393660\pi\)
\(350\) −144.379 + 39.4449i −0.412512 + 0.112700i
\(351\) 0 0
\(352\) 878.664i 2.49621i
\(353\) 361.633 + 131.624i 1.02446 + 0.372871i 0.798967 0.601375i \(-0.205380\pi\)
0.225488 + 0.974246i \(0.427602\pi\)
\(354\) 0 0
\(355\) −59.2192 264.060i −0.166815 0.743830i
\(356\) −474.316 83.6347i −1.33235 0.234929i
\(357\) 0 0
\(358\) −509.848 607.613i −1.42416 1.69724i
\(359\) −88.2741 + 50.9651i −0.245889 + 0.141964i −0.617880 0.786272i \(-0.712008\pi\)
0.371991 + 0.928236i \(0.378675\pi\)
\(360\) 0 0
\(361\) −244.097 + 422.788i −0.676168 + 1.17116i
\(362\) −99.1232 562.155i −0.273821 1.55292i
\(363\) 0 0
\(364\) 206.474 75.1504i 0.567236 0.206457i
\(365\) 444.691 + 139.015i 1.21833 + 0.380862i
\(366\) 0 0
\(367\) −513.441 + 90.5336i −1.39902 + 0.246686i −0.821742 0.569860i \(-0.806997\pi\)
−0.577281 + 0.816545i \(0.695886\pi\)
\(368\) −621.232 + 1076.00i −1.68813 + 2.92393i
\(369\) 0 0
\(370\) −91.2840 + 706.737i −0.246714 + 1.91010i
\(371\) −36.4288 43.4141i −0.0981908 0.117019i
\(372\) 0 0
\(373\) 62.8021 + 11.0737i 0.168370 + 0.0296882i 0.257198 0.966359i \(-0.417201\pi\)
−0.0888274 + 0.996047i \(0.528312\pi\)
\(374\) −519.774 + 619.443i −1.38977 + 1.65626i
\(375\) 0 0
\(376\) −139.618 50.8168i −0.371325 0.135151i
\(377\) −280.634 −0.744388
\(378\) 0 0
\(379\) 270.107 0.712684 0.356342 0.934356i \(-0.384024\pi\)
0.356342 + 0.934356i \(0.384024\pi\)
\(380\) 1220.91 782.014i 3.21292 2.05793i
\(381\) 0 0
\(382\) −181.022 + 215.733i −0.473879 + 0.564746i
\(383\) 5.06194 28.7077i 0.0132165 0.0749547i −0.977486 0.211000i \(-0.932328\pi\)
0.990703 + 0.136045i \(0.0434392\pi\)
\(384\) 0 0
\(385\) −4.47377 97.0154i −0.0116202 0.251988i
\(386\) 434.363 250.780i 1.12529 0.649689i
\(387\) 0 0
\(388\) 1164.74 + 672.462i 3.00190 + 1.73315i
\(389\) 497.062 87.6455i 1.27780 0.225310i 0.506752 0.862092i \(-0.330846\pi\)
0.771044 + 0.636782i \(0.219735\pi\)
\(390\) 0 0
\(391\) 482.652 175.671i 1.23440 0.449286i
\(392\) 969.778 352.970i 2.47392 0.900435i
\(393\) 0 0
\(394\) −44.5050 252.400i −0.112957 0.640610i
\(395\) 55.6185 + 133.351i 0.140806 + 0.337597i
\(396\) 0 0
\(397\) −172.126 + 99.3771i −0.433567 + 0.250320i −0.700865 0.713294i \(-0.747203\pi\)
0.267298 + 0.963614i \(0.413869\pi\)
\(398\) 174.414 146.350i 0.438225 0.367715i
\(399\) 0 0
\(400\) −1075.82 + 99.4322i −2.68955 + 0.248580i
\(401\) −243.584 + 290.292i −0.607440 + 0.723919i −0.978857 0.204547i \(-0.934428\pi\)
0.371416 + 0.928466i \(0.378872\pi\)
\(402\) 0 0
\(403\) −31.0838 + 85.4020i −0.0771310 + 0.211916i
\(404\) 1449.11i 3.58691i
\(405\) 0 0
\(406\) 121.959 0.300391
\(407\) −434.513 158.150i −1.06760 0.388574i
\(408\) 0 0
\(409\) 126.040 + 105.760i 0.308167 + 0.258583i 0.783734 0.621097i \(-0.213313\pi\)
−0.475567 + 0.879680i \(0.657757\pi\)
\(410\) −674.979 + 621.551i −1.64629 + 1.51598i
\(411\) 0 0
\(412\) −87.4921 104.269i −0.212360 0.253080i
\(413\) −65.9369 114.206i −0.159654 0.276528i
\(414\) 0 0
\(415\) 52.7476 + 126.467i 0.127103 + 0.304741i
\(416\) 983.697 173.452i 2.36466 0.416953i
\(417\) 0 0
\(418\) 451.120 + 1239.44i 1.07923 + 2.96517i
\(419\) −166.490 457.429i −0.397352 1.09172i −0.963569 0.267460i \(-0.913816\pi\)
0.566217 0.824256i \(-0.308406\pi\)
\(420\) 0 0
\(421\) −109.527 621.157i −0.260159 1.47543i −0.782476 0.622681i \(-0.786043\pi\)
0.522317 0.852751i \(-0.325068\pi\)
\(422\) −708.650 + 1227.42i −1.67927 + 2.90857i
\(423\) 0 0
\(424\) −392.945 680.601i −0.926757 1.60519i
\(425\) 367.110 + 254.383i 0.863788 + 0.598549i
\(426\) 0 0
\(427\) −87.3557 15.4032i −0.204580 0.0360730i
\(428\) −940.116 788.851i −2.19653 1.84311i
\(429\) 0 0
\(430\) 243.991 + 380.927i 0.567420 + 0.885878i
\(431\) 538.952i 1.25047i −0.780437 0.625235i \(-0.785003\pi\)
0.780437 0.625235i \(-0.214997\pi\)
\(432\) 0 0
\(433\) 142.952i 0.330144i −0.986282 0.165072i \(-0.947214\pi\)
0.986282 0.165072i \(-0.0527856\pi\)
\(434\) 13.5085 37.1142i 0.0311255 0.0855166i
\(435\) 0 0
\(436\) −1035.15 868.594i −2.37420 1.99219i
\(437\) 145.483 825.073i 0.332912 1.88804i
\(438\) 0 0
\(439\) 120.959 101.496i 0.275532 0.231199i −0.494541 0.869154i \(-0.664664\pi\)
0.770074 + 0.637955i \(0.220219\pi\)
\(440\) 172.517 1335.65i 0.392083 3.03558i
\(441\) 0 0
\(442\) −796.095 459.626i −1.80112 1.03988i
\(443\) 33.6677 + 190.939i 0.0759993 + 0.431013i 0.998938 + 0.0460672i \(0.0146688\pi\)
−0.922939 + 0.384946i \(0.874220\pi\)
\(444\) 0 0
\(445\) −230.982 72.2073i −0.519062 0.162263i
\(446\) 383.066 + 1052.47i 0.858893 + 2.35979i
\(447\) 0 0
\(448\) −154.630 + 27.2654i −0.345155 + 0.0608602i
\(449\) 34.7894 + 20.0857i 0.0774820 + 0.0447343i 0.538240 0.842791i \(-0.319089\pi\)
−0.460758 + 0.887526i \(0.652423\pi\)
\(450\) 0 0
\(451\) −297.695 515.624i −0.660079 1.14329i
\(452\) 742.004 622.616i 1.64160 1.37747i
\(453\) 0 0
\(454\) 78.2982 444.051i 0.172463 0.978087i
\(455\) 107.729 24.1598i 0.236767 0.0530986i
\(456\) 0 0
\(457\) −75.2035 + 206.620i −0.164559 + 0.452122i −0.994375 0.105915i \(-0.966223\pi\)
0.829816 + 0.558037i \(0.188445\pi\)
\(458\) 696.277 1.52026
\(459\) 0 0
\(460\) −868.013 + 1136.97i −1.88698 + 2.47167i
\(461\) −239.621 + 658.355i −0.519786 + 1.42810i 0.350970 + 0.936387i \(0.385852\pi\)
−0.870757 + 0.491714i \(0.836370\pi\)
\(462\) 0 0
\(463\) −93.8008 + 111.787i −0.202593 + 0.241441i −0.857769 0.514035i \(-0.828150\pi\)
0.655176 + 0.755477i \(0.272595\pi\)
\(464\) 866.990 + 152.874i 1.86851 + 0.329469i
\(465\) 0 0
\(466\) −417.842 + 350.611i −0.896658 + 0.752385i
\(467\) −137.204 237.644i −0.293798 0.508873i 0.680907 0.732370i \(-0.261586\pi\)
−0.974705 + 0.223497i \(0.928253\pi\)
\(468\) 0 0
\(469\) −24.6476 + 42.6909i −0.0525535 + 0.0910253i
\(470\) −110.873 57.3724i −0.235901 0.122069i
\(471\) 0 0
\(472\) −625.454 1718.42i −1.32511 3.64072i
\(473\) −275.832 + 100.395i −0.583154 + 0.212251i
\(474\) 0 0
\(475\) 658.751 311.116i 1.38684 0.654982i
\(476\) 246.772 + 142.474i 0.518429 + 0.299315i
\(477\) 0 0
\(478\) 681.539 393.487i 1.42581 0.823194i
\(479\) −68.8982 82.1097i −0.143838 0.171419i 0.689316 0.724461i \(-0.257911\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(480\) 0 0
\(481\) 91.2796 517.673i 0.189771 1.07624i
\(482\) 224.847 + 188.669i 0.466487 + 0.391429i
\(483\) 0 0
\(484\) 241.714 + 87.9767i 0.499409 + 0.181770i
\(485\) 537.140 + 410.077i 1.10751 + 0.845519i
\(486\) 0 0
\(487\) 532.318i 1.09305i −0.837441 0.546527i \(-0.815949\pi\)
0.837441 0.546527i \(-0.184051\pi\)
\(488\) −1155.87 420.704i −2.36859 0.862097i
\(489\) 0 0
\(490\) 846.100 189.750i 1.72673 0.387245i
\(491\) 203.492 + 35.8811i 0.414444 + 0.0730776i 0.376982 0.926220i \(-0.376962\pi\)
0.0374614 + 0.999298i \(0.488073\pi\)
\(492\) 0 0
\(493\) −233.935 278.793i −0.474513 0.565502i
\(494\) −1298.55 + 749.717i −2.62864 + 1.51765i
\(495\) 0 0
\(496\) 142.552 246.908i 0.287404 0.497798i
\(497\) −15.0644 85.4347i −0.0303108 0.171901i
\(498\) 0 0
\(499\) −554.526 + 201.831i −1.11127 + 0.404471i −0.831461 0.555584i \(-0.812495\pi\)
−0.279813 + 0.960054i \(0.590273\pi\)
\(500\) −1243.04 45.1280i −2.48608 0.0902559i
\(501\) 0 0
\(502\) 120.849 21.3089i 0.240734 0.0424480i
\(503\) 366.904 635.497i 0.729432 1.26341i −0.227691 0.973733i \(-0.573118\pi\)
0.957123 0.289680i \(-0.0935490\pi\)
\(504\) 0 0
\(505\) 93.2729 722.135i 0.184699 1.42997i
\(506\) −836.454 996.847i −1.65307 1.97005i
\(507\) 0 0
\(508\) −2178.03 384.045i −4.28745 0.755994i
\(509\) 572.292 682.031i 1.12435 1.33994i 0.190741 0.981640i \(-0.438911\pi\)
0.933605 0.358303i \(-0.116645\pi\)
\(510\) 0 0
\(511\) 140.351 + 51.0837i 0.274660 + 0.0999681i
\(512\) 708.733 1.38424
\(513\) 0 0
\(514\) −1061.86 −2.06588
\(515\) −36.8886 57.5918i −0.0716283 0.111829i
\(516\) 0 0
\(517\) 52.0691 62.0535i 0.100714 0.120026i
\(518\) −39.6685 + 224.971i −0.0765802 + 0.434308i
\(519\) 0 0
\(520\) 1529.37 70.5255i 2.94109 0.135626i
\(521\) 173.520 100.182i 0.333052 0.192288i −0.324143 0.946008i \(-0.605076\pi\)
0.657195 + 0.753720i \(0.271743\pi\)
\(522\) 0 0
\(523\) 514.780 + 297.208i 0.984283 + 0.568276i 0.903560 0.428461i \(-0.140944\pi\)
0.0807223 + 0.996737i \(0.474277\pi\)
\(524\) −152.922 + 26.9642i −0.291835 + 0.0514584i
\(525\) 0 0
\(526\) −1003.57 + 365.271i −1.90793 + 0.694431i
\(527\) −110.753 + 40.3107i −0.210157 + 0.0764909i
\(528\) 0 0
\(529\) 51.6711 + 293.041i 0.0976769 + 0.553953i
\(530\) −254.185 609.433i −0.479595 1.14987i
\(531\) 0 0
\(532\) 402.522 232.396i 0.756621 0.436835i
\(533\) 518.494 435.068i 0.972783 0.816262i
\(534\) 0 0
\(535\) −417.713 453.619i −0.780771 0.847885i
\(536\) −439.396 + 523.652i −0.819770 + 0.976963i
\(537\) 0 0
\(538\) 183.921 505.320i 0.341861 0.939257i
\(539\) 562.656i 1.04389i
\(540\) 0 0
\(541\) 446.693 0.825681 0.412840 0.910803i \(-0.364537\pi\)
0.412840 + 0.910803i \(0.364537\pi\)
\(542\) −1357.31 494.019i −2.50426 0.911475i
\(543\) 0 0
\(544\) 992.317 + 832.653i 1.82411 + 1.53061i
\(545\) −459.938 499.474i −0.843924 0.916466i
\(546\) 0 0
\(547\) 341.647 + 407.160i 0.624584 + 0.744350i 0.981851 0.189652i \(-0.0607359\pi\)
−0.357267 + 0.934002i \(0.616292\pi\)
\(548\) −36.6945 63.5568i −0.0669608 0.115980i
\(549\) 0 0
\(550\) 287.514 1094.42i 0.522752 1.98986i
\(551\) −584.617 + 103.084i −1.06101 + 0.187085i
\(552\) 0 0
\(553\) 15.8416 + 43.5244i 0.0286466 + 0.0787060i
\(554\) 262.691 + 721.738i 0.474172 + 1.30278i
\(555\) 0 0
\(556\) 258.134 + 1463.95i 0.464270 + 2.63301i
\(557\) −128.583 + 222.713i −0.230850 + 0.399844i −0.958058 0.286573i \(-0.907484\pi\)
0.727209 + 0.686417i \(0.240817\pi\)
\(558\) 0 0
\(559\) −166.846 288.986i −0.298472 0.516969i
\(560\) −345.979 + 15.9545i −0.617820 + 0.0284902i
\(561\) 0 0
\(562\) 1863.02 + 328.500i 3.31498 + 0.584520i
\(563\) 361.325 + 303.188i 0.641786 + 0.538522i 0.904566 0.426333i \(-0.140195\pi\)
−0.262780 + 0.964856i \(0.584639\pi\)
\(564\) 0 0
\(565\) 409.838 262.508i 0.725377 0.464616i
\(566\) 1599.74i 2.82639i
\(567\) 0 0
\(568\) 1203.01i 2.11797i
\(569\) 35.4016 97.2651i 0.0622173 0.170941i −0.904689 0.426073i \(-0.859897\pi\)
0.966906 + 0.255132i \(0.0821190\pi\)
\(570\) 0 0
\(571\) 462.971 + 388.479i 0.810807 + 0.680348i 0.950800 0.309804i \(-0.100264\pi\)
−0.139993 + 0.990153i \(0.544708\pi\)
\(572\) −288.464 + 1635.96i −0.504307 + 2.86007i
\(573\) 0 0
\(574\) −225.328 + 189.073i −0.392558 + 0.329395i
\(575\) −505.738 + 510.715i −0.879545 + 0.888200i
\(576\) 0 0
\(577\) −219.729 126.861i −0.380813 0.219863i 0.297359 0.954766i \(-0.403894\pi\)
−0.678172 + 0.734903i \(0.737228\pi\)
\(578\) −19.5672 110.971i −0.0338533 0.191992i
\(579\) 0 0
\(580\) 967.388 + 302.415i 1.66791 + 0.521404i
\(581\) 15.0239 + 41.2778i 0.0258587 + 0.0710461i
\(582\) 0 0
\(583\) 421.959 74.4027i 0.723771 0.127620i
\(584\) 1793.68 + 1035.58i 3.07138 + 1.77326i
\(585\) 0 0
\(586\) 629.976 + 1091.15i 1.07504 + 1.86203i
\(587\) 402.386 337.642i 0.685496 0.575199i −0.232111 0.972689i \(-0.574563\pi\)
0.917606 + 0.397490i \(0.130119\pi\)
\(588\) 0 0
\(589\) −33.3835 + 189.327i −0.0566783 + 0.321439i
\(590\) −336.232 1499.26i −0.569885 2.54113i
\(591\) 0 0
\(592\) −563.998 + 1549.57i −0.952699 + 2.61752i
\(593\) 841.771 1.41951 0.709757 0.704447i \(-0.248805\pi\)
0.709757 + 0.704447i \(0.248805\pi\)
\(594\) 0 0
\(595\) 113.804 + 86.8827i 0.191267 + 0.146021i
\(596\) −737.332 + 2025.80i −1.23713 + 3.39900i
\(597\) 0 0
\(598\) 950.888 1133.22i 1.59011 1.89502i
\(599\) −607.717 107.157i −1.01455 0.178893i −0.358437 0.933554i \(-0.616690\pi\)
−0.656115 + 0.754661i \(0.727801\pi\)
\(600\) 0 0
\(601\) 687.872 577.193i 1.14455 0.960388i 0.144968 0.989436i \(-0.453692\pi\)
0.999578 + 0.0290485i \(0.00924772\pi\)
\(602\) 72.5083 + 125.588i 0.120446 + 0.208618i
\(603\) 0 0
\(604\) −63.3822 + 109.781i −0.104937 + 0.181757i
\(605\) 114.791 + 59.3994i 0.189736 + 0.0981809i
\(606\) 0 0
\(607\) 305.379 + 839.023i 0.503096 + 1.38225i 0.888236 + 0.459388i \(0.151931\pi\)
−0.385140 + 0.922858i \(0.625847\pi\)
\(608\) 1985.53 722.672i 3.26567 1.18861i
\(609\) 0 0
\(610\) −917.901 474.976i −1.50476 0.778650i
\(611\) 79.7499 + 46.0436i 0.130524 + 0.0753578i
\(612\) 0 0
\(613\) −499.634 + 288.464i −0.815063 + 0.470577i −0.848711 0.528857i \(-0.822621\pi\)
0.0336481 + 0.999434i \(0.489287\pi\)
\(614\) 251.144 + 299.302i 0.409029 + 0.487462i
\(615\) 0 0
\(616\) 74.9691 425.171i 0.121703 0.690212i
\(617\) −235.192 197.349i −0.381186 0.319853i 0.431982 0.901882i \(-0.357815\pi\)
−0.813168 + 0.582029i \(0.802259\pi\)
\(618\) 0 0
\(619\) −278.964 101.535i −0.450668 0.164030i 0.106707 0.994291i \(-0.465969\pi\)
−0.557375 + 0.830261i \(0.688192\pi\)
\(620\) 199.181 260.897i 0.321259 0.420802i
\(621\) 0 0
\(622\) 1359.75i 2.18610i
\(623\) −72.9016 26.5340i −0.117017 0.0425907i
\(624\) 0 0
\(625\) −616.538 102.497i −0.986461 0.163996i
\(626\) 970.567 + 171.137i 1.55043 + 0.273382i
\(627\) 0 0
\(628\) −554.231 660.507i −0.882533 1.05176i
\(629\) 590.365 340.848i 0.938578 0.541888i
\(630\) 0 0
\(631\) −152.227 + 263.664i −0.241247 + 0.417851i −0.961070 0.276306i \(-0.910890\pi\)
0.719823 + 0.694158i \(0.244223\pi\)
\(632\) 111.533 + 632.533i 0.176476 + 1.00084i
\(633\) 0 0
\(634\) −1462.82 + 532.422i −2.30728 + 0.839782i
\(635\) −1060.66 331.571i −1.67032 0.522159i
\(636\) 0 0
\(637\) −629.915 + 111.071i −0.988877 + 0.174366i
\(638\) −461.024 + 798.518i −0.722609 + 1.25160i
\(639\) 0 0
\(640\) −376.145 48.5839i −0.587727 0.0759124i
\(641\) −710.009 846.156i −1.10766 1.32006i −0.942657 0.333762i \(-0.891682\pi\)
−0.165001 0.986293i \(-0.552763\pi\)
\(642\) 0 0
\(643\) −421.371 74.2990i −0.655320 0.115551i −0.163905 0.986476i \(-0.552409\pi\)
−0.491415 + 0.870926i \(0.663520\pi\)
\(644\) −294.755 + 351.275i −0.457694 + 0.545458i
\(645\) 0 0
\(646\) −1827.26 665.067i −2.82857 1.02952i
\(647\) −839.214 −1.29709 −0.648543 0.761178i \(-0.724621\pi\)
−0.648543 + 0.761178i \(0.724621\pi\)
\(648\) 0 0
\(649\) 997.011 1.53623
\(650\) 1282.00 + 105.838i 1.97231 + 0.162828i
\(651\) 0 0
\(652\) −284.706 + 339.300i −0.436666 + 0.520398i
\(653\) 218.407 1238.65i 0.334468 1.89686i −0.0979579 0.995191i \(-0.531231\pi\)
0.432426 0.901670i \(-0.357658\pi\)
\(654\) 0 0
\(655\) −77.9409 + 3.59417i −0.118994 + 0.00548729i
\(656\) −1838.83 + 1061.65i −2.80310 + 1.61837i
\(657\) 0 0
\(658\) −34.6579 20.0097i −0.0526716 0.0304099i
\(659\) −102.328 + 18.0433i −0.155278 + 0.0273798i −0.250747 0.968053i \(-0.580676\pi\)
0.0954686 + 0.995432i \(0.469565\pi\)
\(660\) 0 0
\(661\) −528.130 + 192.224i −0.798986 + 0.290807i −0.709066 0.705142i \(-0.750883\pi\)
−0.0899200 + 0.995949i \(0.528661\pi\)
\(662\) −255.083 + 92.8425i −0.385321 + 0.140245i
\(663\) 0 0
\(664\) 105.776 + 599.883i 0.159301 + 0.903438i
\(665\) 215.547 89.9014i 0.324131 0.135190i
\(666\) 0 0
\(667\) 507.207 292.836i 0.760430 0.439035i
\(668\) −515.924 + 432.912i −0.772342 + 0.648072i
\(669\) 0 0
\(670\) −422.507 + 389.063i −0.630607 + 0.580692i
\(671\) 431.071 513.730i 0.642430 0.765619i
\(672\) 0 0
\(673\) −83.8135 + 230.276i −0.124537 + 0.342163i −0.986256 0.165222i \(-0.947166\pi\)
0.861719 + 0.507386i \(0.169388\pi\)
\(674\) 331.324i 0.491579i
\(675\) 0 0
\(676\) −206.765 −0.305866
\(677\) 1015.64 + 369.663i 1.50021 + 0.546031i 0.956115 0.292992i \(-0.0946511\pi\)
0.544094 + 0.839024i \(0.316873\pi\)
\(678\) 0 0
\(679\) 165.953 + 139.252i 0.244409 + 0.205083i
\(680\) 1344.93 + 1460.54i 1.97784 + 2.14786i
\(681\) 0 0
\(682\) 191.939 + 228.744i 0.281435 + 0.335401i
\(683\) −428.494 742.173i −0.627370 1.08664i −0.988077 0.153958i \(-0.950798\pi\)
0.360707 0.932679i \(-0.382535\pi\)
\(684\) 0 0
\(685\) −14.1951 34.0341i −0.0207228 0.0496848i
\(686\) 562.647 99.2098i 0.820185 0.144621i
\(687\) 0 0
\(688\) 358.030 + 983.679i 0.520392 + 1.42977i
\(689\) 166.593 + 457.711i 0.241790 + 0.664312i
\(690\) 0 0
\(691\) −214.349 1215.63i −0.310201 1.75924i −0.597951 0.801533i \(-0.704018\pi\)
0.287749 0.957706i \(-0.407093\pi\)
\(692\) −49.4954 + 85.7285i −0.0715251 + 0.123885i
\(693\) 0 0
\(694\) 744.028 + 1288.69i 1.07209 + 1.85691i
\(695\) 34.4078 + 746.145i 0.0495076 + 1.07359i
\(696\) 0 0
\(697\) 864.425 + 152.421i 1.24021 + 0.218682i
\(698\) 1260.67 + 1057.83i 1.80611 + 1.51551i
\(699\) 0 0
\(700\) −397.394 32.8076i −0.567705 0.0468679i
\(701\) 691.765i 0.986826i 0.869795 + 0.493413i \(0.164251\pi\)
−0.869795 + 0.493413i \(0.835749\pi\)
\(702\) 0 0
\(703\) 1111.95i 1.58171i
\(704\) 406.007 1115.50i 0.576715 1.58451i
\(705\) 0 0
\(706\) 1101.12 + 923.953i 1.55967 + 1.30871i
\(707\) 40.5328 229.873i 0.0573307 0.325139i
\(708\) 0 0
\(709\) 199.020 166.998i 0.280705 0.235540i −0.491554 0.870847i \(-0.663571\pi\)
0.772259 + 0.635307i \(0.219127\pi\)
\(710\) 129.480 1002.46i 0.182366 1.41191i
\(711\) 0 0
\(712\) −931.679 537.905i −1.30854 0.755485i
\(713\) −32.9357 186.787i −0.0461931 0.261974i
\(714\) 0 0
\(715\) −249.049 + 796.679i −0.348321 + 1.11424i
\(716\) −722.744 1985.72i −1.00942 2.77336i
\(717\) 0 0
\(718\) −374.934 + 66.1110i −0.522192 + 0.0920765i
\(719\) 687.917 + 397.169i 0.956769 + 0.552391i 0.895177 0.445711i \(-0.147049\pi\)
0.0615920 + 0.998101i \(0.480382\pi\)
\(720\) 0 0
\(721\) −10.9624 18.9875i −0.0152045 0.0263349i
\(722\) −1396.84 + 1172.09i −1.93468 + 1.62339i
\(723\) 0 0
\(724\) 264.080 1497.67i 0.364751 2.06861i
\(725\) 462.613 + 212.969i 0.638087 + 0.293750i
\(726\) 0 0
\(727\) 29.4405 80.8871i 0.0404959 0.111261i −0.917797 0.397051i \(-0.870034\pi\)
0.958292 + 0.285790i \(0.0922558\pi\)
\(728\) 490.794 0.674167
\(729\) 0 0
\(730\) 1383.20 + 1056.00i 1.89480 + 1.44658i
\(731\) 148.007 406.647i 0.202473 0.556289i
\(732\) 0 0
\(733\) 166.327 198.220i 0.226912 0.270423i −0.640561 0.767907i \(-0.721298\pi\)
0.867473 + 0.497484i \(0.165743\pi\)
\(734\) −1917.75 338.151i −2.61273 0.460696i
\(735\) 0 0
\(736\) −1596.90 + 1339.96i −2.16970 + 1.82060i
\(737\) −186.344 322.757i −0.252841 0.437934i
\(738\) 0 0
\(739\) −157.730 + 273.197i −0.213438 + 0.369685i −0.952788 0.303636i \(-0.901799\pi\)
0.739350 + 0.673321i \(0.235133\pi\)
\(740\) −872.504 + 1686.13i −1.17906 + 2.27856i
\(741\) 0 0
\(742\) −72.3985 198.913i −0.0975721 0.268077i
\(743\) −219.384 + 79.8494i −0.295268 + 0.107469i −0.485407 0.874288i \(-0.661328\pi\)
0.190139 + 0.981757i \(0.439106\pi\)
\(744\) 0 0
\(745\) −497.826 + 962.059i −0.668223 + 1.29135i
\(746\) 206.278 + 119.095i 0.276513 + 0.159645i
\(747\) 0 0
\(748\) −1865.68 + 1077.15i −2.49423 + 1.44004i
\(749\) −127.066 151.431i −0.169648 0.202178i
\(750\) 0 0
\(751\) −163.837 + 929.165i −0.218158 + 1.23724i 0.657183 + 0.753731i \(0.271748\pi\)
−0.875341 + 0.483506i \(0.839363\pi\)
\(752\) −221.297 185.690i −0.294278 0.246929i
\(753\) 0 0
\(754\) −984.979 358.503i −1.30634 0.475468i
\(755\) −38.6514 + 50.6276i −0.0511939 + 0.0670564i
\(756\) 0 0
\(757\) 197.402i 0.260769i −0.991464 0.130384i \(-0.958379\pi\)
0.991464 0.130384i \(-0.0416211\pi\)
\(758\) 948.031 + 345.055i 1.25070 + 0.455218i
\(759\) 0 0
\(760\) 3160.08 708.693i 4.15800 0.932491i
\(761\) −7.30341 1.28779i −0.00959713 0.00169223i 0.168848 0.985642i \(-0.445995\pi\)
−0.178445 + 0.983950i \(0.557107\pi\)
\(762\) 0 0
\(763\) −139.911 166.739i −0.183369 0.218531i
\(764\) −649.761 + 375.140i −0.850472 + 0.491020i
\(765\) 0 0
\(766\) 54.4398 94.2926i 0.0710703 0.123097i
\(767\) 196.815 + 1116.19i 0.256603 + 1.45527i
\(768\) 0 0
\(769\) 1240.22 451.405i 1.61278 0.587003i 0.630790 0.775954i \(-0.282731\pi\)
0.981986 + 0.188951i \(0.0605088\pi\)
\(770\) 108.232 346.223i 0.140562 0.449640i
\(771\) 0 0
\(772\) 1315.93 232.035i 1.70458 0.300563i
\(773\) −238.322 + 412.785i −0.308307 + 0.534004i −0.977992 0.208641i \(-0.933096\pi\)
0.669685 + 0.742645i \(0.266429\pi\)
\(774\) 0 0
\(775\) 116.050 117.192i 0.149742 0.151216i
\(776\) 1931.01 + 2301.29i 2.48842 + 2.96558i
\(777\) 0 0
\(778\) 1856.57 + 327.363i 2.38634 + 0.420776i
\(779\) 920.315 1096.79i 1.18141 1.40794i
\(780\) 0 0
\(781\) 616.325 + 224.324i 0.789149 + 0.287227i
\(782\) 1918.44 2.45325
\(783\) 0 0
\(784\) 2006.56 2.55939
\(785\) −233.676 364.823i −0.297676 0.464743i
\(786\) 0 0
\(787\) −470.940 + 561.245i −0.598400 + 0.713145i −0.977197 0.212335i \(-0.931893\pi\)
0.378797 + 0.925480i \(0.376338\pi\)
\(788\) 118.568 672.434i 0.150467 0.853343i
\(789\) 0 0
\(790\) 24.8596 + 539.090i 0.0314679 + 0.682392i
\(791\) 135.119 78.0113i 0.170821 0.0986236i
\(792\) 0 0
\(793\) 660.235 + 381.187i 0.832579 + 0.480690i
\(794\) −731.086 + 128.910i −0.920763 + 0.162355i
\(795\) 0 0
\(796\) 569.997 207.462i 0.716076 0.260630i
\(797\) −545.314 + 198.478i −0.684209 + 0.249032i −0.660653 0.750691i \(-0.729721\pi\)
−0.0235551 + 0.999723i \(0.507498\pi\)
\(798\) 0 0
\(799\) 20.7375 + 117.608i 0.0259543 + 0.147194i
\(800\) −1753.21 460.583i −2.19151 0.575729i
\(801\) 0 0
\(802\) −1225.78 + 707.703i −1.52840 + 0.882423i
\(803\) −865.020 + 725.838i −1.07723 + 0.903907i
\(804\) 0 0
\(805\) −169.495 + 156.079i −0.210553 + 0.193887i
\(806\) −218.198 + 260.038i −0.270717 + 0.322628i
\(807\) 0 0
\(808\) 1107.06 3041.63i 1.37013 3.76440i
\(809\) 459.833i 0.568397i 0.958765 + 0.284199i \(0.0917275\pi\)
−0.958765 + 0.284199i \(0.908272\pi\)
\(810\) 0 0
\(811\) −1419.14 −1.74986 −0.874931 0.484248i \(-0.839093\pi\)
−0.874931 + 0.484248i \(0.839093\pi\)
\(812\) 305.322 + 111.128i 0.376013 + 0.136857i
\(813\) 0 0
\(814\) −1323.03 1110.16i −1.62535 1.36383i
\(815\) −163.717 + 150.758i −0.200879 + 0.184979i
\(816\) 0 0
\(817\) −453.725 540.728i −0.555355 0.661846i
\(818\) 307.274 + 532.215i 0.375641 + 0.650629i
\(819\) 0 0
\(820\) −2256.16 + 941.009i −2.75141 + 1.14757i
\(821\) −1297.62 + 228.805i −1.58053 + 0.278691i −0.893884 0.448299i \(-0.852030\pi\)
−0.686649 + 0.726989i \(0.740919\pi\)
\(822\) 0 0
\(823\) 49.4573 + 135.883i 0.0600940 + 0.165107i 0.966106 0.258144i \(-0.0831110\pi\)
−0.906012 + 0.423251i \(0.860889\pi\)
\(824\) −103.985 285.698i −0.126196 0.346721i
\(825\) 0 0
\(826\) −85.5322 485.077i −0.103550 0.587260i
\(827\) 548.614 950.226i 0.663378 1.14900i −0.316345 0.948644i \(-0.602456\pi\)
0.979722 0.200360i \(-0.0642111\pi\)
\(828\) 0 0
\(829\) 562.861 + 974.904i 0.678964 + 1.17600i 0.975293 + 0.220914i \(0.0709041\pi\)
−0.296329 + 0.955086i \(0.595763\pi\)
\(830\) 23.5764 + 511.263i 0.0284053 + 0.615979i
\(831\) 0 0
\(832\) 1328.99 + 234.336i 1.59734 + 0.281654i
\(833\) −635.434 533.193i −0.762826 0.640087i
\(834\) 0 0
\(835\) −284.965 + 182.525i −0.341276 + 0.218593i
\(836\) 3513.99i 4.20334i
\(837\) 0 0
\(838\) 1818.19i 2.16967i
\(839\) −204.373 + 561.510i −0.243591 + 0.669261i 0.756296 + 0.654230i \(0.227007\pi\)
−0.999887 + 0.0150315i \(0.995215\pi\)
\(840\) 0 0
\(841\) 326.345 + 273.836i 0.388044 + 0.325608i
\(842\) 409.092 2320.07i 0.485857 2.75543i
\(843\) 0 0
\(844\) −2892.52 + 2427.11i −3.42715 + 2.87572i
\(845\) −103.037 13.3086i −0.121938 0.0157498i
\(846\) 0 0
\(847\) 35.8824 + 20.7167i 0.0423641 + 0.0244589i
\(848\) −265.337 1504.80i −0.312898 1.77453i
\(849\) 0 0
\(850\) 963.525 + 1361.82i 1.13356 + 1.60214i
\(851\) 375.206 + 1030.87i 0.440900 + 1.21136i
\(852\) 0 0
\(853\) −53.6769 + 9.46469i −0.0629272 + 0.0110958i −0.205023 0.978757i \(-0.565727\pi\)
0.142096 + 0.989853i \(0.454616\pi\)
\(854\) −286.927 165.657i −0.335980 0.193978i
\(855\) 0 0
\(856\) −1370.62 2373.98i −1.60119 2.77334i
\(857\) −218.563 + 183.396i −0.255033 + 0.213998i −0.761336 0.648358i \(-0.775456\pi\)
0.506303 + 0.862356i \(0.331012\pi\)
\(858\) 0 0
\(859\) 177.600 1007.22i 0.206752 1.17255i −0.687908 0.725798i \(-0.741471\pi\)
0.894659 0.446749i \(-0.147418\pi\)
\(860\) 263.729 + 1175.97i 0.306661 + 1.36741i
\(861\) 0 0
\(862\) 688.498 1891.63i 0.798721 2.19447i
\(863\) 649.495 0.752601 0.376300 0.926498i \(-0.377196\pi\)
0.376300 + 0.926498i \(0.377196\pi\)
\(864\) 0 0
\(865\) −30.1830 + 39.5353i −0.0348936 + 0.0457055i
\(866\) 182.618 501.739i 0.210875 0.579375i
\(867\) 0 0
\(868\) 67.6366 80.6062i 0.0779223 0.0928642i
\(869\) −344.858 60.8077i −0.396844 0.0699744i
\(870\) 0 0
\(871\) 324.554 272.333i 0.372622 0.312667i
\(872\) −1509.17 2613.96i −1.73070 2.99766i
\(873\) 0 0
\(874\) 1564.63 2710.02i 1.79019 3.10071i
\(875\) −195.921 41.9275i −0.223910 0.0479171i
\(876\) 0 0
\(877\) −551.626 1515.58i −0.628992 1.72814i −0.683826 0.729645i \(-0.739685\pi\)
0.0548340 0.998495i \(-0.482537\pi\)
\(878\) 554.204 201.714i 0.631212 0.229742i
\(879\) 0 0
\(880\) 1203.40 2325.59i 1.36750 2.64272i
\(881\) 969.613 + 559.806i 1.10058 + 0.635421i 0.936374 0.351004i \(-0.114160\pi\)
0.164208 + 0.986426i \(0.447493\pi\)
\(882\) 0 0
\(883\) −328.990 + 189.942i −0.372582 + 0.215110i −0.674586 0.738196i \(-0.735678\pi\)
0.302004 + 0.953307i \(0.402344\pi\)
\(884\) −1574.21 1876.07i −1.78078 2.12225i
\(885\) 0 0
\(886\) −125.752 + 713.173i −0.141932 + 0.804936i
\(887\) 321.634 + 269.883i 0.362609 + 0.304265i 0.805830 0.592148i \(-0.201720\pi\)
−0.443221 + 0.896413i \(0.646164\pi\)
\(888\) 0 0
\(889\) −334.759 121.842i −0.376557 0.137056i
\(890\) −718.467 548.509i −0.807266 0.616303i
\(891\) 0 0
\(892\) 2983.89i 3.34516i
\(893\) 183.048 + 66.6240i 0.204981 + 0.0746069i
\(894\) 0 0
\(895\) −232.353 1036.07i −0.259612 1.15761i
\(896\) −119.736 21.1127i −0.133634 0.0235633i
\(897\) 0 0
\(898\) 96.4460 + 114.940i 0.107401 + 0.127995i
\(899\) −116.387 + 67.1963i −0.129463 + 0.0747456i
\(900\) 0 0
\(901\) −315.836 + 547.045i −0.350540 + 0.607153i
\(902\) −386.165 2190.05i −0.428121 2.42799i
\(903\) 0 0
\(904\) 2033.10 739.986i 2.24900 0.818569i
\(905\) 227.997 729.336i 0.251931 0.805896i
\(906\) 0 0
\(907\) −816.196 + 143.917i −0.899885 + 0.158674i −0.604407 0.796675i \(-0.706590\pi\)
−0.295478 + 0.955350i \(0.595479\pi\)
\(908\) 600.637 1040.33i 0.661494 1.14574i
\(909\) 0 0
\(910\) 408.975 + 52.8243i 0.449423 + 0.0580487i
\(911\) 240.268 + 286.340i 0.263740 + 0.314314i 0.881621 0.471959i \(-0.156453\pi\)
−0.617880 + 0.786272i \(0.712008\pi\)
\(912\) 0 0
\(913\) −327.057 57.6689i −0.358222 0.0631642i
\(914\) −527.903 + 629.130i −0.577574 + 0.688326i
\(915\) 0 0
\(916\) 1743.12 + 634.445i 1.90297 + 0.692626i
\(917\) −25.0122 −0.0272761
\(918\) 0 0
\(919\) 670.084 0.729144 0.364572 0.931175i \(-0.381215\pi\)
0.364572 + 0.931175i \(0.381215\pi\)
\(920\) −2690.53 + 1723.33i −2.92449 + 1.87319i
\(921\) 0 0
\(922\) −1682.06 + 2004.60i −1.82436 + 2.17419i
\(923\) −129.474 + 734.282i −0.140275 + 0.795538i
\(924\) 0 0
\(925\) −543.323 + 784.090i −0.587377 + 0.847665i
\(926\) −472.030 + 272.527i −0.509752 + 0.294305i
\(927\) 0 0
\(928\) 1279.19 + 738.539i 1.37843 + 0.795839i
\(929\) 254.515 44.8778i 0.273966 0.0483076i −0.0349770 0.999388i \(-0.511136\pi\)
0.308943 + 0.951080i \(0.400025\pi\)
\(930\) 0 0
\(931\) −1271.44 + 462.766i −1.36567 + 0.497064i
\(932\) −1365.54 + 497.016i −1.46517 + 0.533279i
\(933\) 0 0
\(934\) −177.978 1009.36i −0.190555 1.08069i
\(935\) −999.057 + 416.691i −1.06851 + 0.445659i
\(936\) 0 0
\(937\) 1183.51 683.299i 1.26308 0.729241i 0.289413 0.957204i \(-0.406540\pi\)
0.973670 + 0.227963i \(0.0732064\pi\)
\(938\) −141.045 + 118.351i −0.150368 + 0.126174i
\(939\) 0 0
\(940\) −225.293 244.659i −0.239673 0.260275i
\(941\) 404.676 482.275i 0.430049 0.512513i −0.506887 0.862012i \(-0.669204\pi\)
0.936937 + 0.349500i \(0.113648\pi\)
\(942\) 0 0
\(943\) −483.120 + 1327.36i −0.512322 + 1.40759i
\(944\) 3555.57i 3.76649i
\(945\) 0 0
\(946\) −1096.37 −1.15896
\(947\) 449.992 + 163.784i 0.475177 + 0.172950i 0.568496 0.822686i \(-0.307526\pi\)
−0.0933193 + 0.995636i \(0.529748\pi\)
\(948\) 0 0
\(949\) −983.361 825.138i −1.03621 0.869482i
\(950\) 2709.55 250.429i 2.85215 0.263610i
\(951\) 0 0
\(952\) 409.122 + 487.573i 0.429750 + 0.512156i
\(953\) 243.506 + 421.765i 0.255516 + 0.442566i 0.965035 0.262120i \(-0.0844215\pi\)
−0.709520 + 0.704685i \(0.751088\pi\)
\(954\) 0 0
\(955\) −347.941 + 145.121i −0.364336 + 0.151959i
\(956\) 2064.77 364.074i 2.15980 0.380831i
\(957\) 0 0
\(958\) −136.928 376.207i −0.142931 0.392700i
\(959\) −4.04313 11.1084i −0.00421599 0.0115833i
\(960\) 0 0
\(961\) −159.318 903.539i −0.165784 0.940207i
\(962\) 981.689 1700.34i 1.02047 1.76750i
\(963\) 0 0
\(964\) 390.987 + 677.210i 0.405588 + 0.702500i
\(965\) 670.704 30.9289i 0.695030 0.0320507i
\(966\) 0 0
\(967\) −159.464 28.1178i −0.164906 0.0290774i 0.0905855 0.995889i \(-0.471126\pi\)
−0.255491 + 0.966811i \(0.582237\pi\)
\(968\) 440.138 + 369.320i 0.454688 + 0.381529i
\(969\) 0 0
\(970\) 1361.41 + 2125.48i 1.40351 + 2.19122i
\(971\) 1357.14i 1.39768i −0.715280 0.698838i \(-0.753701\pi\)
0.715280 0.698838i \(-0.246299\pi\)
\(972\) 0 0
\(973\) 239.447i 0.246092i
\(974\) 680.022 1868.34i 0.698174 1.91822i
\(975\) 0 0
\(976\) −1832.08 1537.30i −1.87713 1.57510i
\(977\) −244.318 + 1385.60i −0.250070 + 1.41822i 0.558348 + 0.829607i \(0.311435\pi\)
−0.808418 + 0.588609i \(0.799676\pi\)
\(978\) 0 0
\(979\) 449.310 377.016i 0.458948 0.385103i
\(980\) 2291.10 + 295.925i 2.33786 + 0.301964i
\(981\) 0 0
\(982\) 668.385 + 385.892i 0.680636 + 0.392966i
\(983\) 147.248 + 835.086i 0.149795 + 0.849528i 0.963391 + 0.268099i \(0.0863953\pi\)
−0.813597 + 0.581430i \(0.802494\pi\)
\(984\) 0 0
\(985\) 102.368 327.462i 0.103927 0.332449i
\(986\) −464.921 1277.36i −0.471522 1.29550i
\(987\) 0 0
\(988\) −3934.04 + 693.678i −3.98182 + 0.702103i
\(989\) 603.101 + 348.201i 0.609809 + 0.352073i
\(990\) 0 0
\(991\) 161.951 + 280.507i 0.163422 + 0.283055i 0.936094 0.351751i \(-0.114414\pi\)
−0.772672 + 0.634805i \(0.781080\pi\)
\(992\) 366.437 307.477i 0.369392 0.309956i
\(993\) 0 0
\(994\) 56.2670 319.106i 0.0566066 0.321032i
\(995\) 297.400 66.6962i 0.298894 0.0670314i
\(996\) 0 0
\(997\) 148.115 406.943i 0.148561 0.408168i −0.842983 0.537940i \(-0.819203\pi\)
0.991544 + 0.129773i \(0.0414248\pi\)
\(998\) −2204.13 −2.20854
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.33 204
3.2 odd 2 135.3.n.a.104.2 yes 204
5.4 even 2 inner 405.3.n.a.179.2 204
15.14 odd 2 135.3.n.a.104.33 yes 204
27.7 even 9 135.3.n.a.74.33 yes 204
27.20 odd 18 inner 405.3.n.a.224.2 204
135.34 even 18 135.3.n.a.74.2 204
135.74 odd 18 inner 405.3.n.a.224.33 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.2 204 135.34 even 18
135.3.n.a.74.33 yes 204 27.7 even 9
135.3.n.a.104.2 yes 204 3.2 odd 2
135.3.n.a.104.33 yes 204 15.14 odd 2
405.3.n.a.179.2 204 5.4 even 2 inner
405.3.n.a.179.33 204 1.1 even 1 trivial
405.3.n.a.224.2 204 27.20 odd 18 inner
405.3.n.a.224.33 204 135.74 odd 18 inner