Properties

Label 1350.2.j.e.199.1
Level $1350$
Weight $2$
Character 1350.199
Analytic conductor $10.780$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(199,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1350.199
Dual form 1350.2.j.e.1099.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(3.00000 + 5.19615i) q^{11} +(1.73205 + 1.00000i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +4.00000 q^{19} +(-5.19615 - 3.00000i) q^{22} +(-7.79423 - 4.50000i) q^{23} -2.00000 q^{26} +1.00000i q^{28} +(-1.50000 - 2.59808i) q^{29} +(2.00000 - 3.46410i) q^{31} +(0.866025 + 0.500000i) q^{32} +8.00000i q^{37} +(-3.46410 + 2.00000i) q^{38} +(-1.50000 + 2.59808i) q^{41} +(-6.92820 + 4.00000i) q^{43} +6.00000 q^{44} +9.00000 q^{46} +(2.59808 - 1.50000i) q^{47} +(-3.00000 + 5.19615i) q^{49} +(1.73205 - 1.00000i) q^{52} +6.00000i q^{53} +(-0.500000 - 0.866025i) q^{56} +(2.59808 + 1.50000i) q^{58} +(-3.00000 + 5.19615i) q^{59} +(6.50000 + 11.2583i) q^{61} +4.00000i q^{62} -1.00000 q^{64} +(11.2583 + 6.50000i) q^{67} +6.00000 q^{71} +4.00000i q^{73} +(-4.00000 - 6.92820i) q^{74} +(2.00000 - 3.46410i) q^{76} +(-5.19615 - 3.00000i) q^{77} +(-5.00000 - 8.66025i) q^{79} -3.00000i q^{82} +(-7.79423 + 4.50000i) q^{83} +(4.00000 - 6.92820i) q^{86} +(-5.19615 + 3.00000i) q^{88} +9.00000 q^{89} -2.00000 q^{91} +(-7.79423 + 4.50000i) q^{92} +(-1.50000 + 2.59808i) q^{94} +(1.73205 - 1.00000i) q^{97} -6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 12 q^{11} + 2 q^{14} - 2 q^{16} + 16 q^{19} - 8 q^{26} - 6 q^{29} + 8 q^{31} - 6 q^{41} + 24 q^{44} + 36 q^{46} - 12 q^{49} - 2 q^{56} - 12 q^{59} + 26 q^{61} - 4 q^{64} + 24 q^{71} - 16 q^{74}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i −0.654654 0.755929i \(-0.727186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) 1.73205 + 1.00000i 0.480384 + 0.277350i 0.720577 0.693375i \(-0.243877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.19615 3.00000i −1.10782 0.639602i
\(23\) −7.79423 4.50000i −1.62521 0.938315i −0.985496 0.169701i \(-0.945720\pi\)
−0.639713 0.768613i \(-0.720947\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) −3.46410 + 2.00000i −0.561951 + 0.324443i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) −6.92820 + 4.00000i −1.05654 + 0.609994i −0.924473 0.381246i \(-0.875495\pi\)
−0.132068 + 0.991241i \(0.542162\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) 2.59808 1.50000i 0.378968 0.218797i −0.298401 0.954441i \(-0.596453\pi\)
0.677369 + 0.735643i \(0.263120\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.73205 1.00000i 0.240192 0.138675i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 0 0
\(58\) 2.59808 + 1.50000i 0.341144 + 0.196960i
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 11.2583 + 6.50000i 1.37542 + 0.794101i 0.991605 0.129307i \(-0.0412752\pi\)
0.383819 + 0.923408i \(0.374609\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) −5.19615 3.00000i −0.592157 0.341882i
\(78\) 0 0
\(79\) −5.00000 8.66025i −0.562544 0.974355i −0.997274 0.0737937i \(-0.976489\pi\)
0.434730 0.900561i \(-0.356844\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.00000i 0.331295i
\(83\) −7.79423 + 4.50000i −0.855528 + 0.493939i −0.862512 0.506036i \(-0.831110\pi\)
0.00698436 + 0.999976i \(0.497777\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 0 0
\(88\) −5.19615 + 3.00000i −0.553912 + 0.319801i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −7.79423 + 4.50000i −0.812605 + 0.469157i
\(93\) 0 0
\(94\) −1.50000 + 2.59808i −0.154713 + 0.267971i
\(95\) 0 0
\(96\) 0 0
\(97\) 1.73205 1.00000i 0.175863 0.101535i −0.409484 0.912317i \(-0.634291\pi\)
0.585348 + 0.810782i \(0.300958\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) 6.92820 + 4.00000i 0.682656 + 0.394132i 0.800855 0.598858i \(-0.204379\pi\)
−0.118199 + 0.992990i \(0.537712\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.866025 + 0.500000i 0.0818317 + 0.0472456i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 6.00000i 0.552345i
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) −11.2583 6.50000i −1.01928 0.588482i
\(123\) 0 0
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) −9.00000 + 15.5885i −0.786334 + 1.36197i 0.141865 + 0.989886i \(0.454690\pi\)
−0.928199 + 0.372084i \(0.878643\pi\)
\(132\) 0 0
\(133\) −3.46410 + 2.00000i −0.300376 + 0.173422i
\(134\) −13.0000 −1.12303
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.19615 + 3.00000i −0.436051 + 0.251754i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) −2.00000 3.46410i −0.165521 0.286691i
\(147\) 0 0
\(148\) 6.92820 + 4.00000i 0.569495 + 0.328798i
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 4.00000i 0.324443i
\(153\) 0 0
\(154\) 6.00000 0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) −12.1244 7.00000i −0.967629 0.558661i −0.0691164 0.997609i \(-0.522018\pi\)
−0.898513 + 0.438948i \(0.855351\pi\)
\(158\) 8.66025 + 5.00000i 0.688973 + 0.397779i
\(159\) 0 0
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 1.50000 + 2.59808i 0.117130 + 0.202876i
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) −2.59808 1.50000i −0.201045 0.116073i 0.396098 0.918208i \(-0.370364\pi\)
−0.597143 + 0.802135i \(0.703697\pi\)
\(168\) 0 0
\(169\) −4.50000 7.79423i −0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000i 0.609994i
\(173\) 20.7846 12.0000i 1.58022 0.912343i 0.585399 0.810745i \(-0.300938\pi\)
0.994826 0.101598i \(-0.0323955\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 5.19615i 0.226134 0.391675i
\(177\) 0 0
\(178\) −7.79423 + 4.50000i −0.584202 + 0.337289i
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 1.73205 1.00000i 0.128388 0.0741249i
\(183\) 0 0
\(184\) 4.50000 7.79423i 0.331744 0.574598i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 3.00000i 0.218797i
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 0 0
\(193\) 1.73205 + 1.00000i 0.124676 + 0.0719816i 0.561041 0.827788i \(-0.310401\pi\)
−0.436365 + 0.899770i \(0.643734\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −5.19615 3.00000i −0.365600 0.211079i
\(203\) 2.59808 + 1.50000i 0.182349 + 0.105279i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 2.00000i 0.138675i
\(209\) 12.0000 + 20.7846i 0.830057 + 1.43770i
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) 5.19615 + 3.00000i 0.356873 + 0.206041i
\(213\) 0 0
\(214\) −1.50000 2.59808i −0.102538 0.177601i
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000i 0.271538i
\(218\) −6.06218 + 3.50000i −0.410582 + 0.237050i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.866025 0.500000i 0.0579934 0.0334825i −0.470723 0.882281i \(-0.656007\pi\)
0.528716 + 0.848799i \(0.322674\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 6.00000i 0.689761 0.398234i −0.113761 0.993508i \(-0.536290\pi\)
0.803523 + 0.595274i \(0.202957\pi\)
\(228\) 0 0
\(229\) −6.50000 + 11.2583i −0.429532 + 0.743971i −0.996832 0.0795401i \(-0.974655\pi\)
0.567300 + 0.823511i \(0.307988\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.59808 1.50000i 0.170572 0.0984798i
\(233\) 12.0000i 0.786146i −0.919507 0.393073i \(-0.871412\pi\)
0.919507 0.393073i \(-0.128588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) −14.5000 25.1147i −0.934027 1.61778i −0.776360 0.630290i \(-0.782936\pi\)
−0.157667 0.987492i \(-0.550397\pi\)
\(242\) 25.0000i 1.60706i
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) 6.92820 + 4.00000i 0.440831 + 0.254514i
\(248\) 3.46410 + 2.00000i 0.219971 + 0.127000i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 54.0000i 3.39495i
\(254\) 3.50000 + 6.06218i 0.219610 + 0.380375i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 15.5885 + 9.00000i 0.972381 + 0.561405i 0.899961 0.435970i \(-0.143595\pi\)
0.0724199 + 0.997374i \(0.476928\pi\)
\(258\) 0 0
\(259\) −4.00000 6.92820i −0.248548 0.430498i
\(260\) 0 0
\(261\) 0 0
\(262\) 18.0000i 1.11204i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.00000 3.46410i 0.122628 0.212398i
\(267\) 0 0
\(268\) 11.2583 6.50000i 0.687712 0.397051i
\(269\) 21.0000 1.28039 0.640196 0.768211i \(-0.278853\pi\)
0.640196 + 0.768211i \(0.278853\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) 0 0
\(276\) 0 0
\(277\) 6.92820 4.00000i 0.416275 0.240337i −0.277207 0.960810i \(-0.589409\pi\)
0.693482 + 0.720473i \(0.256075\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596933i \(0.980988\pi\)
\(282\) 0 0
\(283\) −11.2583 6.50000i −0.669238 0.386385i 0.126550 0.991960i \(-0.459610\pi\)
−0.795788 + 0.605575i \(0.792943\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 3.00000i 0.177084i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 3.46410 + 2.00000i 0.202721 + 0.117041i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 3.00000i 0.173785i
\(299\) −9.00000 15.5885i −0.520483 0.901504i
\(300\) 0 0
\(301\) 4.00000 6.92820i 0.230556 0.399335i
\(302\) 12.1244 + 7.00000i 0.697678 + 0.402805i
\(303\) 0 0
\(304\) −2.00000 3.46410i −0.114708 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000i 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) −5.19615 + 3.00000i −0.296078 + 0.170941i
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 10.3923i 0.340229 0.589294i −0.644246 0.764818i \(-0.722829\pi\)
0.984475 + 0.175525i \(0.0561621\pi\)
\(312\) 0 0
\(313\) −1.73205 + 1.00000i −0.0979013 + 0.0565233i −0.548151 0.836379i \(-0.684668\pi\)
0.450250 + 0.892903i \(0.351335\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 5.19615 3.00000i 0.291845 0.168497i −0.346929 0.937892i \(-0.612775\pi\)
0.638774 + 0.769395i \(0.279442\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) −7.79423 + 4.50000i −0.434355 + 0.250775i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 0 0
\(328\) −2.59808 1.50000i −0.143455 0.0828236i
\(329\) −1.50000 + 2.59808i −0.0826977 + 0.143237i
\(330\) 0 0
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) 9.00000i 0.493939i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) 0 0
\(336\) 0 0
\(337\) −6.92820 4.00000i −0.377403 0.217894i 0.299285 0.954164i \(-0.403252\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(338\) 7.79423 + 4.50000i 0.423950 + 0.244768i
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) −4.00000 6.92820i −0.215666 0.373544i
\(345\) 0 0
\(346\) −12.0000 + 20.7846i −0.645124 + 1.11739i
\(347\) 10.3923 + 6.00000i 0.557888 + 0.322097i 0.752297 0.658824i \(-0.228946\pi\)
−0.194409 + 0.980921i \(0.562279\pi\)
\(348\) 0 0
\(349\) 11.5000 + 19.9186i 0.615581 + 1.06622i 0.990282 + 0.139072i \(0.0444119\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.00000i 0.319801i
\(353\) 20.7846 12.0000i 1.10625 0.638696i 0.168397 0.985719i \(-0.446141\pi\)
0.937856 + 0.347024i \(0.112808\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.50000 7.79423i 0.238500 0.413093i
\(357\) 0 0
\(358\) 15.5885 9.00000i 0.823876 0.475665i
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −4.33013 + 2.50000i −0.227586 + 0.131397i
\(363\) 0 0
\(364\) −1.00000 + 1.73205i −0.0524142 + 0.0907841i
\(365\) 0 0
\(366\) 0 0
\(367\) 6.92820 4.00000i 0.361649 0.208798i −0.308155 0.951336i \(-0.599711\pi\)
0.669804 + 0.742538i \(0.266378\pi\)
\(368\) 9.00000i 0.469157i
\(369\) 0 0
\(370\) 0 0
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 22.5167 + 13.0000i 1.16587 + 0.673114i 0.952703 0.303902i \(-0.0982894\pi\)
0.213165 + 0.977016i \(0.431623\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.50000 + 2.59808i 0.0773566 + 0.133986i
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.3923 + 6.00000i 0.531717 + 0.306987i
\(383\) 10.3923 + 6.00000i 0.531022 + 0.306586i 0.741433 0.671027i \(-0.234147\pi\)
−0.210411 + 0.977613i \(0.567480\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 2.00000i 0.101535i
\(389\) −10.5000 18.1865i −0.532371 0.922094i −0.999286 0.0377914i \(-0.987968\pi\)
0.466915 0.884302i \(-0.345366\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.19615 3.00000i −0.262445 0.151523i
\(393\) 0 0
\(394\) −6.00000 10.3923i −0.302276 0.523557i
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 6.92820 4.00000i 0.347279 0.200502i
\(399\) 0 0
\(400\) 0 0
\(401\) 3.00000 5.19615i 0.149813 0.259483i −0.781345 0.624099i \(-0.785466\pi\)
0.931158 + 0.364615i \(0.118800\pi\)
\(402\) 0 0
\(403\) 6.92820 4.00000i 0.345118 0.199254i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) −41.5692 + 24.0000i −2.06051 + 1.18964i
\(408\) 0 0
\(409\) −5.00000 + 8.66025i −0.247234 + 0.428222i −0.962757 0.270367i \(-0.912855\pi\)
0.715523 + 0.698589i \(0.246188\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.92820 4.00000i 0.341328 0.197066i
\(413\) 6.00000i 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) −20.7846 12.0000i −1.01661 0.586939i
\(419\) 15.0000 25.9808i 0.732798 1.26924i −0.222885 0.974845i \(-0.571547\pi\)
0.955683 0.294398i \(-0.0951193\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 2.00000i 0.0973585i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −11.2583 6.50000i −0.544829 0.314557i
\(428\) 2.59808 + 1.50000i 0.125583 + 0.0725052i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i 0.923144 + 0.384455i \(0.125611\pi\)
−0.923144 + 0.384455i \(0.874389\pi\)
\(434\) −2.00000 3.46410i −0.0960031 0.166282i
\(435\) 0 0
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) −31.1769 18.0000i −1.49139 0.861057i
\(438\) 0 0
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.79423 4.50000i 0.370315 0.213801i −0.303281 0.952901i \(-0.598082\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) 0.866025 0.500000i 0.0409159 0.0236228i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) −6.00000 + 10.3923i −0.281594 + 0.487735i
\(455\) 0 0
\(456\) 0 0
\(457\) 6.92820 4.00000i 0.324088 0.187112i −0.329125 0.944286i \(-0.606754\pi\)
0.653213 + 0.757174i \(0.273421\pi\)
\(458\) 13.0000i 0.607450i
\(459\) 0 0
\(460\) 0 0
\(461\) −13.5000 23.3827i −0.628758 1.08904i −0.987801 0.155719i \(-0.950230\pi\)
0.359044 0.933321i \(-0.383103\pi\)
\(462\) 0 0
\(463\) −3.46410 2.00000i −0.160990 0.0929479i 0.417340 0.908750i \(-0.362962\pi\)
−0.578331 + 0.815802i \(0.696296\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) 6.00000 + 10.3923i 0.277945 + 0.481414i
\(467\) 36.0000i 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) −13.0000 −0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) −5.19615 3.00000i −0.239172 0.138086i
\(473\) −41.5692 24.0000i −1.91135 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.0000 + 25.9808i 0.685367 + 1.18709i 0.973321 + 0.229447i \(0.0736918\pi\)
−0.287954 + 0.957644i \(0.592975\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 25.1147 + 14.5000i 1.14394 + 0.660457i
\(483\) 0 0
\(484\) 12.5000 + 21.6506i 0.568182 + 0.984120i
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) −11.2583 + 6.50000i −0.509641 + 0.294241i
\(489\) 0 0
\(490\) 0 0
\(491\) 6.00000 10.3923i 0.270776 0.468998i −0.698285 0.715820i \(-0.746053\pi\)
0.969061 + 0.246822i \(0.0793863\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −5.19615 + 3.00000i −0.233079 + 0.134568i
\(498\) 0 0
\(499\) 16.0000 27.7128i 0.716258 1.24060i −0.246214 0.969216i \(-0.579187\pi\)
0.962472 0.271380i \(-0.0874801\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 10.3923 6.00000i 0.463831 0.267793i
\(503\) 27.0000i 1.20387i 0.798545 + 0.601935i \(0.205603\pi\)
−0.798545 + 0.601935i \(0.794397\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 27.0000 + 46.7654i 1.20030 + 2.07897i
\(507\) 0 0
\(508\) −6.06218 3.50000i −0.268966 0.155287i
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 15.5885 + 9.00000i 0.685580 + 0.395820i
\(518\) 6.92820 + 4.00000i 0.304408 + 0.175750i
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 19.0000i 0.830812i 0.909636 + 0.415406i \(0.136360\pi\)
−0.909636 + 0.415406i \(0.863640\pi\)
\(524\) 9.00000 + 15.5885i 0.393167 + 0.680985i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 29.0000 + 50.2295i 1.26087 + 2.18389i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00000i 0.173422i
\(533\) −5.19615 + 3.00000i −0.225070 + 0.129944i
\(534\) 0 0
\(535\) 0 0
\(536\) −6.50000 + 11.2583i −0.280757 + 0.486286i
\(537\) 0 0
\(538\) −18.1865 + 10.5000i −0.784077 + 0.452687i
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 3.46410 2.00000i 0.148796 0.0859074i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −37.2391 + 21.5000i −1.59223 + 0.919274i −0.599305 + 0.800521i \(0.704556\pi\)
−0.992924 + 0.118753i \(0.962110\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 10.3923i −0.255609 0.442727i
\(552\) 0 0
\(553\) 8.66025 + 5.00000i 0.368271 + 0.212622i
\(554\) −4.00000 + 6.92820i −0.169944 + 0.294351i
\(555\) 0 0
\(556\) 8.00000 + 13.8564i 0.339276 + 0.587643i
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 12.9904 + 7.50000i 0.547966 + 0.316368i
\(563\) 2.59808 + 1.50000i 0.109496 + 0.0632175i 0.553748 0.832684i \(-0.313197\pi\)
−0.444252 + 0.895902i \(0.646530\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.0000 0.546431
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 20.0000 34.6410i 0.836974 1.44968i −0.0554391 0.998462i \(-0.517656\pi\)
0.892413 0.451219i \(-0.149011\pi\)
\(572\) 10.3923 + 6.00000i 0.434524 + 0.250873i
\(573\) 0 0
\(574\) 1.50000 + 2.59808i 0.0626088 + 0.108442i
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000i 0.416305i −0.978096 0.208153i \(-0.933255\pi\)
0.978096 0.208153i \(-0.0667451\pi\)
\(578\) −14.7224 + 8.50000i −0.612372 + 0.353553i
\(579\) 0 0
\(580\) 0 0
\(581\) 4.50000 7.79423i 0.186691 0.323359i
\(582\) 0 0
\(583\) −31.1769 + 18.0000i −1.29122 + 0.745484i
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9904 7.50000i 0.536170 0.309558i −0.207355 0.978266i \(-0.566486\pi\)
0.743525 + 0.668708i \(0.233152\pi\)
\(588\) 0 0
\(589\) 8.00000 13.8564i 0.329634 0.570943i
\(590\) 0 0
\(591\) 0 0
\(592\) 6.92820 4.00000i 0.284747 0.164399i
\(593\) 24.0000i 0.985562i 0.870153 + 0.492781i \(0.164020\pi\)
−0.870153 + 0.492781i \(0.835980\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.50000 2.59808i −0.0614424 0.106421i
\(597\) 0 0
\(598\) 15.5885 + 9.00000i 0.637459 + 0.368037i
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 0 0
\(604\) −14.0000 −0.569652
\(605\) 0 0
\(606\) 0 0
\(607\) −25.1147 14.5000i −1.01938 0.588537i −0.105453 0.994424i \(-0.533629\pi\)
−0.913923 + 0.405887i \(0.866962\pi\)
\(608\) 3.46410 + 2.00000i 0.140488 + 0.0811107i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 0 0
\(613\) 40.0000i 1.61558i 0.589467 + 0.807792i \(0.299338\pi\)
−0.589467 + 0.807792i \(0.700662\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 0 0
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) 10.3923 + 6.00000i 0.418378 + 0.241551i 0.694383 0.719605i \(-0.255677\pi\)
−0.276005 + 0.961156i \(0.589011\pi\)
\(618\) 0 0
\(619\) −20.0000 34.6410i −0.803868 1.39234i −0.917053 0.398766i \(-0.869439\pi\)
0.113185 0.993574i \(-0.463895\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) −7.79423 + 4.50000i −0.312269 + 0.180289i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.00000 1.73205i 0.0399680 0.0692267i
\(627\) 0 0
\(628\) −12.1244 + 7.00000i −0.483814 + 0.279330i
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 8.66025 5.00000i 0.344486 0.198889i
\(633\) 0 0
\(634\) −3.00000 + 5.19615i −0.119145 + 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) −10.3923 + 6.00000i −0.411758 + 0.237729i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) −26.8468 15.5000i −1.05873 0.611260i −0.133652 0.991028i \(-0.542670\pi\)
−0.925082 + 0.379768i \(0.876004\pi\)
\(644\) 4.50000 7.79423i 0.177325 0.307136i
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00000i 0.117942i 0.998260 + 0.0589711i \(0.0187820\pi\)
−0.998260 + 0.0589711i \(0.981218\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 3.46410 + 2.00000i 0.135665 + 0.0783260i
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) 3.00000i 0.116952i
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 23.0000 39.8372i 0.894596 1.54949i 0.0602929 0.998181i \(-0.480797\pi\)
0.834303 0.551306i \(-0.185870\pi\)
\(662\) −8.66025 5.00000i −0.336590 0.194331i
\(663\) 0 0
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) 27.0000i 1.04544i
\(668\) −2.59808 + 1.50000i −0.100523 + 0.0580367i
\(669\) 0 0
\(670\) 0 0
\(671\) −39.0000 + 67.5500i −1.50558 + 2.60774i
\(672\) 0 0
\(673\) 39.8372 23.0000i 1.53561 0.886585i 0.536522 0.843886i \(-0.319738\pi\)
0.999088 0.0426985i \(-0.0135955\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −15.5885 + 9.00000i −0.599113 + 0.345898i −0.768693 0.639618i \(-0.779092\pi\)
0.169580 + 0.985517i \(0.445759\pi\)
\(678\) 0 0
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) −20.7846 + 12.0000i −0.795884 + 0.459504i
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) 6.92820 + 4.00000i 0.264135 + 0.152499i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 5.00000 + 8.66025i 0.190209 + 0.329452i 0.945319 0.326146i \(-0.105750\pi\)
−0.755110 + 0.655598i \(0.772417\pi\)
\(692\) 24.0000i 0.912343i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −19.9186 11.5000i −0.753930 0.435281i
\(699\) 0 0
\(700\) 0 0
\(701\) 45.0000 1.69963 0.849813 0.527084i \(-0.176715\pi\)
0.849813 + 0.527084i \(0.176715\pi\)
\(702\) 0 0
\(703\) 32.0000i 1.20690i
\(704\) −3.00000 5.19615i −0.113067 0.195837i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) −5.19615 3.00000i −0.195421 0.112827i
\(708\) 0 0
\(709\) 5.50000 + 9.52628i 0.206557 + 0.357767i 0.950628 0.310334i \(-0.100441\pi\)
−0.744071 + 0.668101i \(0.767108\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.00000i 0.337289i
\(713\) −31.1769 + 18.0000i −1.16758 + 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.00000 + 15.5885i −0.336346 + 0.582568i
\(717\) 0 0
\(718\) 10.3923 6.00000i 0.387837 0.223918i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 2.59808 1.50000i 0.0966904 0.0558242i
\(723\) 0 0
\(724\) 2.50000 4.33013i 0.0929118 0.160928i
\(725\) 0 0
\(726\) 0 0
\(727\) 45.8993 26.5000i 1.70231 0.982831i 0.758901 0.651206i \(-0.225737\pi\)
0.943411 0.331625i \(-0.107597\pi\)
\(728\) 2.00000i 0.0741249i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 12.1244 + 7.00000i 0.447823 + 0.258551i 0.706910 0.707303i \(-0.250088\pi\)
−0.259087 + 0.965854i \(0.583422\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) −4.50000 7.79423i −0.165872 0.287299i
\(737\) 78.0000i 2.87317i
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5.19615 + 3.00000i 0.190757 + 0.110133i
\(743\) 12.9904 + 7.50000i 0.476571 + 0.275148i 0.718986 0.695024i \(-0.244606\pi\)
−0.242415 + 0.970173i \(0.577940\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −26.0000 −0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 0 0
\(751\) −1.00000 + 1.73205i −0.0364905 + 0.0632034i −0.883694 0.468065i \(-0.844951\pi\)
0.847203 + 0.531269i \(0.178285\pi\)
\(752\) −2.59808 1.50000i −0.0947421 0.0546994i
\(753\) 0 0
\(754\) 3.00000 + 5.19615i 0.109254 + 0.189233i
\(755\) 0 0
\(756\) 0 0
\(757\) 46.0000i 1.67190i −0.548807 0.835949i \(-0.684918\pi\)
0.548807 0.835949i \(-0.315082\pi\)
\(758\) −19.0526 + 11.0000i −0.692020 + 0.399538i
\(759\) 0 0
\(760\) 0 0
\(761\) −16.5000 + 28.5788i −0.598125 + 1.03598i 0.394973 + 0.918693i \(0.370754\pi\)
−0.993098 + 0.117289i \(0.962579\pi\)
\(762\) 0 0
\(763\) −6.06218 + 3.50000i −0.219466 + 0.126709i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) −10.3923 + 6.00000i −0.375244 + 0.216647i
\(768\) 0 0
\(769\) 14.5000 25.1147i 0.522883 0.905661i −0.476762 0.879032i \(-0.658190\pi\)
0.999645 0.0266282i \(-0.00847701\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.73205 1.00000i 0.0623379 0.0359908i
\(773\) 48.0000i 1.72644i −0.504828 0.863220i \(-0.668444\pi\)
0.504828 0.863220i \(-0.331556\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 18.1865 + 10.5000i 0.652019 + 0.376443i
\(779\) −6.00000 + 10.3923i −0.214972 + 0.372343i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) −17.3205 10.0000i −0.617409 0.356462i 0.158450 0.987367i \(-0.449350\pi\)
−0.775860 + 0.630905i \(0.782684\pi\)
\(788\) 10.3923 + 6.00000i 0.370211 + 0.213741i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 26.0000i 0.923287i
\(794\) −1.00000 1.73205i −0.0354887 0.0614682i
\(795\) 0 0
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) −36.3731 21.0000i −1.28840 0.743858i −0.310031 0.950726i \(-0.600340\pi\)
−0.978369 + 0.206868i \(0.933673\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 6.00000i 0.211867i
\(803\) −20.7846 + 12.0000i −0.733473 + 0.423471i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) 0 0
\(808\) −5.19615 + 3.00000i −0.182800 + 0.105540i
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 2.59808 1.50000i 0.0911746 0.0526397i
\(813\) 0 0
\(814\) 24.0000 41.5692i 0.841200 1.45700i
\(815\) 0 0
\(816\) 0 0
\(817\) −27.7128 + 16.0000i −0.969549 + 0.559769i
\(818\) 10.0000i 0.349642i
\(819\) 0 0
\(820\) 0 0
\(821\) 13.5000 + 23.3827i 0.471153 + 0.816061i 0.999456 0.0329950i \(-0.0105045\pi\)
−0.528302 + 0.849056i \(0.677171\pi\)
\(822\) 0 0
\(823\) −21.6506 12.5000i −0.754694 0.435723i 0.0726937 0.997354i \(-0.476840\pi\)
−0.827387 + 0.561632i \(0.810174\pi\)
\(824\) −4.00000 + 6.92820i −0.139347 + 0.241355i
\(825\) 0 0
\(826\) 3.00000 + 5.19615i 0.104383 + 0.180797i
\(827\) 3.00000i 0.104320i −0.998639 0.0521601i \(-0.983389\pi\)
0.998639 0.0521601i \(-0.0166106\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.73205 1.00000i −0.0600481 0.0346688i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) 30.0000i 1.03633i
\(839\) −18.0000 31.1769i −0.621429 1.07635i −0.989220 0.146438i \(-0.953219\pi\)
0.367791 0.929909i \(-0.380114\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) −19.0526 11.0000i −0.656595 0.379085i
\(843\) 0 0
\(844\) 1.00000 + 1.73205i 0.0344214 + 0.0596196i
\(845\) 0 0
\(846\) 0 0
\(847\) 25.0000i 0.859010i
\(848\) 5.19615 3.00000i 0.178437 0.103020i
\(849\) 0 0
\(850\) 0 0
\(851\) 36.0000 62.3538i 1.23406 2.13746i
\(852\) 0 0
\(853\) 8.66025 5.00000i 0.296521 0.171197i −0.344358 0.938839i \(-0.611903\pi\)
0.640879 + 0.767642i \(0.278570\pi\)
\(854\) 13.0000 0.444851
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) 36.3731 21.0000i 1.24248 0.717346i 0.272882 0.962048i \(-0.412023\pi\)
0.969599 + 0.244701i \(0.0786899\pi\)
\(858\) 0 0
\(859\) −17.0000 + 29.4449i −0.580033 + 1.00465i 0.415442 + 0.909620i \(0.363627\pi\)
−0.995475 + 0.0950262i \(0.969707\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.19615 3.00000i 0.176982 0.102180i
\(863\) 3.00000i 0.102121i 0.998696 + 0.0510606i \(0.0162602\pi\)
−0.998696 + 0.0510606i \(0.983740\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −8.00000 13.8564i −0.271851 0.470860i
\(867\) 0 0
\(868\) 3.46410 + 2.00000i 0.117579 + 0.0678844i
\(869\) 30.0000 51.9615i 1.01768 1.76267i
\(870\) 0 0
\(871\) 13.0000 + 22.5167i 0.440488 + 0.762948i
\(872\) 7.00000i 0.237050i
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) 19.0526 + 11.0000i 0.643359 + 0.371444i 0.785907 0.618344i \(-0.212196\pi\)
−0.142548 + 0.989788i \(0.545530\pi\)
\(878\) 24.2487 + 14.0000i 0.818354 + 0.472477i
\(879\) 0 0
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) 31.0000i 1.04323i 0.853180 + 0.521617i \(0.174671\pi\)
−0.853180 + 0.521617i \(0.825329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) 31.1769 + 18.0000i 1.04682 + 0.604381i 0.921757 0.387768i \(-0.126754\pi\)
0.125061 + 0.992149i \(0.460087\pi\)
\(888\) 0 0
\(889\) 3.50000 + 6.06218i 0.117386 + 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 1.00000i 0.0334825i
\(893\) 10.3923 6.00000i 0.347765 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) −5.19615 + 3.00000i −0.173398 + 0.100111i
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) 15.5885 9.00000i 0.519039 0.299667i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −32.0429 + 18.5000i −1.06397 + 0.614282i −0.926527 0.376228i \(-0.877221\pi\)
−0.137441 + 0.990510i \(0.543888\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) −15.0000 25.9808i −0.496972 0.860781i 0.503022 0.864274i \(-0.332222\pi\)
−0.999994 + 0.00349271i \(0.998888\pi\)
\(912\) 0 0
\(913\) −46.7654 27.0000i −1.54771 0.893570i
\(914\) −4.00000 + 6.92820i −0.132308 + 0.229165i
\(915\) 0 0
\(916\) 6.50000 + 11.2583i 0.214766 + 0.371986i
\(917\) 18.0000i 0.594412i
\(918\) 0 0
\(919\) −38.0000 −1.25350 −0.626752 0.779219i \(-0.715616\pi\)
−0.626752 + 0.779219i \(0.715616\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 23.3827 + 13.5000i 0.770068 + 0.444599i
\(923\) 10.3923 + 6.00000i 0.342067 + 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) 0 0
\(931\) −12.0000 + 20.7846i −0.393284 + 0.681188i
\(932\) −10.3923 6.00000i −0.340411 0.196537i
\(933\) 0 0
\(934\) 18.0000 + 31.1769i 0.588978 + 1.02014i
\(935\) 0 0
\(936\) 0 0
\(937\) 56.0000i 1.82944i 0.404088 + 0.914720i \(0.367589\pi\)
−0.404088 + 0.914720i \(0.632411\pi\)
\(938\) 11.2583 6.50000i 0.367598 0.212233i
\(939\) 0 0
\(940\) 0 0
\(941\) 10.5000 18.1865i 0.342290 0.592864i −0.642567 0.766229i \(-0.722131\pi\)
0.984858 + 0.173365i \(0.0554641\pi\)
\(942\) 0 0
\(943\) 23.3827 13.5000i 0.761445 0.439620i
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 48.0000 1.56061
\(947\) −33.7750 + 19.5000i −1.09754 + 0.633665i −0.935574 0.353131i \(-0.885117\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(948\) 0 0
\(949\) −4.00000 + 6.92820i −0.129845 + 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000i 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −25.9808 15.0000i −0.839400 0.484628i
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 16.0000i 0.515861i
\(963\) 0 0
\(964\) −29.0000 −0.934027
\(965\) 0 0
\(966\) 0 0
\(967\) 32.0429 + 18.5000i 1.03043 + 0.594920i 0.917108 0.398638i \(-0.130517\pi\)
0.113323 + 0.993558i \(0.463850\pi\)
\(968\) −21.6506 12.5000i −0.695878 0.401765i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) −4.00000 6.92820i −0.128168 0.221994i
\(975\) 0 0
\(976\) 6.50000 11.2583i 0.208060 0.360370i
\(977\) −36.3731 21.0000i −1.16368 0.671850i −0.211495 0.977379i \(-0.567833\pi\)
−0.952183 + 0.305530i \(0.901167\pi\)
\(978\) 0 0
\(979\) 27.0000 + 46.7654i 0.862924 + 1.49463i
\(980\) 0 0
\(981\) 0 0
\(982\) 12.0000i 0.382935i
\(983\) 7.79423 4.50000i 0.248597 0.143528i −0.370525 0.928823i \(-0.620822\pi\)
0.619122 + 0.785295i \(0.287489\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 6.92820 4.00000i 0.220416 0.127257i
\(989\) 72.0000 2.28947
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 3.46410 2.00000i 0.109985 0.0635001i
\(993\) 0 0
\(994\) 3.00000 5.19615i 0.0951542 0.164812i
\(995\) 0 0
\(996\) 0 0
\(997\) −8.66025 + 5.00000i −0.274273 + 0.158352i −0.630828 0.775923i \(-0.717285\pi\)
0.356555 + 0.934274i \(0.383951\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.j.e.199.1 4
3.2 odd 2 450.2.j.c.49.2 4
5.2 odd 4 1350.2.e.b.901.1 2
5.3 odd 4 270.2.e.b.91.1 2
5.4 even 2 inner 1350.2.j.e.199.2 4
9.2 odd 6 450.2.j.c.349.1 4
9.4 even 3 4050.2.c.a.649.1 2
9.5 odd 6 4050.2.c.t.649.2 2
9.7 even 3 inner 1350.2.j.e.1099.2 4
15.2 even 4 450.2.e.e.301.1 2
15.8 even 4 90.2.e.a.31.1 2
15.14 odd 2 450.2.j.c.49.1 4
20.3 even 4 2160.2.q.b.1441.1 2
45.2 even 12 450.2.e.e.151.1 2
45.4 even 6 4050.2.c.a.649.2 2
45.7 odd 12 1350.2.e.b.451.1 2
45.13 odd 12 810.2.a.b.1.1 1
45.14 odd 6 4050.2.c.t.649.1 2
45.22 odd 12 4050.2.a.ba.1.1 1
45.23 even 12 810.2.a.g.1.1 1
45.29 odd 6 450.2.j.c.349.2 4
45.32 even 12 4050.2.a.n.1.1 1
45.34 even 6 inner 1350.2.j.e.1099.1 4
45.38 even 12 90.2.e.a.61.1 yes 2
45.43 odd 12 270.2.e.b.181.1 2
60.23 odd 4 720.2.q.b.481.1 2
180.23 odd 12 6480.2.a.g.1.1 1
180.43 even 12 2160.2.q.b.721.1 2
180.83 odd 12 720.2.q.b.241.1 2
180.103 even 12 6480.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.a.31.1 2 15.8 even 4
90.2.e.a.61.1 yes 2 45.38 even 12
270.2.e.b.91.1 2 5.3 odd 4
270.2.e.b.181.1 2 45.43 odd 12
450.2.e.e.151.1 2 45.2 even 12
450.2.e.e.301.1 2 15.2 even 4
450.2.j.c.49.1 4 15.14 odd 2
450.2.j.c.49.2 4 3.2 odd 2
450.2.j.c.349.1 4 9.2 odd 6
450.2.j.c.349.2 4 45.29 odd 6
720.2.q.b.241.1 2 180.83 odd 12
720.2.q.b.481.1 2 60.23 odd 4
810.2.a.b.1.1 1 45.13 odd 12
810.2.a.g.1.1 1 45.23 even 12
1350.2.e.b.451.1 2 45.7 odd 12
1350.2.e.b.901.1 2 5.2 odd 4
1350.2.j.e.199.1 4 1.1 even 1 trivial
1350.2.j.e.199.2 4 5.4 even 2 inner
1350.2.j.e.1099.1 4 45.34 even 6 inner
1350.2.j.e.1099.2 4 9.7 even 3 inner
2160.2.q.b.721.1 2 180.43 even 12
2160.2.q.b.1441.1 2 20.3 even 4
4050.2.a.n.1.1 1 45.32 even 12
4050.2.a.ba.1.1 1 45.22 odd 12
4050.2.c.a.649.1 2 9.4 even 3
4050.2.c.a.649.2 2 45.4 even 6
4050.2.c.t.649.1 2 45.14 odd 6
4050.2.c.t.649.2 2 9.5 odd 6
6480.2.a.g.1.1 1 180.23 odd 12
6480.2.a.v.1.1 1 180.103 even 12