Properties

Label 1350.2.e.b.901.1
Level $1350$
Weight $2$
Character 1350.901
Analytic conductor $10.780$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(451,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1350.901
Dual form 1350.2.e.b.451.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(3.00000 + 5.19615i) q^{11} +(1.00000 - 1.73205i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -4.00000 q^{19} +(3.00000 - 5.19615i) q^{22} +(-4.50000 + 7.79423i) q^{23} -2.00000 q^{26} +1.00000 q^{28} +(1.50000 + 2.59808i) q^{29} +(2.00000 - 3.46410i) q^{31} +(-0.500000 + 0.866025i) q^{32} -8.00000 q^{37} +(2.00000 + 3.46410i) q^{38} +(-1.50000 + 2.59808i) q^{41} +(4.00000 + 6.92820i) q^{43} -6.00000 q^{44} +9.00000 q^{46} +(1.50000 + 2.59808i) q^{47} +(3.00000 - 5.19615i) q^{49} +(1.00000 + 1.73205i) q^{52} +6.00000 q^{53} +(-0.500000 - 0.866025i) q^{56} +(1.50000 - 2.59808i) q^{58} +(3.00000 - 5.19615i) q^{59} +(6.50000 + 11.2583i) q^{61} -4.00000 q^{62} +1.00000 q^{64} +(-6.50000 + 11.2583i) q^{67} +6.00000 q^{71} +4.00000 q^{73} +(4.00000 + 6.92820i) q^{74} +(2.00000 - 3.46410i) q^{76} +(3.00000 - 5.19615i) q^{77} +(5.00000 + 8.66025i) q^{79} +3.00000 q^{82} +(4.50000 + 7.79423i) q^{83} +(4.00000 - 6.92820i) q^{86} +(3.00000 + 5.19615i) q^{88} -9.00000 q^{89} -2.00000 q^{91} +(-4.50000 - 7.79423i) q^{92} +(1.50000 - 2.59808i) q^{94} +(1.00000 + 1.73205i) q^{97} -6.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{7} + 2 q^{8} + 6 q^{11} + 2 q^{13} - q^{14} - q^{16} - 8 q^{19} + 6 q^{22} - 9 q^{23} - 4 q^{26} + 2 q^{28} + 3 q^{29} + 4 q^{31} - q^{32} - 16 q^{37} + 4 q^{38} - 3 q^{41}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.00000 5.19615i 0.639602 1.10782i
\(23\) −4.50000 + 7.79423i −0.938315 + 1.62521i −0.169701 + 0.985496i \(0.554280\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 2.00000 + 3.46410i 0.324443 + 0.561951i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 0 0
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −6.50000 + 11.2583i −0.794101 + 1.37542i 0.129307 + 0.991605i \(0.458725\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 4.00000 + 6.92820i 0.464991 + 0.805387i
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) 3.00000 5.19615i 0.341882 0.592157i
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 0 0
\(88\) 3.00000 + 5.19615i 0.319801 + 0.553912i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −4.50000 7.79423i −0.469157 0.812605i
\(93\) 0 0
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) −6.00000 −0.606092
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 6.50000 11.2583i 0.588482 1.01928i
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −9.00000 + 15.5885i −0.786334 + 1.36197i 0.141865 + 0.989886i \(0.454690\pi\)
−0.928199 + 0.372084i \(0.878643\pi\)
\(132\) 0 0
\(133\) 2.00000 + 3.46410i 0.173422 + 0.300376i
\(134\) 13.0000 1.12303
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) −2.00000 3.46410i −0.165521 0.286691i
\(147\) 0 0
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 5.00000 8.66025i 0.397779 0.688973i
\(159\) 0 0
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) 1.50000 2.59808i 0.116073 0.201045i −0.802135 0.597143i \(-0.796303\pi\)
0.918208 + 0.396098i \(0.129636\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −12.0000 20.7846i −0.912343 1.58022i −0.810745 0.585399i \(-0.800938\pi\)
−0.101598 0.994826i \(-0.532395\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 5.19615i 0.226134 0.391675i
\(177\) 0 0
\(178\) 4.50000 + 7.79423i 0.337289 + 0.584202i
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 1.00000 + 1.73205i 0.0741249 + 0.128388i
\(183\) 0 0
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 0 0
\(193\) 1.00000 1.73205i 0.0719816 0.124676i −0.827788 0.561041i \(-0.810401\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.00000 5.19615i 0.211079 0.365600i
\(203\) 1.50000 2.59808i 0.105279 0.182349i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −12.0000 20.7846i −0.830057 1.43770i
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 0 0
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 3.50000 + 6.06218i 0.237050 + 0.410582i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.0334825 0.0579934i 0.848799 0.528716i \(-0.177326\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 0 0
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) −14.5000 25.1147i −0.934027 1.61778i −0.776360 0.630290i \(-0.782936\pi\)
−0.157667 0.987492i \(-0.550397\pi\)
\(242\) 25.0000 1.60706
\(243\) 0 0
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) 2.00000 3.46410i 0.127000 0.219971i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −54.0000 −3.39495
\(254\) −3.50000 6.06218i −0.219610 0.380375i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) 4.00000 + 6.92820i 0.248548 + 0.430498i
\(260\) 0 0
\(261\) 0 0
\(262\) 18.0000 1.11204
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.00000 3.46410i 0.122628 0.212398i
\(267\) 0 0
\(268\) −6.50000 11.2583i −0.397051 0.687712i
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 6.00000 10.3923i 0.362473 0.627822i
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000 + 6.92820i 0.240337 + 0.416275i 0.960810 0.277207i \(-0.0894088\pi\)
−0.720473 + 0.693482i \(0.756075\pi\)
\(278\) −16.0000 −0.959616
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596933i \(0.980988\pi\)
\(282\) 0 0
\(283\) −6.50000 + 11.2583i −0.386385 + 0.669238i −0.991960 0.126550i \(-0.959610\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −2.00000 + 3.46410i −0.117041 + 0.202721i
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) 9.00000 + 15.5885i 0.520483 + 0.901504i
\(300\) 0 0
\(301\) 4.00000 6.92820i 0.230556 0.399335i
\(302\) −7.00000 + 12.1244i −0.402805 + 0.697678i
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 3.00000 + 5.19615i 0.170941 + 0.296078i
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 10.3923i 0.340229 0.589294i −0.644246 0.764818i \(-0.722829\pi\)
0.984475 + 0.175525i \(0.0561621\pi\)
\(312\) 0 0
\(313\) 1.00000 + 1.73205i 0.0565233 + 0.0979013i 0.892903 0.450250i \(-0.148665\pi\)
−0.836379 + 0.548151i \(0.815332\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 0 0
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) −4.50000 7.79423i −0.250775 0.434355i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 0 0
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 1.50000 2.59808i 0.0826977 0.143237i
\(330\) 0 0
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) −9.00000 −0.493939
\(333\) 0 0
\(334\) −3.00000 −0.164153
\(335\) 0 0
\(336\) 0 0
\(337\) 4.00000 6.92820i 0.217894 0.377403i −0.736270 0.676688i \(-0.763415\pi\)
0.954164 + 0.299285i \(0.0967480\pi\)
\(338\) 4.50000 7.79423i 0.244768 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 4.00000 + 6.92820i 0.215666 + 0.373544i
\(345\) 0 0
\(346\) −12.0000 + 20.7846i −0.645124 + 1.11739i
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) −11.5000 19.9186i −0.615581 1.06622i −0.990282 0.139072i \(-0.955588\pi\)
0.374701 0.927146i \(-0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.00000 −0.319801
\(353\) −12.0000 20.7846i −0.638696 1.10625i −0.985719 0.168397i \(-0.946141\pi\)
0.347024 0.937856i \(-0.387192\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.50000 7.79423i 0.238500 0.413093i
\(357\) 0 0
\(358\) −9.00000 15.5885i −0.475665 0.823876i
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −2.50000 4.33013i −0.131397 0.227586i
\(363\) 0 0
\(364\) 1.00000 1.73205i 0.0524142 0.0907841i
\(365\) 0 0
\(366\) 0 0
\(367\) 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i \(-0.0997115\pi\)
−0.742538 + 0.669804i \(0.766378\pi\)
\(368\) 9.00000 0.469157
\(369\) 0 0
\(370\) 0 0
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.50000 + 2.59808i 0.0773566 + 0.133986i
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −22.0000 −1.13006 −0.565032 0.825069i \(-0.691136\pi\)
−0.565032 + 0.825069i \(0.691136\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.00000 + 10.3923i −0.306987 + 0.531717i
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 10.5000 + 18.1865i 0.532371 + 0.922094i 0.999286 + 0.0377914i \(0.0120322\pi\)
−0.466915 + 0.884302i \(0.654634\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 5.19615i 0.151523 0.262445i
\(393\) 0 0
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −4.00000 6.92820i −0.200502 0.347279i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.00000 5.19615i 0.149813 0.259483i −0.781345 0.624099i \(-0.785466\pi\)
0.931158 + 0.364615i \(0.118800\pi\)
\(402\) 0 0
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) −24.0000 41.5692i −1.18964 2.06051i
\(408\) 0 0
\(409\) 5.00000 8.66025i 0.247234 0.428222i −0.715523 0.698589i \(-0.753812\pi\)
0.962757 + 0.270367i \(0.0871450\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000 + 6.92820i 0.197066 + 0.341328i
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) −12.0000 + 20.7846i −0.586939 + 1.01661i
\(419\) −15.0000 + 25.9808i −0.732798 + 1.26924i 0.222885 + 0.974845i \(0.428453\pi\)
−0.955683 + 0.294398i \(0.904881\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 2.00000 0.0973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 6.50000 11.2583i 0.314557 0.544829i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 2.00000 + 3.46410i 0.0960031 + 0.166282i
\(435\) 0 0
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) 18.0000 31.1769i 0.861057 1.49139i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.50000 7.79423i −0.213801 0.370315i 0.739100 0.673596i \(-0.235251\pi\)
−0.952901 + 0.303281i \(0.901918\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 6.00000 10.3923i 0.281594 0.487735i
\(455\) 0 0
\(456\) 0 0
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) −13.0000 −0.607450
\(459\) 0 0
\(460\) 0 0
\(461\) −13.5000 23.3827i −0.628758 1.08904i −0.987801 0.155719i \(-0.950230\pi\)
0.359044 0.933321i \(-0.383103\pi\)
\(462\) 0 0
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 1.50000 2.59808i 0.0696358 0.120613i
\(465\) 0 0
\(466\) 6.00000 + 10.3923i 0.277945 + 0.481414i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 13.0000 0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) 3.00000 5.19615i 0.138086 0.239172i
\(473\) −24.0000 + 41.5692i −1.10352 + 1.91135i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) −14.5000 + 25.1147i −0.660457 + 1.14394i
\(483\) 0 0
\(484\) −12.5000 21.6506i −0.568182 0.984120i
\(485\) 0 0
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 6.50000 + 11.2583i 0.294241 + 0.509641i
\(489\) 0 0
\(490\) 0 0
\(491\) 6.00000 10.3923i 0.270776 0.468998i −0.698285 0.715820i \(-0.746053\pi\)
0.969061 + 0.246822i \(0.0793863\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 0 0
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6.00000 + 10.3923i 0.267793 + 0.463831i
\(503\) 27.0000 1.20387 0.601935 0.798545i \(-0.294397\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 27.0000 + 46.7654i 1.20030 + 2.07897i
\(507\) 0 0
\(508\) −3.50000 + 6.06218i −0.155287 + 0.268966i
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) −9.00000 + 15.5885i −0.395820 + 0.685580i
\(518\) 4.00000 6.92820i 0.175750 0.304408i
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 19.0000 0.830812 0.415406 0.909636i \(-0.363640\pi\)
0.415406 + 0.909636i \(0.363640\pi\)
\(524\) −9.00000 15.5885i −0.393167 0.680985i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) 0 0
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) 3.00000 + 5.19615i 0.129944 + 0.225070i
\(534\) 0 0
\(535\) 0 0
\(536\) −6.50000 + 11.2583i −0.280757 + 0.486286i
\(537\) 0 0
\(538\) 10.5000 + 18.1865i 0.452687 + 0.784077i
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 2.00000 + 3.46410i 0.0859074 + 0.148796i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −21.5000 37.2391i −0.919274 1.59223i −0.800521 0.599305i \(-0.795444\pi\)
−0.118753 0.992924i \(-0.537890\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 10.3923i −0.255609 0.442727i
\(552\) 0 0
\(553\) 5.00000 8.66025i 0.212622 0.368271i
\(554\) 4.00000 6.92820i 0.169944 0.294351i
\(555\) 0 0
\(556\) 8.00000 + 13.8564i 0.339276 + 0.587643i
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −7.50000 + 12.9904i −0.316368 + 0.547966i
\(563\) 1.50000 2.59808i 0.0632175 0.109496i −0.832684 0.553748i \(-0.813197\pi\)
0.895902 + 0.444252i \(0.146530\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.0000 0.546431
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 20.0000 34.6410i 0.836974 1.44968i −0.0554391 0.998462i \(-0.517656\pi\)
0.892413 0.451219i \(-0.149011\pi\)
\(572\) −6.00000 + 10.3923i −0.250873 + 0.434524i
\(573\) 0 0
\(574\) −1.50000 2.59808i −0.0626088 0.108442i
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 0 0
\(580\) 0 0
\(581\) 4.50000 7.79423i 0.186691 0.323359i
\(582\) 0 0
\(583\) 18.0000 + 31.1769i 0.745484 + 1.29122i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 0 0
\(587\) 7.50000 + 12.9904i 0.309558 + 0.536170i 0.978266 0.207355i \(-0.0664855\pi\)
−0.668708 + 0.743525i \(0.733152\pi\)
\(588\) 0 0
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.50000 2.59808i −0.0614424 0.106421i
\(597\) 0 0
\(598\) 9.00000 15.5885i 0.368037 0.637459i
\(599\) −3.00000 + 5.19615i −0.122577 + 0.212309i −0.920783 0.390075i \(-0.872449\pi\)
0.798206 + 0.602384i \(0.205782\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) −8.00000 −0.326056
\(603\) 0 0
\(604\) 14.0000 0.569652
\(605\) 0 0
\(606\) 0 0
\(607\) 14.5000 25.1147i 0.588537 1.01938i −0.405887 0.913923i \(-0.633038\pi\)
0.994424 0.105453i \(-0.0336291\pi\)
\(608\) 2.00000 3.46410i 0.0811107 0.140488i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 0 0
\(613\) 40.0000 1.61558 0.807792 0.589467i \(-0.200662\pi\)
0.807792 + 0.589467i \(0.200662\pi\)
\(614\) −3.50000 6.06218i −0.141249 0.244650i
\(615\) 0 0
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) −6.00000 + 10.3923i −0.241551 + 0.418378i −0.961156 0.276005i \(-0.910989\pi\)
0.719605 + 0.694383i \(0.244323\pi\)
\(618\) 0 0
\(619\) 20.0000 + 34.6410i 0.803868 + 1.39234i 0.917053 + 0.398766i \(0.130561\pi\)
−0.113185 + 0.993574i \(0.536105\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −12.0000 −0.481156
\(623\) 4.50000 + 7.79423i 0.180289 + 0.312269i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.00000 1.73205i 0.0399680 0.0692267i
\(627\) 0 0
\(628\) 7.00000 + 12.1244i 0.279330 + 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 5.00000 + 8.66025i 0.198889 + 0.344486i
\(633\) 0 0
\(634\) 3.00000 5.19615i 0.119145 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 10.3923i −0.237729 0.411758i
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) −15.5000 + 26.8468i −0.611260 + 1.05873i 0.379768 + 0.925082i \(0.376004\pi\)
−0.991028 + 0.133652i \(0.957330\pi\)
\(644\) −4.50000 + 7.79423i −0.177325 + 0.307136i
\(645\) 0 0
\(646\) 0 0
\(647\) −3.00000 −0.117942 −0.0589711 0.998260i \(-0.518782\pi\)
−0.0589711 + 0.998260i \(0.518782\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) −2.00000 + 3.46410i −0.0783260 + 0.135665i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) −3.00000 −0.116952
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 23.0000 39.8372i 0.894596 1.54949i 0.0602929 0.998181i \(-0.480797\pi\)
0.834303 0.551306i \(-0.185870\pi\)
\(662\) 5.00000 8.66025i 0.194331 0.336590i
\(663\) 0 0
\(664\) 4.50000 + 7.79423i 0.174634 + 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) −27.0000 −1.04544
\(668\) 1.50000 + 2.59808i 0.0580367 + 0.100523i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.0000 + 67.5500i −1.50558 + 2.60774i
\(672\) 0 0
\(673\) −23.0000 39.8372i −0.886585 1.53561i −0.843886 0.536522i \(-0.819738\pi\)
−0.0426985 0.999088i \(-0.513595\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −9.00000 15.5885i −0.345898 0.599113i 0.639618 0.768693i \(-0.279092\pi\)
−0.985517 + 0.169580i \(0.945759\pi\)
\(678\) 0 0
\(679\) 1.00000 1.73205i 0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) −12.0000 20.7846i −0.459504 0.795884i
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 5.00000 + 8.66025i 0.190209 + 0.329452i 0.945319 0.326146i \(-0.105750\pi\)
−0.755110 + 0.655598i \(0.772417\pi\)
\(692\) 24.0000 0.912343
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −11.5000 + 19.9186i −0.435281 + 0.753930i
\(699\) 0 0
\(700\) 0 0
\(701\) 45.0000 1.69963 0.849813 0.527084i \(-0.176715\pi\)
0.849813 + 0.527084i \(0.176715\pi\)
\(702\) 0 0
\(703\) 32.0000 1.20690
\(704\) 3.00000 + 5.19615i 0.113067 + 0.195837i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) 3.00000 5.19615i 0.112827 0.195421i
\(708\) 0 0
\(709\) −5.50000 9.52628i −0.206557 0.357767i 0.744071 0.668101i \(-0.232892\pi\)
−0.950628 + 0.310334i \(0.899559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.00000 −0.337289
\(713\) 18.0000 + 31.1769i 0.674105 + 1.16758i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.00000 + 15.5885i −0.336346 + 0.582568i
\(717\) 0 0
\(718\) −6.00000 10.3923i −0.223918 0.387837i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 1.50000 + 2.59808i 0.0558242 + 0.0966904i
\(723\) 0 0
\(724\) −2.50000 + 4.33013i −0.0929118 + 0.160928i
\(725\) 0 0
\(726\) 0 0
\(727\) 26.5000 + 45.8993i 0.982831 + 1.70231i 0.651206 + 0.758901i \(0.274263\pi\)
0.331625 + 0.943411i \(0.392403\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 7.00000 12.1244i 0.258551 0.447823i −0.707303 0.706910i \(-0.750088\pi\)
0.965854 + 0.259087i \(0.0834217\pi\)
\(734\) 4.00000 6.92820i 0.147643 0.255725i
\(735\) 0 0
\(736\) −4.50000 7.79423i −0.165872 0.287299i
\(737\) −78.0000 −2.87317
\(738\) 0 0
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.00000 + 5.19615i −0.110133 + 0.190757i
\(743\) 7.50000 12.9904i 0.275148 0.476571i −0.695024 0.718986i \(-0.744606\pi\)
0.970173 + 0.242415i \(0.0779397\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −26.0000 −0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) 1.50000 + 2.59808i 0.0548088 + 0.0949316i
\(750\) 0 0
\(751\) −1.00000 + 1.73205i −0.0364905 + 0.0632034i −0.883694 0.468065i \(-0.844951\pi\)
0.847203 + 0.531269i \(0.178285\pi\)
\(752\) 1.50000 2.59808i 0.0546994 0.0947421i
\(753\) 0 0
\(754\) −3.00000 5.19615i −0.109254 0.189233i
\(755\) 0 0
\(756\) 0 0
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) 11.0000 + 19.0526i 0.399538 + 0.692020i
\(759\) 0 0
\(760\) 0 0
\(761\) −16.5000 + 28.5788i −0.598125 + 1.03598i 0.394973 + 0.918693i \(0.370754\pi\)
−0.993098 + 0.117289i \(0.962579\pi\)
\(762\) 0 0
\(763\) 3.50000 + 6.06218i 0.126709 + 0.219466i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) −6.00000 10.3923i −0.216647 0.375244i
\(768\) 0 0
\(769\) −14.5000 + 25.1147i −0.522883 + 0.905661i 0.476762 + 0.879032i \(0.341810\pi\)
−0.999645 + 0.0266282i \(0.991523\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000 + 1.73205i 0.0359908 + 0.0623379i
\(773\) −48.0000 −1.72644 −0.863220 0.504828i \(-0.831556\pi\)
−0.863220 + 0.504828i \(0.831556\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 10.5000 18.1865i 0.376443 0.652019i
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) 6.00000 10.3923i 0.213741 0.370211i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) 1.00000 + 1.73205i 0.0354887 + 0.0614682i
\(795\) 0 0
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) 21.0000 36.3731i 0.743858 1.28840i −0.206868 0.978369i \(-0.566327\pi\)
0.950726 0.310031i \(-0.100340\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) 12.0000 + 20.7846i 0.423471 + 0.733473i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) 0 0
\(808\) 3.00000 + 5.19615i 0.105540 + 0.182800i
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 1.50000 + 2.59808i 0.0526397 + 0.0911746i
\(813\) 0 0
\(814\) −24.0000 + 41.5692i −0.841200 + 1.45700i
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 27.7128i −0.559769 0.969549i
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) 0 0
\(821\) 13.5000 + 23.3827i 0.471153 + 0.816061i 0.999456 0.0329950i \(-0.0105045\pi\)
−0.528302 + 0.849056i \(0.677171\pi\)
\(822\) 0 0
\(823\) −12.5000 + 21.6506i −0.435723 + 0.754694i −0.997354 0.0726937i \(-0.976840\pi\)
0.561632 + 0.827387i \(0.310174\pi\)
\(824\) 4.00000 6.92820i 0.139347 0.241355i
\(825\) 0 0
\(826\) 3.00000 + 5.19615i 0.104383 + 0.180797i
\(827\) 3.00000 0.104320 0.0521601 0.998639i \(-0.483389\pi\)
0.0521601 + 0.998639i \(0.483389\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) 30.0000 1.03633
\(839\) 18.0000 + 31.1769i 0.621429 + 1.07635i 0.989220 + 0.146438i \(0.0467809\pi\)
−0.367791 + 0.929909i \(0.619886\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 11.0000 19.0526i 0.379085 0.656595i
\(843\) 0 0
\(844\) −1.00000 1.73205i −0.0344214 0.0596196i
\(845\) 0 0
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 0 0
\(850\) 0 0
\(851\) 36.0000 62.3538i 1.23406 2.13746i
\(852\) 0 0
\(853\) −5.00000 8.66025i −0.171197 0.296521i 0.767642 0.640879i \(-0.221430\pi\)
−0.938839 + 0.344358i \(0.888097\pi\)
\(854\) −13.0000 −0.444851
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) 0 0
\(859\) 17.0000 29.4449i 0.580033 1.00465i −0.415442 0.909620i \(-0.636373\pi\)
0.995475 0.0950262i \(-0.0302935\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.00000 + 5.19615i 0.102180 + 0.176982i
\(863\) 3.00000 0.102121 0.0510606 0.998696i \(-0.483740\pi\)
0.0510606 + 0.998696i \(0.483740\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −8.00000 13.8564i −0.271851 0.470860i
\(867\) 0 0
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) −30.0000 + 51.9615i −1.01768 + 1.76267i
\(870\) 0 0
\(871\) 13.0000 + 22.5167i 0.440488 + 0.762948i
\(872\) −7.00000 −0.237050
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) −11.0000 + 19.0526i −0.371444 + 0.643359i −0.989788 0.142548i \(-0.954470\pi\)
0.618344 + 0.785907i \(0.287804\pi\)
\(878\) 14.0000 24.2487i 0.472477 0.818354i
\(879\) 0 0
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) 31.0000 1.04323 0.521617 0.853180i \(-0.325329\pi\)
0.521617 + 0.853180i \(0.325329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) −18.0000 + 31.1769i −0.604381 + 1.04682i 0.387768 + 0.921757i \(0.373246\pi\)
−0.992149 + 0.125061i \(0.960087\pi\)
\(888\) 0 0
\(889\) −3.50000 6.06218i −0.117386 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 1.00000 0.0334825
\(893\) −6.00000 10.3923i −0.200782 0.347765i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) 3.00000 + 5.19615i 0.100111 + 0.173398i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) 9.00000 + 15.5885i 0.299667 + 0.519039i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −18.5000 32.0429i −0.614282 1.06397i −0.990510 0.137441i \(-0.956112\pi\)
0.376228 0.926527i \(-0.377221\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −15.0000 25.9808i −0.496972 0.860781i 0.503022 0.864274i \(-0.332222\pi\)
−0.999994 + 0.00349271i \(0.998888\pi\)
\(912\) 0 0
\(913\) −27.0000 + 46.7654i −0.893570 + 1.54771i
\(914\) 4.00000 6.92820i 0.132308 0.229165i
\(915\) 0 0
\(916\) 6.50000 + 11.2583i 0.214766 + 0.371986i
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −13.5000 + 23.3827i −0.444599 + 0.770068i
\(923\) 6.00000 10.3923i 0.197492 0.342067i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) −3.00000 −0.0984798
\(929\) 3.00000 + 5.19615i 0.0984268 + 0.170480i 0.911034 0.412332i \(-0.135286\pi\)
−0.812607 + 0.582812i \(0.801952\pi\)
\(930\) 0 0
\(931\) −12.0000 + 20.7846i −0.393284 + 0.681188i
\(932\) 6.00000 10.3923i 0.196537 0.340411i
\(933\) 0 0
\(934\) −18.0000 31.1769i −0.588978 1.02014i
\(935\) 0 0
\(936\) 0 0
\(937\) −56.0000 −1.82944 −0.914720 0.404088i \(-0.867589\pi\)
−0.914720 + 0.404088i \(0.867589\pi\)
\(938\) −6.50000 11.2583i −0.212233 0.367598i
\(939\) 0 0
\(940\) 0 0
\(941\) 10.5000 18.1865i 0.342290 0.592864i −0.642567 0.766229i \(-0.722131\pi\)
0.984858 + 0.173365i \(0.0554641\pi\)
\(942\) 0 0
\(943\) −13.5000 23.3827i −0.439620 0.761445i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 48.0000 1.56061
\(947\) −19.5000 33.7750i −0.633665 1.09754i −0.986796 0.161966i \(-0.948217\pi\)
0.353131 0.935574i \(-0.385117\pi\)
\(948\) 0 0
\(949\) 4.00000 6.92820i 0.129845 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −15.0000 + 25.9808i −0.484628 + 0.839400i
\(959\) 6.00000 10.3923i 0.193750 0.335585i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 16.0000 0.515861
\(963\) 0 0
\(964\) 29.0000 0.934027
\(965\) 0 0
\(966\) 0 0
\(967\) −18.5000 + 32.0429i −0.594920 + 1.03043i 0.398638 + 0.917108i \(0.369483\pi\)
−0.993558 + 0.113323i \(0.963850\pi\)
\(968\) −12.5000 + 21.6506i −0.401765 + 0.695878i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) 4.00000 + 6.92820i 0.128168 + 0.221994i
\(975\) 0 0
\(976\) 6.50000 11.2583i 0.208060 0.360370i
\(977\) 21.0000 36.3731i 0.671850 1.16368i −0.305530 0.952183i \(-0.598833\pi\)
0.977379 0.211495i \(-0.0678332\pi\)
\(978\) 0 0
\(979\) −27.0000 46.7654i −0.862924 1.49463i
\(980\) 0 0
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) −4.50000 7.79423i −0.143528 0.248597i 0.785295 0.619122i \(-0.212511\pi\)
−0.928823 + 0.370525i \(0.879178\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −4.00000 6.92820i −0.127257 0.220416i
\(989\) −72.0000 −2.28947
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 2.00000 + 3.46410i 0.0635001 + 0.109985i
\(993\) 0 0
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 0 0
\(996\) 0 0
\(997\) −5.00000 8.66025i −0.158352 0.274273i 0.775923 0.630828i \(-0.217285\pi\)
−0.934274 + 0.356555i \(0.883951\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.e.b.901.1 2
3.2 odd 2 450.2.e.e.301.1 2
5.2 odd 4 1350.2.j.e.199.2 4
5.3 odd 4 1350.2.j.e.199.1 4
5.4 even 2 270.2.e.b.91.1 2
9.2 odd 6 450.2.e.e.151.1 2
9.4 even 3 4050.2.a.ba.1.1 1
9.5 odd 6 4050.2.a.n.1.1 1
9.7 even 3 inner 1350.2.e.b.451.1 2
15.2 even 4 450.2.j.c.49.1 4
15.8 even 4 450.2.j.c.49.2 4
15.14 odd 2 90.2.e.a.31.1 2
20.19 odd 2 2160.2.q.b.1441.1 2
45.2 even 12 450.2.j.c.349.2 4
45.4 even 6 810.2.a.b.1.1 1
45.7 odd 12 1350.2.j.e.1099.1 4
45.13 odd 12 4050.2.c.a.649.1 2
45.14 odd 6 810.2.a.g.1.1 1
45.22 odd 12 4050.2.c.a.649.2 2
45.23 even 12 4050.2.c.t.649.2 2
45.29 odd 6 90.2.e.a.61.1 yes 2
45.32 even 12 4050.2.c.t.649.1 2
45.34 even 6 270.2.e.b.181.1 2
45.38 even 12 450.2.j.c.349.1 4
45.43 odd 12 1350.2.j.e.1099.2 4
60.59 even 2 720.2.q.b.481.1 2
180.59 even 6 6480.2.a.g.1.1 1
180.79 odd 6 2160.2.q.b.721.1 2
180.119 even 6 720.2.q.b.241.1 2
180.139 odd 6 6480.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.a.31.1 2 15.14 odd 2
90.2.e.a.61.1 yes 2 45.29 odd 6
270.2.e.b.91.1 2 5.4 even 2
270.2.e.b.181.1 2 45.34 even 6
450.2.e.e.151.1 2 9.2 odd 6
450.2.e.e.301.1 2 3.2 odd 2
450.2.j.c.49.1 4 15.2 even 4
450.2.j.c.49.2 4 15.8 even 4
450.2.j.c.349.1 4 45.38 even 12
450.2.j.c.349.2 4 45.2 even 12
720.2.q.b.241.1 2 180.119 even 6
720.2.q.b.481.1 2 60.59 even 2
810.2.a.b.1.1 1 45.4 even 6
810.2.a.g.1.1 1 45.14 odd 6
1350.2.e.b.451.1 2 9.7 even 3 inner
1350.2.e.b.901.1 2 1.1 even 1 trivial
1350.2.j.e.199.1 4 5.3 odd 4
1350.2.j.e.199.2 4 5.2 odd 4
1350.2.j.e.1099.1 4 45.7 odd 12
1350.2.j.e.1099.2 4 45.43 odd 12
2160.2.q.b.721.1 2 180.79 odd 6
2160.2.q.b.1441.1 2 20.19 odd 2
4050.2.a.n.1.1 1 9.5 odd 6
4050.2.a.ba.1.1 1 9.4 even 3
4050.2.c.a.649.1 2 45.13 odd 12
4050.2.c.a.649.2 2 45.22 odd 12
4050.2.c.t.649.1 2 45.32 even 12
4050.2.c.t.649.2 2 45.23 even 12
6480.2.a.g.1.1 1 180.59 even 6
6480.2.a.v.1.1 1 180.139 odd 6