Properties

Label 405.5.d.a.404.19
Level $405$
Weight $5$
Character 405.404
Analytic conductor $41.865$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,5,Mod(404,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.404");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.8648350490\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.19
Character \(\chi\) \(=\) 405.404
Dual form 405.5.d.a.404.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.09451 q^{2} -14.8020 q^{4} +(-24.2165 - 6.20970i) q^{5} -19.5383i q^{7} +33.7133 q^{8} +(26.5053 + 6.79660i) q^{10} +115.938i q^{11} +183.284i q^{13} +21.3849i q^{14} +199.933 q^{16} -89.0232 q^{17} -52.2295 q^{19} +(358.454 + 91.9161i) q^{20} -126.896i q^{22} +464.004 q^{23} +(547.879 + 300.754i) q^{25} -200.607i q^{26} +289.206i q^{28} +1449.62i q^{29} -1535.88 q^{31} -758.242 q^{32} +97.4372 q^{34} +(-121.327 + 473.149i) q^{35} -641.462i q^{37} +57.1659 q^{38} +(-816.418 - 209.349i) q^{40} -1380.22i q^{41} -2050.85i q^{43} -1716.12i q^{44} -507.859 q^{46} -1178.26 q^{47} +2019.26 q^{49} +(-599.662 - 329.180i) q^{50} -2712.97i q^{52} +64.4267 q^{53} +(719.940 - 2807.62i) q^{55} -658.700i q^{56} -1586.63i q^{58} +3276.80i q^{59} -1858.82 q^{61} +1681.05 q^{62} -2369.02 q^{64} +(1138.14 - 4438.49i) q^{65} -8380.10i q^{67} +1317.72 q^{68} +(132.794 - 517.869i) q^{70} +4564.71i q^{71} -8077.75i q^{73} +702.089i q^{74} +773.103 q^{76} +2265.23 q^{77} -8657.39 q^{79} +(-4841.68 - 1241.52i) q^{80} +1510.67i q^{82} +3340.11 q^{83} +(2155.83 + 552.807i) q^{85} +2244.69i q^{86} +3908.65i q^{88} +10168.3i q^{89} +3581.05 q^{91} -6868.21 q^{92} +1289.62 q^{94} +(1264.82 + 324.329i) q^{95} -13704.3i q^{97} -2210.10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 324 q^{4} + 28 q^{10} + 2116 q^{16} - 8 q^{19} + 296 q^{25} + 2224 q^{31} + 872 q^{34} + 1700 q^{40} - 5668 q^{46} - 10792 q^{49} - 3072 q^{55} - 5564 q^{61} + 8348 q^{64} - 9564 q^{70} + 3552 q^{76}+ \cdots + 37652 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09451 −0.273629 −0.136814 0.990597i \(-0.543686\pi\)
−0.136814 + 0.990597i \(0.543686\pi\)
\(3\) 0 0
\(4\) −14.8020 −0.925127
\(5\) −24.2165 6.20970i −0.968661 0.248388i
\(6\) 0 0
\(7\) 19.5383i 0.398741i −0.979924 0.199370i \(-0.936110\pi\)
0.979924 0.199370i \(-0.0638897\pi\)
\(8\) 33.7133 0.526770
\(9\) 0 0
\(10\) 26.5053 + 6.79660i 0.265053 + 0.0679660i
\(11\) 115.938i 0.958166i 0.877770 + 0.479083i \(0.159031\pi\)
−0.877770 + 0.479083i \(0.840969\pi\)
\(12\) 0 0
\(13\) 183.284i 1.08452i 0.840211 + 0.542259i \(0.182431\pi\)
−0.840211 + 0.542259i \(0.817569\pi\)
\(14\) 21.3849i 0.109107i
\(15\) 0 0
\(16\) 199.933 0.780988
\(17\) −89.0232 −0.308039 −0.154019 0.988068i \(-0.549222\pi\)
−0.154019 + 0.988068i \(0.549222\pi\)
\(18\) 0 0
\(19\) −52.2295 −0.144680 −0.0723400 0.997380i \(-0.523047\pi\)
−0.0723400 + 0.997380i \(0.523047\pi\)
\(20\) 358.454 + 91.9161i 0.896135 + 0.229790i
\(21\) 0 0
\(22\) 126.896i 0.262182i
\(23\) 464.004 0.877134 0.438567 0.898698i \(-0.355486\pi\)
0.438567 + 0.898698i \(0.355486\pi\)
\(24\) 0 0
\(25\) 547.879 + 300.754i 0.876607 + 0.481207i
\(26\) 200.607i 0.296755i
\(27\) 0 0
\(28\) 289.206i 0.368886i
\(29\) 1449.62i 1.72369i 0.507174 + 0.861844i \(0.330690\pi\)
−0.507174 + 0.861844i \(0.669310\pi\)
\(30\) 0 0
\(31\) −1535.88 −1.59821 −0.799107 0.601189i \(-0.794694\pi\)
−0.799107 + 0.601189i \(0.794694\pi\)
\(32\) −758.242 −0.740471
\(33\) 0 0
\(34\) 97.4372 0.0842882
\(35\) −121.327 + 473.149i −0.0990423 + 0.386244i
\(36\) 0 0
\(37\) 641.462i 0.468562i −0.972169 0.234281i \(-0.924726\pi\)
0.972169 0.234281i \(-0.0752736\pi\)
\(38\) 57.1659 0.0395886
\(39\) 0 0
\(40\) −816.418 209.349i −0.510261 0.130843i
\(41\) 1380.22i 0.821072i −0.911844 0.410536i \(-0.865342\pi\)
0.911844 0.410536i \(-0.134658\pi\)
\(42\) 0 0
\(43\) 2050.85i 1.10917i −0.832128 0.554584i \(-0.812877\pi\)
0.832128 0.554584i \(-0.187123\pi\)
\(44\) 1716.12i 0.886426i
\(45\) 0 0
\(46\) −507.859 −0.240009
\(47\) −1178.26 −0.533390 −0.266695 0.963781i \(-0.585932\pi\)
−0.266695 + 0.963781i \(0.585932\pi\)
\(48\) 0 0
\(49\) 2019.26 0.841006
\(50\) −599.662 329.180i −0.239865 0.131672i
\(51\) 0 0
\(52\) 2712.97i 1.00332i
\(53\) 64.4267 0.0229358 0.0114679 0.999934i \(-0.496350\pi\)
0.0114679 + 0.999934i \(0.496350\pi\)
\(54\) 0 0
\(55\) 719.940 2807.62i 0.237997 0.928138i
\(56\) 658.700i 0.210045i
\(57\) 0 0
\(58\) 1586.63i 0.471650i
\(59\) 3276.80i 0.941338i 0.882310 + 0.470669i \(0.155987\pi\)
−0.882310 + 0.470669i \(0.844013\pi\)
\(60\) 0 0
\(61\) −1858.82 −0.499548 −0.249774 0.968304i \(-0.580356\pi\)
−0.249774 + 0.968304i \(0.580356\pi\)
\(62\) 1681.05 0.437317
\(63\) 0 0
\(64\) −2369.02 −0.578374
\(65\) 1138.14 4438.49i 0.269381 1.05053i
\(66\) 0 0
\(67\) 8380.10i 1.86681i −0.358827 0.933404i \(-0.616823\pi\)
0.358827 0.933404i \(-0.383177\pi\)
\(68\) 1317.72 0.284975
\(69\) 0 0
\(70\) 132.794 517.869i 0.0271008 0.105687i
\(71\) 4564.71i 0.905517i 0.891633 + 0.452759i \(0.149560\pi\)
−0.891633 + 0.452759i \(0.850440\pi\)
\(72\) 0 0
\(73\) 8077.75i 1.51581i −0.652365 0.757905i \(-0.726223\pi\)
0.652365 0.757905i \(-0.273777\pi\)
\(74\) 702.089i 0.128212i
\(75\) 0 0
\(76\) 773.103 0.133847
\(77\) 2265.23 0.382060
\(78\) 0 0
\(79\) −8657.39 −1.38718 −0.693590 0.720370i \(-0.743972\pi\)
−0.693590 + 0.720370i \(0.743972\pi\)
\(80\) −4841.68 1241.52i −0.756512 0.193988i
\(81\) 0 0
\(82\) 1510.67i 0.224669i
\(83\) 3340.11 0.484847 0.242424 0.970171i \(-0.422058\pi\)
0.242424 + 0.970171i \(0.422058\pi\)
\(84\) 0 0
\(85\) 2155.83 + 552.807i 0.298385 + 0.0765131i
\(86\) 2244.69i 0.303500i
\(87\) 0 0
\(88\) 3908.65i 0.504733i
\(89\) 10168.3i 1.28371i 0.766825 + 0.641856i \(0.221835\pi\)
−0.766825 + 0.641856i \(0.778165\pi\)
\(90\) 0 0
\(91\) 3581.05 0.432441
\(92\) −6868.21 −0.811461
\(93\) 0 0
\(94\) 1289.62 0.145951
\(95\) 1264.82 + 324.329i 0.140146 + 0.0359367i
\(96\) 0 0
\(97\) 13704.3i 1.45651i −0.685306 0.728255i \(-0.740332\pi\)
0.685306 0.728255i \(-0.259668\pi\)
\(98\) −2210.10 −0.230123
\(99\) 0 0
\(100\) −8109.73 4451.78i −0.810973 0.445178i
\(101\) 7098.89i 0.695901i −0.937513 0.347951i \(-0.886878\pi\)
0.937513 0.347951i \(-0.113122\pi\)
\(102\) 0 0
\(103\) 4686.40i 0.441738i −0.975303 0.220869i \(-0.929111\pi\)
0.975303 0.220869i \(-0.0708894\pi\)
\(104\) 6179.09i 0.571292i
\(105\) 0 0
\(106\) −70.5160 −0.00627590
\(107\) 20235.1 1.76741 0.883705 0.468044i \(-0.155041\pi\)
0.883705 + 0.468044i \(0.155041\pi\)
\(108\) 0 0
\(109\) 2264.65 0.190611 0.0953053 0.995448i \(-0.469617\pi\)
0.0953053 + 0.995448i \(0.469617\pi\)
\(110\) −787.985 + 3072.98i −0.0651227 + 0.253965i
\(111\) 0 0
\(112\) 3906.35i 0.311412i
\(113\) −10010.5 −0.783970 −0.391985 0.919972i \(-0.628211\pi\)
−0.391985 + 0.919972i \(0.628211\pi\)
\(114\) 0 0
\(115\) −11236.6 2881.32i −0.849646 0.217870i
\(116\) 21457.4i 1.59463i
\(117\) 0 0
\(118\) 3586.50i 0.257577i
\(119\) 1739.36i 0.122828i
\(120\) 0 0
\(121\) 1199.36 0.0819177
\(122\) 2034.50 0.136691
\(123\) 0 0
\(124\) 22734.2 1.47855
\(125\) −11400.1 10685.4i −0.729609 0.683865i
\(126\) 0 0
\(127\) 19581.7i 1.21406i 0.794677 + 0.607032i \(0.207640\pi\)
−0.794677 + 0.607032i \(0.792360\pi\)
\(128\) 14724.8 0.898730
\(129\) 0 0
\(130\) −1245.71 + 4857.99i −0.0737104 + 0.287455i
\(131\) 28479.5i 1.65955i −0.558102 0.829773i \(-0.688470\pi\)
0.558102 0.829773i \(-0.311530\pi\)
\(132\) 0 0
\(133\) 1020.47i 0.0576898i
\(134\) 9172.14i 0.510812i
\(135\) 0 0
\(136\) −3001.26 −0.162266
\(137\) −26236.5 −1.39786 −0.698931 0.715189i \(-0.746341\pi\)
−0.698931 + 0.715189i \(0.746341\pi\)
\(138\) 0 0
\(139\) −33308.1 −1.72393 −0.861967 0.506964i \(-0.830768\pi\)
−0.861967 + 0.506964i \(0.830768\pi\)
\(140\) 1795.88 7003.57i 0.0916267 0.357325i
\(141\) 0 0
\(142\) 4996.14i 0.247775i
\(143\) −21249.5 −1.03915
\(144\) 0 0
\(145\) 9001.71 35104.8i 0.428143 1.66967i
\(146\) 8841.22i 0.414769i
\(147\) 0 0
\(148\) 9494.94i 0.433480i
\(149\) 5263.88i 0.237101i −0.992948 0.118551i \(-0.962175\pi\)
0.992948 0.118551i \(-0.0378248\pi\)
\(150\) 0 0
\(151\) 11273.8 0.494444 0.247222 0.968959i \(-0.420482\pi\)
0.247222 + 0.968959i \(0.420482\pi\)
\(152\) −1760.83 −0.0762131
\(153\) 0 0
\(154\) −2479.33 −0.104542
\(155\) 37193.8 + 9537.37i 1.54813 + 0.396977i
\(156\) 0 0
\(157\) 20139.1i 0.817034i −0.912751 0.408517i \(-0.866046\pi\)
0.912751 0.408517i \(-0.133954\pi\)
\(158\) 9475.64 0.379572
\(159\) 0 0
\(160\) 18362.0 + 4708.45i 0.717265 + 0.183924i
\(161\) 9065.85i 0.349749i
\(162\) 0 0
\(163\) 15388.7i 0.579197i −0.957148 0.289598i \(-0.906478\pi\)
0.957148 0.289598i \(-0.0935218\pi\)
\(164\) 20430.1i 0.759596i
\(165\) 0 0
\(166\) −3655.80 −0.132668
\(167\) −17047.9 −0.611278 −0.305639 0.952148i \(-0.598870\pi\)
−0.305639 + 0.952148i \(0.598870\pi\)
\(168\) 0 0
\(169\) −5031.86 −0.176180
\(170\) −2359.59 605.055i −0.0816467 0.0209362i
\(171\) 0 0
\(172\) 30356.8i 1.02612i
\(173\) −19408.7 −0.648492 −0.324246 0.945973i \(-0.605111\pi\)
−0.324246 + 0.945973i \(0.605111\pi\)
\(174\) 0 0
\(175\) 5876.23 10704.6i 0.191877 0.349539i
\(176\) 23179.8i 0.748316i
\(177\) 0 0
\(178\) 11129.3i 0.351260i
\(179\) 6659.35i 0.207838i 0.994586 + 0.103919i \(0.0331383\pi\)
−0.994586 + 0.103919i \(0.966862\pi\)
\(180\) 0 0
\(181\) −15739.8 −0.480443 −0.240221 0.970718i \(-0.577220\pi\)
−0.240221 + 0.970718i \(0.577220\pi\)
\(182\) −3919.51 −0.118328
\(183\) 0 0
\(184\) 15643.1 0.462048
\(185\) −3983.28 + 15534.0i −0.116385 + 0.453878i
\(186\) 0 0
\(187\) 10321.2i 0.295152i
\(188\) 17440.6 0.493454
\(189\) 0 0
\(190\) −1384.36 354.983i −0.0383479 0.00983332i
\(191\) 29252.1i 0.801844i −0.916112 0.400922i \(-0.868690\pi\)
0.916112 0.400922i \(-0.131310\pi\)
\(192\) 0 0
\(193\) 42991.8i 1.15417i 0.816683 + 0.577086i \(0.195810\pi\)
−0.816683 + 0.577086i \(0.804190\pi\)
\(194\) 14999.6i 0.398543i
\(195\) 0 0
\(196\) −29889.1 −0.778038
\(197\) 48322.8 1.24514 0.622571 0.782563i \(-0.286088\pi\)
0.622571 + 0.782563i \(0.286088\pi\)
\(198\) 0 0
\(199\) 10246.4 0.258740 0.129370 0.991596i \(-0.458705\pi\)
0.129370 + 0.991596i \(0.458705\pi\)
\(200\) 18470.8 + 10139.4i 0.461770 + 0.253485i
\(201\) 0 0
\(202\) 7769.84i 0.190419i
\(203\) 28323.1 0.687304
\(204\) 0 0
\(205\) −8570.76 + 33424.2i −0.203944 + 0.795340i
\(206\) 5129.34i 0.120872i
\(207\) 0 0
\(208\) 36644.4i 0.846996i
\(209\) 6055.39i 0.138627i
\(210\) 0 0
\(211\) 11134.0 0.250084 0.125042 0.992151i \(-0.460093\pi\)
0.125042 + 0.992151i \(0.460093\pi\)
\(212\) −953.647 −0.0212186
\(213\) 0 0
\(214\) −22147.6 −0.483614
\(215\) −12735.2 + 49664.5i −0.275504 + 1.07441i
\(216\) 0 0
\(217\) 30008.5i 0.637273i
\(218\) −2478.69 −0.0521565
\(219\) 0 0
\(220\) −10656.6 + 41558.5i −0.220177 + 0.858646i
\(221\) 16316.5i 0.334074i
\(222\) 0 0
\(223\) 48339.8i 0.972065i 0.873941 + 0.486032i \(0.161556\pi\)
−0.873941 + 0.486032i \(0.838444\pi\)
\(224\) 14814.7i 0.295256i
\(225\) 0 0
\(226\) 10956.7 0.214517
\(227\) −19661.4 −0.381560 −0.190780 0.981633i \(-0.561102\pi\)
−0.190780 + 0.981633i \(0.561102\pi\)
\(228\) 0 0
\(229\) 82115.8 1.56587 0.782935 0.622103i \(-0.213722\pi\)
0.782935 + 0.622103i \(0.213722\pi\)
\(230\) 12298.6 + 3153.65i 0.232487 + 0.0596153i
\(231\) 0 0
\(232\) 48871.5i 0.907987i
\(233\) −36907.6 −0.679837 −0.339918 0.940455i \(-0.610399\pi\)
−0.339918 + 0.940455i \(0.610399\pi\)
\(234\) 0 0
\(235\) 28533.3 + 7316.63i 0.516674 + 0.132488i
\(236\) 48503.3i 0.870858i
\(237\) 0 0
\(238\) 1903.76i 0.0336091i
\(239\) 26719.8i 0.467775i 0.972264 + 0.233888i \(0.0751448\pi\)
−0.972264 + 0.233888i \(0.924855\pi\)
\(240\) 0 0
\(241\) 15275.6 0.263006 0.131503 0.991316i \(-0.458020\pi\)
0.131503 + 0.991316i \(0.458020\pi\)
\(242\) −1312.71 −0.0224150
\(243\) 0 0
\(244\) 27514.3 0.462145
\(245\) −48899.3 12539.0i −0.814649 0.208896i
\(246\) 0 0
\(247\) 9572.81i 0.156908i
\(248\) −51779.7 −0.841891
\(249\) 0 0
\(250\) 12477.6 + 11695.3i 0.199642 + 0.187125i
\(251\) 17504.6i 0.277847i −0.990303 0.138923i \(-0.955636\pi\)
0.990303 0.138923i \(-0.0443642\pi\)
\(252\) 0 0
\(253\) 53795.8i 0.840441i
\(254\) 21432.4i 0.332203i
\(255\) 0 0
\(256\) 21787.8 0.332456
\(257\) 57020.7 0.863309 0.431654 0.902039i \(-0.357930\pi\)
0.431654 + 0.902039i \(0.357930\pi\)
\(258\) 0 0
\(259\) −12533.1 −0.186835
\(260\) −16846.7 + 65698.7i −0.249212 + 0.971874i
\(261\) 0 0
\(262\) 31171.2i 0.454099i
\(263\) 59434.2 0.859261 0.429630 0.903005i \(-0.358644\pi\)
0.429630 + 0.903005i \(0.358644\pi\)
\(264\) 0 0
\(265\) −1560.19 400.070i −0.0222170 0.00569698i
\(266\) 1116.92i 0.0157856i
\(267\) 0 0
\(268\) 124043.i 1.72704i
\(269\) 107707.i 1.48847i −0.667919 0.744234i \(-0.732815\pi\)
0.667919 0.744234i \(-0.267185\pi\)
\(270\) 0 0
\(271\) −11971.8 −0.163012 −0.0815059 0.996673i \(-0.525973\pi\)
−0.0815059 + 0.996673i \(0.525973\pi\)
\(272\) −17798.7 −0.240575
\(273\) 0 0
\(274\) 28716.2 0.382495
\(275\) −34868.9 + 63520.1i −0.461076 + 0.839935i
\(276\) 0 0
\(277\) 26795.2i 0.349219i −0.984638 0.174609i \(-0.944134\pi\)
0.984638 0.174609i \(-0.0558662\pi\)
\(278\) 36456.2 0.471718
\(279\) 0 0
\(280\) −4090.32 + 15951.4i −0.0521725 + 0.203462i
\(281\) 43545.0i 0.551474i −0.961233 0.275737i \(-0.911078\pi\)
0.961233 0.275737i \(-0.0889219\pi\)
\(282\) 0 0
\(283\) 62179.6i 0.776381i 0.921579 + 0.388190i \(0.126900\pi\)
−0.921579 + 0.388190i \(0.873100\pi\)
\(284\) 67567.0i 0.837719i
\(285\) 0 0
\(286\) 23257.9 0.284341
\(287\) −26967.2 −0.327395
\(288\) 0 0
\(289\) −75595.9 −0.905112
\(290\) −9852.50 + 38422.7i −0.117152 + 0.456869i
\(291\) 0 0
\(292\) 119567.i 1.40232i
\(293\) −17216.0 −0.200539 −0.100269 0.994960i \(-0.531970\pi\)
−0.100269 + 0.994960i \(0.531970\pi\)
\(294\) 0 0
\(295\) 20347.9 79352.7i 0.233817 0.911838i
\(296\) 21625.8i 0.246825i
\(297\) 0 0
\(298\) 5761.40i 0.0648777i
\(299\) 85044.3i 0.951268i
\(300\) 0 0
\(301\) −40070.1 −0.442270
\(302\) −12339.3 −0.135294
\(303\) 0 0
\(304\) −10442.4 −0.112993
\(305\) 45014.1 + 11542.7i 0.483892 + 0.124082i
\(306\) 0 0
\(307\) 107387.i 1.13940i −0.821854 0.569698i \(-0.807060\pi\)
0.821854 0.569698i \(-0.192940\pi\)
\(308\) −33530.0 −0.353454
\(309\) 0 0
\(310\) −40709.1 10438.8i −0.423612 0.108624i
\(311\) 136394.i 1.41018i −0.709117 0.705091i \(-0.750906\pi\)
0.709117 0.705091i \(-0.249094\pi\)
\(312\) 0 0
\(313\) 94570.2i 0.965307i −0.875811 0.482654i \(-0.839673\pi\)
0.875811 0.482654i \(-0.160327\pi\)
\(314\) 22042.5i 0.223564i
\(315\) 0 0
\(316\) 128147. 1.28332
\(317\) 141514. 1.40826 0.704129 0.710072i \(-0.251338\pi\)
0.704129 + 0.710072i \(0.251338\pi\)
\(318\) 0 0
\(319\) −168066. −1.65158
\(320\) 57369.4 + 14710.9i 0.560248 + 0.143661i
\(321\) 0 0
\(322\) 9922.70i 0.0957014i
\(323\) 4649.64 0.0445670
\(324\) 0 0
\(325\) −55123.3 + 100417.i −0.521878 + 0.950696i
\(326\) 16843.1i 0.158485i
\(327\) 0 0
\(328\) 46531.8i 0.432516i
\(329\) 23021.2i 0.212684i
\(330\) 0 0
\(331\) 82751.2 0.755298 0.377649 0.925949i \(-0.376733\pi\)
0.377649 + 0.925949i \(0.376733\pi\)
\(332\) −49440.5 −0.448545
\(333\) 0 0
\(334\) 18659.2 0.167263
\(335\) −52037.9 + 202937.i −0.463692 + 1.80830i
\(336\) 0 0
\(337\) 83200.1i 0.732595i −0.930498 0.366297i \(-0.880625\pi\)
0.930498 0.366297i \(-0.119375\pi\)
\(338\) 5507.45 0.0482078
\(339\) 0 0
\(340\) −31910.7 8182.67i −0.276044 0.0707843i
\(341\) 178067.i 1.53135i
\(342\) 0 0
\(343\) 86364.2i 0.734084i
\(344\) 69141.0i 0.584277i
\(345\) 0 0
\(346\) 21243.1 0.177446
\(347\) −103628. −0.860635 −0.430317 0.902678i \(-0.641598\pi\)
−0.430317 + 0.902678i \(0.641598\pi\)
\(348\) 0 0
\(349\) 150713. 1.23737 0.618685 0.785639i \(-0.287666\pi\)
0.618685 + 0.785639i \(0.287666\pi\)
\(350\) −6431.61 + 11716.4i −0.0525030 + 0.0956438i
\(351\) 0 0
\(352\) 87909.1i 0.709494i
\(353\) −22137.7 −0.177657 −0.0888286 0.996047i \(-0.528312\pi\)
−0.0888286 + 0.996047i \(0.528312\pi\)
\(354\) 0 0
\(355\) 28345.5 110541.i 0.224919 0.877139i
\(356\) 150511.i 1.18760i
\(357\) 0 0
\(358\) 7288.75i 0.0568705i
\(359\) 90926.7i 0.705509i 0.935716 + 0.352755i \(0.114755\pi\)
−0.935716 + 0.352755i \(0.885245\pi\)
\(360\) 0 0
\(361\) −127593. −0.979068
\(362\) 17227.4 0.131463
\(363\) 0 0
\(364\) −53006.8 −0.400063
\(365\) −50160.4 + 195615.i −0.376509 + 1.46831i
\(366\) 0 0
\(367\) 19749.6i 0.146631i 0.997309 + 0.0733156i \(0.0233580\pi\)
−0.997309 + 0.0733156i \(0.976642\pi\)
\(368\) 92769.7 0.685032
\(369\) 0 0
\(370\) 4359.76 17002.2i 0.0318463 0.124194i
\(371\) 1258.79i 0.00914544i
\(372\) 0 0
\(373\) 109344.i 0.785920i −0.919555 0.392960i \(-0.871451\pi\)
0.919555 0.392960i \(-0.128549\pi\)
\(374\) 11296.7i 0.0807621i
\(375\) 0 0
\(376\) −39723.0 −0.280974
\(377\) −265692. −1.86937
\(378\) 0 0
\(379\) 75560.0 0.526034 0.263017 0.964791i \(-0.415283\pi\)
0.263017 + 0.964791i \(0.415283\pi\)
\(380\) −18721.9 4800.73i −0.129653 0.0332461i
\(381\) 0 0
\(382\) 32016.8i 0.219407i
\(383\) 216249. 1.47420 0.737100 0.675783i \(-0.236194\pi\)
0.737100 + 0.675783i \(0.236194\pi\)
\(384\) 0 0
\(385\) −54856.0 14066.4i −0.370086 0.0948990i
\(386\) 47055.1i 0.315815i
\(387\) 0 0
\(388\) 202852.i 1.34746i
\(389\) 56554.2i 0.373737i −0.982385 0.186868i \(-0.940166\pi\)
0.982385 0.186868i \(-0.0598338\pi\)
\(390\) 0 0
\(391\) −41307.1 −0.270191
\(392\) 68075.7 0.443017
\(393\) 0 0
\(394\) −52890.0 −0.340707
\(395\) 209652. + 53759.8i 1.34371 + 0.344559i
\(396\) 0 0
\(397\) 254481.i 1.61464i −0.590117 0.807318i \(-0.700918\pi\)
0.590117 0.807318i \(-0.299082\pi\)
\(398\) −11214.8 −0.0707986
\(399\) 0 0
\(400\) 109539. + 60130.7i 0.684620 + 0.375817i
\(401\) 56231.5i 0.349696i 0.984595 + 0.174848i \(0.0559434\pi\)
−0.984595 + 0.174848i \(0.944057\pi\)
\(402\) 0 0
\(403\) 281502.i 1.73329i
\(404\) 105078.i 0.643797i
\(405\) 0 0
\(406\) −31000.1 −0.188066
\(407\) 74369.9 0.448961
\(408\) 0 0
\(409\) 102314. 0.611632 0.305816 0.952091i \(-0.401071\pi\)
0.305816 + 0.952091i \(0.401071\pi\)
\(410\) 9380.82 36583.2i 0.0558050 0.217628i
\(411\) 0 0
\(412\) 69368.3i 0.408664i
\(413\) 64023.0 0.375350
\(414\) 0 0
\(415\) −80885.9 20741.1i −0.469652 0.120430i
\(416\) 138973.i 0.803054i
\(417\) 0 0
\(418\) 6627.71i 0.0379324i
\(419\) 58412.2i 0.332717i −0.986065 0.166359i \(-0.946799\pi\)
0.986065 0.166359i \(-0.0532009\pi\)
\(420\) 0 0
\(421\) −235037. −1.32609 −0.663043 0.748582i \(-0.730735\pi\)
−0.663043 + 0.748582i \(0.730735\pi\)
\(422\) −12186.3 −0.0684301
\(423\) 0 0
\(424\) 2172.04 0.0120819
\(425\) −48774.0 26774.1i −0.270029 0.148230i
\(426\) 0 0
\(427\) 36318.1i 0.199190i
\(428\) −299520. −1.63508
\(429\) 0 0
\(430\) 13938.8 54358.5i 0.0753858 0.293989i
\(431\) 43601.5i 0.234718i −0.993090 0.117359i \(-0.962557\pi\)
0.993090 0.117359i \(-0.0374429\pi\)
\(432\) 0 0
\(433\) 102452.i 0.546445i −0.961951 0.273222i \(-0.911910\pi\)
0.961951 0.273222i \(-0.0880895\pi\)
\(434\) 32844.8i 0.174376i
\(435\) 0 0
\(436\) −33521.4 −0.176339
\(437\) −24234.7 −0.126904
\(438\) 0 0
\(439\) −102464. −0.531671 −0.265835 0.964018i \(-0.585648\pi\)
−0.265835 + 0.964018i \(0.585648\pi\)
\(440\) 24271.5 94654.0i 0.125370 0.488915i
\(441\) 0 0
\(442\) 17858.6i 0.0914121i
\(443\) −247629. −1.26181 −0.630906 0.775859i \(-0.717317\pi\)
−0.630906 + 0.775859i \(0.717317\pi\)
\(444\) 0 0
\(445\) 63141.9 246240.i 0.318858 1.24348i
\(446\) 52908.6i 0.265985i
\(447\) 0 0
\(448\) 46286.6i 0.230621i
\(449\) 79287.5i 0.393289i 0.980475 + 0.196645i \(0.0630045\pi\)
−0.980475 + 0.196645i \(0.936995\pi\)
\(450\) 0 0
\(451\) 160020. 0.786723
\(452\) 148176. 0.725272
\(453\) 0 0
\(454\) 21519.7 0.104406
\(455\) −86720.5 22237.2i −0.418889 0.107413i
\(456\) 0 0
\(457\) 117509.i 0.562651i 0.959612 + 0.281325i \(0.0907740\pi\)
−0.959612 + 0.281325i \(0.909226\pi\)
\(458\) −89876.9 −0.428467
\(459\) 0 0
\(460\) 166324. + 42649.5i 0.786030 + 0.201557i
\(461\) 367089.i 1.72731i −0.504087 0.863653i \(-0.668171\pi\)
0.504087 0.863653i \(-0.331829\pi\)
\(462\) 0 0
\(463\) 92371.9i 0.430901i −0.976515 0.215451i \(-0.930878\pi\)
0.976515 0.215451i \(-0.0691220\pi\)
\(464\) 289827.i 1.34618i
\(465\) 0 0
\(466\) 40396.0 0.186023
\(467\) 82073.0 0.376328 0.188164 0.982138i \(-0.439746\pi\)
0.188164 + 0.982138i \(0.439746\pi\)
\(468\) 0 0
\(469\) −163733. −0.744372
\(470\) −31230.1 8008.16i −0.141377 0.0362524i
\(471\) 0 0
\(472\) 110472.i 0.495869i
\(473\) 237772. 1.06277
\(474\) 0 0
\(475\) −28615.5 15708.2i −0.126828 0.0696210i
\(476\) 25746.1i 0.113631i
\(477\) 0 0
\(478\) 29245.2i 0.127997i
\(479\) 90721.3i 0.395401i 0.980262 + 0.197701i \(0.0633474\pi\)
−0.980262 + 0.197701i \(0.936653\pi\)
\(480\) 0 0
\(481\) 117569. 0.508164
\(482\) −16719.4 −0.0719660
\(483\) 0 0
\(484\) −17752.9 −0.0757843
\(485\) −85099.6 + 331871.i −0.361779 + 1.41086i
\(486\) 0 0
\(487\) 240214.i 1.01284i −0.862287 0.506421i \(-0.830968\pi\)
0.862287 0.506421i \(-0.169032\pi\)
\(488\) −62666.8 −0.263147
\(489\) 0 0
\(490\) 53521.0 + 13724.1i 0.222911 + 0.0571598i
\(491\) 228899.i 0.949469i −0.880129 0.474734i \(-0.842544\pi\)
0.880129 0.474734i \(-0.157456\pi\)
\(492\) 0 0
\(493\) 129050.i 0.530963i
\(494\) 10477.6i 0.0429345i
\(495\) 0 0
\(496\) −307074. −1.24819
\(497\) 89186.6 0.361066
\(498\) 0 0
\(499\) 10464.5 0.0420260 0.0210130 0.999779i \(-0.493311\pi\)
0.0210130 + 0.999779i \(0.493311\pi\)
\(500\) 168745. + 158166.i 0.674981 + 0.632662i
\(501\) 0 0
\(502\) 19159.1i 0.0760269i
\(503\) −87312.8 −0.345097 −0.172549 0.985001i \(-0.555200\pi\)
−0.172549 + 0.985001i \(0.555200\pi\)
\(504\) 0 0
\(505\) −44081.9 + 171910.i −0.172853 + 0.674092i
\(506\) 58880.2i 0.229969i
\(507\) 0 0
\(508\) 289848.i 1.12316i
\(509\) 244061.i 0.942026i 0.882126 + 0.471013i \(0.156112\pi\)
−0.882126 + 0.471013i \(0.843888\pi\)
\(510\) 0 0
\(511\) −157825. −0.604415
\(512\) −259444. −0.989700
\(513\) 0 0
\(514\) −62409.9 −0.236226
\(515\) −29101.1 + 113488.i −0.109722 + 0.427895i
\(516\) 0 0
\(517\) 136605.i 0.511076i
\(518\) 13717.6 0.0511233
\(519\) 0 0
\(520\) 38370.3 149636.i 0.141902 0.553388i
\(521\) 342391.i 1.26138i −0.776034 0.630692i \(-0.782771\pi\)
0.776034 0.630692i \(-0.217229\pi\)
\(522\) 0 0
\(523\) 313862.i 1.14746i −0.819046 0.573728i \(-0.805497\pi\)
0.819046 0.573728i \(-0.194503\pi\)
\(524\) 421554.i 1.53529i
\(525\) 0 0
\(526\) −65051.6 −0.235118
\(527\) 136729. 0.492312
\(528\) 0 0
\(529\) −64541.2 −0.230635
\(530\) 1707.65 + 437.883i 0.00607922 + 0.00155886i
\(531\) 0 0
\(532\) 15105.1i 0.0533704i
\(533\) 252972. 0.890467
\(534\) 0 0
\(535\) −490023. 125654.i −1.71202 0.439003i
\(536\) 282521.i 0.983378i
\(537\) 0 0
\(538\) 117887.i 0.407288i
\(539\) 234109.i 0.805823i
\(540\) 0 0
\(541\) 81438.3 0.278249 0.139125 0.990275i \(-0.455571\pi\)
0.139125 + 0.990275i \(0.455571\pi\)
\(542\) 13103.3 0.0446047
\(543\) 0 0
\(544\) 67501.1 0.228094
\(545\) −54841.8 14062.8i −0.184637 0.0473454i
\(546\) 0 0
\(547\) 399520.i 1.33525i −0.744496 0.667627i \(-0.767310\pi\)
0.744496 0.667627i \(-0.232690\pi\)
\(548\) 388353. 1.29320
\(549\) 0 0
\(550\) 38164.5 69523.7i 0.126164 0.229830i
\(551\) 75713.0i 0.249383i
\(552\) 0 0
\(553\) 169151.i 0.553125i
\(554\) 29327.7i 0.0955562i
\(555\) 0 0
\(556\) 493028. 1.59486
\(557\) 464065. 1.49578 0.747892 0.663821i \(-0.231066\pi\)
0.747892 + 0.663821i \(0.231066\pi\)
\(558\) 0 0
\(559\) 375888. 1.20291
\(560\) −24257.2 + 94598.1i −0.0773508 + 0.301652i
\(561\) 0 0
\(562\) 47660.6i 0.150899i
\(563\) −564722. −1.78163 −0.890816 0.454365i \(-0.849866\pi\)
−0.890816 + 0.454365i \(0.849866\pi\)
\(564\) 0 0
\(565\) 242420. + 62162.2i 0.759401 + 0.194729i
\(566\) 68056.4i 0.212440i
\(567\) 0 0
\(568\) 153891.i 0.476999i
\(569\) 551230.i 1.70258i 0.524692 + 0.851292i \(0.324181\pi\)
−0.524692 + 0.851292i \(0.675819\pi\)
\(570\) 0 0
\(571\) −215672. −0.661488 −0.330744 0.943721i \(-0.607300\pi\)
−0.330744 + 0.943721i \(0.607300\pi\)
\(572\) 314537. 0.961345
\(573\) 0 0
\(574\) 29516.0 0.0895846
\(575\) 254218. + 139551.i 0.768902 + 0.422083i
\(576\) 0 0
\(577\) 302487.i 0.908562i 0.890858 + 0.454281i \(0.150104\pi\)
−0.890858 + 0.454281i \(0.849896\pi\)
\(578\) 82740.8 0.247665
\(579\) 0 0
\(580\) −133244. + 519622.i −0.396087 + 1.54466i
\(581\) 65260.1i 0.193328i
\(582\) 0 0
\(583\) 7469.51i 0.0219763i
\(584\) 272327.i 0.798483i
\(585\) 0 0
\(586\) 18843.2 0.0548731
\(587\) −135754. −0.393982 −0.196991 0.980405i \(-0.563117\pi\)
−0.196991 + 0.980405i \(0.563117\pi\)
\(588\) 0 0
\(589\) 80218.4 0.231230
\(590\) −22271.1 + 86852.6i −0.0639790 + 0.249505i
\(591\) 0 0
\(592\) 128249.i 0.365942i
\(593\) −612873. −1.74285 −0.871427 0.490525i \(-0.836805\pi\)
−0.871427 + 0.490525i \(0.836805\pi\)
\(594\) 0 0
\(595\) 10800.9 42121.3i 0.0305089 0.118978i
\(596\) 77916.2i 0.219349i
\(597\) 0 0
\(598\) 93082.3i 0.260294i
\(599\) 176343.i 0.491479i −0.969336 0.245740i \(-0.920969\pi\)
0.969336 0.245740i \(-0.0790308\pi\)
\(600\) 0 0
\(601\) 110103. 0.304825 0.152412 0.988317i \(-0.451296\pi\)
0.152412 + 0.988317i \(0.451296\pi\)
\(602\) 43857.4 0.121018
\(603\) 0 0
\(604\) −166875. −0.457423
\(605\) −29044.2 7447.64i −0.0793505 0.0203474i
\(606\) 0 0
\(607\) 219306.i 0.595213i −0.954689 0.297607i \(-0.903812\pi\)
0.954689 0.297607i \(-0.0961884\pi\)
\(608\) 39602.6 0.107131
\(609\) 0 0
\(610\) −49268.6 12633.6i −0.132407 0.0339523i
\(611\) 215955.i 0.578471i
\(612\) 0 0
\(613\) 75985.1i 0.202212i 0.994876 + 0.101106i \(0.0322382\pi\)
−0.994876 + 0.101106i \(0.967762\pi\)
\(614\) 117537.i 0.311771i
\(615\) 0 0
\(616\) 76368.4 0.201258
\(617\) −484132. −1.27173 −0.635863 0.771802i \(-0.719356\pi\)
−0.635863 + 0.771802i \(0.719356\pi\)
\(618\) 0 0
\(619\) 46103.0 0.120323 0.0601614 0.998189i \(-0.480838\pi\)
0.0601614 + 0.998189i \(0.480838\pi\)
\(620\) −550543. 141173.i −1.43221 0.367254i
\(621\) 0 0
\(622\) 149285.i 0.385866i
\(623\) 198671. 0.511868
\(624\) 0 0
\(625\) 209719. + 329554.i 0.536880 + 0.843659i
\(626\) 103508.i 0.264136i
\(627\) 0 0
\(628\) 298099.i 0.755861i
\(629\) 57105.0i 0.144335i
\(630\) 0 0
\(631\) 240096. 0.603013 0.301507 0.953464i \(-0.402510\pi\)
0.301507 + 0.953464i \(0.402510\pi\)
\(632\) −291869. −0.730725
\(633\) 0 0
\(634\) −154890. −0.385340
\(635\) 121596. 474199.i 0.301559 1.17602i
\(636\) 0 0
\(637\) 370096.i 0.912086i
\(638\) 183951. 0.451919
\(639\) 0 0
\(640\) −356583. 91436.5i −0.870565 0.223234i
\(641\) 555022.i 1.35081i −0.737447 0.675405i \(-0.763969\pi\)
0.737447 0.675405i \(-0.236031\pi\)
\(642\) 0 0
\(643\) 646721.i 1.56421i 0.623147 + 0.782105i \(0.285854\pi\)
−0.623147 + 0.782105i \(0.714146\pi\)
\(644\) 134193.i 0.323562i
\(645\) 0 0
\(646\) −5089.09 −0.0121948
\(647\) −347688. −0.830579 −0.415289 0.909689i \(-0.636320\pi\)
−0.415289 + 0.909689i \(0.636320\pi\)
\(648\) 0 0
\(649\) −379906. −0.901959
\(650\) 60333.3 109908.i 0.142801 0.260138i
\(651\) 0 0
\(652\) 227784.i 0.535831i
\(653\) 609079. 1.42839 0.714196 0.699946i \(-0.246793\pi\)
0.714196 + 0.699946i \(0.246793\pi\)
\(654\) 0 0
\(655\) −176849. + 689673.i −0.412211 + 1.60754i
\(656\) 275952.i 0.641247i
\(657\) 0 0
\(658\) 25197.0i 0.0581965i
\(659\) 623594.i 1.43592i −0.696083 0.717961i \(-0.745076\pi\)
0.696083 0.717961i \(-0.254924\pi\)
\(660\) 0 0
\(661\) 369284. 0.845197 0.422598 0.906317i \(-0.361118\pi\)
0.422598 + 0.906317i \(0.361118\pi\)
\(662\) −90572.4 −0.206671
\(663\) 0 0
\(664\) 112606. 0.255403
\(665\) 6336.84 24712.3i 0.0143294 0.0558818i
\(666\) 0 0
\(667\) 672630.i 1.51191i
\(668\) 252344. 0.565510
\(669\) 0 0
\(670\) 56956.2 222117.i 0.126880 0.494804i
\(671\) 215508.i 0.478650i
\(672\) 0 0
\(673\) 150223.i 0.331670i 0.986154 + 0.165835i \(0.0530319\pi\)
−0.986154 + 0.165835i \(0.946968\pi\)
\(674\) 91063.7i 0.200459i
\(675\) 0 0
\(676\) 74481.8 0.162988
\(677\) −580295. −1.26611 −0.633055 0.774107i \(-0.718199\pi\)
−0.633055 + 0.774107i \(0.718199\pi\)
\(678\) 0 0
\(679\) −267759. −0.580770
\(680\) 72680.1 + 18636.9i 0.157180 + 0.0403048i
\(681\) 0 0
\(682\) 194897.i 0.419022i
\(683\) −11404.6 −0.0244477 −0.0122238 0.999925i \(-0.503891\pi\)
−0.0122238 + 0.999925i \(0.503891\pi\)
\(684\) 0 0
\(685\) 635356. + 162921.i 1.35405 + 0.347212i
\(686\) 94526.9i 0.200866i
\(687\) 0 0
\(688\) 410033.i 0.866247i
\(689\) 11808.4i 0.0248743i
\(690\) 0 0
\(691\) −100807. −0.211123 −0.105562 0.994413i \(-0.533664\pi\)
−0.105562 + 0.994413i \(0.533664\pi\)
\(692\) 287289. 0.599938
\(693\) 0 0
\(694\) 113423. 0.235494
\(695\) 806607. + 206833.i 1.66991 + 0.428204i
\(696\) 0 0
\(697\) 122872.i 0.252922i
\(698\) −164957. −0.338580
\(699\) 0 0
\(700\) −86980.1 + 158450.i −0.177510 + 0.323368i
\(701\) 220659.i 0.449040i 0.974469 + 0.224520i \(0.0720814\pi\)
−0.974469 + 0.224520i \(0.927919\pi\)
\(702\) 0 0
\(703\) 33503.2i 0.0677916i
\(704\) 274660.i 0.554178i
\(705\) 0 0
\(706\) 24230.0 0.0486121
\(707\) −138700. −0.277484
\(708\) 0 0
\(709\) −129462. −0.257543 −0.128772 0.991674i \(-0.541103\pi\)
−0.128772 + 0.991674i \(0.541103\pi\)
\(710\) −31024.5 + 120989.i −0.0615444 + 0.240010i
\(711\) 0 0
\(712\) 342806.i 0.676221i
\(713\) −712656. −1.40185
\(714\) 0 0
\(715\) 514590. + 131953.i 1.00658 + 0.258112i
\(716\) 98571.9i 0.192277i
\(717\) 0 0
\(718\) 99520.6i 0.193048i
\(719\) 354459.i 0.685659i 0.939398 + 0.342829i \(0.111385\pi\)
−0.939398 + 0.342829i \(0.888615\pi\)
\(720\) 0 0
\(721\) −91564.3 −0.176139
\(722\) 139652. 0.267901
\(723\) 0 0
\(724\) 232981. 0.444471
\(725\) −435980. + 794218.i −0.829451 + 1.51100i
\(726\) 0 0
\(727\) 199949.i 0.378312i 0.981947 + 0.189156i \(0.0605753\pi\)
−0.981947 + 0.189156i \(0.939425\pi\)
\(728\) 120729. 0.227797
\(729\) 0 0
\(730\) 54901.3 214103.i 0.103024 0.401770i
\(731\) 182573.i 0.341667i
\(732\) 0 0
\(733\) 862301.i 1.60491i 0.596712 + 0.802455i \(0.296473\pi\)
−0.596712 + 0.802455i \(0.703527\pi\)
\(734\) 21616.2i 0.0401225i
\(735\) 0 0
\(736\) −351827. −0.649492
\(737\) 971573. 1.78871
\(738\) 0 0
\(739\) 684605. 1.25358 0.626789 0.779189i \(-0.284369\pi\)
0.626789 + 0.779189i \(0.284369\pi\)
\(740\) 58960.7 229934.i 0.107671 0.419895i
\(741\) 0 0
\(742\) 1377.76i 0.00250246i
\(743\) 801856. 1.45251 0.726254 0.687426i \(-0.241260\pi\)
0.726254 + 0.687426i \(0.241260\pi\)
\(744\) 0 0
\(745\) −32687.1 + 127473.i −0.0588931 + 0.229671i
\(746\) 119679.i 0.215050i
\(747\) 0 0
\(748\) 152775.i 0.273053i
\(749\) 395359.i 0.704738i
\(750\) 0 0
\(751\) 509079. 0.902620 0.451310 0.892367i \(-0.350957\pi\)
0.451310 + 0.892367i \(0.350957\pi\)
\(752\) −235573. −0.416571
\(753\) 0 0
\(754\) 290803. 0.511513
\(755\) −273012. 70006.9i −0.478948 0.122814i
\(756\) 0 0
\(757\) 766769.i 1.33805i 0.743239 + 0.669026i \(0.233288\pi\)
−0.743239 + 0.669026i \(0.766712\pi\)
\(758\) −82701.5 −0.143938
\(759\) 0 0
\(760\) 42641.1 + 10934.2i 0.0738246 + 0.0189304i
\(761\) 327796.i 0.566023i 0.959117 + 0.283011i \(0.0913335\pi\)
−0.959117 + 0.283011i \(0.908667\pi\)
\(762\) 0 0
\(763\) 44247.3i 0.0760042i
\(764\) 432990.i 0.741808i
\(765\) 0 0
\(766\) −236688. −0.403384
\(767\) −600583. −1.02090
\(768\) 0 0
\(769\) 394875. 0.667740 0.333870 0.942619i \(-0.391645\pi\)
0.333870 + 0.942619i \(0.391645\pi\)
\(770\) 60040.7 + 15395.9i 0.101266 + 0.0259671i
\(771\) 0 0
\(772\) 636366.i 1.06776i
\(773\) −121076. −0.202628 −0.101314 0.994855i \(-0.532305\pi\)
−0.101314 + 0.994855i \(0.532305\pi\)
\(774\) 0 0
\(775\) −841479. 461924.i −1.40101 0.769072i
\(776\) 462017.i 0.767246i
\(777\) 0 0
\(778\) 61899.4i 0.102265i
\(779\) 72088.3i 0.118793i
\(780\) 0 0
\(781\) −529224. −0.867636
\(782\) 45211.3 0.0739321
\(783\) 0 0
\(784\) 403716. 0.656816
\(785\) −125058. + 487698.i −0.202941 + 0.791429i
\(786\) 0 0
\(787\) 604224.i 0.975548i −0.872970 0.487774i \(-0.837809\pi\)
0.872970 0.487774i \(-0.162191\pi\)
\(788\) −715275. −1.15192
\(789\) 0 0
\(790\) −229467. 58840.8i −0.367677 0.0942811i
\(791\) 195588.i 0.312601i
\(792\) 0 0
\(793\) 340691.i 0.541769i
\(794\) 278533.i 0.441810i
\(795\) 0 0
\(796\) −151667. −0.239367
\(797\) 889702. 1.40064 0.700322 0.713827i \(-0.253040\pi\)
0.700322 + 0.713827i \(0.253040\pi\)
\(798\) 0 0
\(799\) 104892. 0.164305
\(800\) −415425. 228045.i −0.649102 0.356320i
\(801\) 0 0
\(802\) 61546.2i 0.0956868i
\(803\) 936519. 1.45240
\(804\) 0 0
\(805\) −56296.1 + 219543.i −0.0868734 + 0.338788i
\(806\) 308108.i 0.474278i
\(807\) 0 0
\(808\) 239327.i 0.366580i
\(809\) 351052.i 0.536382i −0.963366 0.268191i \(-0.913574\pi\)
0.963366 0.268191i \(-0.0864258\pi\)
\(810\) 0 0
\(811\) −316054. −0.480529 −0.240264 0.970707i \(-0.577234\pi\)
−0.240264 + 0.970707i \(0.577234\pi\)
\(812\) −419240. −0.635844
\(813\) 0 0
\(814\) −81398.9 −0.122848
\(815\) −95559.0 + 372660.i −0.143865 + 0.561045i
\(816\) 0 0
\(817\) 107115.i 0.160475i
\(818\) −111985. −0.167360
\(819\) 0 0
\(820\) 126865. 494746.i 0.188674 0.735791i
\(821\) 985939.i 1.46273i 0.681987 + 0.731364i \(0.261116\pi\)
−0.681987 + 0.731364i \(0.738884\pi\)
\(822\) 0 0
\(823\) 632153.i 0.933303i −0.884441 0.466651i \(-0.845460\pi\)
0.884441 0.466651i \(-0.154540\pi\)
\(824\) 157994.i 0.232695i
\(825\) 0 0
\(826\) −70074.1 −0.102706
\(827\) 309027. 0.451840 0.225920 0.974146i \(-0.427461\pi\)
0.225920 + 0.974146i \(0.427461\pi\)
\(828\) 0 0
\(829\) −832364. −1.21117 −0.605584 0.795782i \(-0.707060\pi\)
−0.605584 + 0.795782i \(0.707060\pi\)
\(830\) 88530.8 + 22701.4i 0.128510 + 0.0329531i
\(831\) 0 0
\(832\) 434202.i 0.627257i
\(833\) −179761. −0.259062
\(834\) 0 0
\(835\) 412841. + 105862.i 0.592121 + 0.151834i
\(836\) 89632.1i 0.128248i
\(837\) 0 0
\(838\) 63933.0i 0.0910410i
\(839\) 829659.i 1.17863i −0.807905 0.589313i \(-0.799399\pi\)
0.807905 0.589313i \(-0.200601\pi\)
\(840\) 0 0
\(841\) −1.39412e6 −1.97110
\(842\) 257251. 0.362855
\(843\) 0 0
\(844\) −164806. −0.231359
\(845\) 121854. + 31246.3i 0.170658 + 0.0437608i
\(846\) 0 0
\(847\) 23433.4i 0.0326639i
\(848\) 12881.0 0.0179126
\(849\) 0 0
\(850\) 53383.8 + 29304.7i 0.0738876 + 0.0405601i
\(851\) 297641.i 0.410992i
\(852\) 0 0
\(853\) 701609.i 0.964266i 0.876098 + 0.482133i \(0.160138\pi\)
−0.876098 + 0.482133i \(0.839862\pi\)
\(854\) 39750.7i 0.0545041i
\(855\) 0 0
\(856\) 682191. 0.931019
\(857\) 1.08522e6 1.47760 0.738801 0.673923i \(-0.235392\pi\)
0.738801 + 0.673923i \(0.235392\pi\)
\(858\) 0 0
\(859\) −884781. −1.19908 −0.599542 0.800343i \(-0.704651\pi\)
−0.599542 + 0.800343i \(0.704651\pi\)
\(860\) 188506. 735136.i 0.254876 0.993964i
\(861\) 0 0
\(862\) 47722.5i 0.0642256i
\(863\) −848540. −1.13933 −0.569667 0.821876i \(-0.692928\pi\)
−0.569667 + 0.821876i \(0.692928\pi\)
\(864\) 0 0
\(865\) 470011. + 120522.i 0.628169 + 0.161077i
\(866\) 112136.i 0.149523i
\(867\) 0 0
\(868\) 444188.i 0.589558i
\(869\) 1.00372e6i 1.32915i
\(870\) 0 0
\(871\) 1.53593e6 2.02459
\(872\) 76348.6 0.100408
\(873\) 0 0
\(874\) 26525.2 0.0347245
\(875\) −208774. + 222739.i −0.272685 + 0.290925i
\(876\) 0 0
\(877\) 513895.i 0.668152i 0.942546 + 0.334076i \(0.108424\pi\)
−0.942546 + 0.334076i \(0.891576\pi\)
\(878\) 112148. 0.145480
\(879\) 0 0
\(880\) 143940. 561335.i 0.185873 0.724865i
\(881\) 222212.i 0.286297i 0.989701 + 0.143148i \(0.0457226\pi\)
−0.989701 + 0.143148i \(0.954277\pi\)
\(882\) 0 0
\(883\) 248366.i 0.318545i −0.987235 0.159272i \(-0.949085\pi\)
0.987235 0.159272i \(-0.0509148\pi\)
\(884\) 241517.i 0.309061i
\(885\) 0 0
\(886\) 271034. 0.345268
\(887\) −864526. −1.09883 −0.549415 0.835549i \(-0.685150\pi\)
−0.549415 + 0.835549i \(0.685150\pi\)
\(888\) 0 0
\(889\) 382592. 0.484097
\(890\) −69109.7 + 269514.i −0.0872488 + 0.340252i
\(891\) 0 0
\(892\) 715528.i 0.899284i
\(893\) 61539.9 0.0771709
\(894\) 0 0
\(895\) 41352.5 161266.i 0.0516245 0.201325i
\(896\) 287697.i 0.358360i
\(897\) 0 0
\(898\) 86781.3i 0.107615i
\(899\) 2.22645e6i 2.75482i
\(900\) 0 0
\(901\) −5735.47 −0.00706512
\(902\) −175145. −0.215270
\(903\) 0 0
\(904\) −337487. −0.412972
\(905\) 381163. + 97739.3i 0.465386 + 0.119336i
\(906\) 0 0
\(907\) 1.07355e6i 1.30499i −0.757794 0.652494i \(-0.773723\pi\)
0.757794 0.652494i \(-0.226277\pi\)
\(908\) 291029. 0.352992
\(909\) 0 0
\(910\) 94916.8 + 24338.9i 0.114620 + 0.0293913i
\(911\) 1.00771e6i 1.21422i 0.794618 + 0.607110i \(0.207671\pi\)
−0.794618 + 0.607110i \(0.792329\pi\)
\(912\) 0 0
\(913\) 387246.i 0.464564i
\(914\) 128615.i 0.153957i
\(915\) 0 0
\(916\) −1.21548e6 −1.44863
\(917\) −556440. −0.661728
\(918\) 0 0
\(919\) −576271. −0.682332 −0.341166 0.940003i \(-0.610822\pi\)
−0.341166 + 0.940003i \(0.610822\pi\)
\(920\) −378821. 97138.9i −0.447568 0.114767i
\(921\) 0 0
\(922\) 401784.i 0.472640i
\(923\) −836637. −0.982050
\(924\) 0 0
\(925\) 192922. 351444.i 0.225475 0.410745i
\(926\) 101102.i 0.117907i
\(927\) 0 0
\(928\) 1.09916e6i 1.27634i
\(929\) 1.02738e6i 1.19041i 0.803572 + 0.595207i \(0.202930\pi\)
−0.803572 + 0.595207i \(0.797070\pi\)
\(930\) 0 0
\(931\) −105465. −0.121677
\(932\) 546308. 0.628935
\(933\) 0 0
\(934\) −89830.1 −0.102974
\(935\) −64091.4 + 249943.i −0.0733122 + 0.285902i
\(936\) 0 0
\(937\) 358312.i 0.408115i 0.978959 + 0.204057i \(0.0654129\pi\)
−0.978959 + 0.204057i \(0.934587\pi\)
\(938\) 179208. 0.203682
\(939\) 0 0
\(940\) −422351. 108301.i −0.477989 0.122568i
\(941\) 732982.i 0.827778i 0.910327 + 0.413889i \(0.135830\pi\)
−0.910327 + 0.413889i \(0.864170\pi\)
\(942\) 0 0
\(943\) 640429.i 0.720191i
\(944\) 655140.i 0.735174i
\(945\) 0 0
\(946\) −260245. −0.290804
\(947\) −722514. −0.805650 −0.402825 0.915277i \(-0.631972\pi\)
−0.402825 + 0.915277i \(0.631972\pi\)
\(948\) 0 0
\(949\) 1.48052e6 1.64392
\(950\) 31320.0 + 17192.9i 0.0347036 + 0.0190503i
\(951\) 0 0
\(952\) 58639.6i 0.0647019i
\(953\) 686812. 0.756227 0.378113 0.925759i \(-0.376573\pi\)
0.378113 + 0.925759i \(0.376573\pi\)
\(954\) 0 0
\(955\) −181646. + 708383.i −0.199168 + 0.776715i
\(956\) 395507.i 0.432752i
\(957\) 0 0
\(958\) 99295.8i 0.108193i
\(959\) 512616.i 0.557384i
\(960\) 0 0
\(961\) 1.43542e6 1.55429
\(962\) −128681. −0.139048
\(963\) 0 0
\(964\) −226111. −0.243314
\(965\) 266966. 1.04111e6i 0.286682 1.11800i
\(966\) 0 0
\(967\) 251363.i 0.268811i −0.990926 0.134406i \(-0.957087\pi\)
0.990926 0.134406i \(-0.0429125\pi\)
\(968\) 40434.3 0.0431518
\(969\) 0 0
\(970\) 93142.7 363237.i 0.0989932 0.386053i
\(971\) 299319.i 0.317465i 0.987322 + 0.158733i \(0.0507408\pi\)
−0.987322 + 0.158733i \(0.949259\pi\)
\(972\) 0 0
\(973\) 650784.i 0.687403i
\(974\) 262918.i 0.277142i
\(975\) 0 0
\(976\) −371639. −0.390141
\(977\) −704266. −0.737815 −0.368907 0.929466i \(-0.620268\pi\)
−0.368907 + 0.929466i \(0.620268\pi\)
\(978\) 0 0
\(979\) −1.17889e6 −1.23001
\(980\) 723810. + 185602.i 0.753654 + 0.193255i
\(981\) 0 0
\(982\) 250533.i 0.259802i
\(983\) −687286. −0.711263 −0.355632 0.934626i \(-0.615734\pi\)
−0.355632 + 0.934626i \(0.615734\pi\)
\(984\) 0 0
\(985\) −1.17021e6 300070.i −1.20612 0.309278i
\(986\) 141247.i 0.145287i
\(987\) 0 0
\(988\) 141697.i 0.145160i
\(989\) 951604.i 0.972890i
\(990\) 0 0
\(991\) 315848. 0.321611 0.160806 0.986986i \(-0.448591\pi\)
0.160806 + 0.986986i \(0.448591\pi\)
\(992\) 1.16457e6 1.18343
\(993\) 0 0
\(994\) −97616.1 −0.0987981
\(995\) −248131. 63626.7i −0.250631 0.0642678i
\(996\) 0 0
\(997\) 529342.i 0.532532i 0.963900 + 0.266266i \(0.0857899\pi\)
−0.963900 + 0.266266i \(0.914210\pi\)
\(998\) −11453.6 −0.0114995
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.5.d.a.404.19 44
3.2 odd 2 inner 405.5.d.a.404.25 44
5.4 even 2 inner 405.5.d.a.404.26 44
9.2 odd 6 45.5.h.a.14.10 44
9.4 even 3 45.5.h.a.29.13 yes 44
9.5 odd 6 135.5.h.a.89.10 44
9.7 even 3 135.5.h.a.44.13 44
15.14 odd 2 inner 405.5.d.a.404.20 44
45.4 even 6 45.5.h.a.29.10 yes 44
45.14 odd 6 135.5.h.a.89.13 44
45.29 odd 6 45.5.h.a.14.13 yes 44
45.34 even 6 135.5.h.a.44.10 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.h.a.14.10 44 9.2 odd 6
45.5.h.a.14.13 yes 44 45.29 odd 6
45.5.h.a.29.10 yes 44 45.4 even 6
45.5.h.a.29.13 yes 44 9.4 even 3
135.5.h.a.44.10 44 45.34 even 6
135.5.h.a.44.13 44 9.7 even 3
135.5.h.a.89.10 44 9.5 odd 6
135.5.h.a.89.13 44 45.14 odd 6
405.5.d.a.404.19 44 1.1 even 1 trivial
405.5.d.a.404.20 44 15.14 odd 2 inner
405.5.d.a.404.25 44 3.2 odd 2 inner
405.5.d.a.404.26 44 5.4 even 2 inner