Properties

Label 1350.2.e.e.451.1
Level $1350$
Weight $2$
Character 1350.451
Analytic conductor $10.780$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(451,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1350.451
Dual form 1350.2.e.e.901.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(2.00000 - 3.46410i) q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{11} +(2.00000 + 3.46410i) q^{13} +(2.00000 + 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.00000 q^{17} -4.00000 q^{19} +(1.50000 + 2.59808i) q^{22} +(-3.00000 - 5.19615i) q^{23} -4.00000 q^{26} -4.00000 q^{28} +(-3.00000 + 5.19615i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.50000 + 2.59808i) q^{34} +8.00000 q^{37} +(2.00000 - 3.46410i) q^{38} +(-3.00000 - 5.19615i) q^{41} +(0.500000 - 0.866025i) q^{43} -3.00000 q^{44} +6.00000 q^{46} +(6.00000 - 10.3923i) q^{47} +(-4.50000 - 7.79423i) q^{49} +(2.00000 - 3.46410i) q^{52} +(2.00000 - 3.46410i) q^{56} +(-3.00000 - 5.19615i) q^{58} +(-4.50000 - 7.79423i) q^{59} +(-4.00000 + 6.92820i) q^{61} +8.00000 q^{62} +1.00000 q^{64} +(2.00000 + 3.46410i) q^{67} +(-1.50000 - 2.59808i) q^{68} +6.00000 q^{71} +14.0000 q^{73} +(-4.00000 + 6.92820i) q^{74} +(2.00000 + 3.46410i) q^{76} +(-6.00000 - 10.3923i) q^{77} +(-4.00000 + 6.92820i) q^{79} +6.00000 q^{82} +(-4.50000 + 7.79423i) q^{83} +(0.500000 + 0.866025i) q^{86} +(1.50000 - 2.59808i) q^{88} +9.00000 q^{89} +16.0000 q^{91} +(-3.00000 + 5.19615i) q^{92} +(6.00000 + 10.3923i) q^{94} +(3.50000 - 6.06218i) q^{97} +9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 4 q^{7} + 2 q^{8} + 3 q^{11} + 4 q^{13} + 4 q^{14} - q^{16} + 6 q^{17} - 8 q^{19} + 3 q^{22} - 6 q^{23} - 8 q^{26} - 8 q^{28} - 6 q^{29} - 8 q^{31} - q^{32} - 3 q^{34} + 16 q^{37}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 3.46410i 0.755929 1.30931i −0.188982 0.981981i \(-0.560519\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 2.00000 + 3.46410i 0.534522 + 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 2.00000 3.46410i 0.324443 0.561951i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 6.00000 10.3923i 0.875190 1.51587i 0.0186297 0.999826i \(-0.494070\pi\)
0.856560 0.516047i \(-0.172597\pi\)
\(48\) 0 0
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.00000 3.46410i 0.267261 0.462910i
\(57\) 0 0
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −4.00000 + 6.92820i −0.464991 + 0.805387i
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −6.00000 10.3923i −0.683763 1.18431i
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 + 0.866025i 0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) −3.00000 + 5.19615i −0.312772 + 0.541736i
\(93\) 0 0
\(94\) 6.00000 + 10.3923i 0.618853 + 1.07188i
\(95\) 0 0
\(96\) 0 0
\(97\) 3.50000 6.06218i 0.355371 0.615521i −0.631810 0.775123i \(-0.717688\pi\)
0.987181 + 0.159602i \(0.0510211\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 2.00000 + 3.46410i 0.196116 + 0.339683i
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 + 3.46410i 0.188982 + 0.327327i
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 9.00000 0.828517
\(119\) 6.00000 10.3923i 0.550019 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −4.00000 6.92820i −0.362143 0.627250i
\(123\) 0 0
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) −8.00000 + 13.8564i −0.693688 + 1.20150i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −5.50000 9.52628i −0.466504 0.808008i 0.532764 0.846264i \(-0.321153\pi\)
−0.999268 + 0.0382553i \(0.987820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) −7.00000 + 12.1244i −0.579324 + 1.00342i
\(147\) 0 0
\(148\) −4.00000 6.92820i −0.328798 0.569495i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 12.0000 0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) 0 0
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) −3.00000 + 5.19615i −0.234261 + 0.405751i
\(165\) 0 0
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 0 0
\(178\) −4.50000 + 7.79423i −0.337289 + 0.584202i
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −8.00000 + 13.8564i −0.592999 + 1.02711i
\(183\) 0 0
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) 0 0
\(186\) 0 0
\(187\) 4.50000 7.79423i 0.329073 0.569970i
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 3.50000 + 6.06218i 0.251285 + 0.435239i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.00000 + 10.3923i 0.422159 + 0.731200i
\(203\) 12.0000 + 20.7846i 0.842235 + 1.45879i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −6.00000 + 10.3923i −0.415029 + 0.718851i
\(210\) 0 0
\(211\) −11.5000 19.9186i −0.791693 1.37125i −0.924918 0.380166i \(-0.875867\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 0 0
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) −1.00000 + 1.73205i −0.0669650 + 0.115987i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) −13.5000 + 23.3827i −0.896026 + 1.55196i −0.0634974 + 0.997982i \(0.520225\pi\)
−0.832529 + 0.553981i \(0.813108\pi\)
\(228\) 0 0
\(229\) −4.00000 6.92820i −0.264327 0.457829i 0.703060 0.711131i \(-0.251817\pi\)
−0.967387 + 0.253302i \(0.918483\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.50000 + 7.79423i −0.292925 + 0.507361i
\(237\) 0 0
\(238\) 6.00000 + 10.3923i 0.388922 + 0.673633i
\(239\) 9.00000 + 15.5885i 0.582162 + 1.00833i 0.995223 + 0.0976302i \(0.0311262\pi\)
−0.413061 + 0.910703i \(0.635540\pi\)
\(240\) 0 0
\(241\) −13.0000 + 22.5167i −0.837404 + 1.45043i 0.0546547 + 0.998505i \(0.482594\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) −4.00000 6.92820i −0.254000 0.439941i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −18.0000 −1.13165
\(254\) 8.00000 13.8564i 0.501965 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) 16.0000 27.7128i 0.994192 1.72199i
\(260\) 0 0
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 13.8564i −0.490511 0.849591i
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 0 0
\(274\) 9.00000 + 15.5885i 0.543710 + 0.941733i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) 11.0000 0.659736
\(279\) 0 0
\(280\) 0 0
\(281\) −9.00000 + 15.5885i −0.536895 + 0.929929i 0.462174 + 0.886789i \(0.347070\pi\)
−0.999069 + 0.0431402i \(0.986264\pi\)
\(282\) 0 0
\(283\) 0.500000 + 0.866025i 0.0297219 + 0.0514799i 0.880504 0.474039i \(-0.157204\pi\)
−0.850782 + 0.525519i \(0.823871\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) −6.00000 10.3923i −0.350524 0.607125i 0.635818 0.771839i \(-0.280663\pi\)
−0.986341 + 0.164714i \(0.947330\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.00000 −0.0570730 −0.0285365 0.999593i \(-0.509085\pi\)
−0.0285365 + 0.999593i \(0.509085\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00000 + 5.19615i 0.170114 + 0.294647i 0.938460 0.345389i \(-0.112253\pi\)
−0.768345 + 0.640036i \(0.778920\pi\)
\(312\) 0 0
\(313\) −8.50000 + 14.7224i −0.480448 + 0.832161i −0.999748 0.0224310i \(-0.992859\pi\)
0.519300 + 0.854592i \(0.326193\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 12.0000 20.7846i 0.668734 1.15828i
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 0 0
\(326\) −5.50000 + 9.52628i −0.304617 + 0.527612i
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) −24.0000 41.5692i −1.32316 2.29179i
\(330\) 0 0
\(331\) −8.50000 + 14.7224i −0.467202 + 0.809218i −0.999298 0.0374662i \(-0.988071\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 9.00000 0.493939
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0.500000 0.866025i 0.0269582 0.0466930i
\(345\) 0 0
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) 13.5000 + 23.3827i 0.724718 + 1.25525i 0.959090 + 0.283101i \(0.0913633\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(348\) 0 0
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) −4.50000 + 7.79423i −0.239511 + 0.414845i −0.960574 0.278024i \(-0.910320\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.50000 7.79423i −0.238500 0.413093i
\(357\) 0 0
\(358\) −1.50000 + 2.59808i −0.0792775 + 0.137313i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −1.00000 + 1.73205i −0.0525588 + 0.0910346i
\(363\) 0 0
\(364\) −8.00000 13.8564i −0.419314 0.726273i
\(365\) 0 0
\(366\) 0 0
\(367\) −13.0000 + 22.5167i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220423i \(0.929256\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 6.00000 10.3923i 0.309426 0.535942i
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.00000 + 5.19615i 0.153493 + 0.265858i
\(383\) 9.00000 + 15.5885i 0.459879 + 0.796533i 0.998954 0.0457244i \(-0.0145596\pi\)
−0.539076 + 0.842257i \(0.681226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) 0 0
\(388\) −7.00000 −0.355371
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) −4.50000 7.79423i −0.227284 0.393668i
\(393\) 0 0
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −1.00000 + 1.73205i −0.0501255 + 0.0868199i
\(399\) 0 0
\(400\) 0 0
\(401\) −7.50000 12.9904i −0.374532 0.648709i 0.615725 0.787961i \(-0.288863\pi\)
−0.990257 + 0.139253i \(0.955530\pi\)
\(402\) 0 0
\(403\) 16.0000 27.7128i 0.797017 1.38047i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 12.0000 20.7846i 0.594818 1.03025i
\(408\) 0 0
\(409\) 11.0000 + 19.0526i 0.543915 + 0.942088i 0.998674 + 0.0514740i \(0.0163919\pi\)
−0.454759 + 0.890614i \(0.650275\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.00000 + 6.92820i −0.197066 + 0.341328i
\(413\) −36.0000 −1.77144
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 0 0
\(418\) −6.00000 10.3923i −0.293470 0.508304i
\(419\) 4.50000 + 7.79423i 0.219839 + 0.380773i 0.954759 0.297382i \(-0.0961133\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(420\) 0 0
\(421\) −16.0000 + 27.7128i −0.779792 + 1.35064i 0.152269 + 0.988339i \(0.451342\pi\)
−0.932061 + 0.362301i \(0.881991\pi\)
\(422\) 23.0000 1.11962
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.0000 + 27.7128i 0.774294 + 1.34112i
\(428\) 6.00000 + 10.3923i 0.290021 + 0.502331i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) 16.0000 27.7128i 0.768025 1.33026i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) −7.00000 + 12.1244i −0.334092 + 0.578664i −0.983310 0.181938i \(-0.941763\pi\)
0.649218 + 0.760602i \(0.275096\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 1.73205i −0.0473514 0.0820150i
\(447\) 0 0
\(448\) 2.00000 3.46410i 0.0944911 0.163663i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 1.50000 2.59808i 0.0705541 0.122203i
\(453\) 0 0
\(454\) −13.5000 23.3827i −0.633586 1.09740i
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 8.66025i 0.233890 0.405110i −0.725059 0.688686i \(-0.758188\pi\)
0.958950 + 0.283577i \(0.0915211\pi\)
\(458\) 8.00000 0.373815
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 + 5.19615i −0.139724 + 0.242009i −0.927392 0.374091i \(-0.877955\pi\)
0.787668 + 0.616100i \(0.211288\pi\)
\(462\) 0 0
\(463\) −7.00000 12.1244i −0.325318 0.563467i 0.656259 0.754536i \(-0.272138\pi\)
−0.981577 + 0.191069i \(0.938805\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) 7.50000 12.9904i 0.347431 0.601768i
\(467\) −9.00000 −0.416470 −0.208235 0.978079i \(-0.566772\pi\)
−0.208235 + 0.978079i \(0.566772\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) −4.50000 7.79423i −0.207129 0.358758i
\(473\) −1.50000 2.59808i −0.0689701 0.119460i
\(474\) 0 0
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) 0 0
\(478\) −18.0000 −0.823301
\(479\) −6.00000 + 10.3923i −0.274147 + 0.474837i −0.969920 0.243426i \(-0.921729\pi\)
0.695773 + 0.718262i \(0.255062\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) −13.0000 22.5167i −0.592134 1.02561i
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) −4.00000 + 6.92820i −0.181071 + 0.313625i
\(489\) 0 0
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) −9.00000 + 15.5885i −0.405340 + 0.702069i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 12.0000 20.7846i 0.538274 0.932317i
\(498\) 0 0
\(499\) −5.50000 9.52628i −0.246214 0.426455i 0.716258 0.697835i \(-0.245853\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −6.00000 + 10.3923i −0.267793 + 0.463831i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 15.5885i 0.400099 0.692991i
\(507\) 0 0
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) 0 0
\(511\) 28.0000 48.4974i 1.23865 2.14540i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −3.00000 −0.132324
\(515\) 0 0
\(516\) 0 0
\(517\) −18.0000 31.1769i −0.791639 1.37116i
\(518\) 16.0000 + 27.7128i 0.703000 + 1.21763i
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) 29.0000 1.26808 0.634041 0.773300i \(-0.281395\pi\)
0.634041 + 0.773300i \(0.281395\pi\)
\(524\) 6.00000 10.3923i 0.262111 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) −12.0000 20.7846i −0.522728 0.905392i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.00000 + 3.46410i 0.0863868 + 0.149626i
\(537\) 0 0
\(538\) −6.00000 + 10.3923i −0.258678 + 0.448044i
\(539\) −27.0000 −1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 2.00000 3.46410i 0.0859074 0.148796i
\(543\) 0 0
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) 0 0
\(546\) 0 0
\(547\) −10.0000 + 17.3205i −0.427569 + 0.740571i −0.996657 0.0817056i \(-0.973963\pi\)
0.569087 + 0.822277i \(0.307297\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 0 0
\(553\) 16.0000 + 27.7128i 0.680389 + 1.17847i
\(554\) −1.00000 1.73205i −0.0424859 0.0735878i
\(555\) 0 0
\(556\) −5.50000 + 9.52628i −0.233252 + 0.404004i
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) −9.00000 15.5885i −0.379642 0.657559i
\(563\) −1.50000 2.59808i −0.0632175 0.109496i 0.832684 0.553748i \(-0.186803\pi\)
−0.895902 + 0.444252i \(0.853470\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.00000 −0.0420331
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −13.5000 + 23.3827i −0.565949 + 0.980253i 0.431011 + 0.902347i \(0.358157\pi\)
−0.996961 + 0.0779066i \(0.975176\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) 0 0
\(574\) 12.0000 20.7846i 0.500870 0.867533i
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000 + 31.1769i 0.746766 + 1.29344i
\(582\) 0 0
\(583\) 0 0
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) −1.50000 + 2.59808i −0.0619116 + 0.107234i −0.895320 0.445424i \(-0.853053\pi\)
0.833408 + 0.552658i \(0.186386\pi\)
\(588\) 0 0
\(589\) 16.0000 + 27.7128i 0.659269 + 1.14189i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 + 6.92820i −0.164399 + 0.284747i
\(593\) 45.0000 1.84793 0.923964 0.382479i \(-0.124930\pi\)
0.923964 + 0.382479i \(0.124930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) 9.00000 + 15.5885i 0.367730 + 0.636927i 0.989210 0.146503i \(-0.0468017\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(600\) 0 0
\(601\) 18.5000 32.0429i 0.754631 1.30706i −0.190927 0.981604i \(-0.561149\pi\)
0.945558 0.325455i \(-0.105517\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) 2.00000 + 3.46410i 0.0811107 + 0.140488i
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0.500000 0.866025i 0.0201784 0.0349499i
\(615\) 0 0
\(616\) −6.00000 10.3923i −0.241747 0.418718i
\(617\) 13.5000 + 23.3827i 0.543490 + 0.941351i 0.998700 + 0.0509678i \(0.0162306\pi\)
−0.455211 + 0.890384i \(0.650436\pi\)
\(618\) 0 0
\(619\) −17.5000 + 30.3109i −0.703384 + 1.21830i 0.263887 + 0.964554i \(0.414995\pi\)
−0.967271 + 0.253744i \(0.918338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) 18.0000 31.1769i 0.721155 1.24908i
\(624\) 0 0
\(625\) 0 0
\(626\) −8.50000 14.7224i −0.339728 0.588427i
\(627\) 0 0
\(628\) 2.00000 3.46410i 0.0798087 0.138233i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) −4.00000 + 6.92820i −0.159111 + 0.275589i
\(633\) 0 0
\(634\) −9.00000 15.5885i −0.357436 0.619097i
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0000 31.1769i 0.713186 1.23527i
\(638\) −18.0000 −0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) −13.5000 + 23.3827i −0.533218 + 0.923561i 0.466029 + 0.884769i \(0.345684\pi\)
−0.999247 + 0.0387913i \(0.987649\pi\)
\(642\) 0 0
\(643\) −11.5000 19.9186i −0.453516 0.785512i 0.545086 0.838380i \(-0.316497\pi\)
−0.998602 + 0.0528680i \(0.983164\pi\)
\(644\) 12.0000 + 20.7846i 0.472866 + 0.819028i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) −27.0000 −1.05984
\(650\) 0 0
\(651\) 0 0
\(652\) −5.50000 9.52628i −0.215397 0.373078i
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 48.0000 1.87123
\(659\) −22.5000 + 38.9711i −0.876476 + 1.51810i −0.0212930 + 0.999773i \(0.506778\pi\)
−0.855183 + 0.518327i \(0.826555\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) −8.50000 14.7224i −0.330362 0.572204i
\(663\) 0 0
\(664\) −4.50000 + 7.79423i −0.174634 + 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 9.00000 15.5885i 0.348220 0.603136i
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 + 20.7846i 0.463255 + 0.802381i
\(672\) 0 0
\(673\) 23.0000 39.8372i 0.886585 1.53561i 0.0426985 0.999088i \(-0.486405\pi\)
0.843886 0.536522i \(-0.180262\pi\)
\(674\) −13.0000 −0.500741
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 9.00000 15.5885i 0.345898 0.599113i −0.639618 0.768693i \(-0.720908\pi\)
0.985517 + 0.169580i \(0.0542410\pi\)
\(678\) 0 0
\(679\) −14.0000 24.2487i −0.537271 0.930580i
\(680\) 0 0
\(681\) 0 0
\(682\) 12.0000 20.7846i 0.459504 0.795884i
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.00000 6.92820i 0.152721 0.264520i
\(687\) 0 0
\(688\) 0.500000 + 0.866025i 0.0190623 + 0.0330169i
\(689\) 0 0
\(690\) 0 0
\(691\) 9.50000 16.4545i 0.361397 0.625958i −0.626794 0.779185i \(-0.715633\pi\)
0.988191 + 0.153227i \(0.0489666\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −27.0000 −1.02491
\(695\) 0 0
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) −7.00000 12.1244i −0.264954 0.458914i
\(699\) 0 0
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) −4.50000 7.79423i −0.169360 0.293340i
\(707\) −24.0000 41.5692i −0.902613 1.56337i
\(708\) 0 0
\(709\) 26.0000 45.0333i 0.976450 1.69126i 0.301388 0.953502i \(-0.402550\pi\)
0.675063 0.737760i \(-0.264116\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.00000 0.337289
\(713\) −24.0000 + 41.5692i −0.898807 + 1.55678i
\(714\) 0 0
\(715\) 0 0
\(716\) −1.50000 2.59808i −0.0560576 0.0970947i
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 1.50000 2.59808i 0.0558242 0.0966904i
\(723\) 0 0
\(724\) −1.00000 1.73205i −0.0371647 0.0643712i
\(725\) 0 0
\(726\) 0 0
\(727\) −7.00000 + 12.1244i −0.259616 + 0.449667i −0.966139 0.258022i \(-0.916929\pi\)
0.706523 + 0.707690i \(0.250263\pi\)
\(728\) 16.0000 0.592999
\(729\) 0 0
\(730\) 0 0
\(731\) 1.50000 2.59808i 0.0554795 0.0960933i
\(732\) 0 0
\(733\) 2.00000 + 3.46410i 0.0738717 + 0.127950i 0.900595 0.434659i \(-0.143131\pi\)
−0.826723 + 0.562609i \(0.809798\pi\)
\(734\) −13.0000 22.5167i −0.479839 0.831105i
\(735\) 0 0
\(736\) −3.00000 + 5.19615i −0.110581 + 0.191533i
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) −25.0000 −0.919640 −0.459820 0.888012i \(-0.652086\pi\)
−0.459820 + 0.888012i \(0.652086\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.00000 0.292901
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) −24.0000 + 41.5692i −0.876941 + 1.51891i
\(750\) 0 0
\(751\) 17.0000 + 29.4449i 0.620339 + 1.07446i 0.989423 + 0.145062i \(0.0463382\pi\)
−0.369084 + 0.929396i \(0.620328\pi\)
\(752\) 6.00000 + 10.3923i 0.218797 + 0.378968i
\(753\) 0 0
\(754\) 12.0000 20.7846i 0.437014 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) −14.5000 + 25.1147i −0.526664 + 0.912208i
\(759\) 0 0
\(760\) 0 0
\(761\) −19.5000 33.7750i −0.706874 1.22434i −0.966011 0.258502i \(-0.916771\pi\)
0.259136 0.965841i \(-0.416562\pi\)
\(762\) 0 0
\(763\) 4.00000 6.92820i 0.144810 0.250818i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −18.0000 −0.650366
\(767\) 18.0000 31.1769i 0.649942 1.12573i
\(768\) 0 0
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.50000 + 4.33013i −0.0899770 + 0.155845i
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.50000 6.06218i 0.125643 0.217620i
\(777\) 0 0
\(778\) −3.00000 5.19615i −0.107555 0.186291i
\(779\) 12.0000 + 20.7846i 0.429945 + 0.744686i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 18.0000 0.643679
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) −9.00000 15.5885i −0.320612 0.555316i
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) −7.00000 + 12.1244i −0.248421 + 0.430277i
\(795\) 0 0
\(796\) −1.00000 1.73205i −0.0354441 0.0613909i
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\) 18.0000 31.1769i 0.636794 1.10296i
\(800\) 0 0
\(801\) 0 0
\(802\) 15.0000 0.529668
\(803\) 21.0000 36.3731i 0.741074 1.28358i
\(804\) 0 0
\(805\) 0 0
\(806\) 16.0000 + 27.7128i 0.563576 + 0.976142i
\(807\) 0 0
\(808\) 6.00000 10.3923i 0.211079 0.365600i
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 5.00000 0.175574 0.0877869 0.996139i \(-0.472021\pi\)
0.0877869 + 0.996139i \(0.472021\pi\)
\(812\) 12.0000 20.7846i 0.421117 0.729397i
\(813\) 0 0
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) 0 0
\(816\) 0 0
\(817\) −2.00000 + 3.46410i −0.0699711 + 0.121194i
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 20.7846i 0.418803 0.725388i −0.577016 0.816733i \(-0.695783\pi\)
0.995819 + 0.0913446i \(0.0291165\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 + 3.46410i 0.0693375 + 0.120096i
\(833\) −13.5000 23.3827i −0.467747 0.810162i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) −9.00000 −0.310900
\(839\) 24.0000 41.5692i 0.828572 1.43513i −0.0705865 0.997506i \(-0.522487\pi\)
0.899158 0.437623i \(-0.144180\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −16.0000 27.7128i −0.551396 0.955047i
\(843\) 0 0
\(844\) −11.5000 + 19.9186i −0.395846 + 0.685626i
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000 0.274883
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) 23.0000 39.8372i 0.787505 1.36400i −0.139986 0.990153i \(-0.544706\pi\)
0.927491 0.373845i \(-0.121961\pi\)
\(854\) −32.0000 −1.09502
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −13.5000 + 23.3827i −0.461151 + 0.798737i −0.999019 0.0442921i \(-0.985897\pi\)
0.537867 + 0.843029i \(0.319230\pi\)
\(858\) 0 0
\(859\) 8.00000 + 13.8564i 0.272956 + 0.472774i 0.969618 0.244626i \(-0.0786652\pi\)
−0.696661 + 0.717400i \(0.745332\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.00000 5.19615i 0.102180 0.176982i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.50000 6.06218i 0.118935 0.206001i
\(867\) 0 0
\(868\) 16.0000 + 27.7128i 0.543075 + 0.940634i
\(869\) 12.0000 + 20.7846i 0.407072 + 0.705070i
\(870\) 0 0
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 2.00000 0.0677285
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) 8.00000 + 13.8564i 0.270141 + 0.467898i 0.968898 0.247462i \(-0.0795964\pi\)
−0.698757 + 0.715359i \(0.746263\pi\)
\(878\) −7.00000 12.1244i −0.236239 0.409177i
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) −13.0000 −0.437485 −0.218742 0.975783i \(-0.570195\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(884\) 6.00000 10.3923i 0.201802 0.349531i
\(885\) 0 0
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) 15.0000 + 25.9808i 0.503651 + 0.872349i 0.999991 + 0.00422062i \(0.00134347\pi\)
−0.496340 + 0.868128i \(0.665323\pi\)
\(888\) 0 0
\(889\) −32.0000 + 55.4256i −1.07325 + 1.85892i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000 0.0669650
\(893\) −24.0000 + 41.5692i −0.803129 + 1.39106i
\(894\) 0 0
\(895\) 0 0
\(896\) 2.00000 + 3.46410i 0.0668153 + 0.115728i
\(897\) 0 0
\(898\) 9.00000 15.5885i 0.300334 0.520194i
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 9.00000 15.5885i 0.299667 0.519039i
\(903\) 0 0
\(904\) 1.50000 + 2.59808i 0.0498893 + 0.0864107i
\(905\) 0 0
\(906\) 0 0
\(907\) −8.50000 + 14.7224i −0.282238 + 0.488850i −0.971936 0.235247i \(-0.924410\pi\)
0.689698 + 0.724097i \(0.257743\pi\)
\(908\) 27.0000 0.896026
\(909\) 0 0
\(910\) 0 0
\(911\) −9.00000 + 15.5885i −0.298183 + 0.516469i −0.975720 0.219020i \(-0.929714\pi\)
0.677537 + 0.735489i \(0.263047\pi\)
\(912\) 0 0
\(913\) 13.5000 + 23.3827i 0.446785 + 0.773854i
\(914\) 5.00000 + 8.66025i 0.165385 + 0.286456i
\(915\) 0 0
\(916\) −4.00000 + 6.92820i −0.132164 + 0.228914i
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3.00000 5.19615i −0.0987997 0.171126i
\(923\) 12.0000 + 20.7846i 0.394985 + 0.684134i
\(924\) 0 0
\(925\) 0 0
\(926\) 14.0000 0.460069
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) 21.0000 36.3731i 0.688988 1.19336i −0.283178 0.959067i \(-0.591389\pi\)
0.972166 0.234294i \(-0.0752779\pi\)
\(930\) 0 0
\(931\) 18.0000 + 31.1769i 0.589926 + 1.02178i
\(932\) 7.50000 + 12.9904i 0.245671 + 0.425514i
\(933\) 0 0
\(934\) 4.50000 7.79423i 0.147244 0.255035i
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) −8.00000 + 13.8564i −0.261209 + 0.452428i
\(939\) 0 0
\(940\) 0 0
\(941\) 12.0000 + 20.7846i 0.391189 + 0.677559i 0.992607 0.121376i \(-0.0387306\pi\)
−0.601418 + 0.798935i \(0.705397\pi\)
\(942\) 0 0
\(943\) −18.0000 + 31.1769i −0.586161 + 1.01526i
\(944\) 9.00000 0.292925
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −4.50000 + 7.79423i −0.146230 + 0.253278i −0.929831 0.367986i \(-0.880047\pi\)
0.783601 + 0.621264i \(0.213381\pi\)
\(948\) 0 0
\(949\) 28.0000 + 48.4974i 0.908918 + 1.57429i
\(950\) 0 0
\(951\) 0 0
\(952\) 6.00000 10.3923i 0.194461 0.336817i
\(953\) 27.0000 0.874616 0.437308 0.899312i \(-0.355932\pi\)
0.437308 + 0.899312i \(0.355932\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 9.00000 15.5885i 0.291081 0.504167i
\(957\) 0 0
\(958\) −6.00000 10.3923i −0.193851 0.335760i
\(959\) −36.0000 62.3538i −1.16250 2.01351i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) −32.0000 −1.03172
\(963\) 0 0
\(964\) 26.0000 0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) 14.0000 + 24.2487i 0.450210 + 0.779786i 0.998399 0.0565684i \(-0.0180159\pi\)
−0.548189 + 0.836354i \(0.684683\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) 0 0
\(971\) 27.0000 0.866471 0.433236 0.901281i \(-0.357372\pi\)
0.433236 + 0.901281i \(0.357372\pi\)
\(972\) 0 0
\(973\) −44.0000 −1.41058
\(974\) −1.00000 + 1.73205i −0.0320421 + 0.0554985i
\(975\) 0 0
\(976\) −4.00000 6.92820i −0.128037 0.221766i
\(977\) −27.0000 46.7654i −0.863807 1.49616i −0.868227 0.496167i \(-0.834741\pi\)
0.00442082 0.999990i \(-0.498593\pi\)
\(978\) 0 0
\(979\) 13.5000 23.3827i 0.431462 0.747314i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.0000 0.478669
\(983\) 27.0000 46.7654i 0.861166 1.49158i −0.00963785 0.999954i \(-0.503068\pi\)
0.870804 0.491630i \(-0.163599\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −9.00000 15.5885i −0.286618 0.496438i
\(987\) 0 0
\(988\) −8.00000 + 13.8564i −0.254514 + 0.440831i
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −4.00000 + 6.92820i −0.127000 + 0.219971i
\(993\) 0 0
\(994\) 12.0000 + 20.7846i 0.380617 + 0.659248i
\(995\) 0 0
\(996\) 0 0
\(997\) 5.00000 8.66025i 0.158352 0.274273i −0.775923 0.630828i \(-0.782715\pi\)
0.934274 + 0.356555i \(0.116049\pi\)
\(998\) 11.0000 0.348199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.e.e.451.1 2
3.2 odd 2 450.2.e.h.151.1 yes 2
5.2 odd 4 1350.2.j.d.1099.1 4
5.3 odd 4 1350.2.j.d.1099.2 4
5.4 even 2 1350.2.e.f.451.1 2
9.2 odd 6 4050.2.a.b.1.1 1
9.4 even 3 inner 1350.2.e.e.901.1 2
9.5 odd 6 450.2.e.h.301.1 yes 2
9.7 even 3 4050.2.a.t.1.1 1
15.2 even 4 450.2.j.d.349.2 4
15.8 even 4 450.2.j.d.349.1 4
15.14 odd 2 450.2.e.a.151.1 2
45.2 even 12 4050.2.c.q.649.1 2
45.4 even 6 1350.2.e.f.901.1 2
45.7 odd 12 4050.2.c.e.649.2 2
45.13 odd 12 1350.2.j.d.199.1 4
45.14 odd 6 450.2.e.a.301.1 yes 2
45.22 odd 12 1350.2.j.d.199.2 4
45.23 even 12 450.2.j.d.49.2 4
45.29 odd 6 4050.2.a.bj.1.1 1
45.32 even 12 450.2.j.d.49.1 4
45.34 even 6 4050.2.a.p.1.1 1
45.38 even 12 4050.2.c.q.649.2 2
45.43 odd 12 4050.2.c.e.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.a.151.1 2 15.14 odd 2
450.2.e.a.301.1 yes 2 45.14 odd 6
450.2.e.h.151.1 yes 2 3.2 odd 2
450.2.e.h.301.1 yes 2 9.5 odd 6
450.2.j.d.49.1 4 45.32 even 12
450.2.j.d.49.2 4 45.23 even 12
450.2.j.d.349.1 4 15.8 even 4
450.2.j.d.349.2 4 15.2 even 4
1350.2.e.e.451.1 2 1.1 even 1 trivial
1350.2.e.e.901.1 2 9.4 even 3 inner
1350.2.e.f.451.1 2 5.4 even 2
1350.2.e.f.901.1 2 45.4 even 6
1350.2.j.d.199.1 4 45.13 odd 12
1350.2.j.d.199.2 4 45.22 odd 12
1350.2.j.d.1099.1 4 5.2 odd 4
1350.2.j.d.1099.2 4 5.3 odd 4
4050.2.a.b.1.1 1 9.2 odd 6
4050.2.a.p.1.1 1 45.34 even 6
4050.2.a.t.1.1 1 9.7 even 3
4050.2.a.bj.1.1 1 45.29 odd 6
4050.2.c.e.649.1 2 45.43 odd 12
4050.2.c.e.649.2 2 45.7 odd 12
4050.2.c.q.649.1 2 45.2 even 12
4050.2.c.q.649.2 2 45.38 even 12