Properties

Label 450.2.e.e.301.1
Level $450$
Weight $2$
Character 450.301
Analytic conductor $3.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 301.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 450.301
Dual form 450.2.e.e.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -1.73205i q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(-3.00000 - 5.19615i) q^{11} +(1.50000 - 0.866025i) q^{12} +(1.00000 - 1.73205i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{18} -4.00000 q^{19} +1.73205i q^{21} +(3.00000 - 5.19615i) q^{22} +(4.50000 - 7.79423i) q^{23} +(1.50000 + 0.866025i) q^{24} +2.00000 q^{26} -5.19615i q^{27} +1.00000 q^{28} +(-1.50000 - 2.59808i) q^{29} +(2.00000 - 3.46410i) q^{31} +(0.500000 - 0.866025i) q^{32} +10.3923i q^{33} -3.00000 q^{36} -8.00000 q^{37} +(-2.00000 - 3.46410i) q^{38} +(-3.00000 + 1.73205i) q^{39} +(1.50000 - 2.59808i) q^{41} +(-1.50000 + 0.866025i) q^{42} +(4.00000 + 6.92820i) q^{43} +6.00000 q^{44} +9.00000 q^{46} +(-1.50000 - 2.59808i) q^{47} +1.73205i q^{48} +(3.00000 - 5.19615i) q^{49} +(1.00000 + 1.73205i) q^{52} -6.00000 q^{53} +(4.50000 - 2.59808i) q^{54} +(0.500000 + 0.866025i) q^{56} +(6.00000 + 3.46410i) q^{57} +(1.50000 - 2.59808i) q^{58} +(-3.00000 + 5.19615i) q^{59} +(6.50000 + 11.2583i) q^{61} +4.00000 q^{62} +(1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(-9.00000 + 5.19615i) q^{66} +(-6.50000 + 11.2583i) q^{67} +(-13.5000 + 7.79423i) q^{69} -6.00000 q^{71} +(-1.50000 - 2.59808i) q^{72} +4.00000 q^{73} +(-4.00000 - 6.92820i) q^{74} +(2.00000 - 3.46410i) q^{76} +(-3.00000 + 5.19615i) q^{77} +(-3.00000 - 1.73205i) q^{78} +(5.00000 + 8.66025i) q^{79} +(-4.50000 + 7.79423i) q^{81} +3.00000 q^{82} +(-4.50000 - 7.79423i) q^{83} +(-1.50000 - 0.866025i) q^{84} +(-4.00000 + 6.92820i) q^{86} +5.19615i q^{87} +(3.00000 + 5.19615i) q^{88} +9.00000 q^{89} -2.00000 q^{91} +(4.50000 + 7.79423i) q^{92} +(-6.00000 + 3.46410i) q^{93} +(1.50000 - 2.59808i) q^{94} +(-1.50000 + 0.866025i) q^{96} +(1.00000 + 1.73205i) q^{97} +6.00000 q^{98} +(9.00000 - 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} - q^{7} - 2 q^{8} + 3 q^{9} - 6 q^{11} + 3 q^{12} + 2 q^{13} + q^{14} - q^{16} - 3 q^{18} - 8 q^{19} + 6 q^{22} + 9 q^{23} + 3 q^{24} + 4 q^{26} + 2 q^{28} - 3 q^{29}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.904534 1.56670i −0.821541 0.570149i \(-0.806886\pi\)
−0.0829925 0.996550i \(-0.526448\pi\)
\(12\) 1.50000 0.866025i 0.433013 0.250000i
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −1.50000 + 2.59808i −0.353553 + 0.612372i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 3.00000 5.19615i 0.639602 1.10782i
\(23\) 4.50000 7.79423i 0.938315 1.62521i 0.169701 0.985496i \(-0.445720\pi\)
0.768613 0.639713i \(-0.220947\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 5.19615i 1.00000i
\(28\) 1.00000 0.188982
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 10.3923i 1.80907i
\(34\) 0 0
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −2.00000 3.46410i −0.324443 0.561951i
\(39\) −3.00000 + 1.73205i −0.480384 + 0.277350i
\(40\) 0 0
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) −1.50000 + 0.866025i −0.231455 + 0.133631i
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) −1.50000 2.59808i −0.218797 0.378968i 0.735643 0.677369i \(-0.236880\pi\)
−0.954441 + 0.298401i \(0.903547\pi\)
\(48\) 1.73205i 0.250000i
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 4.50000 2.59808i 0.612372 0.353553i
\(55\) 0 0
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 6.00000 + 3.46410i 0.794719 + 0.458831i
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 4.00000 0.508001
\(63\) 1.50000 2.59808i 0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −9.00000 + 5.19615i −1.10782 + 0.639602i
\(67\) −6.50000 + 11.2583i −0.794101 + 1.37542i 0.129307 + 0.991605i \(0.458725\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(68\) 0 0
\(69\) −13.5000 + 7.79423i −1.62521 + 0.938315i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) −3.00000 + 5.19615i −0.341882 + 0.592157i
\(78\) −3.00000 1.73205i −0.339683 0.196116i
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 3.00000 0.331295
\(83\) −4.50000 7.79423i −0.493939 0.855528i 0.506036 0.862512i \(-0.331110\pi\)
−0.999976 + 0.00698436i \(0.997777\pi\)
\(84\) −1.50000 0.866025i −0.163663 0.0944911i
\(85\) 0 0
\(86\) −4.00000 + 6.92820i −0.431331 + 0.747087i
\(87\) 5.19615i 0.557086i
\(88\) 3.00000 + 5.19615i 0.319801 + 0.553912i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 4.50000 + 7.79423i 0.469157 + 0.812605i
\(93\) −6.00000 + 3.46410i −0.622171 + 0.359211i
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) 0 0
\(96\) −1.50000 + 0.866025i −0.153093 + 0.0883883i
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 6.00000 0.606092
\(99\) 9.00000 15.5885i 0.904534 1.56670i
\(100\) 0 0
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 4.50000 + 2.59808i 0.433013 + 0.250000i
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 12.0000 + 6.92820i 1.13899 + 0.657596i
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(114\) 6.92820i 0.648886i
\(115\) 0 0
\(116\) 3.00000 0.278543
\(117\) 6.00000 0.554700
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) −6.50000 + 11.2583i −0.588482 + 1.01928i
\(123\) −4.50000 + 2.59808i −0.405751 + 0.234261i
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 0 0
\(126\) 3.00000 0.267261
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 13.8564i 1.21999i
\(130\) 0 0
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) −9.00000 5.19615i −0.783349 0.452267i
\(133\) 2.00000 + 3.46410i 0.173422 + 0.300376i
\(134\) −13.0000 −1.12303
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) −13.5000 7.79423i −1.14920 0.663489i
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 5.19615i 0.437595i
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) −12.0000 −1.00349
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) 0 0
\(146\) 2.00000 + 3.46410i 0.165521 + 0.286691i
\(147\) −9.00000 + 5.19615i −0.742307 + 0.428571i
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) 0 0
\(156\) 3.46410i 0.277350i
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) −5.00000 + 8.66025i −0.397779 + 0.688973i
\(159\) 9.00000 + 5.19615i 0.713746 + 0.412082i
\(160\) 0 0
\(161\) −9.00000 −0.709299
\(162\) −9.00000 −0.707107
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 1.50000 + 2.59808i 0.117130 + 0.202876i
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 1.73205i 0.133631i
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) −6.00000 10.3923i −0.458831 0.794719i
\(172\) −8.00000 −0.609994
\(173\) 12.0000 + 20.7846i 0.912343 + 1.58022i 0.810745 + 0.585399i \(0.199062\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(174\) −4.50000 + 2.59808i −0.341144 + 0.196960i
\(175\) 0 0
\(176\) −3.00000 + 5.19615i −0.226134 + 0.391675i
\(177\) 9.00000 5.19615i 0.676481 0.390567i
\(178\) 4.50000 + 7.79423i 0.337289 + 0.584202i
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) −1.00000 1.73205i −0.0741249 0.128388i
\(183\) 22.5167i 1.66448i
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) 0 0
\(186\) −6.00000 3.46410i −0.439941 0.254000i
\(187\) 0 0
\(188\) 3.00000 0.218797
\(189\) −4.50000 + 2.59808i −0.327327 + 0.188982i
\(190\) 0 0
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) −1.50000 0.866025i −0.108253 0.0625000i
\(193\) 1.00000 1.73205i 0.0719816 0.124676i −0.827788 0.561041i \(-0.810401\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 18.0000 1.27920
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 19.5000 11.2583i 1.37542 0.794101i
\(202\) 3.00000 5.19615i 0.211079 0.365600i
\(203\) −1.50000 + 2.59808i −0.105279 + 0.182349i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 27.0000 1.87663
\(208\) −2.00000 −0.138675
\(209\) 12.0000 + 20.7846i 0.830057 + 1.43770i
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) 3.00000 5.19615i 0.206041 0.356873i
\(213\) 9.00000 + 5.19615i 0.616670 + 0.356034i
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 0 0
\(216\) 5.19615i 0.353553i
\(217\) −4.00000 −0.271538
\(218\) −3.50000 6.06218i −0.237050 0.410582i
\(219\) −6.00000 3.46410i −0.405442 0.234082i
\(220\) 0 0
\(221\) 0 0
\(222\) 13.8564i 0.929981i
\(223\) −0.500000 0.866025i −0.0334825 0.0579934i 0.848799 0.528716i \(-0.177326\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 0 0
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) −6.00000 + 3.46410i −0.397360 + 0.229416i
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 9.00000 5.19615i 0.592157 0.341882i
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 3.00000 + 5.19615i 0.196116 + 0.339683i
\(235\) 0 0
\(236\) −3.00000 5.19615i −0.195283 0.338241i
\(237\) 17.3205i 1.12509i
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) −14.5000 25.1147i −0.934027 1.61778i −0.776360 0.630290i \(-0.782936\pi\)
−0.157667 0.987492i \(-0.550397\pi\)
\(242\) −25.0000 −1.60706
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) −4.50000 2.59808i −0.286910 0.165647i
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) −2.00000 + 3.46410i −0.127000 + 0.219971i
\(249\) 15.5885i 0.987878i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 1.50000 + 2.59808i 0.0944911 + 0.163663i
\(253\) −54.0000 −3.39495
\(254\) 3.50000 + 6.06218i 0.219610 + 0.380375i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 12.0000 6.92820i 0.747087 0.431331i
\(259\) 4.00000 + 6.92820i 0.248548 + 0.430498i
\(260\) 0 0
\(261\) 4.50000 7.79423i 0.278543 0.482451i
\(262\) 18.0000 1.11204
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 10.3923i 0.639602i
\(265\) 0 0
\(266\) −2.00000 + 3.46410i −0.122628 + 0.212398i
\(267\) −13.5000 7.79423i −0.826187 0.476999i
\(268\) −6.50000 11.2583i −0.397051 0.687712i
\(269\) 21.0000 1.28039 0.640196 0.768211i \(-0.278853\pi\)
0.640196 + 0.768211i \(0.278853\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 3.00000 + 1.73205i 0.181568 + 0.104828i
\(274\) 6.00000 10.3923i 0.362473 0.627822i
\(275\) 0 0
\(276\) 15.5885i 0.938315i
\(277\) 4.00000 + 6.92820i 0.240337 + 0.416275i 0.960810 0.277207i \(-0.0894088\pi\)
−0.720473 + 0.693482i \(0.756075\pi\)
\(278\) 16.0000 0.959616
\(279\) 12.0000 0.718421
\(280\) 0 0
\(281\) 7.50000 + 12.9904i 0.447412 + 0.774941i 0.998217 0.0596933i \(-0.0190123\pi\)
−0.550804 + 0.834634i \(0.685679\pi\)
\(282\) −4.50000 + 2.59808i −0.267971 + 0.154713i
\(283\) −6.50000 + 11.2583i −0.386385 + 0.669238i −0.991960 0.126550i \(-0.959610\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) −3.00000 −0.177084
\(288\) 3.00000 0.176777
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 3.46410i 0.203069i
\(292\) −2.00000 + 3.46410i −0.117041 + 0.202721i
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) −9.00000 5.19615i −0.524891 0.303046i
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) −27.0000 + 15.5885i −1.56670 + 0.904534i
\(298\) 3.00000 0.173785
\(299\) −9.00000 15.5885i −0.520483 0.901504i
\(300\) 0 0
\(301\) 4.00000 6.92820i 0.230556 0.399335i
\(302\) 7.00000 12.1244i 0.402805 0.697678i
\(303\) 10.3923i 0.597022i
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) −3.00000 5.19615i −0.170941 0.296078i
\(309\) −12.0000 + 6.92820i −0.682656 + 0.394132i
\(310\) 0 0
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 3.00000 1.73205i 0.169842 0.0980581i
\(313\) 1.00000 + 1.73205i 0.0565233 + 0.0979013i 0.892903 0.450250i \(-0.148665\pi\)
−0.836379 + 0.548151i \(0.815332\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) 10.3923i 0.582772i
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) 0 0
\(321\) −4.50000 2.59808i −0.251166 0.145010i
\(322\) −4.50000 7.79423i −0.250775 0.434355i
\(323\) 0 0
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 0 0
\(326\) 2.00000 + 3.46410i 0.110770 + 0.191859i
\(327\) 10.5000 + 6.06218i 0.580651 + 0.335239i
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) −1.50000 + 2.59808i −0.0826977 + 0.143237i
\(330\) 0 0
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) 9.00000 0.493939
\(333\) −12.0000 20.7846i −0.657596 1.13899i
\(334\) −3.00000 −0.164153
\(335\) 0 0
\(336\) 1.50000 0.866025i 0.0818317 0.0472456i
\(337\) 4.00000 6.92820i 0.217894 0.377403i −0.736270 0.676688i \(-0.763415\pi\)
0.954164 + 0.299285i \(0.0967480\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 6.00000 10.3923i 0.324443 0.561951i
\(343\) −13.0000 −0.701934
\(344\) −4.00000 6.92820i −0.215666 0.373544i
\(345\) 0 0
\(346\) −12.0000 + 20.7846i −0.645124 + 1.11739i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) −4.50000 2.59808i −0.241225 0.139272i
\(349\) −11.5000 19.9186i −0.615581 1.06622i −0.990282 0.139072i \(-0.955588\pi\)
0.374701 0.927146i \(-0.377745\pi\)
\(350\) 0 0
\(351\) −9.00000 5.19615i −0.480384 0.277350i
\(352\) −6.00000 −0.319801
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) 9.00000 + 5.19615i 0.478345 + 0.276172i
\(355\) 0 0
\(356\) −4.50000 + 7.79423i −0.238500 + 0.413093i
\(357\) 0 0
\(358\) −9.00000 15.5885i −0.475665 0.823876i
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 2.50000 + 4.33013i 0.131397 + 0.227586i
\(363\) 37.5000 21.6506i 1.96824 1.13636i
\(364\) 1.00000 1.73205i 0.0524142 0.0907841i
\(365\) 0 0
\(366\) 19.5000 11.2583i 1.01928 0.588482i
\(367\) 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i \(-0.0997115\pi\)
−0.742538 + 0.669804i \(0.766378\pi\)
\(368\) −9.00000 −0.469157
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) 3.00000 + 5.19615i 0.155752 + 0.269771i
\(372\) 6.92820i 0.359211i
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.50000 + 2.59808i 0.0773566 + 0.133986i
\(377\) −6.00000 −0.309016
\(378\) −4.50000 2.59808i −0.231455 0.133631i
\(379\) −22.0000 −1.13006 −0.565032 0.825069i \(-0.691136\pi\)
−0.565032 + 0.825069i \(0.691136\pi\)
\(380\) 0 0
\(381\) −10.5000 6.06218i −0.537931 0.310575i
\(382\) −6.00000 + 10.3923i −0.306987 + 0.531717i
\(383\) −6.00000 + 10.3923i −0.306586 + 0.531022i −0.977613 0.210411i \(-0.932520\pi\)
0.671027 + 0.741433i \(0.265853\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) −12.0000 + 20.7846i −0.609994 + 1.05654i
\(388\) −2.00000 −0.101535
\(389\) −10.5000 18.1865i −0.532371 0.922094i −0.999286 0.0377914i \(-0.987968\pi\)
0.466915 0.884302i \(-0.345366\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.00000 + 5.19615i −0.151523 + 0.262445i
\(393\) −27.0000 + 15.5885i −1.36197 + 0.786334i
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) 0 0
\(396\) 9.00000 + 15.5885i 0.452267 + 0.783349i
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 4.00000 + 6.92820i 0.200502 + 0.347279i
\(399\) 6.92820i 0.346844i
\(400\) 0 0
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 19.5000 + 11.2583i 0.972572 + 0.561514i
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) 24.0000 + 41.5692i 1.18964 + 2.06051i
\(408\) 0 0
\(409\) 5.00000 8.66025i 0.247234 0.428222i −0.715523 0.698589i \(-0.753812\pi\)
0.962757 + 0.270367i \(0.0871450\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 4.00000 + 6.92820i 0.197066 + 0.341328i
\(413\) 6.00000 0.295241
\(414\) 13.5000 + 23.3827i 0.663489 + 1.14920i
\(415\) 0 0
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) −24.0000 + 13.8564i −1.17529 + 0.678551i
\(418\) −12.0000 + 20.7846i −0.586939 + 1.01661i
\(419\) 15.0000 25.9808i 0.732798 1.26924i −0.222885 0.974845i \(-0.571547\pi\)
0.955683 0.294398i \(-0.0951193\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) −2.00000 −0.0973585
\(423\) 4.50000 7.79423i 0.218797 0.378968i
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 10.3923i 0.503509i
\(427\) 6.50000 11.2583i 0.314557 0.544829i
\(428\) −1.50000 + 2.59808i −0.0725052 + 0.125583i
\(429\) 18.0000 + 10.3923i 0.869048 + 0.501745i
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) −4.50000 + 2.59808i −0.216506 + 0.125000i
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) −2.00000 3.46410i −0.0960031 0.166282i
\(435\) 0 0
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) −18.0000 + 31.1769i −0.861057 + 1.49139i
\(438\) 6.92820i 0.331042i
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 4.50000 + 7.79423i 0.213801 + 0.370315i 0.952901 0.303281i \(-0.0980821\pi\)
−0.739100 + 0.673596i \(0.764749\pi\)
\(444\) −12.0000 + 6.92820i −0.569495 + 0.328798i
\(445\) 0 0
\(446\) 0.500000 0.866025i 0.0236757 0.0410075i
\(447\) −4.50000 + 2.59808i −0.212843 + 0.122885i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 24.2487i 1.13930i
\(454\) 6.00000 10.3923i 0.281594 0.487735i
\(455\) 0 0
\(456\) −6.00000 3.46410i −0.280976 0.162221i
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 13.0000 0.607450
\(459\) 0 0
\(460\) 0 0
\(461\) 13.5000 + 23.3827i 0.628758 + 1.08904i 0.987801 + 0.155719i \(0.0497696\pi\)
−0.359044 + 0.933321i \(0.616897\pi\)
\(462\) 9.00000 + 5.19615i 0.418718 + 0.241747i
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) 6.00000 + 10.3923i 0.277945 + 0.481414i
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) −3.00000 + 5.19615i −0.138675 + 0.240192i
\(469\) 13.0000 0.600284
\(470\) 0 0
\(471\) −21.0000 + 12.1244i −0.967629 + 0.558661i
\(472\) 3.00000 5.19615i 0.138086 0.239172i
\(473\) 24.0000 41.5692i 1.10352 1.91135i
\(474\) 15.0000 8.66025i 0.688973 0.397779i
\(475\) 0 0
\(476\) 0 0
\(477\) −9.00000 15.5885i −0.412082 0.713746i
\(478\) 0 0
\(479\) 15.0000 + 25.9808i 0.685367 + 1.18709i 0.973321 + 0.229447i \(0.0736918\pi\)
−0.287954 + 0.957644i \(0.592975\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 14.5000 25.1147i 0.660457 1.14394i
\(483\) 13.5000 + 7.79423i 0.614271 + 0.354650i
\(484\) −12.5000 21.6506i −0.568182 0.984120i
\(485\) 0 0
\(486\) 13.5000 + 7.79423i 0.612372 + 0.353553i
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −6.50000 11.2583i −0.294241 0.509641i
\(489\) −6.00000 3.46410i −0.271329 0.156652i
\(490\) 0 0
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) 5.19615i 0.234261i
\(493\) 0 0
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) −13.5000 + 7.79423i −0.604949 + 0.349268i
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 4.50000 2.59808i 0.201045 0.116073i
\(502\) 6.00000 + 10.3923i 0.267793 + 0.463831i
\(503\) −27.0000 −1.20387 −0.601935 0.798545i \(-0.705603\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(504\) −1.50000 + 2.59808i −0.0668153 + 0.115728i
\(505\) 0 0
\(506\) −27.0000 46.7654i −1.20030 2.07897i
\(507\) 15.5885i 0.692308i
\(508\) −3.50000 + 6.06218i −0.155287 + 0.268966i
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −1.00000 −0.0441942
\(513\) 20.7846i 0.917663i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 12.0000 + 6.92820i 0.528271 + 0.304997i
\(517\) −9.00000 + 15.5885i −0.395820 + 0.685580i
\(518\) −4.00000 + 6.92820i −0.175750 + 0.304408i
\(519\) 41.5692i 1.82469i
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 9.00000 0.393919
\(523\) 19.0000 0.830812 0.415406 0.909636i \(-0.363640\pi\)
0.415406 + 0.909636i \(0.363640\pi\)
\(524\) 9.00000 + 15.5885i 0.393167 + 0.680985i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 9.00000 5.19615i 0.391675 0.226134i
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) 0 0
\(531\) −18.0000 −0.781133
\(532\) −4.00000 −0.173422
\(533\) −3.00000 5.19615i −0.129944 0.225070i
\(534\) 15.5885i 0.674579i
\(535\) 0 0
\(536\) 6.50000 11.2583i 0.280757 0.486286i
\(537\) 27.0000 + 15.5885i 1.16514 + 0.672692i
\(538\) 10.5000 + 18.1865i 0.452687 + 0.784077i
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) −2.00000 3.46410i −0.0859074 0.148796i
\(543\) −7.50000 4.33013i −0.321856 0.185824i
\(544\) 0 0
\(545\) 0 0
\(546\) 3.46410i 0.148250i
\(547\) −21.5000 37.2391i −0.919274 1.59223i −0.800521 0.599305i \(-0.795444\pi\)
−0.118753 0.992924i \(-0.537890\pi\)
\(548\) 12.0000 0.512615
\(549\) −19.5000 + 33.7750i −0.832240 + 1.44148i
\(550\) 0 0
\(551\) 6.00000 + 10.3923i 0.255609 + 0.442727i
\(552\) 13.5000 7.79423i 0.574598 0.331744i
\(553\) 5.00000 8.66025i 0.212622 0.368271i
\(554\) −4.00000 + 6.92820i −0.169944 + 0.294351i
\(555\) 0 0
\(556\) 8.00000 + 13.8564i 0.339276 + 0.587643i
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 6.00000 + 10.3923i 0.254000 + 0.439941i
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −7.50000 + 12.9904i −0.316368 + 0.547966i
\(563\) −1.50000 + 2.59808i −0.0632175 + 0.109496i −0.895902 0.444252i \(-0.853470\pi\)
0.832684 + 0.553748i \(0.186803\pi\)
\(564\) −4.50000 2.59808i −0.189484 0.109399i
\(565\) 0 0
\(566\) −13.0000 −0.546431
\(567\) 9.00000 0.377964
\(568\) 6.00000 0.251754
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 20.0000 34.6410i 0.836974 1.44968i −0.0554391 0.998462i \(-0.517656\pi\)
0.892413 0.451219i \(-0.149011\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) 20.7846i 0.868290i
\(574\) −1.50000 2.59808i −0.0626088 0.108442i
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) −8.50000 14.7224i −0.353553 0.612372i
\(579\) −3.00000 + 1.73205i −0.124676 + 0.0719816i
\(580\) 0 0
\(581\) −4.50000 + 7.79423i −0.186691 + 0.323359i
\(582\) 3.00000 1.73205i 0.124354 0.0717958i
\(583\) 18.0000 + 31.1769i 0.745484 + 1.29122i
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 0 0
\(587\) −7.50000 12.9904i −0.309558 0.536170i 0.668708 0.743525i \(-0.266848\pi\)
−0.978266 + 0.207355i \(0.933514\pi\)
\(588\) 10.3923i 0.428571i
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) 0 0
\(591\) −18.0000 10.3923i −0.740421 0.427482i
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) −27.0000 15.5885i −1.10782 0.639602i
\(595\) 0 0
\(596\) 1.50000 + 2.59808i 0.0614424 + 0.106421i
\(597\) −12.0000 6.92820i −0.491127 0.283552i
\(598\) 9.00000 15.5885i 0.368037 0.637459i
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 8.00000 0.326056
\(603\) −39.0000 −1.58820
\(604\) 14.0000 0.569652
\(605\) 0 0
\(606\) −9.00000 + 5.19615i −0.365600 + 0.211079i
\(607\) 14.5000 25.1147i 0.588537 1.01938i −0.405887 0.913923i \(-0.633038\pi\)
0.994424 0.105453i \(-0.0336291\pi\)
\(608\) −2.00000 + 3.46410i −0.0811107 + 0.140488i
\(609\) 4.50000 2.59808i 0.182349 0.105279i
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 40.0000 1.61558 0.807792 0.589467i \(-0.200662\pi\)
0.807792 + 0.589467i \(0.200662\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 0 0
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) 6.00000 10.3923i 0.241551 0.418378i −0.719605 0.694383i \(-0.755677\pi\)
0.961156 + 0.276005i \(0.0890106\pi\)
\(618\) −12.0000 6.92820i −0.482711 0.278693i
\(619\) 20.0000 + 34.6410i 0.803868 + 1.39234i 0.917053 + 0.398766i \(0.130561\pi\)
−0.113185 + 0.993574i \(0.536105\pi\)
\(620\) 0 0
\(621\) −40.5000 23.3827i −1.62521 0.938315i
\(622\) −12.0000 −0.481156
\(623\) −4.50000 7.79423i −0.180289 0.312269i
\(624\) 3.00000 + 1.73205i 0.120096 + 0.0693375i
\(625\) 0 0
\(626\) −1.00000 + 1.73205i −0.0399680 + 0.0692267i
\(627\) 41.5692i 1.66011i
\(628\) 7.00000 + 12.1244i 0.279330 + 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −5.00000 8.66025i −0.198889 0.344486i
\(633\) 3.00000 1.73205i 0.119239 0.0688428i
\(634\) 3.00000 5.19615i 0.119145 0.206366i
\(635\) 0 0
\(636\) −9.00000 + 5.19615i −0.356873 + 0.206041i
\(637\) −6.00000 10.3923i −0.237729 0.411758i
\(638\) −18.0000 −0.712627
\(639\) −9.00000 15.5885i −0.356034 0.616670i
\(640\) 0 0
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 5.19615i 0.205076i
\(643\) −15.5000 + 26.8468i −0.611260 + 1.05873i 0.379768 + 0.925082i \(0.376004\pi\)
−0.991028 + 0.133652i \(0.957330\pi\)
\(644\) 4.50000 7.79423i 0.177325 0.307136i
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00000 0.117942 0.0589711 0.998260i \(-0.481218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 6.00000 + 3.46410i 0.235159 + 0.135769i
\(652\) −2.00000 + 3.46410i −0.0783260 + 0.135665i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 12.1244i 0.474100i
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 6.00000 + 10.3923i 0.234082 + 0.405442i
\(658\) −3.00000 −0.116952
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 23.0000 39.8372i 0.894596 1.54949i 0.0602929 0.998181i \(-0.480797\pi\)
0.834303 0.551306i \(-0.185870\pi\)
\(662\) −5.00000 + 8.66025i −0.194331 + 0.336590i
\(663\) 0 0
\(664\) 4.50000 + 7.79423i 0.174634 + 0.302475i
\(665\) 0 0
\(666\) 12.0000 20.7846i 0.464991 0.805387i
\(667\) −27.0000 −1.04544
\(668\) −1.50000 2.59808i −0.0580367 0.100523i
\(669\) 1.73205i 0.0669650i
\(670\) 0 0
\(671\) 39.0000 67.5500i 1.50558 2.60774i
\(672\) 1.50000 + 0.866025i 0.0578638 + 0.0334077i
\(673\) −23.0000 39.8372i −0.886585 1.53561i −0.843886 0.536522i \(-0.819738\pi\)
−0.0426985 0.999088i \(-0.513595\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) 1.00000 1.73205i 0.0383765 0.0664700i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) −12.0000 20.7846i −0.459504 0.795884i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 12.0000 0.458831
\(685\) 0 0
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) −19.5000 + 11.2583i −0.743971 + 0.429532i
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 5.00000 + 8.66025i 0.190209 + 0.329452i 0.945319 0.326146i \(-0.105750\pi\)
−0.755110 + 0.655598i \(0.772417\pi\)
\(692\) −24.0000 −0.912343
\(693\) −18.0000 −0.683763
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 5.19615i 0.196960i
\(697\) 0 0
\(698\) 11.5000 19.9186i 0.435281 0.753930i
\(699\) −18.0000 10.3923i −0.680823 0.393073i
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 10.3923i 0.392232i
\(703\) 32.0000 1.20690
\(704\) −3.00000 5.19615i −0.113067 0.195837i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) −3.00000 + 5.19615i −0.112827 + 0.195421i
\(708\) 10.3923i 0.390567i
\(709\) −5.50000 9.52628i −0.206557 0.357767i 0.744071 0.668101i \(-0.232892\pi\)
−0.950628 + 0.310334i \(0.899559\pi\)
\(710\) 0 0
\(711\) −15.0000 + 25.9808i −0.562544 + 0.974355i
\(712\) −9.00000 −0.337289
\(713\) −18.0000 31.1769i −0.674105 1.16758i
\(714\) 0 0
\(715\) 0 0
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) 0 0
\(718\) −6.00000 10.3923i −0.223918 0.387837i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −1.50000 2.59808i −0.0558242 0.0966904i
\(723\) 50.2295i 1.86805i
\(724\) −2.50000 + 4.33013i −0.0929118 + 0.160928i
\(725\) 0 0
\(726\) 37.5000 + 21.6506i 1.39176 + 0.803530i
\(727\) 26.5000 + 45.8993i 0.982831 + 1.70231i 0.651206 + 0.758901i \(0.274263\pi\)
0.331625 + 0.943411i \(0.392403\pi\)
\(728\) 2.00000 0.0741249
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 19.5000 + 11.2583i 0.720741 + 0.416120i
\(733\) 7.00000 12.1244i 0.258551 0.447823i −0.707303 0.706910i \(-0.750088\pi\)
0.965854 + 0.259087i \(0.0834217\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) −4.50000 7.79423i −0.165872 0.287299i
\(737\) 78.0000 2.87317
\(738\) 4.50000 + 7.79423i 0.165647 + 0.286910i
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) 12.0000 6.92820i 0.440831 0.254514i
\(742\) −3.00000 + 5.19615i −0.110133 + 0.190757i
\(743\) −7.50000 + 12.9904i −0.275148 + 0.476571i −0.970173 0.242415i \(-0.922060\pi\)
0.695024 + 0.718986i \(0.255394\pi\)
\(744\) 6.00000 3.46410i 0.219971 0.127000i
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 13.5000 23.3827i 0.493939 0.855528i
\(748\) 0 0
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 0 0
\(751\) −1.00000 + 1.73205i −0.0364905 + 0.0632034i −0.883694 0.468065i \(-0.844951\pi\)
0.847203 + 0.531269i \(0.178285\pi\)
\(752\) −1.50000 + 2.59808i −0.0546994 + 0.0947421i
\(753\) −18.0000 10.3923i −0.655956 0.378717i
\(754\) −3.00000 5.19615i −0.109254 0.189233i
\(755\) 0 0
\(756\) 5.19615i 0.188982i
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) −11.0000 19.0526i −0.399538 0.692020i
\(759\) 81.0000 + 46.7654i 2.94011 + 1.69748i
\(760\) 0 0
\(761\) 16.5000 28.5788i 0.598125 1.03598i −0.394973 0.918693i \(-0.629246\pi\)
0.993098 0.117289i \(-0.0374205\pi\)
\(762\) 12.1244i 0.439219i
\(763\) 3.50000 + 6.06218i 0.126709 + 0.219466i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 6.00000 + 10.3923i 0.216647 + 0.375244i
\(768\) 1.50000 0.866025i 0.0541266 0.0312500i
\(769\) −14.5000 + 25.1147i −0.522883 + 0.905661i 0.476762 + 0.879032i \(0.341810\pi\)
−0.999645 + 0.0266282i \(0.991523\pi\)
\(770\) 0 0
\(771\) −27.0000 + 15.5885i −0.972381 + 0.561405i
\(772\) 1.00000 + 1.73205i 0.0359908 + 0.0623379i
\(773\) 48.0000 1.72644 0.863220 0.504828i \(-0.168444\pi\)
0.863220 + 0.504828i \(0.168444\pi\)
\(774\) −24.0000 −0.862662
\(775\) 0 0
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 13.8564i 0.497096i
\(778\) 10.5000 18.1865i 0.376443 0.652019i
\(779\) −6.00000 + 10.3923i −0.214972 + 0.372343i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) −13.5000 + 7.79423i −0.482451 + 0.278543i
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) −27.0000 15.5885i −0.963058 0.556022i
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) −6.00000 + 10.3923i −0.213741 + 0.370211i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −9.00000 + 15.5885i −0.319801 + 0.553912i
\(793\) 26.0000 0.923287
\(794\) −1.00000 1.73205i −0.0354887 0.0614682i
\(795\) 0 0
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) −21.0000 + 36.3731i −0.743858 + 1.28840i 0.206868 + 0.978369i \(0.433673\pi\)
−0.950726 + 0.310031i \(0.899660\pi\)
\(798\) 6.00000 3.46410i 0.212398 0.122628i
\(799\) 0 0
\(800\) 0 0
\(801\) 13.5000 + 23.3827i 0.476999 + 0.826187i
\(802\) −6.00000 −0.211867
\(803\) −12.0000 20.7846i −0.423471 0.733473i
\(804\) 22.5167i 0.794101i
\(805\) 0 0
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) −31.5000 18.1865i −1.10885 0.640196i
\(808\) 3.00000 + 5.19615i 0.105540 + 0.182800i
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) −1.50000 2.59808i −0.0526397 0.0911746i
\(813\) 6.00000 + 3.46410i 0.210429 + 0.121491i
\(814\) −24.0000 + 41.5692i −0.841200 + 1.45700i
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 27.7128i −0.559769 0.969549i
\(818\) 10.0000 0.349642
\(819\) −3.00000 5.19615i −0.104828 0.181568i
\(820\) 0 0
\(821\) −13.5000 23.3827i −0.471153 0.816061i 0.528302 0.849056i \(-0.322829\pi\)
−0.999456 + 0.0329950i \(0.989495\pi\)
\(822\) −18.0000 + 10.3923i −0.627822 + 0.362473i
\(823\) −12.5000 + 21.6506i −0.435723 + 0.754694i −0.997354 0.0726937i \(-0.976840\pi\)
0.561632 + 0.827387i \(0.310174\pi\)
\(824\) −4.00000 + 6.92820i −0.139347 + 0.241355i
\(825\) 0 0
\(826\) 3.00000 + 5.19615i 0.104383 + 0.180797i
\(827\) −3.00000 −0.104320 −0.0521601 0.998639i \(-0.516611\pi\)
−0.0521601 + 0.998639i \(0.516611\pi\)
\(828\) −13.5000 + 23.3827i −0.469157 + 0.812605i
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0 0
\(831\) 13.8564i 0.480673i
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) −24.0000 13.8564i −0.831052 0.479808i
\(835\) 0 0
\(836\) −24.0000 −0.830057
\(837\) −18.0000 10.3923i −0.622171 0.359211i
\(838\) 30.0000 1.03633
\(839\) −18.0000 31.1769i −0.621429 1.07635i −0.989220 0.146438i \(-0.953219\pi\)
0.367791 0.929909i \(-0.380114\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) −11.0000 + 19.0526i −0.379085 + 0.656595i
\(843\) 25.9808i 0.894825i
\(844\) −1.00000 1.73205i −0.0344214 0.0596196i
\(845\) 0 0
\(846\) 9.00000 0.309426
\(847\) 25.0000 0.859010
\(848\) 3.00000 + 5.19615i 0.103020 + 0.178437i
\(849\) 19.5000 11.2583i 0.669238 0.386385i
\(850\) 0 0
\(851\) −36.0000 + 62.3538i −1.23406 + 2.13746i
\(852\) −9.00000 + 5.19615i −0.308335 + 0.178017i
\(853\) −5.00000 8.66025i −0.171197 0.296521i 0.767642 0.640879i \(-0.221430\pi\)
−0.938839 + 0.344358i \(0.888097\pi\)
\(854\) 13.0000 0.444851
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) −21.0000 36.3731i −0.717346 1.24248i −0.962048 0.272882i \(-0.912023\pi\)
0.244701 0.969599i \(-0.421310\pi\)
\(858\) 20.7846i 0.709575i
\(859\) 17.0000 29.4449i 0.580033 1.00465i −0.415442 0.909620i \(-0.636373\pi\)
0.995475 0.0950262i \(-0.0302935\pi\)
\(860\) 0 0
\(861\) 4.50000 + 2.59808i 0.153360 + 0.0885422i
\(862\) 3.00000 + 5.19615i 0.102180 + 0.176982i
\(863\) −3.00000 −0.102121 −0.0510606 0.998696i \(-0.516260\pi\)
−0.0510606 + 0.998696i \(0.516260\pi\)
\(864\) −4.50000 2.59808i −0.153093 0.0883883i
\(865\) 0 0
\(866\) 8.00000 + 13.8564i 0.271851 + 0.470860i
\(867\) 25.5000 + 14.7224i 0.866025 + 0.500000i
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) 30.0000 51.9615i 1.01768 1.76267i
\(870\) 0 0
\(871\) 13.0000 + 22.5167i 0.440488 + 0.762948i
\(872\) 7.00000 0.237050
\(873\) −3.00000 + 5.19615i −0.101535 + 0.175863i
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 6.00000 3.46410i 0.202721 0.117041i
\(877\) −11.0000 + 19.0526i −0.371444 + 0.643359i −0.989788 0.142548i \(-0.954470\pi\)
0.618344 + 0.785907i \(0.287804\pi\)
\(878\) −14.0000 + 24.2487i −0.472477 + 0.818354i
\(879\) 0 0
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 9.00000 + 15.5885i 0.303046 + 0.524891i
\(883\) 31.0000 1.04323 0.521617 0.853180i \(-0.325329\pi\)
0.521617 + 0.853180i \(0.325329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) 18.0000 31.1769i 0.604381 1.04682i −0.387768 0.921757i \(-0.626754\pi\)
0.992149 0.125061i \(-0.0399128\pi\)
\(888\) −12.0000 6.92820i −0.402694 0.232495i
\(889\) −3.50000 6.06218i −0.117386 0.203319i
\(890\) 0 0
\(891\) 54.0000 1.80907
\(892\) 1.00000 0.0334825
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) −4.50000 2.59808i −0.150503 0.0868927i
\(895\) 0 0
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) 31.1769i 1.04097i
\(898\) 3.00000 + 5.19615i 0.100111 + 0.173398i
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) −9.00000 15.5885i −0.299667 0.519039i
\(903\) −12.0000 + 6.92820i −0.399335 + 0.230556i
\(904\) 0 0
\(905\) 0 0
\(906\) −21.0000 + 12.1244i −0.697678 + 0.402805i
\(907\) −18.5000 32.0429i −0.614282 1.06397i −0.990510 0.137441i \(-0.956112\pi\)
0.376228 0.926527i \(-0.377221\pi\)
\(908\) 12.0000 0.398234
\(909\) 9.00000 15.5885i 0.298511 0.517036i
\(910\) 0 0
\(911\) 15.0000 + 25.9808i 0.496972 + 0.860781i 0.999994 0.00349271i \(-0.00111177\pi\)
−0.503022 + 0.864274i \(0.667778\pi\)
\(912\) 6.92820i 0.229416i
\(913\) −27.0000 + 46.7654i −0.893570 + 1.54771i
\(914\) −4.00000 + 6.92820i −0.132308 + 0.229165i
\(915\) 0 0
\(916\) 6.50000 + 11.2583i 0.214766 + 0.371986i
\(917\) −18.0000 −0.594412
\(918\) 0 0
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 0 0
\(921\) −10.5000 6.06218i −0.345987 0.199756i
\(922\) −13.5000 + 23.3827i −0.444599 + 0.770068i
\(923\) −6.00000 + 10.3923i −0.197492 + 0.342067i
\(924\) 10.3923i 0.341882i
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) 24.0000 0.788263
\(928\) −3.00000 −0.0984798
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) 0 0
\(931\) −12.0000 + 20.7846i −0.393284 + 0.681188i
\(932\) −6.00000 + 10.3923i −0.196537 + 0.340411i
\(933\) 18.0000 10.3923i 0.589294 0.340229i
\(934\) −18.0000 31.1769i −0.588978 1.02014i
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) −56.0000 −1.82944 −0.914720 0.404088i \(-0.867589\pi\)
−0.914720 + 0.404088i \(0.867589\pi\)
\(938\) 6.50000 + 11.2583i 0.212233 + 0.367598i
\(939\) 3.46410i 0.113047i
\(940\) 0 0
\(941\) −10.5000 + 18.1865i −0.342290 + 0.592864i −0.984858 0.173365i \(-0.944536\pi\)
0.642567 + 0.766229i \(0.277869\pi\)
\(942\) −21.0000 12.1244i −0.684217 0.395033i
\(943\) −13.5000 23.3827i −0.439620 0.761445i
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 48.0000 1.56061
\(947\) 19.5000 + 33.7750i 0.633665 + 1.09754i 0.986796 + 0.161966i \(0.0517835\pi\)
−0.353131 + 0.935574i \(0.614883\pi\)
\(948\) 15.0000 + 8.66025i 0.487177 + 0.281272i
\(949\) 4.00000 6.92820i 0.129845 0.224899i
\(950\) 0 0
\(951\) 10.3923i 0.336994i
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 9.00000 15.5885i 0.291386 0.504695i
\(955\) 0 0
\(956\) 0 0
\(957\) 27.0000 15.5885i 0.872786 0.503903i
\(958\) −15.0000 + 25.9808i −0.484628 + 0.839400i
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) −16.0000 −0.515861
\(963\) 4.50000 + 7.79423i 0.145010 + 0.251166i
\(964\) 29.0000 0.934027
\(965\) 0 0
\(966\) 15.5885i 0.501550i
\(967\) −18.5000 + 32.0429i −0.594920 + 1.03043i 0.398638 + 0.917108i \(0.369483\pi\)
−0.993558 + 0.113323i \(0.963850\pi\)
\(968\) 12.5000 21.6506i 0.401765 0.695878i
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 15.5885i 0.500000i
\(973\) −16.0000 −0.512936
\(974\) −4.00000 6.92820i −0.128168 0.221994i
\(975\) 0 0
\(976\) 6.50000 11.2583i 0.208060 0.360370i
\(977\) −21.0000 + 36.3731i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(978\) 6.92820i 0.221540i
\(979\) −27.0000 46.7654i −0.862924 1.49463i
\(980\) 0 0
\(981\) −10.5000 18.1865i −0.335239 0.580651i
\(982\) −12.0000 −0.382935
\(983\) 4.50000 + 7.79423i 0.143528 + 0.248597i 0.928823 0.370525i \(-0.120822\pi\)
−0.785295 + 0.619122i \(0.787489\pi\)
\(984\) 4.50000 2.59808i 0.143455 0.0828236i
\(985\) 0 0
\(986\) 0 0
\(987\) 4.50000 2.59808i 0.143237 0.0826977i
\(988\) −4.00000 6.92820i −0.127257 0.220416i
\(989\) 72.0000 2.28947
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) −2.00000 3.46410i −0.0635001 0.109985i
\(993\) 17.3205i 0.549650i
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 0 0
\(996\) −13.5000 7.79423i −0.427764 0.246970i
\(997\) −5.00000 8.66025i −0.158352 0.274273i 0.775923 0.630828i \(-0.217285\pi\)
−0.934274 + 0.356555i \(0.883951\pi\)
\(998\) −32.0000 −1.01294
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.e.301.1 2
3.2 odd 2 1350.2.e.b.901.1 2
5.2 odd 4 450.2.j.c.49.1 4
5.3 odd 4 450.2.j.c.49.2 4
5.4 even 2 90.2.e.a.31.1 2
9.2 odd 6 1350.2.e.b.451.1 2
9.4 even 3 4050.2.a.n.1.1 1
9.5 odd 6 4050.2.a.ba.1.1 1
9.7 even 3 inner 450.2.e.e.151.1 2
15.2 even 4 1350.2.j.e.199.2 4
15.8 even 4 1350.2.j.e.199.1 4
15.14 odd 2 270.2.e.b.91.1 2
20.19 odd 2 720.2.q.b.481.1 2
45.2 even 12 1350.2.j.e.1099.1 4
45.4 even 6 810.2.a.g.1.1 1
45.7 odd 12 450.2.j.c.349.2 4
45.13 odd 12 4050.2.c.t.649.2 2
45.14 odd 6 810.2.a.b.1.1 1
45.22 odd 12 4050.2.c.t.649.1 2
45.23 even 12 4050.2.c.a.649.1 2
45.29 odd 6 270.2.e.b.181.1 2
45.32 even 12 4050.2.c.a.649.2 2
45.34 even 6 90.2.e.a.61.1 yes 2
45.38 even 12 1350.2.j.e.1099.2 4
45.43 odd 12 450.2.j.c.349.1 4
60.59 even 2 2160.2.q.b.1441.1 2
180.59 even 6 6480.2.a.v.1.1 1
180.79 odd 6 720.2.q.b.241.1 2
180.119 even 6 2160.2.q.b.721.1 2
180.139 odd 6 6480.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.a.31.1 2 5.4 even 2
90.2.e.a.61.1 yes 2 45.34 even 6
270.2.e.b.91.1 2 15.14 odd 2
270.2.e.b.181.1 2 45.29 odd 6
450.2.e.e.151.1 2 9.7 even 3 inner
450.2.e.e.301.1 2 1.1 even 1 trivial
450.2.j.c.49.1 4 5.2 odd 4
450.2.j.c.49.2 4 5.3 odd 4
450.2.j.c.349.1 4 45.43 odd 12
450.2.j.c.349.2 4 45.7 odd 12
720.2.q.b.241.1 2 180.79 odd 6
720.2.q.b.481.1 2 20.19 odd 2
810.2.a.b.1.1 1 45.14 odd 6
810.2.a.g.1.1 1 45.4 even 6
1350.2.e.b.451.1 2 9.2 odd 6
1350.2.e.b.901.1 2 3.2 odd 2
1350.2.j.e.199.1 4 15.8 even 4
1350.2.j.e.199.2 4 15.2 even 4
1350.2.j.e.1099.1 4 45.2 even 12
1350.2.j.e.1099.2 4 45.38 even 12
2160.2.q.b.721.1 2 180.119 even 6
2160.2.q.b.1441.1 2 60.59 even 2
4050.2.a.n.1.1 1 9.4 even 3
4050.2.a.ba.1.1 1 9.5 odd 6
4050.2.c.a.649.1 2 45.23 even 12
4050.2.c.a.649.2 2 45.32 even 12
4050.2.c.t.649.1 2 45.22 odd 12
4050.2.c.t.649.2 2 45.13 odd 12
6480.2.a.g.1.1 1 180.139 odd 6
6480.2.a.v.1.1 1 180.59 even 6