Properties

Label 1350.2.f.c.107.1
Level 13501350
Weight 22
Character 1350.107
Analytic conductor 10.78010.780
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(107,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1350=23352 1350 = 2 \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1350.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.779804272910.7798042729
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2434 2^{4}\cdot 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Embedding invariants

Embedding label 107.1
Root 0.9659260.258819i0.965926 - 0.258819i of defining polynomial
Character χ\chi == 1350.107
Dual form 1350.2.f.c.593.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+0.707107i)q21.00000iq4+(0.707107+0.707107i)q85.19615iq11+(3.67423+3.67423i)q131.00000q16+(2.121322.12132i)q17+2.00000iq19+(3.67423+3.67423i)q22+(2.121322.12132i)q235.19615iq265.19615q295.00000q31+(0.7071070.707107i)q32+3.00000iq34+(1.414211.41421i)q3810.3923iq41+(3.67423+3.67423i)q435.19615q44+3.00000q46+(6.36396+6.36396i)q477.00000iq49+(3.67423+3.67423i)q52+(8.48528+8.48528i)q53+(3.674233.67423i)q5810.3923q59+8.00000q61+(3.535533.53553i)q62+1.00000iq64+(7.348477.34847i)q67+(2.121322.12132i)q6810.3923iq71+(7.34847+7.34847i)q73+2.00000q76+1.00000iq79+(7.34847+7.34847i)q82+(8.485288.48528i)q835.19615iq86+(3.674233.67423i)q8810.3923q89+(2.12132+2.12132i)q929.00000iq94+(7.348477.34847i)q97+(4.94975+4.94975i)q98+O(q100)q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.707107 + 0.707107i) q^{8} -5.19615i q^{11} +(-3.67423 + 3.67423i) q^{13} -1.00000 q^{16} +(2.12132 - 2.12132i) q^{17} +2.00000i q^{19} +(3.67423 + 3.67423i) q^{22} +(-2.12132 - 2.12132i) q^{23} -5.19615i q^{26} -5.19615 q^{29} -5.00000 q^{31} +(0.707107 - 0.707107i) q^{32} +3.00000i q^{34} +(-1.41421 - 1.41421i) q^{38} -10.3923i q^{41} +(-3.67423 + 3.67423i) q^{43} -5.19615 q^{44} +3.00000 q^{46} +(-6.36396 + 6.36396i) q^{47} -7.00000i q^{49} +(3.67423 + 3.67423i) q^{52} +(8.48528 + 8.48528i) q^{53} +(3.67423 - 3.67423i) q^{58} -10.3923 q^{59} +8.00000 q^{61} +(3.53553 - 3.53553i) q^{62} +1.00000i q^{64} +(-7.34847 - 7.34847i) q^{67} +(-2.12132 - 2.12132i) q^{68} -10.3923i q^{71} +(-7.34847 + 7.34847i) q^{73} +2.00000 q^{76} +1.00000i q^{79} +(7.34847 + 7.34847i) q^{82} +(-8.48528 - 8.48528i) q^{83} -5.19615i q^{86} +(3.67423 - 3.67423i) q^{88} -10.3923 q^{89} +(-2.12132 + 2.12132i) q^{92} -9.00000i q^{94} +(-7.34847 - 7.34847i) q^{97} +(4.94975 + 4.94975i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q1640q31+24q46+64q61+16q76+O(q100) 8 q - 8 q^{16} - 40 q^{31} + 24 q^{46} + 64 q^{61} + 16 q^{76}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1350Z)×\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times.

nn 10011001 10271027
χ(n)\chi(n) 1-1 e(14)e\left(\frac{1}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.707107 + 0.707107i −0.500000 + 0.500000i
33 0 0
44 1.00000i 0.500000i
55 0 0
66 0 0
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 0.707107 + 0.707107i 0.250000 + 0.250000i
99 0 0
1010 0 0
1111 5.19615i 1.56670i −0.621582 0.783349i 0.713510π-0.713510\pi
0.621582 0.783349i 0.286490π-0.286490\pi
1212 0 0
1313 −3.67423 + 3.67423i −1.01905 + 1.01905i −0.0192343 + 0.999815i 0.506123π0.506123\pi
−0.999815 + 0.0192343i 0.993877π0.993877\pi
1414 0 0
1515 0 0
1616 −1.00000 −0.250000
1717 2.12132 2.12132i 0.514496 0.514496i −0.401405 0.915901i 0.631478π-0.631478\pi
0.915901 + 0.401405i 0.131478π0.131478\pi
1818 0 0
1919 2.00000i 0.458831i 0.973329 + 0.229416i 0.0736815π0.0736815\pi
−0.973329 + 0.229416i 0.926318π0.926318\pi
2020 0 0
2121 0 0
2222 3.67423 + 3.67423i 0.783349 + 0.783349i
2323 −2.12132 2.12132i −0.442326 0.442326i 0.450467 0.892793i 0.351257π-0.351257\pi
−0.892793 + 0.450467i 0.851257π0.851257\pi
2424 0 0
2525 0 0
2626 5.19615i 1.01905i
2727 0 0
2828 0 0
2929 −5.19615 −0.964901 −0.482451 0.875923i 0.660253π-0.660253\pi
−0.482451 + 0.875923i 0.660253π0.660253\pi
3030 0 0
3131 −5.00000 −0.898027 −0.449013 0.893525i 0.648224π-0.648224\pi
−0.449013 + 0.893525i 0.648224π0.648224\pi
3232 0.707107 0.707107i 0.125000 0.125000i
3333 0 0
3434 3.00000i 0.514496i
3535 0 0
3636 0 0
3737 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 −1.41421 1.41421i −0.229416 0.229416i
3939 0 0
4040 0 0
4141 10.3923i 1.62301i −0.584349 0.811503i 0.698650π-0.698650\pi
0.584349 0.811503i 0.301350π-0.301350\pi
4242 0 0
4343 −3.67423 + 3.67423i −0.560316 + 0.560316i −0.929397 0.369082i 0.879672π-0.879672\pi
0.369082 + 0.929397i 0.379672π0.379672\pi
4444 −5.19615 −0.783349
4545 0 0
4646 3.00000 0.442326
4747 −6.36396 + 6.36396i −0.928279 + 0.928279i −0.997595 0.0693157i 0.977918π-0.977918\pi
0.0693157 + 0.997595i 0.477918π0.477918\pi
4848 0 0
4949 7.00000i 1.00000i
5050 0 0
5151 0 0
5252 3.67423 + 3.67423i 0.509525 + 0.509525i
5353 8.48528 + 8.48528i 1.16554 + 1.16554i 0.983243 + 0.182300i 0.0583542π0.0583542\pi
0.182300 + 0.983243i 0.441646π0.441646\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 3.67423 3.67423i 0.482451 0.482451i
5959 −10.3923 −1.35296 −0.676481 0.736460i 0.736496π-0.736496\pi
−0.676481 + 0.736460i 0.736496π0.736496\pi
6060 0 0
6161 8.00000 1.02430 0.512148 0.858898i 0.328850π-0.328850\pi
0.512148 + 0.858898i 0.328850π0.328850\pi
6262 3.53553 3.53553i 0.449013 0.449013i
6363 0 0
6464 1.00000i 0.125000i
6565 0 0
6666 0 0
6767 −7.34847 7.34847i −0.897758 0.897758i 0.0974792 0.995238i 0.468922π-0.468922\pi
−0.995238 + 0.0974792i 0.968922π0.968922\pi
6868 −2.12132 2.12132i −0.257248 0.257248i
6969 0 0
7070 0 0
7171 10.3923i 1.23334i −0.787222 0.616670i 0.788481π-0.788481\pi
0.787222 0.616670i 0.211519π-0.211519\pi
7272 0 0
7373 −7.34847 + 7.34847i −0.860073 + 0.860073i −0.991346 0.131273i 0.958094π-0.958094\pi
0.131273 + 0.991346i 0.458094π0.458094\pi
7474 0 0
7575 0 0
7676 2.00000 0.229416
7777 0 0
7878 0 0
7979 1.00000i 0.112509i 0.998416 + 0.0562544i 0.0179158π0.0179158\pi
−0.998416 + 0.0562544i 0.982084π0.982084\pi
8080 0 0
8181 0 0
8282 7.34847 + 7.34847i 0.811503 + 0.811503i
8383 −8.48528 8.48528i −0.931381 0.931381i 0.0664117 0.997792i 0.478845π-0.478845\pi
−0.997792 + 0.0664117i 0.978845π0.978845\pi
8484 0 0
8585 0 0
8686 5.19615i 0.560316i
8787 0 0
8888 3.67423 3.67423i 0.391675 0.391675i
8989 −10.3923 −1.10158 −0.550791 0.834643i 0.685674π-0.685674\pi
−0.550791 + 0.834643i 0.685674π0.685674\pi
9090 0 0
9191 0 0
9292 −2.12132 + 2.12132i −0.221163 + 0.221163i
9393 0 0
9494 9.00000i 0.928279i
9595 0 0
9696 0 0
9797 −7.34847 7.34847i −0.746124 0.746124i 0.227625 0.973749i 0.426904π-0.426904\pi
−0.973749 + 0.227625i 0.926904π0.926904\pi
9898 4.94975 + 4.94975i 0.500000 + 0.500000i
9999 0 0
100100 0 0
101101 5.19615i 0.517036i −0.966006 0.258518i 0.916766π-0.916766\pi
0.966006 0.258518i 0.0832342π-0.0832342\pi
102102 0 0
103103 7.34847 7.34847i 0.724066 0.724066i −0.245365 0.969431i 0.578908π-0.578908\pi
0.969431 + 0.245365i 0.0789077π0.0789077\pi
104104 −5.19615 −0.509525
105105 0 0
106106 −12.0000 −1.16554
107107 12.7279 12.7279i 1.23045 1.23045i 0.266666 0.963789i 0.414078π-0.414078\pi
0.963789 0.266666i 0.0859219π-0.0859219\pi
108108 0 0
109109 16.0000i 1.53252i 0.642529 + 0.766261i 0.277885π0.277885\pi
−0.642529 + 0.766261i 0.722115π0.722115\pi
110110 0 0
111111 0 0
112112 0 0
113113 −6.36396 6.36396i −0.598671 0.598671i 0.341288 0.939959i 0.389137π-0.389137\pi
−0.939959 + 0.341288i 0.889137π0.889137\pi
114114 0 0
115115 0 0
116116 5.19615i 0.482451i
117117 0 0
118118 7.34847 7.34847i 0.676481 0.676481i
119119 0 0
120120 0 0
121121 −16.0000 −1.45455
122122 −5.65685 + 5.65685i −0.512148 + 0.512148i
123123 0 0
124124 5.00000i 0.449013i
125125 0 0
126126 0 0
127127 −14.6969 14.6969i −1.30414 1.30414i −0.925573 0.378570i 0.876416π-0.876416\pi
−0.378570 0.925573i 0.623584π-0.623584\pi
128128 −0.707107 0.707107i −0.0625000 0.0625000i
129129 0 0
130130 0 0
131131 5.19615i 0.453990i 0.973896 + 0.226995i 0.0728901π0.0728901\pi
−0.973896 + 0.226995i 0.927110π0.927110\pi
132132 0 0
133133 0 0
134134 10.3923 0.897758
135135 0 0
136136 3.00000 0.257248
137137 −4.24264 + 4.24264i −0.362473 + 0.362473i −0.864723 0.502249i 0.832506π-0.832506\pi
0.502249 + 0.864723i 0.332506π0.332506\pi
138138 0 0
139139 4.00000i 0.339276i −0.985506 0.169638i 0.945740π-0.945740\pi
0.985506 0.169638i 0.0542598π-0.0542598\pi
140140 0 0
141141 0 0
142142 7.34847 + 7.34847i 0.616670 + 0.616670i
143143 19.0919 + 19.0919i 1.59654 + 1.59654i
144144 0 0
145145 0 0
146146 10.3923i 0.860073i
147147 0 0
148148 0 0
149149 15.5885 1.27706 0.638528 0.769599i 0.279544π-0.279544\pi
0.638528 + 0.769599i 0.279544π0.279544\pi
150150 0 0
151151 19.0000 1.54620 0.773099 0.634285i 0.218706π-0.218706\pi
0.773099 + 0.634285i 0.218706π0.218706\pi
152152 −1.41421 + 1.41421i −0.114708 + 0.114708i
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 3.67423 + 3.67423i 0.293236 + 0.293236i 0.838357 0.545121i 0.183516π-0.183516\pi
−0.545121 + 0.838357i 0.683516π0.683516\pi
158158 −0.707107 0.707107i −0.0562544 0.0562544i
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 11.0227 11.0227i 0.863365 0.863365i −0.128363 0.991727i 0.540972π-0.540972\pi
0.991727 + 0.128363i 0.0409721π0.0409721\pi
164164 −10.3923 −0.811503
165165 0 0
166166 12.0000 0.931381
167167 −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i 0.903692π-0.903692\pi
0.297966 + 0.954577i 0.403692π0.403692\pi
168168 0 0
169169 14.0000i 1.07692i
170170 0 0
171171 0 0
172172 3.67423 + 3.67423i 0.280158 + 0.280158i
173173 −16.9706 16.9706i −1.29025 1.29025i −0.934632 0.355616i 0.884271π-0.884271\pi
−0.355616 0.934632i 0.615729π-0.615729\pi
174174 0 0
175175 0 0
176176 5.19615i 0.391675i
177177 0 0
178178 7.34847 7.34847i 0.550791 0.550791i
179179 10.3923 0.776757 0.388379 0.921500i 0.373035π-0.373035\pi
0.388379 + 0.921500i 0.373035π0.373035\pi
180180 0 0
181181 −2.00000 −0.148659 −0.0743294 0.997234i 0.523682π-0.523682\pi
−0.0743294 + 0.997234i 0.523682π0.523682\pi
182182 0 0
183183 0 0
184184 3.00000i 0.221163i
185185 0 0
186186 0 0
187187 −11.0227 11.0227i −0.806060 0.806060i
188188 6.36396 + 6.36396i 0.464140 + 0.464140i
189189 0 0
190190 0 0
191191 10.3923i 0.751961i 0.926628 + 0.375980i 0.122694π0.122694\pi
−0.926628 + 0.375980i 0.877306π0.877306\pi
192192 0 0
193193 −14.6969 + 14.6969i −1.05791 + 1.05791i −0.0596919 + 0.998217i 0.519012π0.519012\pi
−0.998217 + 0.0596919i 0.980988π0.980988\pi
194194 10.3923 0.746124
195195 0 0
196196 −7.00000 −0.500000
197197 4.24264 4.24264i 0.302276 0.302276i −0.539628 0.841904i 0.681435π-0.681435\pi
0.841904 + 0.539628i 0.181435π0.181435\pi
198198 0 0
199199 11.0000i 0.779769i −0.920864 0.389885i 0.872515π-0.872515\pi
0.920864 0.389885i 0.127485π-0.127485\pi
200200 0 0
201201 0 0
202202 3.67423 + 3.67423i 0.258518 + 0.258518i
203203 0 0
204204 0 0
205205 0 0
206206 10.3923i 0.724066i
207207 0 0
208208 3.67423 3.67423i 0.254762 0.254762i
209209 10.3923 0.718851
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 8.48528 8.48528i 0.582772 0.582772i
213213 0 0
214214 18.0000i 1.23045i
215215 0 0
216216 0 0
217217 0 0
218218 −11.3137 11.3137i −0.766261 0.766261i
219219 0 0
220220 0 0
221221 15.5885i 1.04859i
222222 0 0
223223 7.34847 7.34847i 0.492090 0.492090i −0.416874 0.908964i 0.636874π-0.636874\pi
0.908964 + 0.416874i 0.136874π0.136874\pi
224224 0 0
225225 0 0
226226 9.00000 0.598671
227227 4.24264 4.24264i 0.281594 0.281594i −0.552151 0.833744i 0.686193π-0.686193\pi
0.833744 + 0.552151i 0.186193π0.186193\pi
228228 0 0
229229 14.0000i 0.925146i 0.886581 + 0.462573i 0.153074π0.153074\pi
−0.886581 + 0.462573i 0.846926π0.846926\pi
230230 0 0
231231 0 0
232232 −3.67423 3.67423i −0.241225 0.241225i
233233 12.7279 + 12.7279i 0.833834 + 0.833834i 0.988039 0.154205i 0.0492816π-0.0492816\pi
−0.154205 + 0.988039i 0.549282π0.549282\pi
234234 0 0
235235 0 0
236236 10.3923i 0.676481i
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −1.00000 −0.0644157 −0.0322078 0.999481i 0.510254π-0.510254\pi
−0.0322078 + 0.999481i 0.510254π0.510254\pi
242242 11.3137 11.3137i 0.727273 0.727273i
243243 0 0
244244 8.00000i 0.512148i
245245 0 0
246246 0 0
247247 −7.34847 7.34847i −0.467572 0.467572i
248248 −3.53553 3.53553i −0.224507 0.224507i
249249 0 0
250250 0 0
251251 15.5885i 0.983935i 0.870614 + 0.491967i 0.163722π0.163722\pi
−0.870614 + 0.491967i 0.836278π0.836278\pi
252252 0 0
253253 −11.0227 + 11.0227i −0.692991 + 0.692991i
254254 20.7846 1.30414
255255 0 0
256256 1.00000 0.0625000
257257 −10.6066 + 10.6066i −0.661622 + 0.661622i −0.955762 0.294141i 0.904967π-0.904967\pi
0.294141 + 0.955762i 0.404967π0.404967\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 −3.67423 3.67423i −0.226995 0.226995i
263263 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −7.34847 + 7.34847i −0.448879 + 0.448879i
269269 5.19615 0.316815 0.158408 0.987374i 0.449364π-0.449364\pi
0.158408 + 0.987374i 0.449364π0.449364\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 −2.12132 + 2.12132i −0.128624 + 0.128624i
273273 0 0
274274 6.00000i 0.362473i
275275 0 0
276276 0 0
277277 14.6969 + 14.6969i 0.883053 + 0.883053i 0.993844 0.110790i 0.0353382π-0.0353382\pi
−0.110790 + 0.993844i 0.535338π0.535338\pi
278278 2.82843 + 2.82843i 0.169638 + 0.169638i
279279 0 0
280280 0 0
281281 31.1769i 1.85986i 0.367738 + 0.929929i 0.380132π0.380132\pi
−0.367738 + 0.929929i 0.619868π0.619868\pi
282282 0 0
283283 7.34847 7.34847i 0.436821 0.436821i −0.454120 0.890941i 0.650046π-0.650046\pi
0.890941 + 0.454120i 0.150046π0.150046\pi
284284 −10.3923 −0.616670
285285 0 0
286286 −27.0000 −1.59654
287287 0 0
288288 0 0
289289 8.00000i 0.470588i
290290 0 0
291291 0 0
292292 7.34847 + 7.34847i 0.430037 + 0.430037i
293293 −4.24264 4.24264i −0.247858 0.247858i 0.572233 0.820091i 0.306077π-0.306077\pi
−0.820091 + 0.572233i 0.806077π0.806077\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 −11.0227 + 11.0227i −0.638528 + 0.638528i
299299 15.5885 0.901504
300300 0 0
301301 0 0
302302 −13.4350 + 13.4350i −0.773099 + 0.773099i
303303 0 0
304304 2.00000i 0.114708i
305305 0 0
306306 0 0
307307 11.0227 + 11.0227i 0.629099 + 0.629099i 0.947841 0.318742i 0.103260π-0.103260\pi
−0.318742 + 0.947841i 0.603260π0.603260\pi
308308 0 0
309309 0 0
310310 0 0
311311 10.3923i 0.589294i 0.955606 + 0.294647i 0.0952020π0.0952020\pi
−0.955606 + 0.294647i 0.904798π0.904798\pi
312312 0 0
313313 −22.0454 + 22.0454i −1.24608 + 1.24608i −0.288643 + 0.957437i 0.593204π0.593204\pi
−0.957437 + 0.288643i 0.906796π0.906796\pi
314314 −5.19615 −0.293236
315315 0 0
316316 1.00000 0.0562544
317317 −8.48528 + 8.48528i −0.476581 + 0.476581i −0.904036 0.427456i 0.859410π-0.859410\pi
0.427456 + 0.904036i 0.359410π0.359410\pi
318318 0 0
319319 27.0000i 1.51171i
320320 0 0
321321 0 0
322322 0 0
323323 4.24264 + 4.24264i 0.236067 + 0.236067i
324324 0 0
325325 0 0
326326 15.5885i 0.863365i
327327 0 0
328328 7.34847 7.34847i 0.405751 0.405751i
329329 0 0
330330 0 0
331331 26.0000 1.42909 0.714545 0.699590i 0.246634π-0.246634\pi
0.714545 + 0.699590i 0.246634π0.246634\pi
332332 −8.48528 + 8.48528i −0.465690 + 0.465690i
333333 0 0
334334 12.0000i 0.656611i
335335 0 0
336336 0 0
337337 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
338338 9.89949 + 9.89949i 0.538462 + 0.538462i
339339 0 0
340340 0 0
341341 25.9808i 1.40694i
342342 0 0
343343 0 0
344344 −5.19615 −0.280158
345345 0 0
346346 24.0000 1.29025
347347 12.7279 12.7279i 0.683271 0.683271i −0.277465 0.960736i 0.589494π-0.589494\pi
0.960736 + 0.277465i 0.0894943π0.0894943\pi
348348 0 0
349349 28.0000i 1.49881i −0.662114 0.749403i 0.730341π-0.730341\pi
0.662114 0.749403i 0.269659π-0.269659\pi
350350 0 0
351351 0 0
352352 −3.67423 3.67423i −0.195837 0.195837i
353353 −6.36396 6.36396i −0.338719 0.338719i 0.517166 0.855885i 0.326987π-0.326987\pi
−0.855885 + 0.517166i 0.826987π0.826987\pi
354354 0 0
355355 0 0
356356 10.3923i 0.550791i
357357 0 0
358358 −7.34847 + 7.34847i −0.388379 + 0.388379i
359359 10.3923 0.548485 0.274242 0.961661i 0.411573π-0.411573\pi
0.274242 + 0.961661i 0.411573π0.411573\pi
360360 0 0
361361 15.0000 0.789474
362362 1.41421 1.41421i 0.0743294 0.0743294i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 7.34847 + 7.34847i 0.383587 + 0.383587i 0.872393 0.488806i 0.162567π-0.162567\pi
−0.488806 + 0.872393i 0.662567π0.662567\pi
368368 2.12132 + 2.12132i 0.110581 + 0.110581i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −3.67423 + 3.67423i −0.190245 + 0.190245i −0.795802 0.605557i 0.792950π-0.792950\pi
0.605557 + 0.795802i 0.292950π0.292950\pi
374374 15.5885 0.806060
375375 0 0
376376 −9.00000 −0.464140
377377 19.0919 19.0919i 0.983282 0.983282i
378378 0 0
379379 16.0000i 0.821865i −0.911666 0.410932i 0.865203π-0.865203\pi
0.911666 0.410932i 0.134797π-0.134797\pi
380380 0 0
381381 0 0
382382 −7.34847 7.34847i −0.375980 0.375980i
383383 −10.6066 10.6066i −0.541972 0.541972i 0.382135 0.924107i 0.375189π-0.375189\pi
−0.924107 + 0.382135i 0.875189π0.875189\pi
384384 0 0
385385 0 0
386386 20.7846i 1.05791i
387387 0 0
388388 −7.34847 + 7.34847i −0.373062 + 0.373062i
389389 −15.5885 −0.790366 −0.395183 0.918602i 0.629319π-0.629319\pi
−0.395183 + 0.918602i 0.629319π0.629319\pi
390390 0 0
391391 −9.00000 −0.455150
392392 4.94975 4.94975i 0.250000 0.250000i
393393 0 0
394394 6.00000i 0.302276i
395395 0 0
396396 0 0
397397 25.7196 + 25.7196i 1.29083 + 1.29083i 0.934273 + 0.356559i 0.116050π0.116050\pi
0.356559 + 0.934273i 0.383950π0.383950\pi
398398 7.77817 + 7.77817i 0.389885 + 0.389885i
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 18.3712 18.3712i 0.915133 0.915133i
404404 −5.19615 −0.258518
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 5.00000i 0.247234i 0.992330 + 0.123617i 0.0394494π0.0394494\pi
−0.992330 + 0.123617i 0.960551π0.960551\pi
410410 0 0
411411 0 0
412412 −7.34847 7.34847i −0.362033 0.362033i
413413 0 0
414414 0 0
415415 0 0
416416 5.19615i 0.254762i
417417 0 0
418418 −7.34847 + 7.34847i −0.359425 + 0.359425i
419419 15.5885 0.761546 0.380773 0.924669i 0.375658π-0.375658\pi
0.380773 + 0.924669i 0.375658π0.375658\pi
420420 0 0
421421 10.0000 0.487370 0.243685 0.969854i 0.421644π-0.421644\pi
0.243685 + 0.969854i 0.421644π0.421644\pi
422422 2.82843 2.82843i 0.137686 0.137686i
423423 0 0
424424 12.0000i 0.582772i
425425 0 0
426426 0 0
427427 0 0
428428 −12.7279 12.7279i −0.615227 0.615227i
429429 0 0
430430 0 0
431431 20.7846i 1.00116i 0.865690 + 0.500580i 0.166880π0.166880\pi
−0.865690 + 0.500580i 0.833120π0.833120\pi
432432 0 0
433433 −7.34847 + 7.34847i −0.353145 + 0.353145i −0.861278 0.508133i 0.830336π-0.830336\pi
0.508133 + 0.861278i 0.330336π0.330336\pi
434434 0 0
435435 0 0
436436 16.0000 0.766261
437437 4.24264 4.24264i 0.202953 0.202953i
438438 0 0
439439 8.00000i 0.381819i −0.981608 0.190910i 0.938856π-0.938856\pi
0.981608 0.190910i 0.0611437π-0.0611437\pi
440440 0 0
441441 0 0
442442 −11.0227 11.0227i −0.524297 0.524297i
443443 −4.24264 4.24264i −0.201574 0.201574i 0.599100 0.800674i 0.295525π-0.295525\pi
−0.800674 + 0.599100i 0.795525π0.795525\pi
444444 0 0
445445 0 0
446446 10.3923i 0.492090i
447447 0 0
448448 0 0
449449 20.7846 0.980886 0.490443 0.871473i 0.336835π-0.336835\pi
0.490443 + 0.871473i 0.336835π0.336835\pi
450450 0 0
451451 −54.0000 −2.54276
452452 −6.36396 + 6.36396i −0.299336 + 0.299336i
453453 0 0
454454 6.00000i 0.281594i
455455 0 0
456456 0 0
457457 14.6969 + 14.6969i 0.687494 + 0.687494i 0.961677 0.274184i 0.0884076π-0.0884076\pi
−0.274184 + 0.961677i 0.588408π0.588408\pi
458458 −9.89949 9.89949i −0.462573 0.462573i
459459 0 0
460460 0 0
461461 41.5692i 1.93607i −0.250812 0.968036i 0.580698π-0.580698\pi
0.250812 0.968036i 0.419302π-0.419302\pi
462462 0 0
463463 7.34847 7.34847i 0.341512 0.341512i −0.515423 0.856936i 0.672365π-0.672365\pi
0.856936 + 0.515423i 0.172365π0.172365\pi
464464 5.19615 0.241225
465465 0 0
466466 −18.0000 −0.833834
467467 −21.2132 + 21.2132i −0.981630 + 0.981630i −0.999834 0.0182043i 0.994205π-0.994205\pi
0.0182043 + 0.999834i 0.494205π0.494205\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −7.34847 7.34847i −0.338241 0.338241i
473473 19.0919 + 19.0919i 0.877846 + 0.877846i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 −10.3923 −0.474837 −0.237418 0.971408i 0.576301π-0.576301\pi
−0.237418 + 0.971408i 0.576301π0.576301\pi
480480 0 0
481481 0 0
482482 0.707107 0.707107i 0.0322078 0.0322078i
483483 0 0
484484 16.0000i 0.727273i
485485 0 0
486486 0 0
487487 −14.6969 14.6969i −0.665982 0.665982i 0.290802 0.956783i 0.406078π-0.406078\pi
−0.956783 + 0.290802i 0.906078π0.906078\pi
488488 5.65685 + 5.65685i 0.256074 + 0.256074i
489489 0 0
490490 0 0
491491 10.3923i 0.468998i −0.972116 0.234499i 0.924655π-0.924655\pi
0.972116 0.234499i 0.0753450π-0.0753450\pi
492492 0 0
493493 −11.0227 + 11.0227i −0.496438 + 0.496438i
494494 10.3923 0.467572
495495 0 0
496496 5.00000 0.224507
497497 0 0
498498 0 0
499499 40.0000i 1.79065i 0.445418 + 0.895323i 0.353055π0.353055\pi
−0.445418 + 0.895323i 0.646945π0.646945\pi
500500 0 0
501501 0 0
502502 −11.0227 11.0227i −0.491967 0.491967i
503503 −14.8492 14.8492i −0.662095 0.662095i 0.293779 0.955874i 0.405087π-0.405087\pi
−0.955874 + 0.293779i 0.905087π0.905087\pi
504504 0 0
505505 0 0
506506 15.5885i 0.692991i
507507 0 0
508508 −14.6969 + 14.6969i −0.652071 + 0.652071i
509509 −15.5885 −0.690946 −0.345473 0.938429i 0.612282π-0.612282\pi
−0.345473 + 0.938429i 0.612282π0.612282\pi
510510 0 0
511511 0 0
512512 −0.707107 + 0.707107i −0.0312500 + 0.0312500i
513513 0 0
514514 15.0000i 0.661622i
515515 0 0
516516 0 0
517517 33.0681 + 33.0681i 1.45433 + 1.45433i
518518 0 0
519519 0 0
520520 0 0
521521 31.1769i 1.36589i −0.730472 0.682943i 0.760700π-0.760700\pi
0.730472 0.682943i 0.239300π-0.239300\pi
522522 0 0
523523 25.7196 25.7196i 1.12464 1.12464i 0.133607 0.991034i 0.457344π-0.457344\pi
0.991034 0.133607i 0.0426560π-0.0426560\pi
524524 5.19615 0.226995
525525 0 0
526526 0 0
527527 −10.6066 + 10.6066i −0.462031 + 0.462031i
528528 0 0
529529 14.0000i 0.608696i
530530 0 0
531531 0 0
532532 0 0
533533 38.1838 + 38.1838i 1.65392 + 1.65392i
534534 0 0
535535 0 0
536536 10.3923i 0.448879i
537537 0 0
538538 −3.67423 + 3.67423i −0.158408 + 0.158408i
539539 −36.3731 −1.56670
540540 0 0
541541 2.00000 0.0859867 0.0429934 0.999075i 0.486311π-0.486311\pi
0.0429934 + 0.999075i 0.486311π0.486311\pi
542542 11.3137 11.3137i 0.485965 0.485965i
543543 0 0
544544 3.00000i 0.128624i
545545 0 0
546546 0 0
547547 −25.7196 25.7196i −1.09969 1.09969i −0.994446 0.105246i 0.966437π-0.966437\pi
−0.105246 0.994446i 0.533563π-0.533563\pi
548548 4.24264 + 4.24264i 0.181237 + 0.181237i
549549 0 0
550550 0 0
551551 10.3923i 0.442727i
552552 0 0
553553 0 0
554554 −20.7846 −0.883053
555555 0 0
556556 −4.00000 −0.169638
557557 −12.7279 + 12.7279i −0.539299 + 0.539299i −0.923323 0.384024i 0.874538π-0.874538\pi
0.384024 + 0.923323i 0.374538π0.374538\pi
558558 0 0
559559 27.0000i 1.14198i
560560 0 0
561561 0 0
562562 −22.0454 22.0454i −0.929929 0.929929i
563563 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 10.3923i 0.436821i
567567 0 0
568568 7.34847 7.34847i 0.308335 0.308335i
569569 20.7846 0.871336 0.435668 0.900107i 0.356512π-0.356512\pi
0.435668 + 0.900107i 0.356512π0.356512\pi
570570 0 0
571571 32.0000 1.33916 0.669579 0.742741i 0.266474π-0.266474\pi
0.669579 + 0.742741i 0.266474π0.266474\pi
572572 19.0919 19.0919i 0.798272 0.798272i
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −14.6969 14.6969i −0.611842 0.611842i 0.331584 0.943426i 0.392417π-0.392417\pi
−0.943426 + 0.331584i 0.892417π0.892417\pi
578578 −5.65685 5.65685i −0.235294 0.235294i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 44.0908 44.0908i 1.82605 1.82605i
584584 −10.3923 −0.430037
585585 0 0
586586 6.00000 0.247858
587587 −16.9706 + 16.9706i −0.700450 + 0.700450i −0.964507 0.264057i 0.914939π-0.914939\pi
0.264057 + 0.964507i 0.414939π0.414939\pi
588588 0 0
589589 10.0000i 0.412043i
590590 0 0
591591 0 0
592592 0 0
593593 −27.5772 27.5772i −1.13246 1.13246i −0.989767 0.142691i 0.954424π-0.954424\pi
−0.142691 0.989767i 0.545576π-0.545576\pi
594594 0 0
595595 0 0
596596 15.5885i 0.638528i
597597 0 0
598598 −11.0227 + 11.0227i −0.450752 + 0.450752i
599599 10.3923 0.424618 0.212309 0.977203i 0.431902π-0.431902\pi
0.212309 + 0.977203i 0.431902π0.431902\pi
600600 0 0
601601 19.0000 0.775026 0.387513 0.921864i 0.373334π-0.373334\pi
0.387513 + 0.921864i 0.373334π0.373334\pi
602602 0 0
603603 0 0
604604 19.0000i 0.773099i
605605 0 0
606606 0 0
607607 22.0454 + 22.0454i 0.894795 + 0.894795i 0.994970 0.100174i 0.0319401π-0.0319401\pi
−0.100174 + 0.994970i 0.531940π0.531940\pi
608608 1.41421 + 1.41421i 0.0573539 + 0.0573539i
609609 0 0
610610 0 0
611611 46.7654i 1.89192i
612612 0 0
613613 18.3712 18.3712i 0.742005 0.742005i −0.230959 0.972964i 0.574186π-0.574186\pi
0.972964 + 0.230959i 0.0741863π0.0741863\pi
614614 −15.5885 −0.629099
615615 0 0
616616 0 0
617617 27.5772 27.5772i 1.11021 1.11021i 0.117094 0.993121i 0.462642π-0.462642\pi
0.993121 0.117094i 0.0373579π-0.0373579\pi
618618 0 0
619619 10.0000i 0.401934i 0.979598 + 0.200967i 0.0644084π0.0644084\pi
−0.979598 + 0.200967i 0.935592π0.935592\pi
620620 0 0
621621 0 0
622622 −7.34847 7.34847i −0.294647 0.294647i
623623 0 0
624624 0 0
625625 0 0
626626 31.1769i 1.24608i
627627 0 0
628628 3.67423 3.67423i 0.146618 0.146618i
629629 0 0
630630 0 0
631631 20.0000 0.796187 0.398094 0.917345i 0.369672π-0.369672\pi
0.398094 + 0.917345i 0.369672π0.369672\pi
632632 −0.707107 + 0.707107i −0.0281272 + 0.0281272i
633633 0 0
634634 12.0000i 0.476581i
635635 0 0
636636 0 0
637637 25.7196 + 25.7196i 1.01905 + 1.01905i
638638 −19.0919 19.0919i −0.755855 0.755855i
639639 0 0
640640 0 0
641641 20.7846i 0.820943i 0.911873 + 0.410471i 0.134636π0.134636\pi
−0.911873 + 0.410471i 0.865364π0.865364\pi
642642 0 0
643643 11.0227 11.0227i 0.434693 0.434693i −0.455528 0.890221i 0.650550π-0.650550\pi
0.890221 + 0.455528i 0.150550π0.150550\pi
644644 0 0
645645 0 0
646646 −6.00000 −0.236067
647647 16.9706 16.9706i 0.667182 0.667182i −0.289881 0.957063i 0.593616π-0.593616\pi
0.957063 + 0.289881i 0.0936157π0.0936157\pi
648648 0 0
649649 54.0000i 2.11969i
650650 0 0
651651 0 0
652652 −11.0227 11.0227i −0.431682 0.431682i
653653 −4.24264 4.24264i −0.166027 0.166027i 0.619203 0.785231i 0.287456π-0.287456\pi
−0.785231 + 0.619203i 0.787456π0.787456\pi
654654 0 0
655655 0 0
656656 10.3923i 0.405751i
657657 0 0
658658 0 0
659659 −31.1769 −1.21448 −0.607240 0.794518i 0.707723π-0.707723\pi
−0.607240 + 0.794518i 0.707723π0.707723\pi
660660 0 0
661661 −32.0000 −1.24466 −0.622328 0.782757i 0.713813π-0.713813\pi
−0.622328 + 0.782757i 0.713813π0.713813\pi
662662 −18.3848 + 18.3848i −0.714545 + 0.714545i
663663 0 0
664664 12.0000i 0.465690i
665665 0 0
666666 0 0
667667 11.0227 + 11.0227i 0.426801 + 0.426801i
668668 8.48528 + 8.48528i 0.328305 + 0.328305i
669669 0 0
670670 0 0
671671 41.5692i 1.60476i
672672 0 0
673673 −14.6969 + 14.6969i −0.566525 + 0.566525i −0.931153 0.364628i 0.881196π-0.881196\pi
0.364628 + 0.931153i 0.381196π0.381196\pi
674674 0 0
675675 0 0
676676 −14.0000 −0.538462
677677 25.4558 25.4558i 0.978348 0.978348i −0.0214229 0.999771i 0.506820π-0.506820\pi
0.999771 + 0.0214229i 0.00681965π0.00681965\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 −18.3712 18.3712i −0.703469 0.703469i
683683 −16.9706 16.9706i −0.649361 0.649361i 0.303478 0.952838i 0.401852π-0.401852\pi
−0.952838 + 0.303478i 0.901852π0.901852\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 3.67423 3.67423i 0.140079 0.140079i
689689 −62.3538 −2.37549
690690 0 0
691691 10.0000 0.380418 0.190209 0.981744i 0.439083π-0.439083\pi
0.190209 + 0.981744i 0.439083π0.439083\pi
692692 −16.9706 + 16.9706i −0.645124 + 0.645124i
693693 0 0
694694 18.0000i 0.683271i
695695 0 0
696696 0 0
697697 −22.0454 22.0454i −0.835029 0.835029i
698698 19.7990 + 19.7990i 0.749403 + 0.749403i
699699 0 0
700700 0 0
701701 36.3731i 1.37379i −0.726756 0.686896i 0.758973π-0.758973\pi
0.726756 0.686896i 0.241027π-0.241027\pi
702702 0 0
703703 0 0
704704 5.19615 0.195837
705705 0 0
706706 9.00000 0.338719
707707 0 0
708708 0 0
709709 28.0000i 1.05156i −0.850620 0.525781i 0.823773π-0.823773\pi
0.850620 0.525781i 0.176227π-0.176227\pi
710710 0 0
711711 0 0
712712 −7.34847 7.34847i −0.275396 0.275396i
713713 10.6066 + 10.6066i 0.397220 + 0.397220i
714714 0 0
715715 0 0
716716 10.3923i 0.388379i
717717 0 0
718718 −7.34847 + 7.34847i −0.274242 + 0.274242i
719719 −41.5692 −1.55027 −0.775135 0.631795i 0.782318π-0.782318\pi
−0.775135 + 0.631795i 0.782318π0.782318\pi
720720 0 0
721721 0 0
722722 −10.6066 + 10.6066i −0.394737 + 0.394737i
723723 0 0
724724 2.00000i 0.0743294i
725725 0 0
726726 0 0
727727 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
728728 0 0
729729 0 0
730730 0 0
731731 15.5885i 0.576560i
732732 0 0
733733 29.3939 29.3939i 1.08569 1.08569i 0.0897206 0.995967i 0.471403π-0.471403\pi
0.995967 0.0897206i 0.0285974π-0.0285974\pi
734734 −10.3923 −0.383587
735735 0 0
736736 −3.00000 −0.110581
737737 −38.1838 + 38.1838i −1.40652 + 1.40652i
738738 0 0
739739 34.0000i 1.25071i −0.780340 0.625355i 0.784954π-0.784954\pi
0.780340 0.625355i 0.215046π-0.215046\pi
740740 0 0
741741 0 0
742742 0 0
743743 19.0919 + 19.0919i 0.700413 + 0.700413i 0.964499 0.264086i 0.0850702π-0.0850702\pi
−0.264086 + 0.964499i 0.585070π0.585070\pi
744744 0 0
745745 0 0
746746 5.19615i 0.190245i
747747 0 0
748748 −11.0227 + 11.0227i −0.403030 + 0.403030i
749749 0 0
750750 0 0
751751 −23.0000 −0.839282 −0.419641 0.907690i 0.637844π-0.637844\pi
−0.419641 + 0.907690i 0.637844π0.637844\pi
752752 6.36396 6.36396i 0.232070 0.232070i
753753 0 0
754754 27.0000i 0.983282i
755755 0 0
756756 0 0
757757 25.7196 + 25.7196i 0.934796 + 0.934796i 0.998001 0.0632043i 0.0201320π-0.0201320\pi
−0.0632043 + 0.998001i 0.520132π0.520132\pi
758758 11.3137 + 11.3137i 0.410932 + 0.410932i
759759 0 0
760760 0 0
761761 20.7846i 0.753442i −0.926327 0.376721i 0.877052π-0.877052\pi
0.926327 0.376721i 0.122948π-0.122948\pi
762762 0 0
763763 0 0
764764 10.3923 0.375980
765765 0 0
766766 15.0000 0.541972
767767 38.1838 38.1838i 1.37874 1.37874i
768768 0 0
769769 13.0000i 0.468792i 0.972141 + 0.234396i 0.0753112π0.0753112\pi
−0.972141 + 0.234396i 0.924689π0.924689\pi
770770 0 0
771771 0 0
772772 14.6969 + 14.6969i 0.528954 + 0.528954i
773773 −21.2132 21.2132i −0.762986 0.762986i 0.213875 0.976861i 0.431391π-0.431391\pi
−0.976861 + 0.213875i 0.931391π0.931391\pi
774774 0 0
775775 0 0
776776 10.3923i 0.373062i
777777 0 0
778778 11.0227 11.0227i 0.395183 0.395183i
779779 20.7846 0.744686
780780 0 0
781781 −54.0000 −1.93227
782782 6.36396 6.36396i 0.227575 0.227575i
783783 0 0
784784 7.00000i 0.250000i
785785 0 0
786786 0 0
787787 −18.3712 18.3712i −0.654862 0.654862i 0.299298 0.954160i 0.403248π-0.403248\pi
−0.954160 + 0.299298i 0.903248π0.903248\pi
788788 −4.24264 4.24264i −0.151138 0.151138i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −29.3939 + 29.3939i −1.04381 + 1.04381i
794794 −36.3731 −1.29083
795795 0 0
796796 −11.0000 −0.389885
797797 −21.2132 + 21.2132i −0.751410 + 0.751410i −0.974742 0.223332i 0.928307π-0.928307\pi
0.223332 + 0.974742i 0.428307π0.428307\pi
798798 0 0
799799 27.0000i 0.955191i
800800 0 0
801801 0 0
802802 0 0
803803 38.1838 + 38.1838i 1.34748 + 1.34748i
804804 0 0
805805 0 0
806806 25.9808i 0.915133i
807807 0 0
808808 3.67423 3.67423i 0.129259 0.129259i
809809 −20.7846 −0.730748 −0.365374 0.930861i 0.619059π-0.619059\pi
−0.365374 + 0.930861i 0.619059π0.619059\pi
810810 0 0
811811 −2.00000 −0.0702295 −0.0351147 0.999383i 0.511180π-0.511180\pi
−0.0351147 + 0.999383i 0.511180π0.511180\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −7.34847 7.34847i −0.257090 0.257090i
818818 −3.53553 3.53553i −0.123617 0.123617i
819819 0 0
820820 0 0
821821 41.5692i 1.45078i −0.688340 0.725388i 0.741660π-0.741660\pi
0.688340 0.725388i 0.258340π-0.258340\pi
822822 0 0
823823 14.6969 14.6969i 0.512303 0.512303i −0.402928 0.915231i 0.632008π-0.632008\pi
0.915231 + 0.402928i 0.132008π0.132008\pi
824824 10.3923 0.362033
825825 0 0
826826 0 0
827827 −29.6985 + 29.6985i −1.03272 + 1.03272i −0.0332711 + 0.999446i 0.510592π0.510592\pi
−0.999446 + 0.0332711i 0.989408π0.989408\pi
828828 0 0
829829 20.0000i 0.694629i 0.937749 + 0.347314i 0.112906π0.112906\pi
−0.937749 + 0.347314i 0.887094π0.887094\pi
830830 0 0
831831 0 0
832832 −3.67423 3.67423i −0.127381 0.127381i
833833 −14.8492 14.8492i −0.514496 0.514496i
834834 0 0
835835 0 0
836836 10.3923i 0.359425i
837837 0 0
838838 −11.0227 + 11.0227i −0.380773 + 0.380773i
839839 −10.3923 −0.358782 −0.179391 0.983778i 0.557413π-0.557413\pi
−0.179391 + 0.983778i 0.557413π0.557413\pi
840840 0 0
841841 −2.00000 −0.0689655
842842 −7.07107 + 7.07107i −0.243685 + 0.243685i
843843 0 0
844844 4.00000i 0.137686i
845845 0 0
846846 0 0
847847 0 0
848848 −8.48528 8.48528i −0.291386 0.291386i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 3.67423 3.67423i 0.125803 0.125803i −0.641402 0.767205i 0.721647π-0.721647\pi
0.767205 + 0.641402i 0.221647π0.221647\pi
854854 0 0
855855 0 0
856856 18.0000 0.615227
857857 −4.24264 + 4.24264i −0.144926 + 0.144926i −0.775847 0.630921i 0.782677π-0.782677\pi
0.630921 + 0.775847i 0.282677π0.282677\pi
858858 0 0
859859 50.0000i 1.70598i −0.521929 0.852989i 0.674787π-0.674787\pi
0.521929 0.852989i 0.325213π-0.325213\pi
860860 0 0
861861 0 0
862862 −14.6969 14.6969i −0.500580 0.500580i
863863 −36.0624 36.0624i −1.22758 1.22758i −0.964877 0.262703i 0.915386π-0.915386\pi
−0.262703 0.964877i 0.584614π-0.584614\pi
864864 0 0
865865 0 0
866866 10.3923i 0.353145i
867867 0 0
868868 0 0
869869 5.19615 0.176267
870870 0 0
871871 54.0000 1.82972
872872 −11.3137 + 11.3137i −0.383131 + 0.383131i
873873 0 0
874874 6.00000i 0.202953i
875875 0 0
876876 0 0
877877 11.0227 + 11.0227i 0.372210 + 0.372210i 0.868282 0.496071i 0.165225π-0.165225\pi
−0.496071 + 0.868282i 0.665225π0.665225\pi
878878 5.65685 + 5.65685i 0.190910 + 0.190910i
879879 0 0
880880 0 0
881881 10.3923i 0.350126i 0.984557 + 0.175063i 0.0560129π0.0560129\pi
−0.984557 + 0.175063i 0.943987π0.943987\pi
882882 0 0
883883 7.34847 7.34847i 0.247296 0.247296i −0.572564 0.819860i 0.694051π-0.694051\pi
0.819860 + 0.572564i 0.194051π0.194051\pi
884884 15.5885 0.524297
885885 0 0
886886 6.00000 0.201574
887887 40.3051 40.3051i 1.35331 1.35331i 0.471385 0.881928i 0.343754π-0.343754\pi
0.881928 0.471385i 0.156246π-0.156246\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 −7.34847 7.34847i −0.246045 0.246045i
893893 −12.7279 12.7279i −0.425924 0.425924i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −14.6969 + 14.6969i −0.490443 + 0.490443i
899899 25.9808 0.866507
900900 0 0
901901 36.0000 1.19933
902902 38.1838 38.1838i 1.27138 1.27138i
903903 0 0
904904 9.00000i 0.299336i
905905 0 0
906906 0 0
907907 18.3712 + 18.3712i 0.610005 + 0.610005i 0.942947 0.332942i 0.108041π-0.108041\pi
−0.332942 + 0.942947i 0.608041π0.608041\pi
908908 −4.24264 4.24264i −0.140797 0.140797i
909909 0 0
910910 0 0
911911 41.5692i 1.37725i −0.725118 0.688625i 0.758215π-0.758215\pi
0.725118 0.688625i 0.241785π-0.241785\pi
912912 0 0
913913 −44.0908 + 44.0908i −1.45919 + 1.45919i
914914 −20.7846 −0.687494
915915 0 0
916916 14.0000 0.462573
917917 0 0
918918 0 0
919919 25.0000i 0.824674i −0.911031 0.412337i 0.864713π-0.864713\pi
0.911031 0.412337i 0.135287π-0.135287\pi
920920 0 0
921921 0 0
922922 29.3939 + 29.3939i 0.968036 + 0.968036i
923923 38.1838 + 38.1838i 1.25683 + 1.25683i
924924 0 0
925925 0 0
926926 10.3923i 0.341512i
927927 0 0
928928 −3.67423 + 3.67423i −0.120613 + 0.120613i
929929 10.3923 0.340960 0.170480 0.985361i 0.445468π-0.445468\pi
0.170480 + 0.985361i 0.445468π0.445468\pi
930930 0 0
931931 14.0000 0.458831
932932 12.7279 12.7279i 0.416917 0.416917i
933933 0 0
934934 30.0000i 0.981630i
935935 0 0
936936 0 0
937937 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
938938 0 0
939939 0 0
940940 0 0
941941 46.7654i 1.52451i 0.647278 + 0.762254i 0.275907π0.275907\pi
−0.647278 + 0.762254i 0.724093π0.724093\pi
942942 0 0
943943 −22.0454 + 22.0454i −0.717897 + 0.717897i
944944 10.3923 0.338241
945945 0 0
946946 −27.0000 −0.877846
947947 8.48528 8.48528i 0.275735 0.275735i −0.555669 0.831404i 0.687538π-0.687538\pi
0.831404 + 0.555669i 0.187538π0.187538\pi
948948 0 0
949949 54.0000i 1.75291i
950950 0 0
951951 0 0
952952 0 0
953953 −6.36396 6.36396i −0.206149 0.206149i 0.596479 0.802628i 0.296566π-0.296566\pi
−0.802628 + 0.596479i 0.796566π0.796566\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 7.34847 7.34847i 0.237418 0.237418i
959959 0 0
960960 0 0
961961 −6.00000 −0.193548
962962 0 0
963963 0 0
964964 1.00000i 0.0322078i
965965 0 0
966966 0 0
967967 −7.34847 7.34847i −0.236311 0.236311i 0.579010 0.815321i 0.303439π-0.303439\pi
−0.815321 + 0.579010i 0.803439π0.803439\pi
968968 −11.3137 11.3137i −0.363636 0.363636i
969969 0 0
970970 0 0
971971 25.9808i 0.833762i 0.908961 + 0.416881i 0.136877π0.136877\pi
−0.908961 + 0.416881i 0.863123π0.863123\pi
972972 0 0
973973 0 0
974974 20.7846 0.665982
975975 0 0
976976 −8.00000 −0.256074
977977 −19.0919 + 19.0919i −0.610803 + 0.610803i −0.943155 0.332352i 0.892158π-0.892158\pi
0.332352 + 0.943155i 0.392158π0.392158\pi
978978 0 0
979979 54.0000i 1.72585i
980980 0 0
981981 0 0
982982 7.34847 + 7.34847i 0.234499 + 0.234499i
983983 10.6066 + 10.6066i 0.338298 + 0.338298i 0.855726 0.517428i 0.173111π-0.173111\pi
−0.517428 + 0.855726i 0.673111π0.673111\pi
984984 0 0
985985 0 0
986986 15.5885i 0.496438i
987987 0 0
988988 −7.34847 + 7.34847i −0.233786 + 0.233786i
989989 15.5885 0.495684
990990 0 0
991991 −25.0000 −0.794151 −0.397076 0.917786i 0.629975π-0.629975\pi
−0.397076 + 0.917786i 0.629975π0.629975\pi
992992 −3.53553 + 3.53553i −0.112253 + 0.112253i
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 11.0227 + 11.0227i 0.349093 + 0.349093i 0.859771 0.510679i 0.170606π-0.170606\pi
−0.510679 + 0.859771i 0.670606π0.670606\pi
998998 −28.2843 28.2843i −0.895323 0.895323i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.f.c.107.1 8
3.2 odd 2 inner 1350.2.f.c.107.4 yes 8
5.2 odd 4 inner 1350.2.f.c.593.1 yes 8
5.3 odd 4 inner 1350.2.f.c.593.3 yes 8
5.4 even 2 inner 1350.2.f.c.107.3 yes 8
15.2 even 4 inner 1350.2.f.c.593.4 yes 8
15.8 even 4 inner 1350.2.f.c.593.2 yes 8
15.14 odd 2 inner 1350.2.f.c.107.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.2.f.c.107.1 8 1.1 even 1 trivial
1350.2.f.c.107.2 yes 8 15.14 odd 2 inner
1350.2.f.c.107.3 yes 8 5.4 even 2 inner
1350.2.f.c.107.4 yes 8 3.2 odd 2 inner
1350.2.f.c.593.1 yes 8 5.2 odd 4 inner
1350.2.f.c.593.2 yes 8 15.8 even 4 inner
1350.2.f.c.593.3 yes 8 5.3 odd 4 inner
1350.2.f.c.593.4 yes 8 15.2 even 4 inner