Properties

Label 450.2.e.a.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.a.301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.73205i q^{6} +(-2.00000 + 3.46410i) q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(-1.50000 + 2.59808i) q^{11} +(1.50000 + 0.866025i) q^{12} +(-2.00000 - 3.46410i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.00000 q^{17} +(1.50000 + 2.59808i) q^{18} -4.00000 q^{19} -6.92820i q^{21} +(-1.50000 - 2.59808i) q^{22} +(-3.00000 - 5.19615i) q^{23} +(-1.50000 + 0.866025i) q^{24} +4.00000 q^{26} +5.19615i q^{27} +4.00000 q^{28} +(3.00000 - 5.19615i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(-0.500000 - 0.866025i) q^{32} -5.19615i q^{33} +(-1.50000 + 2.59808i) q^{34} -3.00000 q^{36} -8.00000 q^{37} +(2.00000 - 3.46410i) q^{38} +(6.00000 + 3.46410i) q^{39} +(3.00000 + 5.19615i) q^{41} +(6.00000 + 3.46410i) q^{42} +(-0.500000 + 0.866025i) q^{43} +3.00000 q^{44} +6.00000 q^{46} +(6.00000 - 10.3923i) q^{47} -1.73205i q^{48} +(-4.50000 - 7.79423i) q^{49} +(-4.50000 + 2.59808i) q^{51} +(-2.00000 + 3.46410i) q^{52} +(-4.50000 - 2.59808i) q^{54} +(-2.00000 + 3.46410i) q^{56} +(6.00000 - 3.46410i) q^{57} +(3.00000 + 5.19615i) q^{58} +(4.50000 + 7.79423i) q^{59} +(-4.00000 + 6.92820i) q^{61} +8.00000 q^{62} +(6.00000 + 10.3923i) q^{63} +1.00000 q^{64} +(4.50000 + 2.59808i) q^{66} +(-2.00000 - 3.46410i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(9.00000 + 5.19615i) q^{69} -6.00000 q^{71} +(1.50000 - 2.59808i) q^{72} -14.0000 q^{73} +(4.00000 - 6.92820i) q^{74} +(2.00000 + 3.46410i) q^{76} +(-6.00000 - 10.3923i) q^{77} +(-6.00000 + 3.46410i) q^{78} +(-4.00000 + 6.92820i) q^{79} +(-4.50000 - 7.79423i) q^{81} -6.00000 q^{82} +(-4.50000 + 7.79423i) q^{83} +(-6.00000 + 3.46410i) q^{84} +(-0.500000 - 0.866025i) q^{86} +10.3923i q^{87} +(-1.50000 + 2.59808i) q^{88} -9.00000 q^{89} +16.0000 q^{91} +(-3.00000 + 5.19615i) q^{92} +(12.0000 + 6.92820i) q^{93} +(6.00000 + 10.3923i) q^{94} +(1.50000 + 0.866025i) q^{96} +(-3.50000 + 6.06218i) q^{97} +9.00000 q^{98} +(4.50000 + 7.79423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 3 q^{3} - q^{4} - 4 q^{7} + 2 q^{8} + 3 q^{9} - 3 q^{11} + 3 q^{12} - 4 q^{13} - 4 q^{14} - q^{16} + 6 q^{17} + 3 q^{18} - 8 q^{19} - 3 q^{22} - 6 q^{23} - 3 q^{24} + 8 q^{26} + 8 q^{28}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 1.50000 + 2.59808i 0.353553 + 0.612372i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 6.92820i 1.51186i
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 5.19615i 1.00000i
\(28\) 4.00000 0.755929
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 5.19615i 0.904534i
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 2.00000 3.46410i 0.324443 0.561951i
\(39\) 6.00000 + 3.46410i 0.960769 + 0.554700i
\(40\) 0 0
\(41\) 3.00000 + 5.19615i 0.468521 + 0.811503i 0.999353 0.0359748i \(-0.0114536\pi\)
−0.530831 + 0.847477i \(0.678120\pi\)
\(42\) 6.00000 + 3.46410i 0.925820 + 0.534522i
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 6.00000 10.3923i 0.875190 1.51587i 0.0186297 0.999826i \(-0.494070\pi\)
0.856560 0.516047i \(-0.172597\pi\)
\(48\) 1.73205i 0.250000i
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) −4.50000 + 2.59808i −0.630126 + 0.363803i
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) 0 0
\(56\) −2.00000 + 3.46410i −0.267261 + 0.462910i
\(57\) 6.00000 3.46410i 0.794719 0.458831i
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i \(0.0325726\pi\)
−0.408919 + 0.912571i \(0.634094\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 8.00000 1.01600
\(63\) 6.00000 + 10.3923i 0.755929 + 1.30931i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.50000 + 2.59808i 0.553912 + 0.319801i
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 9.00000 + 5.19615i 1.08347 + 0.625543i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −6.00000 10.3923i −0.683763 1.18431i
\(78\) −6.00000 + 3.46410i −0.679366 + 0.392232i
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −6.00000 −0.662589
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) −6.00000 + 3.46410i −0.654654 + 0.377964i
\(85\) 0 0
\(86\) −0.500000 0.866025i −0.0539164 0.0933859i
\(87\) 10.3923i 1.11417i
\(88\) −1.50000 + 2.59808i −0.159901 + 0.276956i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) −3.00000 + 5.19615i −0.312772 + 0.541736i
\(93\) 12.0000 + 6.92820i 1.24434 + 0.718421i
\(94\) 6.00000 + 10.3923i 0.618853 + 1.07188i
\(95\) 0 0
\(96\) 1.50000 + 0.866025i 0.153093 + 0.0883883i
\(97\) −3.50000 + 6.06218i −0.355371 + 0.615521i −0.987181 0.159602i \(-0.948979\pi\)
0.631810 + 0.775123i \(0.282312\pi\)
\(98\) 9.00000 0.909137
\(99\) 4.50000 + 7.79423i 0.452267 + 0.783349i
\(100\) 0 0
\(101\) −6.00000 + 10.3923i −0.597022 + 1.03407i 0.396236 + 0.918149i \(0.370316\pi\)
−0.993258 + 0.115924i \(0.963017\pi\)
\(102\) 5.19615i 0.514496i
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) −2.00000 3.46410i −0.196116 0.339683i
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 12.0000 6.92820i 1.13899 0.657596i
\(112\) −2.00000 3.46410i −0.188982 0.327327i
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 6.92820i 0.648886i
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) −12.0000 −1.10940
\(118\) −9.00000 −0.828517
\(119\) −6.00000 + 10.3923i −0.550019 + 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −4.00000 6.92820i −0.362143 0.627250i
\(123\) −9.00000 5.19615i −0.811503 0.468521i
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) 0 0
\(126\) −12.0000 −1.06904
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 1.73205i 0.152499i
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) −4.50000 + 2.59808i −0.391675 + 0.226134i
\(133\) 8.00000 13.8564i 0.693688 1.20150i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) −9.00000 + 5.19615i −0.766131 + 0.442326i
\(139\) −5.50000 9.52628i −0.466504 0.808008i 0.532764 0.846264i \(-0.321153\pi\)
−0.999268 + 0.0382553i \(0.987820\pi\)
\(140\) 0 0
\(141\) 20.7846i 1.75038i
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) 12.0000 1.00349
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 0 0
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 13.5000 + 7.79423i 1.11346 + 0.642857i
\(148\) 4.00000 + 6.92820i 0.328798 + 0.569495i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) −4.00000 −0.324443
\(153\) 4.50000 7.79423i 0.363803 0.630126i
\(154\) 12.0000 0.966988
\(155\) 0 0
\(156\) 6.92820i 0.554700i
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) 0 0
\(160\) 0 0
\(161\) 24.0000 1.89146
\(162\) 9.00000 0.707107
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 3.00000 5.19615i 0.234261 0.405751i
\(165\) 0 0
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) 6.92820i 0.534522i
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) −6.00000 + 10.3923i −0.458831 + 0.794719i
\(172\) 1.00000 0.0762493
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) −9.00000 5.19615i −0.682288 0.393919i
\(175\) 0 0
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) −13.5000 7.79423i −1.01472 0.585850i
\(178\) 4.50000 7.79423i 0.337289 0.584202i
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −8.00000 + 13.8564i −0.592999 + 1.02711i
\(183\) 13.8564i 1.02430i
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) 0 0
\(186\) −12.0000 + 6.92820i −0.879883 + 0.508001i
\(187\) −4.50000 + 7.79423i −0.329073 + 0.569970i
\(188\) −12.0000 −0.875190
\(189\) −18.0000 10.3923i −1.30931 0.755929i
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) 2.50000 + 4.33013i 0.179954 + 0.311689i 0.941865 0.335993i \(-0.109072\pi\)
−0.761911 + 0.647682i \(0.775738\pi\)
\(194\) −3.50000 6.06218i −0.251285 0.435239i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) −9.00000 −0.639602
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) 6.00000 + 3.46410i 0.423207 + 0.244339i
\(202\) −6.00000 10.3923i −0.422159 0.731200i
\(203\) 12.0000 + 20.7846i 0.842235 + 1.45879i
\(204\) 4.50000 + 2.59808i 0.315063 + 0.181902i
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) −18.0000 −1.25109
\(208\) 4.00000 0.277350
\(209\) 6.00000 10.3923i 0.415029 0.718851i
\(210\) 0 0
\(211\) −11.5000 19.9186i −0.791693 1.37125i −0.924918 0.380166i \(-0.875867\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) 0 0
\(213\) 9.00000 5.19615i 0.616670 0.356034i
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 0 0
\(216\) 5.19615i 0.353553i
\(217\) 32.0000 2.17230
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 21.0000 12.1244i 1.41905 0.819288i
\(220\) 0 0
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 13.8564i 0.929981i
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) −13.5000 + 23.3827i −0.896026 + 1.55196i −0.0634974 + 0.997982i \(0.520225\pi\)
−0.832529 + 0.553981i \(0.813108\pi\)
\(228\) −6.00000 3.46410i −0.397360 0.229416i
\(229\) −4.00000 6.92820i −0.264327 0.457829i 0.703060 0.711131i \(-0.251817\pi\)
−0.967387 + 0.253302i \(0.918483\pi\)
\(230\) 0 0
\(231\) 18.0000 + 10.3923i 1.18431 + 0.683763i
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 6.00000 10.3923i 0.392232 0.679366i
\(235\) 0 0
\(236\) 4.50000 7.79423i 0.292925 0.507361i
\(237\) 13.8564i 0.900070i
\(238\) −6.00000 10.3923i −0.388922 0.673633i
\(239\) −9.00000 15.5885i −0.582162 1.00833i −0.995223 0.0976302i \(-0.968874\pi\)
0.413061 0.910703i \(-0.364460\pi\)
\(240\) 0 0
\(241\) −13.0000 + 22.5167i −0.837404 + 1.45043i 0.0546547 + 0.998505i \(0.482594\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) −2.00000 −0.128565
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 9.00000 5.19615i 0.573819 0.331295i
\(247\) 8.00000 + 13.8564i 0.509028 + 0.881662i
\(248\) −4.00000 6.92820i −0.254000 0.439941i
\(249\) 15.5885i 0.987878i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 6.00000 10.3923i 0.377964 0.654654i
\(253\) 18.0000 1.13165
\(254\) −8.00000 + 13.8564i −0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 1.50000 + 0.866025i 0.0933859 + 0.0539164i
\(259\) 16.0000 27.7128i 0.994192 1.72199i
\(260\) 0 0
\(261\) −9.00000 15.5885i −0.557086 0.964901i
\(262\) 12.0000 0.741362
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) 5.19615i 0.319801i
\(265\) 0 0
\(266\) 8.00000 + 13.8564i 0.490511 + 0.849591i
\(267\) 13.5000 7.79423i 0.826187 0.476999i
\(268\) −2.00000 + 3.46410i −0.122169 + 0.211604i
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) −24.0000 + 13.8564i −1.45255 + 0.838628i
\(274\) 9.00000 + 15.5885i 0.543710 + 0.941733i
\(275\) 0 0
\(276\) 10.3923i 0.625543i
\(277\) 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i \(-0.814196\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(278\) 11.0000 0.659736
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 9.00000 15.5885i 0.536895 0.929929i −0.462174 0.886789i \(-0.652930\pi\)
0.999069 0.0431402i \(-0.0137362\pi\)
\(282\) −18.0000 10.3923i −1.07188 0.618853i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) −24.0000 −1.41668
\(288\) −3.00000 −0.176777
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 12.1244i 0.710742i
\(292\) 7.00000 + 12.1244i 0.409644 + 0.709524i
\(293\) −6.00000 10.3923i −0.350524 0.607125i 0.635818 0.771839i \(-0.280663\pi\)
−0.986341 + 0.164714i \(0.947330\pi\)
\(294\) −13.5000 + 7.79423i −0.787336 + 0.454569i
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) −13.5000 7.79423i −0.783349 0.452267i
\(298\) −6.00000 −0.347571
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 20.7846i 1.19404i
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) 0 0
\(306\) 4.50000 + 7.79423i 0.257248 + 0.445566i
\(307\) 1.00000 0.0570730 0.0285365 0.999593i \(-0.490915\pi\)
0.0285365 + 0.999593i \(0.490915\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) −12.0000 6.92820i −0.682656 0.394132i
\(310\) 0 0
\(311\) −3.00000 5.19615i −0.170114 0.294647i 0.768345 0.640036i \(-0.221080\pi\)
−0.938460 + 0.345389i \(0.887747\pi\)
\(312\) 6.00000 + 3.46410i 0.339683 + 0.196116i
\(313\) 8.50000 14.7224i 0.480448 0.832161i −0.519300 0.854592i \(-0.673807\pi\)
0.999748 + 0.0224310i \(0.00714060\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 18.0000 10.3923i 1.00466 0.580042i
\(322\) −12.0000 + 20.7846i −0.668734 + 1.15828i
\(323\) −12.0000 −0.667698
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) 0 0
\(326\) 5.50000 9.52628i 0.304617 0.527612i
\(327\) −3.00000 + 1.73205i −0.165900 + 0.0957826i
\(328\) 3.00000 + 5.19615i 0.165647 + 0.286910i
\(329\) 24.0000 + 41.5692i 1.32316 + 2.29179i
\(330\) 0 0
\(331\) −8.50000 + 14.7224i −0.467202 + 0.809218i −0.999298 0.0374662i \(-0.988071\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 9.00000 0.493939
\(333\) −12.0000 + 20.7846i −0.657596 + 1.13899i
\(334\) −18.0000 −0.984916
\(335\) 0 0
\(336\) 6.00000 + 3.46410i 0.327327 + 0.188982i
\(337\) −6.50000 11.2583i −0.354078 0.613280i 0.632882 0.774248i \(-0.281872\pi\)
−0.986960 + 0.160968i \(0.948538\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) −4.50000 2.59808i −0.244406 0.141108i
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) −6.00000 10.3923i −0.324443 0.561951i
\(343\) 8.00000 0.431959
\(344\) −0.500000 + 0.866025i −0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) 13.5000 + 23.3827i 0.724718 + 1.25525i 0.959090 + 0.283101i \(0.0913633\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(348\) 9.00000 5.19615i 0.482451 0.278543i
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 18.0000 10.3923i 0.960769 0.554700i
\(352\) 3.00000 0.159901
\(353\) −4.50000 + 7.79423i −0.239511 + 0.414845i −0.960574 0.278024i \(-0.910320\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) 13.5000 7.79423i 0.717517 0.414259i
\(355\) 0 0
\(356\) 4.50000 + 7.79423i 0.238500 + 0.413093i
\(357\) 20.7846i 1.10004i
\(358\) 1.50000 2.59808i 0.0792775 0.137313i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −1.00000 + 1.73205i −0.0525588 + 0.0910346i
\(363\) −3.00000 1.73205i −0.157459 0.0909091i
\(364\) −8.00000 13.8564i −0.419314 0.726273i
\(365\) 0 0
\(366\) 12.0000 + 6.92820i 0.627250 + 0.362143i
\(367\) 13.0000 22.5167i 0.678594 1.17536i −0.296810 0.954937i \(-0.595923\pi\)
0.975404 0.220423i \(-0.0707439\pi\)
\(368\) 6.00000 0.312772
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 13.8564i 0.718421i
\(373\) 4.00000 + 6.92820i 0.207112 + 0.358729i 0.950804 0.309794i \(-0.100260\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(374\) −4.50000 7.79423i −0.232689 0.403030i
\(375\) 0 0
\(376\) 6.00000 10.3923i 0.309426 0.535942i
\(377\) −24.0000 −1.23606
\(378\) 18.0000 10.3923i 0.925820 0.534522i
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) −24.0000 + 13.8564i −1.22956 + 0.709885i
\(382\) −3.00000 5.19615i −0.153493 0.265858i
\(383\) 9.00000 + 15.5885i 0.459879 + 0.796533i 0.998954 0.0457244i \(-0.0145596\pi\)
−0.539076 + 0.842257i \(0.681226\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 1.50000 + 2.59808i 0.0762493 + 0.132068i
\(388\) 7.00000 0.355371
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) −4.50000 7.79423i −0.227284 0.393668i
\(393\) 18.0000 + 10.3923i 0.907980 + 0.524222i
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) 0 0
\(396\) 4.50000 7.79423i 0.226134 0.391675i
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) −1.00000 + 1.73205i −0.0501255 + 0.0868199i
\(399\) 27.7128i 1.38738i
\(400\) 0 0
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) −6.00000 + 3.46410i −0.299253 + 0.172774i
\(403\) −16.0000 + 27.7128i −0.797017 + 1.38047i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 12.0000 20.7846i 0.594818 1.03025i
\(408\) −4.50000 + 2.59808i −0.222783 + 0.128624i
\(409\) 11.0000 + 19.0526i 0.543915 + 0.942088i 0.998674 + 0.0514740i \(0.0163919\pi\)
−0.454759 + 0.890614i \(0.650275\pi\)
\(410\) 0 0
\(411\) 31.1769i 1.53784i
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) −36.0000 −1.77144
\(414\) 9.00000 15.5885i 0.442326 0.766131i
\(415\) 0 0
\(416\) −2.00000 + 3.46410i −0.0980581 + 0.169842i
\(417\) 16.5000 + 9.52628i 0.808008 + 0.466504i
\(418\) 6.00000 + 10.3923i 0.293470 + 0.508304i
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) −16.0000 + 27.7128i −0.779792 + 1.35064i 0.152269 + 0.988339i \(0.451342\pi\)
−0.932061 + 0.362301i \(0.881991\pi\)
\(422\) 23.0000 1.11962
\(423\) −18.0000 31.1769i −0.875190 1.51587i
\(424\) 0 0
\(425\) 0 0
\(426\) 10.3923i 0.503509i
\(427\) −16.0000 27.7128i −0.774294 1.34112i
\(428\) 6.00000 + 10.3923i 0.290021 + 0.502331i
\(429\) −18.0000 + 10.3923i −0.869048 + 0.501745i
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) −16.0000 + 27.7128i −0.768025 + 1.33026i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 24.2487i 1.15865i
\(439\) −7.00000 + 12.1244i −0.334092 + 0.578664i −0.983310 0.181938i \(-0.941763\pi\)
0.649218 + 0.760602i \(0.275096\pi\)
\(440\) 0 0
\(441\) −27.0000 −1.28571
\(442\) 12.0000 0.570782
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) −12.0000 6.92820i −0.569495 0.328798i
\(445\) 0 0
\(446\) 1.00000 + 1.73205i 0.0473514 + 0.0820150i
\(447\) −9.00000 5.19615i −0.425685 0.245770i
\(448\) −2.00000 + 3.46410i −0.0944911 + 0.163663i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 1.50000 2.59808i 0.0705541 0.122203i
\(453\) 17.3205i 0.813788i
\(454\) −13.5000 23.3827i −0.633586 1.09740i
\(455\) 0 0
\(456\) 6.00000 3.46410i 0.280976 0.162221i
\(457\) −5.00000 + 8.66025i −0.233890 + 0.405110i −0.958950 0.283577i \(-0.908479\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 8.00000 0.373815
\(459\) 15.5885i 0.727607i
\(460\) 0 0
\(461\) 3.00000 5.19615i 0.139724 0.242009i −0.787668 0.616100i \(-0.788712\pi\)
0.927392 + 0.374091i \(0.122045\pi\)
\(462\) −18.0000 + 10.3923i −0.837436 + 0.483494i
\(463\) 7.00000 + 12.1244i 0.325318 + 0.563467i 0.981577 0.191069i \(-0.0611955\pi\)
−0.656259 + 0.754536i \(0.727862\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) 7.50000 12.9904i 0.347431 0.601768i
\(467\) −9.00000 −0.416470 −0.208235 0.978079i \(-0.566772\pi\)
−0.208235 + 0.978079i \(0.566772\pi\)
\(468\) 6.00000 + 10.3923i 0.277350 + 0.480384i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 6.00000 + 3.46410i 0.276465 + 0.159617i
\(472\) 4.50000 + 7.79423i 0.207129 + 0.358758i
\(473\) −1.50000 2.59808i −0.0689701 0.119460i
\(474\) 12.0000 + 6.92820i 0.551178 + 0.318223i
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 18.0000 0.823301
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) −13.0000 22.5167i −0.592134 1.02561i
\(483\) −36.0000 + 20.7846i −1.63806 + 0.945732i
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) −4.00000 + 6.92820i −0.181071 + 0.313625i
\(489\) 16.5000 9.52628i 0.746156 0.430793i
\(490\) 0 0
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 10.3923i 0.468521i
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 12.0000 20.7846i 0.538274 0.932317i
\(498\) 13.5000 + 7.79423i 0.604949 + 0.349268i
\(499\) −5.50000 9.52628i −0.246214 0.426455i 0.716258 0.697835i \(-0.245853\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) −27.0000 15.5885i −1.20627 0.696441i
\(502\) 6.00000 10.3923i 0.267793 0.463831i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 6.00000 + 10.3923i 0.267261 + 0.462910i
\(505\) 0 0
\(506\) −9.00000 + 15.5885i −0.400099 + 0.692991i
\(507\) 5.19615i 0.230769i
\(508\) −8.00000 13.8564i −0.354943 0.614779i
\(509\) −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i \(-0.935156\pi\)
0.314459 0.949271i \(-0.398177\pi\)
\(510\) 0 0
\(511\) 28.0000 48.4974i 1.23865 2.14540i
\(512\) 1.00000 0.0441942
\(513\) 20.7846i 0.917663i
\(514\) −3.00000 −0.132324
\(515\) 0 0
\(516\) −1.50000 + 0.866025i −0.0660338 + 0.0381246i
\(517\) 18.0000 + 31.1769i 0.791639 + 1.37116i
\(518\) 16.0000 + 27.7128i 0.703000 + 1.21763i
\(519\) 10.3923i 0.456172i
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 18.0000 0.787839
\(523\) −29.0000 −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) −12.0000 20.7846i −0.522728 0.905392i
\(528\) 4.50000 + 2.59808i 0.195837 + 0.113067i
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 27.0000 1.17170
\(532\) −16.0000 −0.693688
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) 15.5885i 0.674579i
\(535\) 0 0
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 4.50000 2.59808i 0.194189 0.112115i
\(538\) 6.00000 10.3923i 0.258678 0.448044i
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 2.00000 3.46410i 0.0859074 0.148796i
\(543\) −3.00000 + 1.73205i −0.128742 + 0.0743294i
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) 0 0
\(546\) 27.7128i 1.18600i
\(547\) 10.0000 17.3205i 0.427569 0.740571i −0.569087 0.822277i \(-0.692703\pi\)
0.996657 + 0.0817056i \(0.0260367\pi\)
\(548\) −18.0000 −0.768922
\(549\) 12.0000 + 20.7846i 0.512148 + 0.887066i
\(550\) 0 0
\(551\) −12.0000 + 20.7846i −0.511217 + 0.885454i
\(552\) 9.00000 + 5.19615i 0.383065 + 0.221163i
\(553\) −16.0000 27.7128i −0.680389 1.17847i
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) −5.50000 + 9.52628i −0.233252 + 0.404004i
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 12.0000 20.7846i 0.508001 0.879883i
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 15.5885i 0.658145i
\(562\) 9.00000 + 15.5885i 0.379642 + 0.657559i
\(563\) −1.50000 2.59808i −0.0632175 0.109496i 0.832684 0.553748i \(-0.186803\pi\)
−0.895902 + 0.444252i \(0.853470\pi\)
\(564\) 18.0000 10.3923i 0.757937 0.437595i
\(565\) 0 0
\(566\) 1.00000 0.0420331
\(567\) 36.0000 1.51186
\(568\) −6.00000 −0.251754
\(569\) 13.5000 23.3827i 0.565949 0.980253i −0.431011 0.902347i \(-0.641843\pi\)
0.996961 0.0779066i \(-0.0248236\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) 10.3923i 0.434145i
\(574\) 12.0000 20.7846i 0.500870 0.867533i
\(575\) 0 0
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) −7.50000 4.33013i −0.311689 0.179954i
\(580\) 0 0
\(581\) −18.0000 31.1769i −0.746766 1.29344i
\(582\) 10.5000 + 6.06218i 0.435239 + 0.251285i
\(583\) 0 0
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) −1.50000 + 2.59808i −0.0619116 + 0.107234i −0.895320 0.445424i \(-0.853053\pi\)
0.833408 + 0.552658i \(0.186386\pi\)
\(588\) 15.5885i 0.642857i
\(589\) 16.0000 + 27.7128i 0.659269 + 1.14189i
\(590\) 0 0
\(591\) −27.0000 + 15.5885i −1.11063 + 0.641223i
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) 45.0000 1.84793 0.923964 0.382479i \(-0.124930\pi\)
0.923964 + 0.382479i \(0.124930\pi\)
\(594\) 13.5000 7.79423i 0.553912 0.319801i
\(595\) 0 0
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) −3.00000 + 1.73205i −0.122782 + 0.0708881i
\(598\) −12.0000 20.7846i −0.490716 0.849946i
\(599\) −9.00000 15.5885i −0.367730 0.636927i 0.621480 0.783430i \(-0.286532\pi\)
−0.989210 + 0.146503i \(0.953198\pi\)
\(600\) 0 0
\(601\) 18.5000 32.0429i 0.754631 1.30706i −0.190927 0.981604i \(-0.561149\pi\)
0.945558 0.325455i \(-0.105517\pi\)
\(602\) 4.00000 0.163028
\(603\) −12.0000 −0.488678
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 18.0000 + 10.3923i 0.731200 + 0.422159i
\(607\) −8.00000 13.8564i −0.324710 0.562414i 0.656744 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191700i \(0.938600\pi\)
\(608\) 2.00000 + 3.46410i 0.0811107 + 0.140488i
\(609\) −36.0000 20.7846i −1.45879 0.842235i
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) −9.00000 −0.363803
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) −0.500000 + 0.866025i −0.0201784 + 0.0349499i
\(615\) 0 0
\(616\) −6.00000 10.3923i −0.241747 0.418718i
\(617\) 13.5000 + 23.3827i 0.543490 + 0.941351i 0.998700 + 0.0509678i \(0.0162306\pi\)
−0.455211 + 0.890384i \(0.650436\pi\)
\(618\) 12.0000 6.92820i 0.482711 0.278693i
\(619\) −17.5000 + 30.3109i −0.703384 + 1.21830i 0.263887 + 0.964554i \(0.414995\pi\)
−0.967271 + 0.253744i \(0.918338\pi\)
\(620\) 0 0
\(621\) 27.0000 15.5885i 1.08347 0.625543i
\(622\) 6.00000 0.240578
\(623\) 18.0000 31.1769i 0.721155 1.24908i
\(624\) −6.00000 + 3.46410i −0.240192 + 0.138675i
\(625\) 0 0
\(626\) 8.50000 + 14.7224i 0.339728 + 0.588427i
\(627\) 20.7846i 0.830057i
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) −4.00000 + 6.92820i −0.159111 + 0.275589i
\(633\) 34.5000 + 19.9186i 1.37125 + 0.791693i
\(634\) −9.00000 15.5885i −0.357436 0.619097i
\(635\) 0 0
\(636\) 0 0
\(637\) −18.0000 + 31.1769i −0.713186 + 1.23527i
\(638\) −18.0000 −0.712627
\(639\) −9.00000 + 15.5885i −0.356034 + 0.616670i
\(640\) 0 0
\(641\) 13.5000 23.3827i 0.533218 0.923561i −0.466029 0.884769i \(-0.654316\pi\)
0.999247 0.0387913i \(-0.0123508\pi\)
\(642\) 20.7846i 0.820303i
\(643\) 11.5000 + 19.9186i 0.453516 + 0.785512i 0.998602 0.0528680i \(-0.0168363\pi\)
−0.545086 + 0.838380i \(0.683503\pi\)
\(644\) −12.0000 20.7846i −0.472866 0.819028i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) −27.0000 −1.05984
\(650\) 0 0
\(651\) −48.0000 + 27.7128i −1.88127 + 1.08615i
\(652\) 5.50000 + 9.52628i 0.215397 + 0.373078i
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 3.46410i 0.135457i
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) −21.0000 + 36.3731i −0.819288 + 1.41905i
\(658\) −48.0000 −1.87123
\(659\) 22.5000 38.9711i 0.876476 1.51810i 0.0212930 0.999773i \(-0.493222\pi\)
0.855183 0.518327i \(-0.173445\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) −8.50000 14.7224i −0.330362 0.572204i
\(663\) 18.0000 + 10.3923i 0.699062 + 0.403604i
\(664\) −4.50000 + 7.79423i −0.174634 + 0.302475i
\(665\) 0 0
\(666\) −12.0000 20.7846i −0.464991 0.805387i
\(667\) −36.0000 −1.39393
\(668\) 9.00000 15.5885i 0.348220 0.603136i
\(669\) 3.46410i 0.133930i
\(670\) 0 0
\(671\) −12.0000 20.7846i −0.463255 0.802381i
\(672\) −6.00000 + 3.46410i −0.231455 + 0.133631i
\(673\) −23.0000 + 39.8372i −0.886585 + 1.53561i −0.0426985 + 0.999088i \(0.513595\pi\)
−0.843886 + 0.536522i \(0.819738\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 9.00000 15.5885i 0.345898 0.599113i −0.639618 0.768693i \(-0.720908\pi\)
0.985517 + 0.169580i \(0.0542410\pi\)
\(678\) 4.50000 2.59808i 0.172821 0.0997785i
\(679\) −14.0000 24.2487i −0.537271 0.930580i
\(680\) 0 0
\(681\) 46.7654i 1.79205i
\(682\) −12.0000 + 20.7846i −0.459504 + 0.795884i
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 12.0000 0.458831
\(685\) 0 0
\(686\) −4.00000 + 6.92820i −0.152721 + 0.264520i
\(687\) 12.0000 + 6.92820i 0.457829 + 0.264327i
\(688\) −0.500000 0.866025i −0.0190623 0.0330169i
\(689\) 0 0
\(690\) 0 0
\(691\) 9.50000 16.4545i 0.361397 0.625958i −0.626794 0.779185i \(-0.715633\pi\)
0.988191 + 0.153227i \(0.0489666\pi\)
\(692\) 6.00000 0.228086
\(693\) −36.0000 −1.36753
\(694\) −27.0000 −1.02491
\(695\) 0 0
\(696\) 10.3923i 0.393919i
\(697\) 9.00000 + 15.5885i 0.340899 + 0.590455i
\(698\) −7.00000 12.1244i −0.264954 0.458914i
\(699\) 22.5000 12.9904i 0.851028 0.491341i
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 20.7846i 0.784465i
\(703\) 32.0000 1.20690
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) −4.50000 7.79423i −0.169360 0.293340i
\(707\) −24.0000 41.5692i −0.902613 1.56337i
\(708\) 15.5885i 0.585850i
\(709\) 26.0000 45.0333i 0.976450 1.69126i 0.301388 0.953502i \(-0.402550\pi\)
0.675063 0.737760i \(-0.264116\pi\)
\(710\) 0 0
\(711\) 12.0000 + 20.7846i 0.450035 + 0.779484i
\(712\) −9.00000 −0.337289
\(713\) −24.0000 + 41.5692i −0.898807 + 1.55678i
\(714\) 18.0000 + 10.3923i 0.673633 + 0.388922i
\(715\) 0 0
\(716\) 1.50000 + 2.59808i 0.0560576 + 0.0970947i
\(717\) 27.0000 + 15.5885i 1.00833 + 0.582162i
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 1.50000 2.59808i 0.0558242 0.0966904i
\(723\) 45.0333i 1.67481i
\(724\) −1.00000 1.73205i −0.0371647 0.0643712i
\(725\) 0 0
\(726\) 3.00000 1.73205i 0.111340 0.0642824i
\(727\) 7.00000 12.1244i 0.259616 0.449667i −0.706523 0.707690i \(-0.749737\pi\)
0.966139 + 0.258022i \(0.0830708\pi\)
\(728\) 16.0000 0.592999
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −1.50000 + 2.59808i −0.0554795 + 0.0960933i
\(732\) −12.0000 + 6.92820i −0.443533 + 0.256074i
\(733\) −2.00000 3.46410i −0.0738717 0.127950i 0.826723 0.562609i \(-0.190202\pi\)
−0.900595 + 0.434659i \(0.856869\pi\)
\(734\) 13.0000 + 22.5167i 0.479839 + 0.831105i
\(735\) 0 0
\(736\) −3.00000 + 5.19615i −0.110581 + 0.191533i
\(737\) 12.0000 0.442026
\(738\) −9.00000 + 15.5885i −0.331295 + 0.573819i
\(739\) −25.0000 −0.919640 −0.459820 0.888012i \(-0.652086\pi\)
−0.459820 + 0.888012i \(0.652086\pi\)
\(740\) 0 0
\(741\) −24.0000 13.8564i −0.881662 0.509028i
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 12.0000 + 6.92820i 0.439941 + 0.254000i
\(745\) 0 0
\(746\) −8.00000 −0.292901
\(747\) 13.5000 + 23.3827i 0.493939 + 0.855528i
\(748\) 9.00000 0.329073
\(749\) 24.0000 41.5692i 0.876941 1.51891i
\(750\) 0 0
\(751\) 17.0000 + 29.4449i 0.620339 + 1.07446i 0.989423 + 0.145062i \(0.0463382\pi\)
−0.369084 + 0.929396i \(0.620328\pi\)
\(752\) 6.00000 + 10.3923i 0.218797 + 0.378968i
\(753\) 18.0000 10.3923i 0.655956 0.378717i
\(754\) 12.0000 20.7846i 0.437014 0.756931i
\(755\) 0 0
\(756\) 20.7846i 0.755929i
\(757\) −20.0000 −0.726912 −0.363456 0.931611i \(-0.618403\pi\)
−0.363456 + 0.931611i \(0.618403\pi\)
\(758\) −14.5000 + 25.1147i −0.526664 + 0.912208i
\(759\) −27.0000 + 15.5885i −0.980038 + 0.565825i
\(760\) 0 0
\(761\) 19.5000 + 33.7750i 0.706874 + 1.22434i 0.966011 + 0.258502i \(0.0832288\pi\)
−0.259136 + 0.965841i \(0.583438\pi\)
\(762\) 27.7128i 1.00393i
\(763\) −4.00000 + 6.92820i −0.144810 + 0.250818i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) −18.0000 −0.650366
\(767\) 18.0000 31.1769i 0.649942 1.12573i
\(768\) 1.50000 + 0.866025i 0.0541266 + 0.0312500i
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 0 0
\(771\) −4.50000 2.59808i −0.162064 0.0935674i
\(772\) 2.50000 4.33013i 0.0899770 0.155845i
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) −3.00000 −0.107833
\(775\) 0 0
\(776\) −3.50000 + 6.06218i −0.125643 + 0.217620i
\(777\) 55.4256i 1.98838i
\(778\) 3.00000 + 5.19615i 0.107555 + 0.186291i
\(779\) −12.0000 20.7846i −0.429945 0.744686i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 18.0000 0.643679
\(783\) 27.0000 + 15.5885i 0.964901 + 0.557086i
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) −18.0000 + 10.3923i −0.642039 + 0.370681i
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) −9.00000 15.5885i −0.320612 0.555316i
\(789\) 41.5692i 1.47990i
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 4.50000 + 7.79423i 0.159901 + 0.276956i
\(793\) 32.0000 1.13635
\(794\) 7.00000 12.1244i 0.248421 0.430277i
\(795\) 0 0
\(796\) −1.00000 1.73205i −0.0354441 0.0613909i
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) −24.0000 13.8564i −0.849591 0.490511i
\(799\) 18.0000 31.1769i 0.636794 1.10296i
\(800\) 0 0
\(801\) −13.5000 + 23.3827i −0.476999 + 0.826187i
\(802\) −15.0000 −0.529668
\(803\) 21.0000 36.3731i 0.741074 1.28358i
\(804\) 6.92820i 0.244339i
\(805\) 0 0
\(806\) −16.0000 27.7128i −0.563576 0.976142i
\(807\) 18.0000 10.3923i 0.633630 0.365826i
\(808\) −6.00000 + 10.3923i −0.211079 + 0.365600i
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) 5.00000 0.175574 0.0877869 0.996139i \(-0.472021\pi\)
0.0877869 + 0.996139i \(0.472021\pi\)
\(812\) 12.0000 20.7846i 0.421117 0.729397i
\(813\) 6.00000 3.46410i 0.210429 0.121491i
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) 0 0
\(816\) 5.19615i 0.181902i
\(817\) 2.00000 3.46410i 0.0699711 0.121194i
\(818\) −22.0000 −0.769212
\(819\) 24.0000 41.5692i 0.838628 1.45255i
\(820\) 0 0
\(821\) −12.0000 + 20.7846i −0.418803 + 0.725388i −0.995819 0.0913446i \(-0.970884\pi\)
0.577016 + 0.816733i \(0.304217\pi\)
\(822\) −27.0000 15.5885i −0.941733 0.543710i
\(823\) −20.0000 34.6410i −0.697156 1.20751i −0.969448 0.245295i \(-0.921115\pi\)
0.272292 0.962215i \(-0.412218\pi\)
\(824\) 4.00000 + 6.92820i 0.139347 + 0.241355i
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 9.00000 + 15.5885i 0.312772 + 0.541736i
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 3.46410i 0.120168i
\(832\) −2.00000 3.46410i −0.0693375 0.120096i
\(833\) −13.5000 23.3827i −0.467747 0.810162i
\(834\) −16.5000 + 9.52628i −0.571348 + 0.329868i
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) 36.0000 20.7846i 1.24434 0.718421i
\(838\) 9.00000 0.310900
\(839\) −24.0000 + 41.5692i −0.828572 + 1.43513i 0.0705865 + 0.997506i \(0.477513\pi\)
−0.899158 + 0.437623i \(0.855820\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −16.0000 27.7128i −0.551396 0.955047i
\(843\) 31.1769i 1.07379i
\(844\) −11.5000 + 19.9186i −0.395846 + 0.685626i
\(845\) 0 0
\(846\) 36.0000 1.23771
\(847\) −8.00000 −0.274883
\(848\) 0 0
\(849\) 1.50000 + 0.866025i 0.0514799 + 0.0297219i
\(850\) 0 0
\(851\) 24.0000 + 41.5692i 0.822709 + 1.42497i
\(852\) −9.00000 5.19615i −0.308335 0.178017i
\(853\) −23.0000 + 39.8372i −0.787505 + 1.36400i 0.139986 + 0.990153i \(0.455294\pi\)
−0.927491 + 0.373845i \(0.878039\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −13.5000 + 23.3827i −0.461151 + 0.798737i −0.999019 0.0442921i \(-0.985897\pi\)
0.537867 + 0.843029i \(0.319230\pi\)
\(858\) 20.7846i 0.709575i
\(859\) 8.00000 + 13.8564i 0.272956 + 0.472774i 0.969618 0.244626i \(-0.0786652\pi\)
−0.696661 + 0.717400i \(0.745332\pi\)
\(860\) 0 0
\(861\) 36.0000 20.7846i 1.22688 0.708338i
\(862\) −3.00000 + 5.19615i −0.102180 + 0.176982i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 0 0
\(866\) −3.50000 + 6.06218i −0.118935 + 0.206001i
\(867\) 12.0000 6.92820i 0.407541 0.235294i
\(868\) −16.0000 27.7128i −0.543075 0.940634i
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 2.00000 0.0677285
\(873\) 10.5000 + 18.1865i 0.355371 + 0.615521i
\(874\) −24.0000 −0.811812
\(875\) 0 0
\(876\) −21.0000 12.1244i −0.709524 0.409644i
\(877\) −8.00000 13.8564i −0.270141 0.467898i 0.698757 0.715359i \(-0.253737\pi\)
−0.968898 + 0.247462i \(0.920404\pi\)
\(878\) −7.00000 12.1244i −0.236239 0.409177i
\(879\) 18.0000 + 10.3923i 0.607125 + 0.350524i
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 13.5000 23.3827i 0.454569 0.787336i
\(883\) 13.0000 0.437485 0.218742 0.975783i \(-0.429805\pi\)
0.218742 + 0.975783i \(0.429805\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 0 0
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) 15.0000 + 25.9808i 0.503651 + 0.872349i 0.999991 + 0.00422062i \(0.00134347\pi\)
−0.496340 + 0.868128i \(0.665323\pi\)
\(888\) 12.0000 6.92820i 0.402694 0.232495i
\(889\) −32.0000 + 55.4256i −1.07325 + 1.85892i
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) −2.00000 −0.0669650
\(893\) −24.0000 + 41.5692i −0.803129 + 1.39106i
\(894\) 9.00000 5.19615i 0.301005 0.173785i
\(895\) 0 0
\(896\) −2.00000 3.46410i −0.0668153 0.115728i
\(897\) 41.5692i 1.38796i
\(898\) −9.00000 + 15.5885i −0.300334 + 0.520194i
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 9.00000 15.5885i 0.299667 0.519039i
\(903\) 6.00000 + 3.46410i 0.199667 + 0.115278i
\(904\) 1.50000 + 2.59808i 0.0498893 + 0.0864107i
\(905\) 0 0
\(906\) −15.0000 8.66025i −0.498342 0.287718i
\(907\) 8.50000 14.7224i 0.282238 0.488850i −0.689698 0.724097i \(-0.742257\pi\)
0.971936 + 0.235247i \(0.0755899\pi\)
\(908\) 27.0000 0.896026
\(909\) 18.0000 + 31.1769i 0.597022 + 1.03407i
\(910\) 0 0
\(911\) 9.00000 15.5885i 0.298183 0.516469i −0.677537 0.735489i \(-0.736953\pi\)
0.975720 + 0.219020i \(0.0702860\pi\)
\(912\) 6.92820i 0.229416i
\(913\) −13.5000 23.3827i −0.446785 0.773854i
\(914\) −5.00000 8.66025i −0.165385 0.286456i
\(915\) 0 0
\(916\) −4.00000 + 6.92820i −0.132164 + 0.228914i
\(917\) 48.0000 1.58510
\(918\) −13.5000 7.79423i −0.445566 0.257248i
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 0 0
\(921\) −1.50000 + 0.866025i −0.0494267 + 0.0285365i
\(922\) 3.00000 + 5.19615i 0.0987997 + 0.171126i
\(923\) 12.0000 + 20.7846i 0.394985 + 0.684134i
\(924\) 20.7846i 0.683763i
\(925\) 0 0
\(926\) −14.0000 −0.460069
\(927\) 24.0000 0.788263
\(928\) −6.00000 −0.196960
\(929\) −21.0000 + 36.3731i −0.688988 + 1.19336i 0.283178 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(930\) 0 0
\(931\) 18.0000 + 31.1769i 0.589926 + 1.02178i
\(932\) 7.50000 + 12.9904i 0.245671 + 0.425514i
\(933\) 9.00000 + 5.19615i 0.294647 + 0.170114i
\(934\) 4.50000 7.79423i 0.147244 0.255035i
\(935\) 0 0
\(936\) −12.0000 −0.392232
\(937\) 37.0000 1.20874 0.604369 0.796705i \(-0.293425\pi\)
0.604369 + 0.796705i \(0.293425\pi\)
\(938\) −8.00000 + 13.8564i −0.261209 + 0.452428i
\(939\) 29.4449i 0.960897i
\(940\) 0 0
\(941\) −12.0000 20.7846i −0.391189 0.677559i 0.601418 0.798935i \(-0.294603\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(942\) −6.00000 + 3.46410i −0.195491 + 0.112867i
\(943\) 18.0000 31.1769i 0.586161 1.01526i
\(944\) −9.00000 −0.292925
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −4.50000 + 7.79423i −0.146230 + 0.253278i −0.929831 0.367986i \(-0.880047\pi\)
0.783601 + 0.621264i \(0.213381\pi\)
\(948\) −12.0000 + 6.92820i −0.389742 + 0.225018i
\(949\) 28.0000 + 48.4974i 0.908918 + 1.57429i
\(950\) 0 0
\(951\) 31.1769i 1.01098i
\(952\) −6.00000 + 10.3923i −0.194461 + 0.336817i
\(953\) 27.0000 0.874616 0.437308 0.899312i \(-0.355932\pi\)
0.437308 + 0.899312i \(0.355932\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9.00000 + 15.5885i −0.291081 + 0.504167i
\(957\) −27.0000 15.5885i −0.872786 0.503903i
\(958\) 6.00000 + 10.3923i 0.193851 + 0.335760i
\(959\) 36.0000 + 62.3538i 1.16250 + 2.01351i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) −32.0000 −1.03172
\(963\) −18.0000 + 31.1769i −0.580042 + 1.00466i
\(964\) 26.0000 0.837404
\(965\) 0 0
\(966\) 41.5692i 1.33747i
\(967\) −14.0000 24.2487i −0.450210 0.779786i 0.548189 0.836354i \(-0.315317\pi\)
−0.998399 + 0.0565684i \(0.981984\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 18.0000 10.3923i 0.578243 0.333849i
\(970\) 0 0
\(971\) −27.0000 −0.866471 −0.433236 0.901281i \(-0.642628\pi\)
−0.433236 + 0.901281i \(0.642628\pi\)
\(972\) 15.5885i 0.500000i
\(973\) 44.0000 1.41058
\(974\) 1.00000 1.73205i 0.0320421 0.0554985i
\(975\) 0 0
\(976\) −4.00000 6.92820i −0.128037 0.221766i
\(977\) −27.0000 46.7654i −0.863807 1.49616i −0.868227 0.496167i \(-0.834741\pi\)
0.00442082 0.999990i \(-0.498593\pi\)
\(978\) 19.0526i 0.609234i
\(979\) 13.5000 23.3827i 0.431462 0.747314i
\(980\) 0 0
\(981\) 3.00000 5.19615i 0.0957826 0.165900i
\(982\) −15.0000 −0.478669
\(983\) 27.0000 46.7654i 0.861166 1.49158i −0.00963785 0.999954i \(-0.503068\pi\)
0.870804 0.491630i \(-0.163599\pi\)
\(984\) −9.00000 5.19615i −0.286910 0.165647i
\(985\) 0 0
\(986\) 9.00000 + 15.5885i 0.286618 + 0.496438i
\(987\) −72.0000 41.5692i −2.29179 1.32316i
\(988\) 8.00000 13.8564i 0.254514 0.440831i
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −4.00000 + 6.92820i −0.127000 + 0.219971i
\(993\) 29.4449i 0.934405i
\(994\) 12.0000 + 20.7846i 0.380617 + 0.659248i
\(995\) 0 0
\(996\) −13.5000 + 7.79423i −0.427764 + 0.246970i
\(997\) −5.00000 + 8.66025i −0.158352 + 0.274273i −0.934274 0.356555i \(-0.883951\pi\)
0.775923 + 0.630828i \(0.217285\pi\)
\(998\) 11.0000 0.348199
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.a.151.1 2
3.2 odd 2 1350.2.e.f.451.1 2
5.2 odd 4 450.2.j.d.349.1 4
5.3 odd 4 450.2.j.d.349.2 4
5.4 even 2 450.2.e.h.151.1 yes 2
9.2 odd 6 4050.2.a.p.1.1 1
9.4 even 3 inner 450.2.e.a.301.1 yes 2
9.5 odd 6 1350.2.e.f.901.1 2
9.7 even 3 4050.2.a.bj.1.1 1
15.2 even 4 1350.2.j.d.1099.2 4
15.8 even 4 1350.2.j.d.1099.1 4
15.14 odd 2 1350.2.e.e.451.1 2
45.2 even 12 4050.2.c.e.649.1 2
45.4 even 6 450.2.e.h.301.1 yes 2
45.7 odd 12 4050.2.c.q.649.2 2
45.13 odd 12 450.2.j.d.49.1 4
45.14 odd 6 1350.2.e.e.901.1 2
45.22 odd 12 450.2.j.d.49.2 4
45.23 even 12 1350.2.j.d.199.2 4
45.29 odd 6 4050.2.a.t.1.1 1
45.32 even 12 1350.2.j.d.199.1 4
45.34 even 6 4050.2.a.b.1.1 1
45.38 even 12 4050.2.c.e.649.2 2
45.43 odd 12 4050.2.c.q.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.a.151.1 2 1.1 even 1 trivial
450.2.e.a.301.1 yes 2 9.4 even 3 inner
450.2.e.h.151.1 yes 2 5.4 even 2
450.2.e.h.301.1 yes 2 45.4 even 6
450.2.j.d.49.1 4 45.13 odd 12
450.2.j.d.49.2 4 45.22 odd 12
450.2.j.d.349.1 4 5.2 odd 4
450.2.j.d.349.2 4 5.3 odd 4
1350.2.e.e.451.1 2 15.14 odd 2
1350.2.e.e.901.1 2 45.14 odd 6
1350.2.e.f.451.1 2 3.2 odd 2
1350.2.e.f.901.1 2 9.5 odd 6
1350.2.j.d.199.1 4 45.32 even 12
1350.2.j.d.199.2 4 45.23 even 12
1350.2.j.d.1099.1 4 15.8 even 4
1350.2.j.d.1099.2 4 15.2 even 4
4050.2.a.b.1.1 1 45.34 even 6
4050.2.a.p.1.1 1 9.2 odd 6
4050.2.a.t.1.1 1 45.29 odd 6
4050.2.a.bj.1.1 1 9.7 even 3
4050.2.c.e.649.1 2 45.2 even 12
4050.2.c.e.649.2 2 45.38 even 12
4050.2.c.q.649.1 2 45.43 odd 12
4050.2.c.q.649.2 2 45.7 odd 12