Properties

Label 1350.2.f.c.107.2
Level $1350$
Weight $2$
Character 1350.107
Analytic conductor $10.780$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(107,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.2
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1350.107
Dual form 1350.2.f.c.593.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.707107 + 0.707107i) q^{8} +5.19615i q^{11} +(3.67423 - 3.67423i) q^{13} -1.00000 q^{16} +(2.12132 - 2.12132i) q^{17} +2.00000i q^{19} +(-3.67423 - 3.67423i) q^{22} +(-2.12132 - 2.12132i) q^{23} +5.19615i q^{26} +5.19615 q^{29} -5.00000 q^{31} +(0.707107 - 0.707107i) q^{32} +3.00000i q^{34} +(-1.41421 - 1.41421i) q^{38} +10.3923i q^{41} +(3.67423 - 3.67423i) q^{43} +5.19615 q^{44} +3.00000 q^{46} +(-6.36396 + 6.36396i) q^{47} -7.00000i q^{49} +(-3.67423 - 3.67423i) q^{52} +(8.48528 + 8.48528i) q^{53} +(-3.67423 + 3.67423i) q^{58} +10.3923 q^{59} +8.00000 q^{61} +(3.53553 - 3.53553i) q^{62} +1.00000i q^{64} +(7.34847 + 7.34847i) q^{67} +(-2.12132 - 2.12132i) q^{68} +10.3923i q^{71} +(7.34847 - 7.34847i) q^{73} +2.00000 q^{76} +1.00000i q^{79} +(-7.34847 - 7.34847i) q^{82} +(-8.48528 - 8.48528i) q^{83} +5.19615i q^{86} +(-3.67423 + 3.67423i) q^{88} +10.3923 q^{89} +(-2.12132 + 2.12132i) q^{92} -9.00000i q^{94} +(7.34847 + 7.34847i) q^{97} +(4.94975 + 4.94975i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{16} - 40 q^{31} + 24 q^{46} + 64 q^{61} + 16 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.19615i 1.56670i 0.621582 + 0.783349i \(0.286490\pi\)
−0.621582 + 0.783349i \(0.713510\pi\)
\(12\) 0 0
\(13\) 3.67423 3.67423i 1.01905 1.01905i 0.0192343 0.999815i \(-0.493877\pi\)
0.999815 0.0192343i \(-0.00612285\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.12132 2.12132i 0.514496 0.514496i −0.401405 0.915901i \(-0.631478\pi\)
0.915901 + 0.401405i \(0.131478\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.67423 3.67423i −0.783349 0.783349i
\(23\) −2.12132 2.12132i −0.442326 0.442326i 0.450467 0.892793i \(-0.351257\pi\)
−0.892793 + 0.450467i \(0.851257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.19615i 1.01905i
\(27\) 0 0
\(28\) 0 0
\(29\) 5.19615 0.964901 0.482451 0.875923i \(-0.339747\pi\)
0.482451 + 0.875923i \(0.339747\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) −1.41421 1.41421i −0.229416 0.229416i
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3923i 1.62301i 0.584349 + 0.811503i \(0.301350\pi\)
−0.584349 + 0.811503i \(0.698650\pi\)
\(42\) 0 0
\(43\) 3.67423 3.67423i 0.560316 0.560316i −0.369082 0.929397i \(-0.620328\pi\)
0.929397 + 0.369082i \(0.120328\pi\)
\(44\) 5.19615 0.783349
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) −6.36396 + 6.36396i −0.928279 + 0.928279i −0.997595 0.0693157i \(-0.977918\pi\)
0.0693157 + 0.997595i \(0.477918\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) −3.67423 3.67423i −0.509525 0.509525i
\(53\) 8.48528 + 8.48528i 1.16554 + 1.16554i 0.983243 + 0.182300i \(0.0583542\pi\)
0.182300 + 0.983243i \(0.441646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −3.67423 + 3.67423i −0.482451 + 0.482451i
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 3.53553 3.53553i 0.449013 0.449013i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 7.34847 + 7.34847i 0.897758 + 0.897758i 0.995238 0.0974792i \(-0.0310779\pi\)
−0.0974792 + 0.995238i \(0.531078\pi\)
\(68\) −2.12132 2.12132i −0.257248 0.257248i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i 0.787222 + 0.616670i \(0.211519\pi\)
−0.787222 + 0.616670i \(0.788481\pi\)
\(72\) 0 0
\(73\) 7.34847 7.34847i 0.860073 0.860073i −0.131273 0.991346i \(-0.541906\pi\)
0.991346 + 0.131273i \(0.0419064\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) 1.00000i 0.112509i 0.998416 + 0.0562544i \(0.0179158\pi\)
−0.998416 + 0.0562544i \(0.982084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −7.34847 7.34847i −0.811503 0.811503i
\(83\) −8.48528 8.48528i −0.931381 0.931381i 0.0664117 0.997792i \(-0.478845\pi\)
−0.997792 + 0.0664117i \(0.978845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.19615i 0.560316i
\(87\) 0 0
\(88\) −3.67423 + 3.67423i −0.391675 + 0.391675i
\(89\) 10.3923 1.10158 0.550791 0.834643i \(-0.314326\pi\)
0.550791 + 0.834643i \(0.314326\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.12132 + 2.12132i −0.221163 + 0.221163i
\(93\) 0 0
\(94\) 9.00000i 0.928279i
\(95\) 0 0
\(96\) 0 0
\(97\) 7.34847 + 7.34847i 0.746124 + 0.746124i 0.973749 0.227625i \(-0.0730960\pi\)
−0.227625 + 0.973749i \(0.573096\pi\)
\(98\) 4.94975 + 4.94975i 0.500000 + 0.500000i
\(99\) 0 0
\(100\) 0 0
\(101\) 5.19615i 0.517036i 0.966006 + 0.258518i \(0.0832342\pi\)
−0.966006 + 0.258518i \(0.916766\pi\)
\(102\) 0 0
\(103\) −7.34847 + 7.34847i −0.724066 + 0.724066i −0.969431 0.245365i \(-0.921092\pi\)
0.245365 + 0.969431i \(0.421092\pi\)
\(104\) 5.19615 0.509525
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 12.7279 12.7279i 1.23045 1.23045i 0.266666 0.963789i \(-0.414078\pi\)
0.963789 0.266666i \(-0.0859219\pi\)
\(108\) 0 0
\(109\) 16.0000i 1.53252i 0.642529 + 0.766261i \(0.277885\pi\)
−0.642529 + 0.766261i \(0.722115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.36396 6.36396i −0.598671 0.598671i 0.341288 0.939959i \(-0.389137\pi\)
−0.939959 + 0.341288i \(0.889137\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.19615i 0.482451i
\(117\) 0 0
\(118\) −7.34847 + 7.34847i −0.676481 + 0.676481i
\(119\) 0 0
\(120\) 0 0
\(121\) −16.0000 −1.45455
\(122\) −5.65685 + 5.65685i −0.512148 + 0.512148i
\(123\) 0 0
\(124\) 5.00000i 0.449013i
\(125\) 0 0
\(126\) 0 0
\(127\) 14.6969 + 14.6969i 1.30414 + 1.30414i 0.925573 + 0.378570i \(0.123584\pi\)
0.378570 + 0.925573i \(0.376416\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.19615i 0.453990i −0.973896 0.226995i \(-0.927110\pi\)
0.973896 0.226995i \(-0.0728901\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10.3923 −0.897758
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) −4.24264 + 4.24264i −0.362473 + 0.362473i −0.864723 0.502249i \(-0.832506\pi\)
0.502249 + 0.864723i \(0.332506\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.34847 7.34847i −0.616670 0.616670i
\(143\) 19.0919 + 19.0919i 1.59654 + 1.59654i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.3923i 0.860073i
\(147\) 0 0
\(148\) 0 0
\(149\) −15.5885 −1.27706 −0.638528 0.769599i \(-0.720456\pi\)
−0.638528 + 0.769599i \(0.720456\pi\)
\(150\) 0 0
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) −1.41421 + 1.41421i −0.114708 + 0.114708i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.67423 3.67423i −0.293236 0.293236i 0.545121 0.838357i \(-0.316484\pi\)
−0.838357 + 0.545121i \(0.816484\pi\)
\(158\) −0.707107 0.707107i −0.0562544 0.0562544i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.0227 + 11.0227i −0.863365 + 0.863365i −0.991727 0.128363i \(-0.959028\pi\)
0.128363 + 0.991727i \(0.459028\pi\)
\(164\) 10.3923 0.811503
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i \(-0.903692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(168\) 0 0
\(169\) 14.0000i 1.07692i
\(170\) 0 0
\(171\) 0 0
\(172\) −3.67423 3.67423i −0.280158 0.280158i
\(173\) −16.9706 16.9706i −1.29025 1.29025i −0.934632 0.355616i \(-0.884271\pi\)
−0.355616 0.934632i \(-0.615729\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.19615i 0.391675i
\(177\) 0 0
\(178\) −7.34847 + 7.34847i −0.550791 + 0.550791i
\(179\) −10.3923 −0.776757 −0.388379 0.921500i \(-0.626965\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.00000i 0.221163i
\(185\) 0 0
\(186\) 0 0
\(187\) 11.0227 + 11.0227i 0.806060 + 0.806060i
\(188\) 6.36396 + 6.36396i 0.464140 + 0.464140i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3923i 0.751961i −0.926628 0.375980i \(-0.877306\pi\)
0.926628 0.375980i \(-0.122694\pi\)
\(192\) 0 0
\(193\) 14.6969 14.6969i 1.05791 1.05791i 0.0596919 0.998217i \(-0.480988\pi\)
0.998217 0.0596919i \(-0.0190118\pi\)
\(194\) −10.3923 −0.746124
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 4.24264 4.24264i 0.302276 0.302276i −0.539628 0.841904i \(-0.681435\pi\)
0.841904 + 0.539628i \(0.181435\pi\)
\(198\) 0 0
\(199\) 11.0000i 0.779769i −0.920864 0.389885i \(-0.872515\pi\)
0.920864 0.389885i \(-0.127485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −3.67423 3.67423i −0.258518 0.258518i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 10.3923i 0.724066i
\(207\) 0 0
\(208\) −3.67423 + 3.67423i −0.254762 + 0.254762i
\(209\) −10.3923 −0.718851
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 8.48528 8.48528i 0.582772 0.582772i
\(213\) 0 0
\(214\) 18.0000i 1.23045i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −11.3137 11.3137i −0.766261 0.766261i
\(219\) 0 0
\(220\) 0 0
\(221\) 15.5885i 1.04859i
\(222\) 0 0
\(223\) −7.34847 + 7.34847i −0.492090 + 0.492090i −0.908964 0.416874i \(-0.863126\pi\)
0.416874 + 0.908964i \(0.363126\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.00000 0.598671
\(227\) 4.24264 4.24264i 0.281594 0.281594i −0.552151 0.833744i \(-0.686193\pi\)
0.833744 + 0.552151i \(0.186193\pi\)
\(228\) 0 0
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.67423 + 3.67423i 0.241225 + 0.241225i
\(233\) 12.7279 + 12.7279i 0.833834 + 0.833834i 0.988039 0.154205i \(-0.0492816\pi\)
−0.154205 + 0.988039i \(0.549282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 10.3923i 0.676481i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.00000 −0.0644157 −0.0322078 0.999481i \(-0.510254\pi\)
−0.0322078 + 0.999481i \(0.510254\pi\)
\(242\) 11.3137 11.3137i 0.727273 0.727273i
\(243\) 0 0
\(244\) 8.00000i 0.512148i
\(245\) 0 0
\(246\) 0 0
\(247\) 7.34847 + 7.34847i 0.467572 + 0.467572i
\(248\) −3.53553 3.53553i −0.224507 0.224507i
\(249\) 0 0
\(250\) 0 0
\(251\) 15.5885i 0.983935i −0.870614 0.491967i \(-0.836278\pi\)
0.870614 0.491967i \(-0.163722\pi\)
\(252\) 0 0
\(253\) 11.0227 11.0227i 0.692991 0.692991i
\(254\) −20.7846 −1.30414
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.6066 + 10.6066i −0.661622 + 0.661622i −0.955762 0.294141i \(-0.904967\pi\)
0.294141 + 0.955762i \(0.404967\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 3.67423 + 3.67423i 0.226995 + 0.226995i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 7.34847 7.34847i 0.448879 0.448879i
\(269\) −5.19615 −0.316815 −0.158408 0.987374i \(-0.550636\pi\)
−0.158408 + 0.987374i \(0.550636\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −2.12132 + 2.12132i −0.128624 + 0.128624i
\(273\) 0 0
\(274\) 6.00000i 0.362473i
\(275\) 0 0
\(276\) 0 0
\(277\) −14.6969 14.6969i −0.883053 0.883053i 0.110790 0.993844i \(-0.464662\pi\)
−0.993844 + 0.110790i \(0.964662\pi\)
\(278\) 2.82843 + 2.82843i 0.169638 + 0.169638i
\(279\) 0 0
\(280\) 0 0
\(281\) 31.1769i 1.85986i −0.367738 0.929929i \(-0.619868\pi\)
0.367738 0.929929i \(-0.380132\pi\)
\(282\) 0 0
\(283\) −7.34847 + 7.34847i −0.436821 + 0.436821i −0.890941 0.454120i \(-0.849954\pi\)
0.454120 + 0.890941i \(0.349954\pi\)
\(284\) 10.3923 0.616670
\(285\) 0 0
\(286\) −27.0000 −1.59654
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000i 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) −7.34847 7.34847i −0.430037 0.430037i
\(293\) −4.24264 4.24264i −0.247858 0.247858i 0.572233 0.820091i \(-0.306077\pi\)
−0.820091 + 0.572233i \(0.806077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 11.0227 11.0227i 0.638528 0.638528i
\(299\) −15.5885 −0.901504
\(300\) 0 0
\(301\) 0 0
\(302\) −13.4350 + 13.4350i −0.773099 + 0.773099i
\(303\) 0 0
\(304\) 2.00000i 0.114708i
\(305\) 0 0
\(306\) 0 0
\(307\) −11.0227 11.0227i −0.629099 0.629099i 0.318742 0.947841i \(-0.396740\pi\)
−0.947841 + 0.318742i \(0.896740\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.3923i 0.589294i −0.955606 0.294647i \(-0.904798\pi\)
0.955606 0.294647i \(-0.0952020\pi\)
\(312\) 0 0
\(313\) 22.0454 22.0454i 1.24608 1.24608i 0.288643 0.957437i \(-0.406796\pi\)
0.957437 0.288643i \(-0.0932042\pi\)
\(314\) 5.19615 0.293236
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) −8.48528 + 8.48528i −0.476581 + 0.476581i −0.904036 0.427456i \(-0.859410\pi\)
0.427456 + 0.904036i \(0.359410\pi\)
\(318\) 0 0
\(319\) 27.0000i 1.51171i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.24264 + 4.24264i 0.236067 + 0.236067i
\(324\) 0 0
\(325\) 0 0
\(326\) 15.5885i 0.863365i
\(327\) 0 0
\(328\) −7.34847 + 7.34847i −0.405751 + 0.405751i
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) −8.48528 + 8.48528i −0.465690 + 0.465690i
\(333\) 0 0
\(334\) 12.0000i 0.656611i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 9.89949 + 9.89949i 0.538462 + 0.538462i
\(339\) 0 0
\(340\) 0 0
\(341\) 25.9808i 1.40694i
\(342\) 0 0
\(343\) 0 0
\(344\) 5.19615 0.280158
\(345\) 0 0
\(346\) 24.0000 1.29025
\(347\) 12.7279 12.7279i 0.683271 0.683271i −0.277465 0.960736i \(-0.589494\pi\)
0.960736 + 0.277465i \(0.0894943\pi\)
\(348\) 0 0
\(349\) 28.0000i 1.49881i −0.662114 0.749403i \(-0.730341\pi\)
0.662114 0.749403i \(-0.269659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.67423 + 3.67423i 0.195837 + 0.195837i
\(353\) −6.36396 6.36396i −0.338719 0.338719i 0.517166 0.855885i \(-0.326987\pi\)
−0.855885 + 0.517166i \(0.826987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 10.3923i 0.550791i
\(357\) 0 0
\(358\) 7.34847 7.34847i 0.388379 0.388379i
\(359\) −10.3923 −0.548485 −0.274242 0.961661i \(-0.588427\pi\)
−0.274242 + 0.961661i \(0.588427\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 1.41421 1.41421i 0.0743294 0.0743294i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.34847 7.34847i −0.383587 0.383587i 0.488806 0.872393i \(-0.337433\pi\)
−0.872393 + 0.488806i \(0.837433\pi\)
\(368\) 2.12132 + 2.12132i 0.110581 + 0.110581i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.67423 3.67423i 0.190245 0.190245i −0.605557 0.795802i \(-0.707050\pi\)
0.795802 + 0.605557i \(0.207050\pi\)
\(374\) −15.5885 −0.806060
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) 19.0919 19.0919i 0.983282 0.983282i
\(378\) 0 0
\(379\) 16.0000i 0.821865i −0.911666 0.410932i \(-0.865203\pi\)
0.911666 0.410932i \(-0.134797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 7.34847 + 7.34847i 0.375980 + 0.375980i
\(383\) −10.6066 10.6066i −0.541972 0.541972i 0.382135 0.924107i \(-0.375189\pi\)
−0.924107 + 0.382135i \(0.875189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 20.7846i 1.05791i
\(387\) 0 0
\(388\) 7.34847 7.34847i 0.373062 0.373062i
\(389\) 15.5885 0.790366 0.395183 0.918602i \(-0.370681\pi\)
0.395183 + 0.918602i \(0.370681\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 4.94975 4.94975i 0.250000 0.250000i
\(393\) 0 0
\(394\) 6.00000i 0.302276i
\(395\) 0 0
\(396\) 0 0
\(397\) −25.7196 25.7196i −1.29083 1.29083i −0.934273 0.356559i \(-0.883950\pi\)
−0.356559 0.934273i \(-0.616050\pi\)
\(398\) 7.77817 + 7.77817i 0.389885 + 0.389885i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −18.3712 + 18.3712i −0.915133 + 0.915133i
\(404\) 5.19615 0.258518
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.00000i 0.247234i 0.992330 + 0.123617i \(0.0394494\pi\)
−0.992330 + 0.123617i \(0.960551\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.34847 + 7.34847i 0.362033 + 0.362033i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 5.19615i 0.254762i
\(417\) 0 0
\(418\) 7.34847 7.34847i 0.359425 0.359425i
\(419\) −15.5885 −0.761546 −0.380773 0.924669i \(-0.624342\pi\)
−0.380773 + 0.924669i \(0.624342\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 2.82843 2.82843i 0.137686 0.137686i
\(423\) 0 0
\(424\) 12.0000i 0.582772i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −12.7279 12.7279i −0.615227 0.615227i
\(429\) 0 0
\(430\) 0 0
\(431\) 20.7846i 1.00116i −0.865690 0.500580i \(-0.833120\pi\)
0.865690 0.500580i \(-0.166880\pi\)
\(432\) 0 0
\(433\) 7.34847 7.34847i 0.353145 0.353145i −0.508133 0.861278i \(-0.669664\pi\)
0.861278 + 0.508133i \(0.169664\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.0000 0.766261
\(437\) 4.24264 4.24264i 0.202953 0.202953i
\(438\) 0 0
\(439\) 8.00000i 0.381819i −0.981608 0.190910i \(-0.938856\pi\)
0.981608 0.190910i \(-0.0611437\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.0227 + 11.0227i 0.524297 + 0.524297i
\(443\) −4.24264 4.24264i −0.201574 0.201574i 0.599100 0.800674i \(-0.295525\pi\)
−0.800674 + 0.599100i \(0.795525\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.3923i 0.492090i
\(447\) 0 0
\(448\) 0 0
\(449\) −20.7846 −0.980886 −0.490443 0.871473i \(-0.663165\pi\)
−0.490443 + 0.871473i \(0.663165\pi\)
\(450\) 0 0
\(451\) −54.0000 −2.54276
\(452\) −6.36396 + 6.36396i −0.299336 + 0.299336i
\(453\) 0 0
\(454\) 6.00000i 0.281594i
\(455\) 0 0
\(456\) 0 0
\(457\) −14.6969 14.6969i −0.687494 0.687494i 0.274184 0.961677i \(-0.411592\pi\)
−0.961677 + 0.274184i \(0.911592\pi\)
\(458\) −9.89949 9.89949i −0.462573 0.462573i
\(459\) 0 0
\(460\) 0 0
\(461\) 41.5692i 1.93607i 0.250812 + 0.968036i \(0.419302\pi\)
−0.250812 + 0.968036i \(0.580698\pi\)
\(462\) 0 0
\(463\) −7.34847 + 7.34847i −0.341512 + 0.341512i −0.856936 0.515423i \(-0.827635\pi\)
0.515423 + 0.856936i \(0.327635\pi\)
\(464\) −5.19615 −0.241225
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) −21.2132 + 21.2132i −0.981630 + 0.981630i −0.999834 0.0182043i \(-0.994205\pi\)
0.0182043 + 0.999834i \(0.494205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 7.34847 + 7.34847i 0.338241 + 0.338241i
\(473\) 19.0919 + 19.0919i 0.877846 + 0.877846i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.3923 0.474837 0.237418 0.971408i \(-0.423699\pi\)
0.237418 + 0.971408i \(0.423699\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.707107 0.707107i 0.0322078 0.0322078i
\(483\) 0 0
\(484\) 16.0000i 0.727273i
\(485\) 0 0
\(486\) 0 0
\(487\) 14.6969 + 14.6969i 0.665982 + 0.665982i 0.956783 0.290802i \(-0.0939219\pi\)
−0.290802 + 0.956783i \(0.593922\pi\)
\(488\) 5.65685 + 5.65685i 0.256074 + 0.256074i
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3923i 0.468998i 0.972116 + 0.234499i \(0.0753450\pi\)
−0.972116 + 0.234499i \(0.924655\pi\)
\(492\) 0 0
\(493\) 11.0227 11.0227i 0.496438 0.496438i
\(494\) −10.3923 −0.467572
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) 0 0
\(498\) 0 0
\(499\) 40.0000i 1.79065i 0.445418 + 0.895323i \(0.353055\pi\)
−0.445418 + 0.895323i \(0.646945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 11.0227 + 11.0227i 0.491967 + 0.491967i
\(503\) −14.8492 14.8492i −0.662095 0.662095i 0.293779 0.955874i \(-0.405087\pi\)
−0.955874 + 0.293779i \(0.905087\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 15.5885i 0.692991i
\(507\) 0 0
\(508\) 14.6969 14.6969i 0.652071 0.652071i
\(509\) 15.5885 0.690946 0.345473 0.938429i \(-0.387718\pi\)
0.345473 + 0.938429i \(0.387718\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 15.0000i 0.661622i
\(515\) 0 0
\(516\) 0 0
\(517\) −33.0681 33.0681i −1.45433 1.45433i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.1769i 1.36589i 0.730472 + 0.682943i \(0.239300\pi\)
−0.730472 + 0.682943i \(0.760700\pi\)
\(522\) 0 0
\(523\) −25.7196 + 25.7196i −1.12464 + 1.12464i −0.133607 + 0.991034i \(0.542656\pi\)
−0.991034 + 0.133607i \(0.957344\pi\)
\(524\) −5.19615 −0.226995
\(525\) 0 0
\(526\) 0 0
\(527\) −10.6066 + 10.6066i −0.462031 + 0.462031i
\(528\) 0 0
\(529\) 14.0000i 0.608696i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.1838 + 38.1838i 1.65392 + 1.65392i
\(534\) 0 0
\(535\) 0 0
\(536\) 10.3923i 0.448879i
\(537\) 0 0
\(538\) 3.67423 3.67423i 0.158408 0.158408i
\(539\) 36.3731 1.56670
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 11.3137 11.3137i 0.485965 0.485965i
\(543\) 0 0
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 0 0
\(547\) 25.7196 + 25.7196i 1.09969 + 1.09969i 0.994446 + 0.105246i \(0.0335631\pi\)
0.105246 + 0.994446i \(0.466437\pi\)
\(548\) 4.24264 + 4.24264i 0.181237 + 0.181237i
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 20.7846 0.883053
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −12.7279 + 12.7279i −0.539299 + 0.539299i −0.923323 0.384024i \(-0.874538\pi\)
0.384024 + 0.923323i \(0.374538\pi\)
\(558\) 0 0
\(559\) 27.0000i 1.14198i
\(560\) 0 0
\(561\) 0 0
\(562\) 22.0454 + 22.0454i 0.929929 + 0.929929i
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 10.3923i 0.436821i
\(567\) 0 0
\(568\) −7.34847 + 7.34847i −0.308335 + 0.308335i
\(569\) −20.7846 −0.871336 −0.435668 0.900107i \(-0.643488\pi\)
−0.435668 + 0.900107i \(0.643488\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 19.0919 19.0919i 0.798272 0.798272i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.6969 + 14.6969i 0.611842 + 0.611842i 0.943426 0.331584i \(-0.107583\pi\)
−0.331584 + 0.943426i \(0.607583\pi\)
\(578\) −5.65685 5.65685i −0.235294 0.235294i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −44.0908 + 44.0908i −1.82605 + 1.82605i
\(584\) 10.3923 0.430037
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −16.9706 + 16.9706i −0.700450 + 0.700450i −0.964507 0.264057i \(-0.914939\pi\)
0.264057 + 0.964507i \(0.414939\pi\)
\(588\) 0 0
\(589\) 10.0000i 0.412043i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.5772 27.5772i −1.13246 1.13246i −0.989767 0.142691i \(-0.954424\pi\)
−0.142691 0.989767i \(-0.545576\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.5885i 0.638528i
\(597\) 0 0
\(598\) 11.0227 11.0227i 0.450752 0.450752i
\(599\) −10.3923 −0.424618 −0.212309 0.977203i \(-0.568098\pi\)
−0.212309 + 0.977203i \(0.568098\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.0000i 0.773099i
\(605\) 0 0
\(606\) 0 0
\(607\) −22.0454 22.0454i −0.894795 0.894795i 0.100174 0.994970i \(-0.468060\pi\)
−0.994970 + 0.100174i \(0.968060\pi\)
\(608\) 1.41421 + 1.41421i 0.0573539 + 0.0573539i
\(609\) 0 0
\(610\) 0 0
\(611\) 46.7654i 1.89192i
\(612\) 0 0
\(613\) −18.3712 + 18.3712i −0.742005 + 0.742005i −0.972964 0.230959i \(-0.925814\pi\)
0.230959 + 0.972964i \(0.425814\pi\)
\(614\) 15.5885 0.629099
\(615\) 0 0
\(616\) 0 0
\(617\) 27.5772 27.5772i 1.11021 1.11021i 0.117094 0.993121i \(-0.462642\pi\)
0.993121 0.117094i \(-0.0373579\pi\)
\(618\) 0 0
\(619\) 10.0000i 0.401934i 0.979598 + 0.200967i \(0.0644084\pi\)
−0.979598 + 0.200967i \(0.935592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 7.34847 + 7.34847i 0.294647 + 0.294647i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 31.1769i 1.24608i
\(627\) 0 0
\(628\) −3.67423 + 3.67423i −0.146618 + 0.146618i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −0.707107 + 0.707107i −0.0281272 + 0.0281272i
\(633\) 0 0
\(634\) 12.0000i 0.476581i
\(635\) 0 0
\(636\) 0 0
\(637\) −25.7196 25.7196i −1.01905 1.01905i
\(638\) −19.0919 19.0919i −0.755855 0.755855i
\(639\) 0 0
\(640\) 0 0
\(641\) 20.7846i 0.820943i −0.911873 0.410471i \(-0.865364\pi\)
0.911873 0.410471i \(-0.134636\pi\)
\(642\) 0 0
\(643\) −11.0227 + 11.0227i −0.434693 + 0.434693i −0.890221 0.455528i \(-0.849450\pi\)
0.455528 + 0.890221i \(0.349450\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) 16.9706 16.9706i 0.667182 0.667182i −0.289881 0.957063i \(-0.593616\pi\)
0.957063 + 0.289881i \(0.0936157\pi\)
\(648\) 0 0
\(649\) 54.0000i 2.11969i
\(650\) 0 0
\(651\) 0 0
\(652\) 11.0227 + 11.0227i 0.431682 + 0.431682i
\(653\) −4.24264 4.24264i −0.166027 0.166027i 0.619203 0.785231i \(-0.287456\pi\)
−0.785231 + 0.619203i \(0.787456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.3923i 0.405751i
\(657\) 0 0
\(658\) 0 0
\(659\) 31.1769 1.21448 0.607240 0.794518i \(-0.292277\pi\)
0.607240 + 0.794518i \(0.292277\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) −18.3848 + 18.3848i −0.714545 + 0.714545i
\(663\) 0 0
\(664\) 12.0000i 0.465690i
\(665\) 0 0
\(666\) 0 0
\(667\) −11.0227 11.0227i −0.426801 0.426801i
\(668\) 8.48528 + 8.48528i 0.328305 + 0.328305i
\(669\) 0 0
\(670\) 0 0
\(671\) 41.5692i 1.60476i
\(672\) 0 0
\(673\) 14.6969 14.6969i 0.566525 0.566525i −0.364628 0.931153i \(-0.618804\pi\)
0.931153 + 0.364628i \(0.118804\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −14.0000 −0.538462
\(677\) 25.4558 25.4558i 0.978348 0.978348i −0.0214229 0.999771i \(-0.506820\pi\)
0.999771 + 0.0214229i \(0.00681965\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 18.3712 + 18.3712i 0.703469 + 0.703469i
\(683\) −16.9706 16.9706i −0.649361 0.649361i 0.303478 0.952838i \(-0.401852\pi\)
−0.952838 + 0.303478i \(0.901852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −3.67423 + 3.67423i −0.140079 + 0.140079i
\(689\) 62.3538 2.37549
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) −16.9706 + 16.9706i −0.645124 + 0.645124i
\(693\) 0 0
\(694\) 18.0000i 0.683271i
\(695\) 0 0
\(696\) 0 0
\(697\) 22.0454 + 22.0454i 0.835029 + 0.835029i
\(698\) 19.7990 + 19.7990i 0.749403 + 0.749403i
\(699\) 0 0
\(700\) 0 0
\(701\) 36.3731i 1.37379i 0.726756 + 0.686896i \(0.241027\pi\)
−0.726756 + 0.686896i \(0.758973\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −5.19615 −0.195837
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) 0 0
\(708\) 0 0
\(709\) 28.0000i 1.05156i −0.850620 0.525781i \(-0.823773\pi\)
0.850620 0.525781i \(-0.176227\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.34847 + 7.34847i 0.275396 + 0.275396i
\(713\) 10.6066 + 10.6066i 0.397220 + 0.397220i
\(714\) 0 0
\(715\) 0 0
\(716\) 10.3923i 0.388379i
\(717\) 0 0
\(718\) 7.34847 7.34847i 0.274242 0.274242i
\(719\) 41.5692 1.55027 0.775135 0.631795i \(-0.217682\pi\)
0.775135 + 0.631795i \(0.217682\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −10.6066 + 10.6066i −0.394737 + 0.394737i
\(723\) 0 0
\(724\) 2.00000i 0.0743294i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.5885i 0.576560i
\(732\) 0 0
\(733\) −29.3939 + 29.3939i −1.08569 + 1.08569i −0.0897206 + 0.995967i \(0.528597\pi\)
−0.995967 + 0.0897206i \(0.971403\pi\)
\(734\) 10.3923 0.383587
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) −38.1838 + 38.1838i −1.40652 + 1.40652i
\(738\) 0 0
\(739\) 34.0000i 1.25071i −0.780340 0.625355i \(-0.784954\pi\)
0.780340 0.625355i \(-0.215046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.0919 + 19.0919i 0.700413 + 0.700413i 0.964499 0.264086i \(-0.0850702\pi\)
−0.264086 + 0.964499i \(0.585070\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.19615i 0.190245i
\(747\) 0 0
\(748\) 11.0227 11.0227i 0.403030 0.403030i
\(749\) 0 0
\(750\) 0 0
\(751\) −23.0000 −0.839282 −0.419641 0.907690i \(-0.637844\pi\)
−0.419641 + 0.907690i \(0.637844\pi\)
\(752\) 6.36396 6.36396i 0.232070 0.232070i
\(753\) 0 0
\(754\) 27.0000i 0.983282i
\(755\) 0 0
\(756\) 0 0
\(757\) −25.7196 25.7196i −0.934796 0.934796i 0.0632043 0.998001i \(-0.479868\pi\)
−0.998001 + 0.0632043i \(0.979868\pi\)
\(758\) 11.3137 + 11.3137i 0.410932 + 0.410932i
\(759\) 0 0
\(760\) 0 0
\(761\) 20.7846i 0.753442i 0.926327 + 0.376721i \(0.122948\pi\)
−0.926327 + 0.376721i \(0.877052\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −10.3923 −0.375980
\(765\) 0 0
\(766\) 15.0000 0.541972
\(767\) 38.1838 38.1838i 1.37874 1.37874i
\(768\) 0 0
\(769\) 13.0000i 0.468792i 0.972141 + 0.234396i \(0.0753112\pi\)
−0.972141 + 0.234396i \(0.924689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.6969 14.6969i −0.528954 0.528954i
\(773\) −21.2132 21.2132i −0.762986 0.762986i 0.213875 0.976861i \(-0.431391\pi\)
−0.976861 + 0.213875i \(0.931391\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.3923i 0.373062i
\(777\) 0 0
\(778\) −11.0227 + 11.0227i −0.395183 + 0.395183i
\(779\) −20.7846 −0.744686
\(780\) 0 0
\(781\) −54.0000 −1.93227
\(782\) 6.36396 6.36396i 0.227575 0.227575i
\(783\) 0 0
\(784\) 7.00000i 0.250000i
\(785\) 0 0
\(786\) 0 0
\(787\) 18.3712 + 18.3712i 0.654862 + 0.654862i 0.954160 0.299298i \(-0.0967525\pi\)
−0.299298 + 0.954160i \(0.596752\pi\)
\(788\) −4.24264 4.24264i −0.151138 0.151138i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 29.3939 29.3939i 1.04381 1.04381i
\(794\) 36.3731 1.29083
\(795\) 0 0
\(796\) −11.0000 −0.389885
\(797\) −21.2132 + 21.2132i −0.751410 + 0.751410i −0.974742 0.223332i \(-0.928307\pi\)
0.223332 + 0.974742i \(0.428307\pi\)
\(798\) 0 0
\(799\) 27.0000i 0.955191i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 38.1838 + 38.1838i 1.34748 + 1.34748i
\(804\) 0 0
\(805\) 0 0
\(806\) 25.9808i 0.915133i
\(807\) 0 0
\(808\) −3.67423 + 3.67423i −0.129259 + 0.129259i
\(809\) 20.7846 0.730748 0.365374 0.930861i \(-0.380941\pi\)
0.365374 + 0.930861i \(0.380941\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.34847 + 7.34847i 0.257090 + 0.257090i
\(818\) −3.53553 3.53553i −0.123617 0.123617i
\(819\) 0 0
\(820\) 0 0
\(821\) 41.5692i 1.45078i 0.688340 + 0.725388i \(0.258340\pi\)
−0.688340 + 0.725388i \(0.741660\pi\)
\(822\) 0 0
\(823\) −14.6969 + 14.6969i −0.512303 + 0.512303i −0.915231 0.402928i \(-0.867992\pi\)
0.402928 + 0.915231i \(0.367992\pi\)
\(824\) −10.3923 −0.362033
\(825\) 0 0
\(826\) 0 0
\(827\) −29.6985 + 29.6985i −1.03272 + 1.03272i −0.0332711 + 0.999446i \(0.510592\pi\)
−0.999446 + 0.0332711i \(0.989408\pi\)
\(828\) 0 0
\(829\) 20.0000i 0.694629i 0.937749 + 0.347314i \(0.112906\pi\)
−0.937749 + 0.347314i \(0.887094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.67423 + 3.67423i 0.127381 + 0.127381i
\(833\) −14.8492 14.8492i −0.514496 0.514496i
\(834\) 0 0
\(835\) 0 0
\(836\) 10.3923i 0.359425i
\(837\) 0 0
\(838\) 11.0227 11.0227i 0.380773 0.380773i
\(839\) 10.3923 0.358782 0.179391 0.983778i \(-0.442587\pi\)
0.179391 + 0.983778i \(0.442587\pi\)
\(840\) 0 0
\(841\) −2.00000 −0.0689655
\(842\) −7.07107 + 7.07107i −0.243685 + 0.243685i
\(843\) 0 0
\(844\) 4.00000i 0.137686i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −8.48528 8.48528i −0.291386 0.291386i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −3.67423 + 3.67423i −0.125803 + 0.125803i −0.767205 0.641402i \(-0.778353\pi\)
0.641402 + 0.767205i \(0.278353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) −4.24264 + 4.24264i −0.144926 + 0.144926i −0.775847 0.630921i \(-0.782677\pi\)
0.630921 + 0.775847i \(0.282677\pi\)
\(858\) 0 0
\(859\) 50.0000i 1.70598i −0.521929 0.852989i \(-0.674787\pi\)
0.521929 0.852989i \(-0.325213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 14.6969 + 14.6969i 0.500580 + 0.500580i
\(863\) −36.0624 36.0624i −1.22758 1.22758i −0.964877 0.262703i \(-0.915386\pi\)
−0.262703 0.964877i \(-0.584614\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 10.3923i 0.353145i
\(867\) 0 0
\(868\) 0 0
\(869\) −5.19615 −0.176267
\(870\) 0 0
\(871\) 54.0000 1.82972
\(872\) −11.3137 + 11.3137i −0.383131 + 0.383131i
\(873\) 0 0
\(874\) 6.00000i 0.202953i
\(875\) 0 0
\(876\) 0 0
\(877\) −11.0227 11.0227i −0.372210 0.372210i 0.496071 0.868282i \(-0.334775\pi\)
−0.868282 + 0.496071i \(0.834775\pi\)
\(878\) 5.65685 + 5.65685i 0.190910 + 0.190910i
\(879\) 0 0
\(880\) 0 0
\(881\) 10.3923i 0.350126i −0.984557 0.175063i \(-0.943987\pi\)
0.984557 0.175063i \(-0.0560129\pi\)
\(882\) 0 0
\(883\) −7.34847 + 7.34847i −0.247296 + 0.247296i −0.819860 0.572564i \(-0.805949\pi\)
0.572564 + 0.819860i \(0.305949\pi\)
\(884\) −15.5885 −0.524297
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) 40.3051 40.3051i 1.35331 1.35331i 0.471385 0.881928i \(-0.343754\pi\)
0.881928 0.471385i \(-0.156246\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 7.34847 + 7.34847i 0.246045 + 0.246045i
\(893\) −12.7279 12.7279i −0.425924 0.425924i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 14.6969 14.6969i 0.490443 0.490443i
\(899\) −25.9808 −0.866507
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 38.1838 38.1838i 1.27138 1.27138i
\(903\) 0 0
\(904\) 9.00000i 0.299336i
\(905\) 0 0
\(906\) 0 0
\(907\) −18.3712 18.3712i −0.610005 0.610005i 0.332942 0.942947i \(-0.391959\pi\)
−0.942947 + 0.332942i \(0.891959\pi\)
\(908\) −4.24264 4.24264i −0.140797 0.140797i
\(909\) 0 0
\(910\) 0 0
\(911\) 41.5692i 1.37725i 0.725118 + 0.688625i \(0.241785\pi\)
−0.725118 + 0.688625i \(0.758215\pi\)
\(912\) 0 0
\(913\) 44.0908 44.0908i 1.45919 1.45919i
\(914\) 20.7846 0.687494
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) 25.0000i 0.824674i −0.911031 0.412337i \(-0.864713\pi\)
0.911031 0.412337i \(-0.135287\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −29.3939 29.3939i −0.968036 0.968036i
\(923\) 38.1838 + 38.1838i 1.25683 + 1.25683i
\(924\) 0 0
\(925\) 0 0
\(926\) 10.3923i 0.341512i
\(927\) 0 0
\(928\) 3.67423 3.67423i 0.120613 0.120613i
\(929\) −10.3923 −0.340960 −0.170480 0.985361i \(-0.554532\pi\)
−0.170480 + 0.985361i \(0.554532\pi\)
\(930\) 0 0
\(931\) 14.0000 0.458831
\(932\) 12.7279 12.7279i 0.416917 0.416917i
\(933\) 0 0
\(934\) 30.0000i 0.981630i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.7654i 1.52451i −0.647278 0.762254i \(-0.724093\pi\)
0.647278 0.762254i \(-0.275907\pi\)
\(942\) 0 0
\(943\) 22.0454 22.0454i 0.717897 0.717897i
\(944\) −10.3923 −0.338241
\(945\) 0 0
\(946\) −27.0000 −0.877846
\(947\) 8.48528 8.48528i 0.275735 0.275735i −0.555669 0.831404i \(-0.687538\pi\)
0.831404 + 0.555669i \(0.187538\pi\)
\(948\) 0 0
\(949\) 54.0000i 1.75291i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.36396 6.36396i −0.206149 0.206149i 0.596479 0.802628i \(-0.296566\pi\)
−0.802628 + 0.596479i \(0.796566\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −7.34847 + 7.34847i −0.237418 + 0.237418i
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 1.00000i 0.0322078i
\(965\) 0 0
\(966\) 0 0
\(967\) 7.34847 + 7.34847i 0.236311 + 0.236311i 0.815321 0.579010i \(-0.196561\pi\)
−0.579010 + 0.815321i \(0.696561\pi\)
\(968\) −11.3137 11.3137i −0.363636 0.363636i
\(969\) 0 0
\(970\) 0 0
\(971\) 25.9808i 0.833762i −0.908961 0.416881i \(-0.863123\pi\)
0.908961 0.416881i \(-0.136877\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −20.7846 −0.665982
\(975\) 0 0
\(976\) −8.00000 −0.256074
\(977\) −19.0919 + 19.0919i −0.610803 + 0.610803i −0.943155 0.332352i \(-0.892158\pi\)
0.332352 + 0.943155i \(0.392158\pi\)
\(978\) 0 0
\(979\) 54.0000i 1.72585i
\(980\) 0 0
\(981\) 0 0
\(982\) −7.34847 7.34847i −0.234499 0.234499i
\(983\) 10.6066 + 10.6066i 0.338298 + 0.338298i 0.855726 0.517428i \(-0.173111\pi\)
−0.517428 + 0.855726i \(0.673111\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 15.5885i 0.496438i
\(987\) 0 0
\(988\) 7.34847 7.34847i 0.233786 0.233786i
\(989\) −15.5885 −0.495684
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) −3.53553 + 3.53553i −0.112253 + 0.112253i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −11.0227 11.0227i −0.349093 0.349093i 0.510679 0.859771i \(-0.329394\pi\)
−0.859771 + 0.510679i \(0.829394\pi\)
\(998\) −28.2843 28.2843i −0.895323 0.895323i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.f.c.107.2 yes 8
3.2 odd 2 inner 1350.2.f.c.107.3 yes 8
5.2 odd 4 inner 1350.2.f.c.593.2 yes 8
5.3 odd 4 inner 1350.2.f.c.593.4 yes 8
5.4 even 2 inner 1350.2.f.c.107.4 yes 8
15.2 even 4 inner 1350.2.f.c.593.3 yes 8
15.8 even 4 inner 1350.2.f.c.593.1 yes 8
15.14 odd 2 inner 1350.2.f.c.107.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1350.2.f.c.107.1 8 15.14 odd 2 inner
1350.2.f.c.107.2 yes 8 1.1 even 1 trivial
1350.2.f.c.107.3 yes 8 3.2 odd 2 inner
1350.2.f.c.107.4 yes 8 5.4 even 2 inner
1350.2.f.c.593.1 yes 8 15.8 even 4 inner
1350.2.f.c.593.2 yes 8 5.2 odd 4 inner
1350.2.f.c.593.3 yes 8 15.2 even 4 inner
1350.2.f.c.593.4 yes 8 5.3 odd 4 inner