Properties

Label 135.5.h.a.44.13
Level $135$
Weight $5$
Character 135.44
Analytic conductor $13.955$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,5,Mod(44,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.44");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.9549450163\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.13
Character \(\chi\) \(=\) 135.44
Dual form 135.5.h.a.89.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.547257 + 0.947877i) q^{2} +(7.40102 - 12.8189i) q^{4} +(17.4860 - 17.8673i) q^{5} +(-16.9207 + 9.76914i) q^{7} +33.7133 q^{8} +(26.5053 + 6.79660i) q^{10} +(100.405 - 57.9690i) q^{11} +(-158.728 - 91.6418i) q^{13} +(-18.5199 - 10.6925i) q^{14} +(-99.9665 - 173.147i) q^{16} -89.0232 q^{17} -52.2295 q^{19} +(-99.6252 - 356.388i) q^{20} +(109.895 + 63.4480i) q^{22} +(-232.002 + 401.839i) q^{23} +(-13.4788 - 624.855i) q^{25} -200.607i q^{26} +289.206i q^{28} +(1255.41 - 724.811i) q^{29} +(767.942 - 1330.11i) q^{31} +(379.121 - 656.657i) q^{32} +(-48.7186 - 84.3831i) q^{34} +(-121.327 + 473.149i) q^{35} -641.462i q^{37} +(-28.5830 - 49.5071i) q^{38} +(589.511 - 602.364i) q^{40} +(1195.31 + 690.111i) q^{41} +(-1776.09 + 1025.43i) q^{43} -1716.12i q^{44} -507.859 q^{46} +(589.129 + 1020.40i) q^{47} +(-1009.63 + 1748.73i) q^{49} +(584.909 - 354.732i) q^{50} +(-2349.50 + 1356.49i) q^{52} +64.4267 q^{53} +(719.940 - 2807.62i) q^{55} +(-570.451 + 329.350i) q^{56} +(1374.06 + 793.316i) q^{58} +(-2837.79 - 1638.40i) q^{59} +(929.409 + 1609.78i) q^{61} +1681.05 q^{62} -2369.02 q^{64} +(-4412.91 + 1233.59i) q^{65} +(7257.38 + 4190.05i) q^{67} +(-658.862 + 1141.18i) q^{68} +(-514.884 + 143.931i) q^{70} +4564.71i q^{71} -8077.75i q^{73} +(608.027 - 351.045i) q^{74} +(-386.551 + 669.527i) q^{76} +(-1132.62 + 1961.75i) q^{77} +(4328.70 + 7497.52i) q^{79} +(-4841.68 - 1241.52i) q^{80} +1510.67i q^{82} +(-1670.06 - 2892.62i) q^{83} +(-1556.66 + 1590.60i) q^{85} +(-1943.96 - 1122.34i) q^{86} +(3384.99 - 1954.33i) q^{88} +10168.3i q^{89} +3581.05 q^{91} +(3434.10 + 5948.04i) q^{92} +(-644.811 + 1116.84i) q^{94} +(-913.285 + 933.198i) q^{95} +(-11868.3 + 6852.15i) q^{97} -2210.10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 162 q^{4} - 6 q^{5} + 28 q^{10} - 228 q^{11} - 282 q^{14} - 1058 q^{16} - 8 q^{19} + 2196 q^{20} - 148 q^{25} - 2370 q^{29} - 1112 q^{31} - 436 q^{34} - 850 q^{40} - 1830 q^{41} - 5668 q^{46} + 5396 q^{49}+ \cdots - 58746 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.547257 + 0.947877i 0.136814 + 0.236969i 0.926289 0.376814i \(-0.122980\pi\)
−0.789475 + 0.613783i \(0.789647\pi\)
\(3\) 0 0
\(4\) 7.40102 12.8189i 0.462564 0.801184i
\(5\) 17.4860 17.8673i 0.699440 0.714691i
\(6\) 0 0
\(7\) −16.9207 + 9.76914i −0.345319 + 0.199370i −0.662622 0.748954i \(-0.730556\pi\)
0.317302 + 0.948324i \(0.397223\pi\)
\(8\) 33.7133 0.526770
\(9\) 0 0
\(10\) 26.5053 + 6.79660i 0.265053 + 0.0679660i
\(11\) 100.405 57.9690i 0.829796 0.479083i −0.0239867 0.999712i \(-0.507636\pi\)
0.853783 + 0.520629i \(0.174303\pi\)
\(12\) 0 0
\(13\) −158.728 91.6418i −0.939220 0.542259i −0.0495044 0.998774i \(-0.515764\pi\)
−0.889716 + 0.456515i \(0.849098\pi\)
\(14\) −18.5199 10.6925i −0.0944893 0.0545534i
\(15\) 0 0
\(16\) −99.9665 173.147i −0.390494 0.676355i
\(17\) −89.0232 −0.308039 −0.154019 0.988068i \(-0.549222\pi\)
−0.154019 + 0.988068i \(0.549222\pi\)
\(18\) 0 0
\(19\) −52.2295 −0.144680 −0.0723400 0.997380i \(-0.523047\pi\)
−0.0723400 + 0.997380i \(0.523047\pi\)
\(20\) −99.6252 356.388i −0.249063 0.890970i
\(21\) 0 0
\(22\) 109.895 + 63.4480i 0.227056 + 0.131091i
\(23\) −232.002 + 401.839i −0.438567 + 0.759621i −0.997579 0.0695388i \(-0.977847\pi\)
0.559012 + 0.829160i \(0.311181\pi\)
\(24\) 0 0
\(25\) −13.4788 624.855i −0.0215660 0.999767i
\(26\) 200.607i 0.296755i
\(27\) 0 0
\(28\) 289.206i 0.368886i
\(29\) 1255.41 724.811i 1.49276 0.861844i 0.492792 0.870147i \(-0.335976\pi\)
0.999966 + 0.00830339i \(0.00264308\pi\)
\(30\) 0 0
\(31\) 767.942 1330.11i 0.799107 1.38409i −0.121091 0.992641i \(-0.538639\pi\)
0.920198 0.391453i \(-0.128027\pi\)
\(32\) 379.121 656.657i 0.370235 0.641266i
\(33\) 0 0
\(34\) −48.7186 84.3831i −0.0421441 0.0729957i
\(35\) −121.327 + 473.149i −0.0990423 + 0.386244i
\(36\) 0 0
\(37\) 641.462i 0.468562i −0.972169 0.234281i \(-0.924726\pi\)
0.972169 0.234281i \(-0.0752736\pi\)
\(38\) −28.5830 49.5071i −0.0197943 0.0342847i
\(39\) 0 0
\(40\) 589.511 602.364i 0.368444 0.376478i
\(41\) 1195.31 + 690.111i 0.711069 + 0.410536i 0.811457 0.584412i \(-0.198675\pi\)
−0.100388 + 0.994948i \(0.532008\pi\)
\(42\) 0 0
\(43\) −1776.09 + 1025.43i −0.960568 + 0.554584i −0.896348 0.443351i \(-0.853789\pi\)
−0.0642203 + 0.997936i \(0.520456\pi\)
\(44\) 1716.12i 0.886426i
\(45\) 0 0
\(46\) −507.859 −0.240009
\(47\) 589.129 + 1020.40i 0.266695 + 0.461929i 0.968006 0.250926i \(-0.0807350\pi\)
−0.701311 + 0.712855i \(0.747402\pi\)
\(48\) 0 0
\(49\) −1009.63 + 1748.73i −0.420503 + 0.728333i
\(50\) 584.909 354.732i 0.233964 0.141893i
\(51\) 0 0
\(52\) −2349.50 + 1356.49i −0.868898 + 0.501659i
\(53\) 64.4267 0.0229358 0.0114679 0.999934i \(-0.496350\pi\)
0.0114679 + 0.999934i \(0.496350\pi\)
\(54\) 0 0
\(55\) 719.940 2807.62i 0.237997 0.928138i
\(56\) −570.451 + 329.350i −0.181904 + 0.105022i
\(57\) 0 0
\(58\) 1374.06 + 793.316i 0.408461 + 0.235825i
\(59\) −2837.79 1638.40i −0.815223 0.470669i 0.0335434 0.999437i \(-0.489321\pi\)
−0.848766 + 0.528768i \(0.822654\pi\)
\(60\) 0 0
\(61\) 929.409 + 1609.78i 0.249774 + 0.432621i 0.963463 0.267842i \(-0.0863104\pi\)
−0.713689 + 0.700463i \(0.752977\pi\)
\(62\) 1681.05 0.437317
\(63\) 0 0
\(64\) −2369.02 −0.578374
\(65\) −4412.91 + 1233.59i −1.04448 + 0.291974i
\(66\) 0 0
\(67\) 7257.38 + 4190.05i 1.61670 + 0.933404i 0.987765 + 0.155949i \(0.0498435\pi\)
0.628938 + 0.777455i \(0.283490\pi\)
\(68\) −658.862 + 1141.18i −0.142488 + 0.246796i
\(69\) 0 0
\(70\) −514.884 + 143.931i −0.105078 + 0.0293738i
\(71\) 4564.71i 0.905517i 0.891633 + 0.452759i \(0.149560\pi\)
−0.891633 + 0.452759i \(0.850440\pi\)
\(72\) 0 0
\(73\) 8077.75i 1.51581i −0.652365 0.757905i \(-0.726223\pi\)
0.652365 0.757905i \(-0.273777\pi\)
\(74\) 608.027 351.045i 0.111035 0.0641060i
\(75\) 0 0
\(76\) −386.551 + 669.527i −0.0669237 + 0.115915i
\(77\) −1132.62 + 1961.75i −0.191030 + 0.330873i
\(78\) 0 0
\(79\) 4328.70 + 7497.52i 0.693590 + 1.20133i 0.970654 + 0.240482i \(0.0773054\pi\)
−0.277063 + 0.960852i \(0.589361\pi\)
\(80\) −4841.68 1241.52i −0.756512 0.193988i
\(81\) 0 0
\(82\) 1510.67i 0.224669i
\(83\) −1670.06 2892.62i −0.242424 0.419890i 0.718981 0.695030i \(-0.244609\pi\)
−0.961404 + 0.275140i \(0.911276\pi\)
\(84\) 0 0
\(85\) −1556.66 + 1590.60i −0.215455 + 0.220152i
\(86\) −1943.96 1122.34i −0.262839 0.151750i
\(87\) 0 0
\(88\) 3384.99 1954.33i 0.437112 0.252367i
\(89\) 10168.3i 1.28371i 0.766825 + 0.641856i \(0.221835\pi\)
−0.766825 + 0.641856i \(0.778165\pi\)
\(90\) 0 0
\(91\) 3581.05 0.432441
\(92\) 3434.10 + 5948.04i 0.405731 + 0.702746i
\(93\) 0 0
\(94\) −644.811 + 1116.84i −0.0729754 + 0.126397i
\(95\) −913.285 + 933.198i −0.101195 + 0.103401i
\(96\) 0 0
\(97\) −11868.3 + 6852.15i −1.26137 + 0.728255i −0.973340 0.229365i \(-0.926335\pi\)
−0.288034 + 0.957620i \(0.593002\pi\)
\(98\) −2210.10 −0.230123
\(99\) 0 0
\(100\) −8109.73 4451.78i −0.810973 0.445178i
\(101\) −6147.82 + 3549.45i −0.602668 + 0.347951i −0.770091 0.637935i \(-0.779789\pi\)
0.167422 + 0.985885i \(0.446456\pi\)
\(102\) 0 0
\(103\) 4058.54 + 2343.20i 0.382557 + 0.220869i 0.678930 0.734203i \(-0.262444\pi\)
−0.296373 + 0.955072i \(0.595777\pi\)
\(104\) −5351.25 3089.54i −0.494753 0.285646i
\(105\) 0 0
\(106\) 35.2580 + 61.0686i 0.00313795 + 0.00543509i
\(107\) 20235.1 1.76741 0.883705 0.468044i \(-0.155041\pi\)
0.883705 + 0.468044i \(0.155041\pi\)
\(108\) 0 0
\(109\) 2264.65 0.190611 0.0953053 0.995448i \(-0.469617\pi\)
0.0953053 + 0.995448i \(0.469617\pi\)
\(110\) 3055.27 854.074i 0.252502 0.0705846i
\(111\) 0 0
\(112\) 3383.00 + 1953.17i 0.269690 + 0.155706i
\(113\) 5005.26 8669.36i 0.391985 0.678938i −0.600726 0.799455i \(-0.705122\pi\)
0.992711 + 0.120517i \(0.0384552\pi\)
\(114\) 0 0
\(115\) 3122.98 + 11171.8i 0.236142 + 0.844749i
\(116\) 21457.4i 1.59463i
\(117\) 0 0
\(118\) 3586.50i 0.257577i
\(119\) 1506.33 869.680i 0.106372 0.0614138i
\(120\) 0 0
\(121\) −599.679 + 1038.67i −0.0409588 + 0.0709428i
\(122\) −1017.25 + 1761.93i −0.0683453 + 0.118378i
\(123\) 0 0
\(124\) −11367.1 19688.4i −0.739276 1.28046i
\(125\) −11400.1 10685.4i −0.729609 0.683865i
\(126\) 0 0
\(127\) 19581.7i 1.21406i 0.794677 + 0.607032i \(0.207640\pi\)
−0.794677 + 0.607032i \(0.792360\pi\)
\(128\) −7362.40 12752.0i −0.449365 0.778323i
\(129\) 0 0
\(130\) −3584.29 3507.81i −0.212088 0.207563i
\(131\) 24663.9 + 14239.7i 1.43721 + 0.829773i 0.997655 0.0684439i \(-0.0218034\pi\)
0.439553 + 0.898216i \(0.355137\pi\)
\(132\) 0 0
\(133\) 883.757 510.237i 0.0499608 0.0288449i
\(134\) 9172.14i 0.510812i
\(135\) 0 0
\(136\) −3001.26 −0.162266
\(137\) 13118.2 + 22721.5i 0.698931 + 1.21058i 0.968837 + 0.247698i \(0.0796740\pi\)
−0.269906 + 0.962887i \(0.586993\pi\)
\(138\) 0 0
\(139\) 16654.1 28845.7i 0.861967 1.49297i −0.00805999 0.999968i \(-0.502566\pi\)
0.870027 0.493004i \(-0.164101\pi\)
\(140\) 5167.33 + 5057.07i 0.263639 + 0.258014i
\(141\) 0 0
\(142\) −4326.79 + 2498.07i −0.214580 + 0.123888i
\(143\) −21249.5 −1.03915
\(144\) 0 0
\(145\) 9001.71 35104.8i 0.428143 1.66967i
\(146\) 7656.72 4420.61i 0.359201 0.207385i
\(147\) 0 0
\(148\) −8222.86 4747.47i −0.375405 0.216740i
\(149\) 4558.66 + 2631.94i 0.205336 + 0.118551i 0.599142 0.800643i \(-0.295509\pi\)
−0.393806 + 0.919194i \(0.628842\pi\)
\(150\) 0 0
\(151\) −5636.90 9763.41i −0.247222 0.428201i 0.715532 0.698580i \(-0.246184\pi\)
−0.962754 + 0.270379i \(0.912851\pi\)
\(152\) −1760.83 −0.0762131
\(153\) 0 0
\(154\) −2479.33 −0.104542
\(155\) −10337.3 36979.4i −0.430271 1.53921i
\(156\) 0 0
\(157\) 17441.0 + 10069.5i 0.707573 + 0.408517i 0.810162 0.586207i \(-0.199379\pi\)
−0.102589 + 0.994724i \(0.532713\pi\)
\(158\) −4737.82 + 8206.15i −0.189786 + 0.328719i
\(159\) 0 0
\(160\) −5103.35 18256.2i −0.199350 0.713131i
\(161\) 9065.85i 0.349749i
\(162\) 0 0
\(163\) 15388.7i 0.579197i −0.957148 0.289598i \(-0.906478\pi\)
0.957148 0.289598i \(-0.0935218\pi\)
\(164\) 17693.0 10215.1i 0.657830 0.379798i
\(165\) 0 0
\(166\) 1827.90 3166.02i 0.0663340 0.114894i
\(167\) 8523.96 14763.9i 0.305639 0.529382i −0.671765 0.740765i \(-0.734463\pi\)
0.977403 + 0.211383i \(0.0677967\pi\)
\(168\) 0 0
\(169\) 2515.93 + 4357.72i 0.0880898 + 0.152576i
\(170\) −2359.59 605.055i −0.0816467 0.0209362i
\(171\) 0 0
\(172\) 30356.8i 1.02612i
\(173\) 9704.36 + 16808.4i 0.324246 + 0.561610i 0.981359 0.192181i \(-0.0615561\pi\)
−0.657114 + 0.753792i \(0.728223\pi\)
\(174\) 0 0
\(175\) 6332.36 + 10441.3i 0.206771 + 0.340940i
\(176\) −20074.3 11589.9i −0.648061 0.374158i
\(177\) 0 0
\(178\) −9638.28 + 5564.66i −0.304200 + 0.175630i
\(179\) 6659.35i 0.207838i 0.994586 + 0.103919i \(0.0331383\pi\)
−0.994586 + 0.103919i \(0.966862\pi\)
\(180\) 0 0
\(181\) −15739.8 −0.480443 −0.240221 0.970718i \(-0.577220\pi\)
−0.240221 + 0.970718i \(0.577220\pi\)
\(182\) 1959.75 + 3394.39i 0.0591642 + 0.102475i
\(183\) 0 0
\(184\) −7821.55 + 13547.3i −0.231024 + 0.400145i
\(185\) −11461.2 11216.6i −0.334877 0.327731i
\(186\) 0 0
\(187\) −8938.40 + 5160.59i −0.255609 + 0.147576i
\(188\) 17440.6 0.493454
\(189\) 0 0
\(190\) −1384.36 354.983i −0.0383479 0.00983332i
\(191\) −25333.0 + 14626.0i −0.694417 + 0.400922i −0.805265 0.592915i \(-0.797977\pi\)
0.110847 + 0.993837i \(0.464643\pi\)
\(192\) 0 0
\(193\) −37232.0 21495.9i −0.999543 0.577086i −0.0914300 0.995812i \(-0.529144\pi\)
−0.908113 + 0.418725i \(0.862477\pi\)
\(194\) −12990.0 7499.78i −0.345148 0.199271i
\(195\) 0 0
\(196\) 14944.5 + 25884.7i 0.389019 + 0.673800i
\(197\) 48322.8 1.24514 0.622571 0.782563i \(-0.286088\pi\)
0.622571 + 0.782563i \(0.286088\pi\)
\(198\) 0 0
\(199\) 10246.4 0.258740 0.129370 0.991596i \(-0.458705\pi\)
0.129370 + 0.991596i \(0.458705\pi\)
\(200\) −454.413 21065.9i −0.0113603 0.526647i
\(201\) 0 0
\(202\) −6728.88 3884.92i −0.164907 0.0952093i
\(203\) −14161.6 + 24528.5i −0.343652 + 0.595223i
\(204\) 0 0
\(205\) 33231.6 9289.59i 0.790757 0.221049i
\(206\) 5129.34i 0.120872i
\(207\) 0 0
\(208\) 36644.4i 0.846996i
\(209\) −5244.12 + 3027.69i −0.120055 + 0.0693137i
\(210\) 0 0
\(211\) −5566.99 + 9642.31i −0.125042 + 0.216579i −0.921749 0.387786i \(-0.873240\pi\)
0.796707 + 0.604365i \(0.206573\pi\)
\(212\) 476.823 825.882i 0.0106093 0.0183758i
\(213\) 0 0
\(214\) 11073.8 + 19180.4i 0.241807 + 0.418822i
\(215\) −12735.2 + 49664.5i −0.275504 + 1.07441i
\(216\) 0 0
\(217\) 30008.5i 0.637273i
\(218\) 1239.34 + 2146.61i 0.0260783 + 0.0451689i
\(219\) 0 0
\(220\) −30662.4 30008.1i −0.633520 0.620002i
\(221\) 14130.5 + 8158.24i 0.289316 + 0.167037i
\(222\) 0 0
\(223\) 41863.5 24169.9i 0.841833 0.486032i −0.0160539 0.999871i \(-0.505110\pi\)
0.857887 + 0.513839i \(0.171777\pi\)
\(224\) 14814.7i 0.295256i
\(225\) 0 0
\(226\) 10956.7 0.214517
\(227\) 9830.70 + 17027.3i 0.190780 + 0.330441i 0.945509 0.325596i \(-0.105565\pi\)
−0.754729 + 0.656037i \(0.772232\pi\)
\(228\) 0 0
\(229\) −41057.9 + 71114.4i −0.782935 + 1.35608i 0.147290 + 0.989093i \(0.452945\pi\)
−0.930225 + 0.366990i \(0.880388\pi\)
\(230\) −8880.43 + 9074.06i −0.167872 + 0.171532i
\(231\) 0 0
\(232\) 42323.9 24435.7i 0.786340 0.453993i
\(233\) −36907.6 −0.679837 −0.339918 0.940455i \(-0.610399\pi\)
−0.339918 + 0.940455i \(0.610399\pi\)
\(234\) 0 0
\(235\) 28533.3 + 7316.63i 0.516674 + 0.132488i
\(236\) −42005.1 + 24251.7i −0.754185 + 0.435429i
\(237\) 0 0
\(238\) 1648.70 + 951.878i 0.0291064 + 0.0168046i
\(239\) −23140.0 13359.9i −0.405105 0.233888i 0.283579 0.958949i \(-0.408478\pi\)
−0.688684 + 0.725061i \(0.741811\pi\)
\(240\) 0 0
\(241\) −7637.82 13229.1i −0.131503 0.227770i 0.792753 0.609543i \(-0.208647\pi\)
−0.924256 + 0.381773i \(0.875314\pi\)
\(242\) −1312.71 −0.0224150
\(243\) 0 0
\(244\) 27514.3 0.462145
\(245\) 13590.6 + 48617.5i 0.226416 + 0.809955i
\(246\) 0 0
\(247\) 8290.29 + 4786.40i 0.135886 + 0.0784540i
\(248\) 25889.8 44842.5i 0.420946 0.729099i
\(249\) 0 0
\(250\) 3889.63 16653.6i 0.0622341 0.266457i
\(251\) 17504.6i 0.277847i −0.990303 0.138923i \(-0.955636\pi\)
0.990303 0.138923i \(-0.0443642\pi\)
\(252\) 0 0
\(253\) 53795.8i 0.840441i
\(254\) −18561.0 + 10716.2i −0.287696 + 0.166101i
\(255\) 0 0
\(256\) −10893.9 + 18868.8i −0.166228 + 0.287915i
\(257\) −28510.3 + 49381.3i −0.431654 + 0.747647i −0.997016 0.0771960i \(-0.975403\pi\)
0.565362 + 0.824843i \(0.308737\pi\)
\(258\) 0 0
\(259\) 6266.53 + 10854.0i 0.0934174 + 0.161804i
\(260\) −16846.7 + 65698.7i −0.249212 + 0.971874i
\(261\) 0 0
\(262\) 31171.2i 0.454099i
\(263\) −29717.1 51471.5i −0.429630 0.744142i 0.567210 0.823573i \(-0.308023\pi\)
−0.996840 + 0.0794316i \(0.974689\pi\)
\(264\) 0 0
\(265\) 1126.57 1151.13i 0.0160422 0.0163920i
\(266\) 967.285 + 558.462i 0.0136707 + 0.00789279i
\(267\) 0 0
\(268\) 107424. 62021.3i 1.49566 0.863518i
\(269\) 107707.i 1.48847i −0.667919 0.744234i \(-0.732815\pi\)
0.667919 0.744234i \(-0.267185\pi\)
\(270\) 0 0
\(271\) −11971.8 −0.163012 −0.0815059 0.996673i \(-0.525973\pi\)
−0.0815059 + 0.996673i \(0.525973\pi\)
\(272\) 8899.33 + 15414.1i 0.120287 + 0.208344i
\(273\) 0 0
\(274\) −14358.1 + 24869.0i −0.191248 + 0.331251i
\(275\) −37575.6 61957.4i −0.496867 0.819271i
\(276\) 0 0
\(277\) −23205.3 + 13397.6i −0.302432 + 0.174609i −0.643535 0.765417i \(-0.722533\pi\)
0.341103 + 0.940026i \(0.389200\pi\)
\(278\) 36456.2 0.471718
\(279\) 0 0
\(280\) −4090.32 + 15951.4i −0.0521725 + 0.203462i
\(281\) −37711.0 + 21772.5i −0.477591 + 0.275737i −0.719412 0.694584i \(-0.755589\pi\)
0.241821 + 0.970321i \(0.422255\pi\)
\(282\) 0 0
\(283\) −53849.1 31089.8i −0.672366 0.388190i 0.124607 0.992206i \(-0.460233\pi\)
−0.796972 + 0.604016i \(0.793566\pi\)
\(284\) 58514.8 + 33783.5i 0.725486 + 0.418859i
\(285\) 0 0
\(286\) −11629.0 20142.0i −0.142170 0.246246i
\(287\) −26967.2 −0.327395
\(288\) 0 0
\(289\) −75595.9 −0.905112
\(290\) 38201.3 10678.8i 0.454236 0.126978i
\(291\) 0 0
\(292\) −103548. 59783.6i −1.21444 0.701159i
\(293\) 8608.02 14909.5i 0.100269 0.173672i −0.811526 0.584316i \(-0.801363\pi\)
0.911796 + 0.410644i \(0.134696\pi\)
\(294\) 0 0
\(295\) −78895.4 + 22054.5i −0.906583 + 0.253427i
\(296\) 21625.8i 0.246825i
\(297\) 0 0
\(298\) 5761.40i 0.0648777i
\(299\) 73650.6 42522.2i 0.823822 0.475634i
\(300\) 0 0
\(301\) 20035.1 34701.8i 0.221135 0.383017i
\(302\) 6169.67 10686.2i 0.0676470 0.117168i
\(303\) 0 0
\(304\) 5221.20 + 9043.38i 0.0564967 + 0.0978551i
\(305\) 45014.1 + 11542.7i 0.483892 + 0.124082i
\(306\) 0 0
\(307\) 107387.i 1.13940i −0.821854 0.569698i \(-0.807060\pi\)
0.821854 0.569698i \(-0.192940\pi\)
\(308\) 16765.0 + 29037.9i 0.176727 + 0.306100i
\(309\) 0 0
\(310\) 29394.8 30035.7i 0.305877 0.312547i
\(311\) 118121. + 68197.1i 1.22125 + 0.705091i 0.965185 0.261568i \(-0.0842395\pi\)
0.256068 + 0.966659i \(0.417573\pi\)
\(312\) 0 0
\(313\) −81900.2 + 47285.1i −0.835981 + 0.482654i −0.855896 0.517148i \(-0.826994\pi\)
0.0199154 + 0.999802i \(0.493660\pi\)
\(314\) 22042.5i 0.223564i
\(315\) 0 0
\(316\) 128147. 1.28332
\(317\) −70757.2 122555.i −0.704129 1.21959i −0.967005 0.254758i \(-0.918004\pi\)
0.262876 0.964830i \(-0.415329\pi\)
\(318\) 0 0
\(319\) 84033.2 145550.i 0.825790 1.43031i
\(320\) −41424.7 + 42327.9i −0.404538 + 0.413359i
\(321\) 0 0
\(322\) 8593.31 4961.35i 0.0828798 0.0478507i
\(323\) 4649.64 0.0445670
\(324\) 0 0
\(325\) −55123.3 + 100417.i −0.521878 + 0.950696i
\(326\) 14586.6 8421.57i 0.137252 0.0792424i
\(327\) 0 0
\(328\) 40297.7 + 23265.9i 0.374570 + 0.216258i
\(329\) −19936.9 11510.6i −0.184190 0.106342i
\(330\) 0 0
\(331\) −41375.6 71664.7i −0.377649 0.654108i 0.613071 0.790028i \(-0.289934\pi\)
−0.990720 + 0.135921i \(0.956601\pi\)
\(332\) −49440.5 −0.448545
\(333\) 0 0
\(334\) 18659.2 0.167263
\(335\) 201767. 56402.3i 1.79788 0.502582i
\(336\) 0 0
\(337\) 72053.4 + 41600.0i 0.634446 + 0.366297i 0.782472 0.622686i \(-0.213959\pi\)
−0.148026 + 0.988983i \(0.547292\pi\)
\(338\) −2753.72 + 4769.59i −0.0241039 + 0.0417491i
\(339\) 0 0
\(340\) 8868.95 + 31726.8i 0.0767210 + 0.274453i
\(341\) 178067.i 1.53135i
\(342\) 0 0
\(343\) 86364.2i 0.734084i
\(344\) −59877.8 + 34570.5i −0.505998 + 0.292138i
\(345\) 0 0
\(346\) −10621.6 + 18397.1i −0.0887230 + 0.153673i
\(347\) 51814.1 89744.7i 0.430317 0.745332i −0.566583 0.824005i \(-0.691735\pi\)
0.996900 + 0.0786729i \(0.0250683\pi\)
\(348\) 0 0
\(349\) −75356.4 130521.i −0.618685 1.07159i −0.989726 0.142977i \(-0.954332\pi\)
0.371041 0.928616i \(-0.379001\pi\)
\(350\) −6431.61 + 11716.4i −0.0525030 + 0.0956438i
\(351\) 0 0
\(352\) 87909.1i 0.709494i
\(353\) 11068.8 + 19171.8i 0.0888286 + 0.153856i 0.907016 0.421096i \(-0.138354\pi\)
−0.818188 + 0.574951i \(0.805021\pi\)
\(354\) 0 0
\(355\) 81558.9 + 79818.6i 0.647165 + 0.633355i
\(356\) 130347. + 75255.6i 1.02849 + 0.593798i
\(357\) 0 0
\(358\) −6312.25 + 3644.38i −0.0492513 + 0.0284353i
\(359\) 90926.7i 0.705509i 0.935716 + 0.352755i \(0.114755\pi\)
−0.935716 + 0.352755i \(0.885245\pi\)
\(360\) 0 0
\(361\) −127593. −0.979068
\(362\) −8613.71 14919.4i −0.0657314 0.113850i
\(363\) 0 0
\(364\) 26503.4 45905.2i 0.200032 0.346465i
\(365\) −144327. 141248.i −1.08334 1.06022i
\(366\) 0 0
\(367\) 17103.7 9874.80i 0.126986 0.0733156i −0.435161 0.900353i \(-0.643309\pi\)
0.562148 + 0.827037i \(0.309975\pi\)
\(368\) 92769.7 0.685032
\(369\) 0 0
\(370\) 4359.76 17002.2i 0.0318463 0.124194i
\(371\) −1090.14 + 629.394i −0.00792019 + 0.00457272i
\(372\) 0 0
\(373\) 94695.0 + 54672.2i 0.680627 + 0.392960i 0.800091 0.599878i \(-0.204784\pi\)
−0.119464 + 0.992839i \(0.538118\pi\)
\(374\) −9783.21 5648.34i −0.0699420 0.0403811i
\(375\) 0 0
\(376\) 19861.5 + 34401.1i 0.140487 + 0.243331i
\(377\) −265692. −1.86937
\(378\) 0 0
\(379\) 75560.0 0.526034 0.263017 0.964791i \(-0.415283\pi\)
0.263017 + 0.964791i \(0.415283\pi\)
\(380\) 5203.37 + 18614.0i 0.0360344 + 0.128906i
\(381\) 0 0
\(382\) −27727.4 16008.4i −0.190012 0.109704i
\(383\) −108125. + 187277.i −0.737100 + 1.27670i 0.216695 + 0.976239i \(0.430472\pi\)
−0.953796 + 0.300456i \(0.902861\pi\)
\(384\) 0 0
\(385\) 15246.2 + 54539.9i 0.102858 + 0.367954i
\(386\) 47055.1i 0.315815i
\(387\) 0 0
\(388\) 202852.i 1.34746i
\(389\) −48977.4 + 28277.1i −0.323666 + 0.186868i −0.653025 0.757336i \(-0.726500\pi\)
0.329360 + 0.944205i \(0.393167\pi\)
\(390\) 0 0
\(391\) 20653.6 35773.0i 0.135096 0.233993i
\(392\) −34037.9 + 58955.3i −0.221508 + 0.383664i
\(393\) 0 0
\(394\) 26445.0 + 45804.0i 0.170353 + 0.295061i
\(395\) 209652. + 53759.8i 1.34371 + 0.344559i
\(396\) 0 0
\(397\) 254481.i 1.61464i −0.590117 0.807318i \(-0.700918\pi\)
0.590117 0.807318i \(-0.299082\pi\)
\(398\) 5607.39 + 9712.29i 0.0353993 + 0.0613134i
\(399\) 0 0
\(400\) −106844. + 64798.3i −0.667777 + 0.404990i
\(401\) −48697.9 28115.7i −0.302846 0.174848i 0.340875 0.940109i \(-0.389277\pi\)
−0.643721 + 0.765261i \(0.722610\pi\)
\(402\) 0 0
\(403\) −243788. + 140751.i −1.50107 + 0.866646i
\(404\) 105078.i 0.643797i
\(405\) 0 0
\(406\) −31000.1 −0.188066
\(407\) −37184.9 64406.2i −0.224480 0.388811i
\(408\) 0 0
\(409\) −51157.2 + 88606.9i −0.305816 + 0.529689i −0.977443 0.211201i \(-0.932263\pi\)
0.671627 + 0.740890i \(0.265596\pi\)
\(410\) 26991.6 + 26415.6i 0.160569 + 0.157142i
\(411\) 0 0
\(412\) 60074.7 34684.2i 0.353914 0.204332i
\(413\) 64023.0 0.375350
\(414\) 0 0
\(415\) −80885.9 20741.1i −0.469652 0.120430i
\(416\) −120354. + 69486.6i −0.695465 + 0.401527i
\(417\) 0 0
\(418\) −5739.76 3313.85i −0.0328505 0.0189662i
\(419\) 50586.4 + 29206.1i 0.288142 + 0.166359i 0.637103 0.770778i \(-0.280132\pi\)
−0.348962 + 0.937137i \(0.613466\pi\)
\(420\) 0 0
\(421\) 117518. + 203548.i 0.663043 + 1.14842i 0.979812 + 0.199921i \(0.0640685\pi\)
−0.316770 + 0.948503i \(0.602598\pi\)
\(422\) −12186.3 −0.0684301
\(423\) 0 0
\(424\) 2172.04 0.0120819
\(425\) 1199.92 + 55626.6i 0.00664317 + 0.307967i
\(426\) 0 0
\(427\) −31452.4 18159.1i −0.172504 0.0995950i
\(428\) 149760. 259392.i 0.817540 1.41602i
\(429\) 0 0
\(430\) −54045.3 + 15107.9i −0.292295 + 0.0817084i
\(431\) 43601.5i 0.234718i −0.993090 0.117359i \(-0.962557\pi\)
0.993090 0.117359i \(-0.0374429\pi\)
\(432\) 0 0
\(433\) 102452.i 0.546445i −0.961951 0.273222i \(-0.911910\pi\)
0.961951 0.273222i \(-0.0880895\pi\)
\(434\) −28444.4 + 16422.4i −0.151014 + 0.0871880i
\(435\) 0 0
\(436\) 16760.7 29030.4i 0.0881696 0.152714i
\(437\) 12117.3 20987.9i 0.0634519 0.109902i
\(438\) 0 0
\(439\) 51232.1 + 88736.5i 0.265835 + 0.460440i 0.967782 0.251789i \(-0.0810189\pi\)
−0.701947 + 0.712229i \(0.747686\pi\)
\(440\) 24271.5 94654.0i 0.125370 0.488915i
\(441\) 0 0
\(442\) 17858.6i 0.0914121i
\(443\) 123815. + 214453.i 0.630906 + 1.09276i 0.987367 + 0.158451i \(0.0506500\pi\)
−0.356461 + 0.934310i \(0.616017\pi\)
\(444\) 0 0
\(445\) 181679. + 177803.i 0.917457 + 0.897880i
\(446\) 45820.2 + 26454.3i 0.230350 + 0.132992i
\(447\) 0 0
\(448\) 40085.4 23143.3i 0.199724 0.115311i
\(449\) 79287.5i 0.393289i 0.980475 + 0.196645i \(0.0630045\pi\)
−0.980475 + 0.196645i \(0.936995\pi\)
\(450\) 0 0
\(451\) 160020. 0.786723
\(452\) −74088.0 128324.i −0.362636 0.628104i
\(453\) 0 0
\(454\) −10759.8 + 18636.6i −0.0522029 + 0.0904180i
\(455\) 62618.2 63983.5i 0.302467 0.309062i
\(456\) 0 0
\(457\) 101766. 58754.5i 0.487270 0.281325i −0.236171 0.971711i \(-0.575893\pi\)
0.723441 + 0.690386i \(0.242559\pi\)
\(458\) −89876.9 −0.428467
\(459\) 0 0
\(460\) 166324. + 42649.5i 0.786030 + 0.201557i
\(461\) −317908. + 183544.i −1.49589 + 0.863653i −0.999989 0.00472615i \(-0.998496\pi\)
−0.495901 + 0.868379i \(0.665162\pi\)
\(462\) 0 0
\(463\) 79996.4 + 46185.9i 0.373171 + 0.215451i 0.674843 0.737961i \(-0.264211\pi\)
−0.301672 + 0.953412i \(0.597545\pi\)
\(464\) −250998. 144914.i −1.16583 0.673090i
\(465\) 0 0
\(466\) −20198.0 34983.9i −0.0930114 0.161100i
\(467\) 82073.0 0.376328 0.188164 0.982138i \(-0.439746\pi\)
0.188164 + 0.982138i \(0.439746\pi\)
\(468\) 0 0
\(469\) −163733. −0.744372
\(470\) 8679.80 + 31050.2i 0.0392929 + 0.140562i
\(471\) 0 0
\(472\) −95671.2 55235.8i −0.429435 0.247934i
\(473\) −118886. + 205917.i −0.531384 + 0.920384i
\(474\) 0 0
\(475\) 703.989 + 32635.8i 0.00312017 + 0.144646i
\(476\) 25746.1i 0.113631i
\(477\) 0 0
\(478\) 29245.2i 0.127997i
\(479\) 78567.0 45360.7i 0.342428 0.197701i −0.318917 0.947783i \(-0.603319\pi\)
0.661345 + 0.750082i \(0.269986\pi\)
\(480\) 0 0
\(481\) −58784.7 + 101818.i −0.254082 + 0.440083i
\(482\) 8359.71 14479.4i 0.0359830 0.0623243i
\(483\) 0 0
\(484\) 8876.46 + 15374.5i 0.0378922 + 0.0656311i
\(485\) −85099.6 + 331871.i −0.361779 + 1.41086i
\(486\) 0 0
\(487\) 240214.i 1.01284i −0.862287 0.506421i \(-0.830968\pi\)
0.862287 0.506421i \(-0.169032\pi\)
\(488\) 31333.4 + 54271.1i 0.131573 + 0.227892i
\(489\) 0 0
\(490\) −38645.9 + 39488.5i −0.160958 + 0.164467i
\(491\) 198232. + 114449.i 0.822264 + 0.474734i 0.851197 0.524847i \(-0.175877\pi\)
−0.0289325 + 0.999581i \(0.509211\pi\)
\(492\) 0 0
\(493\) −111761. + 64525.0i −0.459827 + 0.265481i
\(494\) 10477.6i 0.0429345i
\(495\) 0 0
\(496\) −307074. −1.24819
\(497\) −44593.3 77237.9i −0.180533 0.312693i
\(498\) 0 0
\(499\) −5232.25 + 9062.53i −0.0210130 + 0.0363956i −0.876341 0.481692i \(-0.840022\pi\)
0.855328 + 0.518087i \(0.173356\pi\)
\(500\) −221348. + 67054.9i −0.885392 + 0.268220i
\(501\) 0 0
\(502\) 16592.2 9579.54i 0.0658412 0.0380134i
\(503\) −87312.8 −0.345097 −0.172549 0.985001i \(-0.555200\pi\)
−0.172549 + 0.985001i \(0.555200\pi\)
\(504\) 0 0
\(505\) −44081.9 + 171910.i −0.172853 + 0.674092i
\(506\) −50991.8 + 29440.1i −0.199159 + 0.114984i
\(507\) 0 0
\(508\) 251016. + 144924.i 0.972689 + 0.561582i
\(509\) −211363. 122031.i −0.815819 0.471013i 0.0331537 0.999450i \(-0.489445\pi\)
−0.848972 + 0.528437i \(0.822778\pi\)
\(510\) 0 0
\(511\) 78912.7 + 136681.i 0.302207 + 0.523439i
\(512\) −259444. −0.989700
\(513\) 0 0
\(514\) −62409.9 −0.236226
\(515\) 112834. 31541.9i 0.425429 0.118925i
\(516\) 0 0
\(517\) 118303. + 68302.6i 0.442605 + 0.255538i
\(518\) −6858.81 + 11879.8i −0.0255617 + 0.0442741i
\(519\) 0 0
\(520\) −148774. + 41588.4i −0.550199 + 0.153803i
\(521\) 342391.i 1.26138i −0.776034 0.630692i \(-0.782771\pi\)
0.776034 0.630692i \(-0.217229\pi\)
\(522\) 0 0
\(523\) 313862.i 1.14746i −0.819046 0.573728i \(-0.805497\pi\)
0.819046 0.573728i \(-0.194503\pi\)
\(524\) 365076. 210777.i 1.32960 0.767645i
\(525\) 0 0
\(526\) 32525.8 56336.3i 0.117559 0.203618i
\(527\) −68364.6 + 118411.i −0.246156 + 0.426355i
\(528\) 0 0
\(529\) 32270.6 + 55894.3i 0.115318 + 0.199736i
\(530\) 1707.65 + 437.883i 0.00607922 + 0.00155886i
\(531\) 0 0
\(532\) 15105.1i 0.0533704i
\(533\) −126486. 219080.i −0.445234 0.771167i
\(534\) 0 0
\(535\) 353831. 361546.i 1.23620 1.26315i
\(536\) 244670. + 141260.i 0.851631 + 0.491689i
\(537\) 0 0
\(538\) 102093. 58943.5i 0.352721 0.203644i
\(539\) 234109.i 0.805823i
\(540\) 0 0
\(541\) 81438.3 0.278249 0.139125 0.990275i \(-0.455571\pi\)
0.139125 + 0.990275i \(0.455571\pi\)
\(542\) −6551.63 11347.8i −0.0223024 0.0386288i
\(543\) 0 0
\(544\) −33750.6 + 58457.7i −0.114047 + 0.197535i
\(545\) 39599.6 40463.0i 0.133321 0.136228i
\(546\) 0 0
\(547\) −345995. + 199760.i −1.15636 + 0.667627i −0.950430 0.310939i \(-0.899357\pi\)
−0.205934 + 0.978566i \(0.566023\pi\)
\(548\) 388353. 1.29320
\(549\) 0 0
\(550\) 38164.5 69523.7i 0.126164 0.229830i
\(551\) −65569.4 + 37856.5i −0.215972 + 0.124692i
\(552\) 0 0
\(553\) −146489. 84575.3i −0.479020 0.276563i
\(554\) −25398.6 14663.9i −0.0827541 0.0477781i
\(555\) 0 0
\(556\) −246514. 426975.i −0.797430 1.38119i
\(557\) 464065. 1.49578 0.747892 0.663821i \(-0.231066\pi\)
0.747892 + 0.663821i \(0.231066\pi\)
\(558\) 0 0
\(559\) 375888. 1.20291
\(560\) 94053.0 26291.7i 0.299914 0.0838383i
\(561\) 0 0
\(562\) −41275.3 23830.3i −0.130682 0.0754496i
\(563\) 282361. 489064.i 0.890816 1.54294i 0.0519165 0.998651i \(-0.483467\pi\)
0.838899 0.544287i \(-0.183200\pi\)
\(564\) 0 0
\(565\) −67375.8 241023.i −0.211061 0.755025i
\(566\) 68056.4i 0.212440i
\(567\) 0 0
\(568\) 153891.i 0.476999i
\(569\) 477380. 275615.i 1.47448 0.851292i 0.474895 0.880043i \(-0.342486\pi\)
0.999587 + 0.0287503i \(0.00915278\pi\)
\(570\) 0 0
\(571\) 107836. 186778.i 0.330744 0.572865i −0.651914 0.758293i \(-0.726034\pi\)
0.982658 + 0.185428i \(0.0593670\pi\)
\(572\) −157268. + 272397.i −0.480672 + 0.832549i
\(573\) 0 0
\(574\) −14758.0 25561.6i −0.0447923 0.0775825i
\(575\) 254218. + 139551.i 0.768902 + 0.422083i
\(576\) 0 0
\(577\) 302487.i 0.908562i 0.890858 + 0.454281i \(0.150104\pi\)
−0.890858 + 0.454281i \(0.849896\pi\)
\(578\) −41370.4 71655.6i −0.123832 0.214484i
\(579\) 0 0
\(580\) −383384. 375203.i −1.13967 1.11535i
\(581\) 56516.9 + 32630.0i 0.167427 + 0.0966641i
\(582\) 0 0
\(583\) 6468.79 3734.76i 0.0190321 0.0109882i
\(584\) 272327.i 0.798483i
\(585\) 0 0
\(586\) 18843.2 0.0548731
\(587\) 67877.0 + 117566.i 0.196991 + 0.341198i 0.947551 0.319603i \(-0.103550\pi\)
−0.750560 + 0.660802i \(0.770216\pi\)
\(588\) 0 0
\(589\) −40109.2 + 69471.2i −0.115615 + 0.200251i
\(590\) −64081.0 62713.7i −0.184088 0.180160i
\(591\) 0 0
\(592\) −111067. + 64124.7i −0.316915 + 0.182971i
\(593\) −612873. −1.74285 −0.871427 0.490525i \(-0.836805\pi\)
−0.871427 + 0.490525i \(0.836805\pi\)
\(594\) 0 0
\(595\) 10800.9 42121.3i 0.0305089 0.118978i
\(596\) 67477.4 38958.1i 0.189962 0.109674i
\(597\) 0 0
\(598\) 80611.6 + 46541.1i 0.225421 + 0.130147i
\(599\) 152718. + 88171.6i 0.425634 + 0.245740i 0.697485 0.716600i \(-0.254303\pi\)
−0.271851 + 0.962339i \(0.587636\pi\)
\(600\) 0 0
\(601\) −55051.5 95352.0i −0.152412 0.263986i 0.779701 0.626152i \(-0.215371\pi\)
−0.932114 + 0.362165i \(0.882038\pi\)
\(602\) 43857.4 0.121018
\(603\) 0 0
\(604\) −166875. −0.457423
\(605\) 8072.28 + 28876.9i 0.0220539 + 0.0788932i
\(606\) 0 0
\(607\) 189924. + 109653.i 0.515470 + 0.297607i 0.735079 0.677981i \(-0.237145\pi\)
−0.219609 + 0.975588i \(0.570478\pi\)
\(608\) −19801.3 + 34296.8i −0.0535656 + 0.0927784i
\(609\) 0 0
\(610\) 13693.2 + 48984.7i 0.0367999 + 0.131644i
\(611\) 215955.i 0.578471i
\(612\) 0 0
\(613\) 75985.1i 0.202212i 0.994876 + 0.101106i \(0.0322382\pi\)
−0.994876 + 0.101106i \(0.967762\pi\)
\(614\) 101790. 58768.3i 0.270002 0.155886i
\(615\) 0 0
\(616\) −38184.2 + 66137.0i −0.100629 + 0.174294i
\(617\) 242066. 419271.i 0.635863 1.10135i −0.350468 0.936575i \(-0.613977\pi\)
0.986331 0.164773i \(-0.0526892\pi\)
\(618\) 0 0
\(619\) −23051.5 39926.4i −0.0601614 0.104203i 0.834376 0.551196i \(-0.185828\pi\)
−0.894537 + 0.446993i \(0.852495\pi\)
\(620\) −550543. 141173.i −1.43221 0.367254i
\(621\) 0 0
\(622\) 149285.i 0.385866i
\(623\) −99335.4 172054.i −0.255934 0.443291i
\(624\) 0 0
\(625\) −390262. + 16844.5i −0.999070 + 0.0431220i
\(626\) −89640.9 51754.2i −0.228748 0.132068i
\(627\) 0 0
\(628\) 258162. 149050.i 0.654595 0.377930i
\(629\) 57105.0i 0.144335i
\(630\) 0 0
\(631\) 240096. 0.603013 0.301507 0.953464i \(-0.402510\pi\)
0.301507 + 0.953464i \(0.402510\pi\)
\(632\) 145935. + 252766.i 0.365362 + 0.632826i
\(633\) 0 0
\(634\) 77444.8 134138.i 0.192670 0.333714i
\(635\) 349871. + 342405.i 0.867681 + 0.849166i
\(636\) 0 0
\(637\) 320513. 185048.i 0.789890 0.456043i
\(638\) 183951. 0.451919
\(639\) 0 0
\(640\) −356583. 91436.5i −0.870565 0.223234i
\(641\) −480663. + 277511.i −1.16984 + 0.675405i −0.953641 0.300945i \(-0.902698\pi\)
−0.216195 + 0.976350i \(0.569365\pi\)
\(642\) 0 0
\(643\) −560077. 323360.i −1.35465 0.782105i −0.365749 0.930713i \(-0.619187\pi\)
−0.988896 + 0.148609i \(0.952521\pi\)
\(644\) −116215. 67096.5i −0.280213 0.161781i
\(645\) 0 0
\(646\) 2544.55 + 4407.28i 0.00609741 + 0.0105610i
\(647\) −347688. −0.830579 −0.415289 0.909689i \(-0.636320\pi\)
−0.415289 + 0.909689i \(0.636320\pi\)
\(648\) 0 0
\(649\) −379906. −0.901959
\(650\) −125350. + 2703.93i −0.296686 + 0.00639983i
\(651\) 0 0
\(652\) −197267. 113892.i −0.464043 0.267915i
\(653\) −304539. + 527478.i −0.714196 + 1.23702i 0.249073 + 0.968485i \(0.419874\pi\)
−0.963269 + 0.268538i \(0.913459\pi\)
\(654\) 0 0
\(655\) 685699. 191681.i 1.59827 0.446783i
\(656\) 275952.i 0.641247i
\(657\) 0 0
\(658\) 25197.0i 0.0581965i
\(659\) −540048. + 311797.i −1.24354 + 0.717961i −0.969814 0.243845i \(-0.921591\pi\)
−0.273731 + 0.961806i \(0.588258\pi\)
\(660\) 0 0
\(661\) −184642. + 319810.i −0.422598 + 0.731962i −0.996193 0.0871775i \(-0.972215\pi\)
0.573594 + 0.819140i \(0.305549\pi\)
\(662\) 45286.2 78438.0i 0.103336 0.178983i
\(663\) 0 0
\(664\) −56303.1 97519.8i −0.127701 0.221185i
\(665\) 6336.84 24712.3i 0.0143294 0.0558818i
\(666\) 0 0
\(667\) 672630.i 1.51191i
\(668\) −126172. 218536.i −0.282755 0.489746i
\(669\) 0 0
\(670\) 163881. + 160384.i 0.365073 + 0.357283i
\(671\) 186635. + 107754.i 0.414523 + 0.239325i
\(672\) 0 0
\(673\) 130097. 75111.4i 0.287234 0.165835i −0.349460 0.936951i \(-0.613635\pi\)
0.636694 + 0.771117i \(0.280301\pi\)
\(674\) 91063.7i 0.200459i
\(675\) 0 0
\(676\) 74481.8 0.162988
\(677\) 290147. + 502550.i 0.633055 + 1.09648i 0.986924 + 0.161188i \(0.0515326\pi\)
−0.353869 + 0.935295i \(0.615134\pi\)
\(678\) 0 0
\(679\) 133879. 231886.i 0.290385 0.502961i
\(680\) −52480.1 + 53624.4i −0.113495 + 0.115970i
\(681\) 0 0
\(682\) 168786. 97448.7i 0.362884 0.209511i
\(683\) −11404.6 −0.0244477 −0.0122238 0.999925i \(-0.503891\pi\)
−0.0122238 + 0.999925i \(0.503891\pi\)
\(684\) 0 0
\(685\) 635356. + 162921.i 1.35405 + 0.347212i
\(686\) 81862.7 47263.4i 0.173955 0.100433i
\(687\) 0 0
\(688\) 355099. + 205017.i 0.750192 + 0.433124i
\(689\) −10226.3 5904.18i −0.0215418 0.0124372i
\(690\) 0 0
\(691\) 50403.6 + 87301.6i 0.105562 + 0.182838i 0.913967 0.405787i \(-0.133003\pi\)
−0.808406 + 0.588625i \(0.799669\pi\)
\(692\) 287289. 0.599938
\(693\) 0 0
\(694\) 113423. 0.235494
\(695\) −224181. 801959.i −0.464118 1.66028i
\(696\) 0 0
\(697\) −106410. 61435.9i −0.219037 0.126461i
\(698\) 82478.7 142857.i 0.169290 0.293219i
\(699\) 0 0
\(700\) 180712. 3898.15i 0.368800 0.00795540i
\(701\) 220659.i 0.449040i 0.974469 + 0.224520i \(0.0720814\pi\)
−0.974469 + 0.224520i \(0.927919\pi\)
\(702\) 0 0
\(703\) 33503.2i 0.0677916i
\(704\) −237862. + 137330.i −0.479933 + 0.277089i
\(705\) 0 0
\(706\) −12115.0 + 20983.8i −0.0243060 + 0.0420993i
\(707\) 69350.1 120118.i 0.138742 0.240308i
\(708\) 0 0
\(709\) 64731.1 + 112118.i 0.128772 + 0.223039i 0.923201 0.384318i \(-0.125563\pi\)
−0.794429 + 0.607357i \(0.792230\pi\)
\(710\) −31024.5 + 120989.i −0.0615444 + 0.240010i
\(711\) 0 0
\(712\) 342806.i 0.676221i
\(713\) 356328. + 617179.i 0.700924 + 1.21404i
\(714\) 0 0
\(715\) −371570. + 379671.i −0.726823 + 0.742670i
\(716\) 85365.8 + 49286.0i 0.166517 + 0.0961385i
\(717\) 0 0
\(718\) −86187.4 + 49760.3i −0.167184 + 0.0965238i
\(719\) 354459.i 0.685659i 0.939398 + 0.342829i \(0.111385\pi\)
−0.939398 + 0.342829i \(0.888615\pi\)
\(720\) 0 0
\(721\) −91564.3 −0.176139
\(722\) −69826.2 120943.i −0.133950 0.232009i
\(723\) 0 0
\(724\) −116490. + 201767.i −0.222235 + 0.384923i
\(725\) −469823. 774679.i −0.893836 1.47382i
\(726\) 0 0
\(727\) 173161. 99974.6i 0.327628 0.189156i −0.327159 0.944969i \(-0.606091\pi\)
0.654788 + 0.755813i \(0.272758\pi\)
\(728\) 120729. 0.227797
\(729\) 0 0
\(730\) 54901.3 214103.i 0.103024 0.401770i
\(731\) 158113. 91286.7i 0.295892 0.170833i
\(732\) 0 0
\(733\) −746774. 431150.i −1.38989 0.802455i −0.396590 0.917996i \(-0.629807\pi\)
−0.993303 + 0.115541i \(0.963140\pi\)
\(734\) 18720.2 + 10808.1i 0.0347471 + 0.0200612i
\(735\) 0 0
\(736\) 175914. + 304691.i 0.324746 + 0.562477i
\(737\) 971573. 1.78871
\(738\) 0 0
\(739\) 684605. 1.25358 0.626789 0.779189i \(-0.284369\pi\)
0.626789 + 0.779189i \(0.284369\pi\)
\(740\) −228609. + 63905.8i −0.417475 + 0.116702i
\(741\) 0 0
\(742\) −1193.18 688.881i −0.00216719 0.00125123i
\(743\) −400928. + 694427.i −0.726254 + 1.25791i 0.232202 + 0.972668i \(0.425407\pi\)
−0.958456 + 0.285241i \(0.907926\pi\)
\(744\) 0 0
\(745\) 126738. 35428.6i 0.228347 0.0638324i
\(746\) 119679.i 0.215050i
\(747\) 0 0
\(748\) 152775.i 0.273053i
\(749\) −342391. + 197679.i −0.610321 + 0.352369i
\(750\) 0 0
\(751\) −254539. + 440875.i −0.451310 + 0.781692i −0.998468 0.0553377i \(-0.982376\pi\)
0.547158 + 0.837030i \(0.315710\pi\)
\(752\) 117786. 204012.i 0.208286 0.360761i
\(753\) 0 0
\(754\) −145402. 251843.i −0.255757 0.442983i
\(755\) −273012. 70006.9i −0.478948 0.122814i
\(756\) 0 0
\(757\) 766769.i 1.33805i 0.743239 + 0.669026i \(0.233288\pi\)
−0.743239 + 0.669026i \(0.766712\pi\)
\(758\) 41350.8 + 71621.6i 0.0719689 + 0.124654i
\(759\) 0 0
\(760\) −30789.8 + 31461.2i −0.0533065 + 0.0544688i
\(761\) −283879. 163898.i −0.490190 0.283011i 0.234463 0.972125i \(-0.424667\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(762\) 0 0
\(763\) −38319.3 + 22123.6i −0.0658216 + 0.0380021i
\(764\) 432990.i 0.741808i
\(765\) 0 0
\(766\) −236688. −0.403384
\(767\) 300292. + 520120.i 0.510449 + 0.884124i
\(768\) 0 0
\(769\) −197438. + 341972.i −0.333870 + 0.578280i −0.983267 0.182170i \(-0.941688\pi\)
0.649397 + 0.760449i \(0.275021\pi\)
\(770\) −43353.6 + 44298.8i −0.0731212 + 0.0747155i
\(771\) 0 0
\(772\) −551109. + 318183.i −0.924705 + 0.533878i
\(773\) −121076. −0.202628 −0.101314 0.994855i \(-0.532305\pi\)
−0.101314 + 0.994855i \(0.532305\pi\)
\(774\) 0 0
\(775\) −841479. 461924.i −1.40101 0.769072i
\(776\) −400118. + 231008.i −0.664454 + 0.383623i
\(777\) 0 0
\(778\) −53606.5 30949.7i −0.0885642 0.0511326i
\(779\) −62430.3 36044.1i −0.102878 0.0593964i
\(780\) 0 0
\(781\) 264612. + 458321.i 0.433818 + 0.751395i
\(782\) 45211.3 0.0739321
\(783\) 0 0
\(784\) 403716. 0.656816
\(785\) 484888. 135546.i 0.786868 0.219962i
\(786\) 0 0
\(787\) 523274. + 302112.i 0.844849 + 0.487774i 0.858910 0.512127i \(-0.171142\pi\)
−0.0140603 + 0.999901i \(0.504476\pi\)
\(788\) 357638. 619446.i 0.575958 0.997588i
\(789\) 0 0
\(790\) 63775.9 + 228145.i 0.102189 + 0.365558i
\(791\) 195588.i 0.312601i
\(792\) 0 0
\(793\) 340691.i 0.541769i
\(794\) 241217. 139267.i 0.382619 0.220905i
\(795\) 0 0
\(796\) 75833.5 131347.i 0.119684 0.207298i
\(797\) −444851. + 770505.i −0.700322 + 1.21299i 0.268031 + 0.963410i \(0.413627\pi\)
−0.968353 + 0.249584i \(0.919706\pi\)
\(798\) 0 0
\(799\) −52446.2 90839.5i −0.0821524 0.142292i
\(800\) −415425. 228045.i −0.649102 0.356320i
\(801\) 0 0
\(802\) 61546.2i 0.0956868i
\(803\) −468260. 811049.i −0.726199 1.25781i
\(804\) 0 0
\(805\) −161982. 158525.i −0.249962 0.244629i
\(806\) −266830. 154054.i −0.410737 0.237139i
\(807\) 0 0
\(808\) −207263. + 119663.i −0.317468 + 0.183290i
\(809\) 351052.i 0.536382i −0.963366 0.268191i \(-0.913574\pi\)
0.963366 0.268191i \(-0.0864258\pi\)
\(810\) 0 0
\(811\) −316054. −0.480529 −0.240264 0.970707i \(-0.577234\pi\)
−0.240264 + 0.970707i \(0.577234\pi\)
\(812\) 209620. + 363072.i 0.317922 + 0.550657i
\(813\) 0 0
\(814\) 40699.4 70493.5i 0.0614242 0.106390i
\(815\) −274954. 269087.i −0.413947 0.405114i
\(816\) 0 0
\(817\) 92764.3 53557.5i 0.138975 0.0802373i
\(818\) −111985. −0.167360
\(819\) 0 0
\(820\) 126865. 494746.i 0.188674 0.735791i
\(821\) 853848. 492970.i 1.26676 0.731364i 0.292387 0.956300i \(-0.405551\pi\)
0.974374 + 0.224936i \(0.0722172\pi\)
\(822\) 0 0
\(823\) 547461. + 316077.i 0.808264 + 0.466651i 0.846353 0.532623i \(-0.178794\pi\)
−0.0380887 + 0.999274i \(0.512127\pi\)
\(824\) 136827. + 78997.0i 0.201519 + 0.116347i
\(825\) 0 0
\(826\) 35037.1 + 60686.0i 0.0513532 + 0.0889464i
\(827\) 309027. 0.451840 0.225920 0.974146i \(-0.427461\pi\)
0.225920 + 0.974146i \(0.427461\pi\)
\(828\) 0 0
\(829\) −832364. −1.21117 −0.605584 0.795782i \(-0.707060\pi\)
−0.605584 + 0.795782i \(0.707060\pi\)
\(830\) −24605.4 88020.6i −0.0357169 0.127770i
\(831\) 0 0
\(832\) 376030. + 217101.i 0.543221 + 0.313629i
\(833\) 89880.3 155677.i 0.129531 0.224355i
\(834\) 0 0
\(835\) −114741. 410462.i −0.164568 0.588709i
\(836\) 89632.1i 0.128248i
\(837\) 0 0
\(838\) 63933.0i 0.0910410i
\(839\) −718506. + 414830.i −1.02072 + 0.589313i −0.914312 0.405010i \(-0.867268\pi\)
−0.106407 + 0.994323i \(0.533935\pi\)
\(840\) 0 0
\(841\) 697061. 1.20734e6i 0.985550 1.70702i
\(842\) −128626. + 222786.i −0.181427 + 0.314241i
\(843\) 0 0
\(844\) 82402.8 + 142726.i 0.115680 + 0.200363i
\(845\) 121854. + 31246.3i 0.170658 + 0.0437608i
\(846\) 0 0
\(847\) 23433.4i 0.0326639i
\(848\) −6440.51 11155.3i −0.00895630 0.0155128i
\(849\) 0 0
\(850\) −52070.5 + 31579.4i −0.0720699 + 0.0437085i
\(851\) 257765. + 148820.i 0.355930 + 0.205496i
\(852\) 0 0
\(853\) 607611. 350804.i 0.835079 0.482133i −0.0205095 0.999790i \(-0.506529\pi\)
0.855588 + 0.517657i \(0.173195\pi\)
\(854\) 39750.7i 0.0545041i
\(855\) 0 0
\(856\) 682191. 0.931019
\(857\) −542612. 939831.i −0.738801 1.27964i −0.953035 0.302859i \(-0.902059\pi\)
0.214234 0.976782i \(-0.431274\pi\)
\(858\) 0 0
\(859\) 442391. 766243.i 0.599542 1.03844i −0.393347 0.919390i \(-0.628683\pi\)
0.992889 0.119047i \(-0.0379839\pi\)
\(860\) 542393. + 530819.i 0.733360 + 0.717711i
\(861\) 0 0
\(862\) 41328.9 23861.2i 0.0556210 0.0321128i
\(863\) −848540. −1.13933 −0.569667 0.821876i \(-0.692928\pi\)
−0.569667 + 0.821876i \(0.692928\pi\)
\(864\) 0 0
\(865\) 470011. + 120522.i 0.628169 + 0.161077i
\(866\) 97112.3 56067.8i 0.129491 0.0747615i
\(867\) 0 0
\(868\) 384678. + 222094.i 0.510573 + 0.294779i
\(869\) 869248. + 501861.i 1.15108 + 0.664575i
\(870\) 0 0
\(871\) −767967. 1.33016e6i −1.01229 1.75334i
\(872\) 76348.6 0.100408
\(873\) 0 0
\(874\) 26525.2 0.0347245
\(875\) 297285. + 69434.2i 0.388290 + 0.0906895i
\(876\) 0 0
\(877\) −445046. 256947.i −0.578636 0.334076i 0.181955 0.983307i \(-0.441757\pi\)
−0.760591 + 0.649231i \(0.775091\pi\)
\(878\) −56074.2 + 97123.4i −0.0727402 + 0.125990i
\(879\) 0 0
\(880\) −558100. + 156012.i −0.720687 + 0.201462i
\(881\) 222212.i 0.286297i 0.989701 + 0.143148i \(0.0457226\pi\)
−0.989701 + 0.143148i \(0.954277\pi\)
\(882\) 0 0
\(883\) 248366.i 0.318545i −0.987235 0.159272i \(-0.949085\pi\)
0.987235 0.159272i \(-0.0509148\pi\)
\(884\) 209160. 120759.i 0.267654 0.154530i
\(885\) 0 0
\(886\) −135517. + 234722.i −0.172634 + 0.299011i
\(887\) 432263. 748702.i 0.549415 0.951616i −0.448899 0.893582i \(-0.648184\pi\)
0.998315 0.0580331i \(-0.0184829\pi\)
\(888\) 0 0
\(889\) −191296. 331334.i −0.242048 0.419240i
\(890\) −69109.7 + 269514.i −0.0872488 + 0.340252i
\(891\) 0 0
\(892\) 715528.i 0.899284i
\(893\) −30769.9 53295.1i −0.0385855 0.0668320i
\(894\) 0 0
\(895\) 118984. + 116445.i 0.148540 + 0.145371i
\(896\) 249153. + 143849.i 0.310349 + 0.179180i
\(897\) 0 0
\(898\) −75154.8 + 43390.7i −0.0931975 + 0.0538076i
\(899\) 2.22645e6i 2.75482i
\(900\) 0 0
\(901\) −5735.47 −0.00706512
\(902\) 87572.3 + 151680.i 0.107635 + 0.186429i
\(903\) 0 0
\(904\) 168744. 292272.i 0.206486 0.357644i
\(905\) −275226. + 281227.i −0.336041 + 0.343368i
\(906\) 0 0
\(907\) −929719. + 536773.i −1.13015 + 0.652494i −0.943973 0.330022i \(-0.892944\pi\)
−0.186179 + 0.982516i \(0.559610\pi\)
\(908\) 291029. 0.352992
\(909\) 0 0
\(910\) 94916.8 + 24338.9i 0.114620 + 0.0293913i
\(911\) 872700. 503854.i 1.05155 0.607110i 0.128464 0.991714i \(-0.458995\pi\)
0.923082 + 0.384604i \(0.125662\pi\)
\(912\) 0 0
\(913\) −335365. 193623.i −0.402324 0.232282i
\(914\) 111384. + 64307.7i 0.133331 + 0.0769787i
\(915\) 0 0
\(916\) 607741. + 1.05264e6i 0.724315 + 1.25455i
\(917\) −556440. −0.661728
\(918\) 0 0
\(919\) −576271. −0.682332 −0.341166 0.940003i \(-0.610822\pi\)
−0.341166 + 0.940003i \(0.610822\pi\)
\(920\) 105286. + 376638.i 0.124393 + 0.444989i
\(921\) 0 0
\(922\) −347955. 200892.i −0.409318 0.236320i
\(923\) 418318. 724549.i 0.491025 0.850480i
\(924\) 0 0
\(925\) −400820. + 8646.11i −0.468453 + 0.0101050i
\(926\) 101102.i 0.117907i
\(927\) 0 0
\(928\) 1.09916e6i 1.27634i
\(929\) 889734. 513688.i 1.03093 0.595207i 0.113679 0.993518i \(-0.463737\pi\)
0.917251 + 0.398310i \(0.130403\pi\)
\(930\) 0 0
\(931\) 52732.3 91335.1i 0.0608384 0.105375i
\(932\) −273154. + 473117.i −0.314468 + 0.544674i
\(933\) 0 0
\(934\) 44915.0 + 77795.1i 0.0514870 + 0.0891782i
\(935\) −64091.4 + 249943.i −0.0733122 + 0.285902i
\(936\) 0 0
\(937\) 358312.i 0.408115i 0.978959 + 0.204057i \(0.0654129\pi\)
−0.978959 + 0.204057i \(0.934587\pi\)
\(938\) −89604.0 155199.i −0.101841 0.176393i
\(939\) 0 0
\(940\) 304967. 311617.i 0.345142 0.352667i
\(941\) −634781. 366491.i −0.716877 0.413889i 0.0967250 0.995311i \(-0.469163\pi\)
−0.813602 + 0.581422i \(0.802497\pi\)
\(942\) 0 0
\(943\) −554628. + 320214.i −0.623703 + 0.360095i
\(944\) 655140.i 0.735174i
\(945\) 0 0
\(946\) −260245. −0.290804
\(947\) 361257. + 625716.i 0.402825 + 0.697713i 0.994066 0.108782i \(-0.0346950\pi\)
−0.591241 + 0.806495i \(0.701362\pi\)
\(948\) 0 0
\(949\) −740260. + 1.28217e6i −0.821962 + 1.42368i
\(950\) −30549.5 + 18527.5i −0.0338499 + 0.0205291i
\(951\) 0 0
\(952\) 50783.3 29319.8i 0.0560335 0.0323509i
\(953\) 686812. 0.756227 0.378113 0.925759i \(-0.376573\pi\)
0.378113 + 0.925759i \(0.376573\pi\)
\(954\) 0 0
\(955\) −181646. + 708383.i −0.199168 + 0.776715i
\(956\) −342519. + 197754.i −0.374774 + 0.216376i
\(957\) 0 0
\(958\) 85992.7 + 49647.9i 0.0936980 + 0.0540966i
\(959\) −443938. 256308.i −0.482709 0.278692i
\(960\) 0 0
\(961\) −717709. 1.24311e6i −0.777144 1.34605i
\(962\) −128681. −0.139048
\(963\) 0 0
\(964\) −226111. −0.243314
\(965\) −1.03511e6 + 289356.i −1.11156 + 0.310727i
\(966\) 0 0
\(967\) 217686. + 125681.i 0.232797 + 0.134406i 0.611862 0.790965i \(-0.290421\pi\)
−0.379064 + 0.925370i \(0.623754\pi\)
\(968\) −20217.1 + 35017.1i −0.0215759 + 0.0373705i
\(969\) 0 0
\(970\) −361144. + 100955.i −0.383828 + 0.107296i
\(971\) 299319.i 0.317465i 0.987322 + 0.158733i \(0.0507408\pi\)
−0.987322 + 0.158733i \(0.949259\pi\)
\(972\) 0 0
\(973\) 650784.i 0.687403i
\(974\) 227694. 131459.i 0.240012 0.138571i
\(975\) 0 0
\(976\) 185819. 321849.i 0.195070 0.337872i
\(977\) 352133. 609912.i 0.368907 0.638966i −0.620488 0.784216i \(-0.713065\pi\)
0.989395 + 0.145250i \(0.0463986\pi\)
\(978\) 0 0
\(979\) 589446. + 1.02095e6i 0.615004 + 1.06522i
\(980\) 723810. + 185602.i 0.753654 + 0.193255i
\(981\) 0 0
\(982\) 250533.i 0.259802i
\(983\) 343643. + 595207.i 0.355632 + 0.615972i 0.987226 0.159327i \(-0.0509324\pi\)
−0.631594 + 0.775299i \(0.717599\pi\)
\(984\) 0 0
\(985\) 844972. 863396.i 0.870903 0.889892i
\(986\) −122323. 70623.5i −0.125822 0.0726433i
\(987\) 0 0
\(988\) 122713. 70848.5i 0.125712 0.0725800i
\(989\) 951604.i 0.972890i
\(990\) 0 0
\(991\) 315848. 0.321611 0.160806 0.986986i \(-0.448591\pi\)
0.160806 + 0.986986i \(0.448591\pi\)
\(992\) −582286. 1.00855e6i −0.591715 1.02488i
\(993\) 0 0
\(994\) 48808.0 84538.0i 0.0493990 0.0855617i
\(995\) 179168. 183074.i 0.180973 0.184919i
\(996\) 0 0
\(997\) 458423. 264671.i 0.461186 0.266266i −0.251357 0.967895i \(-0.580877\pi\)
0.712543 + 0.701629i \(0.247543\pi\)
\(998\) −11453.6 −0.0114995
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.5.h.a.44.13 44
3.2 odd 2 45.5.h.a.14.10 44
5.4 even 2 inner 135.5.h.a.44.10 44
9.2 odd 6 inner 135.5.h.a.89.10 44
9.4 even 3 405.5.d.a.404.19 44
9.5 odd 6 405.5.d.a.404.25 44
9.7 even 3 45.5.h.a.29.13 yes 44
15.14 odd 2 45.5.h.a.14.13 yes 44
45.4 even 6 405.5.d.a.404.26 44
45.14 odd 6 405.5.d.a.404.20 44
45.29 odd 6 inner 135.5.h.a.89.13 44
45.34 even 6 45.5.h.a.29.10 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.h.a.14.10 44 3.2 odd 2
45.5.h.a.14.13 yes 44 15.14 odd 2
45.5.h.a.29.10 yes 44 45.34 even 6
45.5.h.a.29.13 yes 44 9.7 even 3
135.5.h.a.44.10 44 5.4 even 2 inner
135.5.h.a.44.13 44 1.1 even 1 trivial
135.5.h.a.89.10 44 9.2 odd 6 inner
135.5.h.a.89.13 44 45.29 odd 6 inner
405.5.d.a.404.19 44 9.4 even 3
405.5.d.a.404.20 44 45.14 odd 6
405.5.d.a.404.25 44 9.5 odd 6
405.5.d.a.404.26 44 45.4 even 6