Properties

Label 1350.3.b.h.1349.5
Level $1350$
Weight $3$
Character 1350.1349
Analytic conductor $36.785$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,3,Mod(1349,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.1349");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1349.5
Root \(1.14412 - 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1349
Dual form 1350.3.b.h.1349.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +2.00000 q^{4} -1.00000i q^{7} +2.82843 q^{8} -13.4164i q^{11} +13.9737i q^{13} -1.41421i q^{14} +4.00000 q^{16} +8.48528 q^{17} +25.9737 q^{19} -18.9737i q^{22} +3.55415 q^{23} +19.7617i q^{26} -2.00000i q^{28} +4.93113i q^{29} -35.9473 q^{31} +5.65685 q^{32} +12.0000 q^{34} -13.9737i q^{37} +36.7323 q^{38} -29.0100i q^{41} -75.9473i q^{43} -26.8328i q^{44} +5.02633 q^{46} +69.2592 q^{47} +48.0000 q^{49} +27.9473i q^{52} +89.7839 q^{53} -2.82843i q^{56} +6.97367i q^{58} -8.48528i q^{59} +50.8947 q^{61} -50.8372 q^{62} +8.00000 q^{64} +71.0000i q^{67} +16.9706 q^{68} -126.479i q^{71} -22.0263i q^{73} -19.7617i q^{74} +51.9473 q^{76} -13.4164 q^{77} -75.8683 q^{79} -41.0263i q^{82} -34.5179 q^{83} -107.406i q^{86} -37.9473i q^{88} +147.004i q^{89} +13.9737 q^{91} +7.10831 q^{92} +97.9473 q^{94} +99.8683i q^{97} +67.8823 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 32 q^{16} + 56 q^{19} + 16 q^{31} + 96 q^{34} + 192 q^{46} + 384 q^{49} - 200 q^{61} + 64 q^{64} + 112 q^{76} + 152 q^{79} - 40 q^{91} + 480 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.00000i − 0.142857i −0.997446 0.0714286i \(-0.977244\pi\)
0.997446 0.0714286i \(-0.0227558\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) − 13.4164i − 1.21967i −0.792527 0.609837i \(-0.791235\pi\)
0.792527 0.609837i \(-0.208765\pi\)
\(12\) 0 0
\(13\) 13.9737i 1.07490i 0.843296 + 0.537449i \(0.180612\pi\)
−0.843296 + 0.537449i \(0.819388\pi\)
\(14\) − 1.41421i − 0.101015i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 8.48528 0.499134 0.249567 0.968358i \(-0.419712\pi\)
0.249567 + 0.968358i \(0.419712\pi\)
\(18\) 0 0
\(19\) 25.9737 1.36704 0.683518 0.729934i \(-0.260449\pi\)
0.683518 + 0.729934i \(0.260449\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 18.9737i − 0.862439i
\(23\) 3.55415 0.154528 0.0772642 0.997011i \(-0.475381\pi\)
0.0772642 + 0.997011i \(0.475381\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 19.7617i 0.760067i
\(27\) 0 0
\(28\) − 2.00000i − 0.0714286i
\(29\) 4.93113i 0.170039i 0.996379 + 0.0850194i \(0.0270952\pi\)
−0.996379 + 0.0850194i \(0.972905\pi\)
\(30\) 0 0
\(31\) −35.9473 −1.15959 −0.579796 0.814762i \(-0.696868\pi\)
−0.579796 + 0.814762i \(0.696868\pi\)
\(32\) 5.65685 0.176777
\(33\) 0 0
\(34\) 12.0000 0.352941
\(35\) 0 0
\(36\) 0 0
\(37\) − 13.9737i − 0.377667i −0.982009 0.188833i \(-0.939529\pi\)
0.982009 0.188833i \(-0.0604706\pi\)
\(38\) 36.7323 0.966640
\(39\) 0 0
\(40\) 0 0
\(41\) − 29.0100i − 0.707561i −0.935328 0.353780i \(-0.884896\pi\)
0.935328 0.353780i \(-0.115104\pi\)
\(42\) 0 0
\(43\) − 75.9473i − 1.76622i −0.469169 0.883109i \(-0.655446\pi\)
0.469169 0.883109i \(-0.344554\pi\)
\(44\) − 26.8328i − 0.609837i
\(45\) 0 0
\(46\) 5.02633 0.109268
\(47\) 69.2592 1.47360 0.736800 0.676110i \(-0.236336\pi\)
0.736800 + 0.676110i \(0.236336\pi\)
\(48\) 0 0
\(49\) 48.0000 0.979592
\(50\) 0 0
\(51\) 0 0
\(52\) 27.9473i 0.537449i
\(53\) 89.7839 1.69404 0.847018 0.531564i \(-0.178395\pi\)
0.847018 + 0.531564i \(0.178395\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 2.82843i − 0.0505076i
\(57\) 0 0
\(58\) 6.97367i 0.120236i
\(59\) − 8.48528i − 0.143818i −0.997411 0.0719092i \(-0.977091\pi\)
0.997411 0.0719092i \(-0.0229092\pi\)
\(60\) 0 0
\(61\) 50.8947 0.834339 0.417169 0.908829i \(-0.363022\pi\)
0.417169 + 0.908829i \(0.363022\pi\)
\(62\) −50.8372 −0.819955
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 71.0000i 1.05970i 0.848091 + 0.529851i \(0.177752\pi\)
−0.848091 + 0.529851i \(0.822248\pi\)
\(68\) 16.9706 0.249567
\(69\) 0 0
\(70\) 0 0
\(71\) − 126.479i − 1.78139i −0.454597 0.890697i \(-0.650217\pi\)
0.454597 0.890697i \(-0.349783\pi\)
\(72\) 0 0
\(73\) − 22.0263i − 0.301731i −0.988554 0.150865i \(-0.951794\pi\)
0.988554 0.150865i \(-0.0482060\pi\)
\(74\) − 19.7617i − 0.267051i
\(75\) 0 0
\(76\) 51.9473 0.683518
\(77\) −13.4164 −0.174239
\(78\) 0 0
\(79\) −75.8683 −0.960359 −0.480179 0.877170i \(-0.659428\pi\)
−0.480179 + 0.877170i \(0.659428\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 41.0263i − 0.500321i
\(83\) −34.5179 −0.415878 −0.207939 0.978142i \(-0.566676\pi\)
−0.207939 + 0.978142i \(0.566676\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 107.406i − 1.24890i
\(87\) 0 0
\(88\) − 37.9473i − 0.431220i
\(89\) 147.004i 1.65173i 0.563870 + 0.825864i \(0.309312\pi\)
−0.563870 + 0.825864i \(0.690688\pi\)
\(90\) 0 0
\(91\) 13.9737 0.153557
\(92\) 7.10831 0.0772642
\(93\) 0 0
\(94\) 97.9473 1.04199
\(95\) 0 0
\(96\) 0 0
\(97\) 99.8683i 1.02957i 0.857319 + 0.514785i \(0.172128\pi\)
−0.857319 + 0.514785i \(0.827872\pi\)
\(98\) 67.8823 0.692676
\(99\) 0 0
\(100\) 0 0
\(101\) − 4.35437i − 0.0431125i −0.999768 0.0215563i \(-0.993138\pi\)
0.999768 0.0215563i \(-0.00686211\pi\)
\(102\) 0 0
\(103\) − 12.9473i − 0.125702i −0.998023 0.0628511i \(-0.979981\pi\)
0.998023 0.0628511i \(-0.0200193\pi\)
\(104\) 39.5235i 0.380034i
\(105\) 0 0
\(106\) 126.974 1.19786
\(107\) 103.777 0.969880 0.484940 0.874548i \(-0.338842\pi\)
0.484940 + 0.874548i \(0.338842\pi\)
\(108\) 0 0
\(109\) −99.9473 −0.916948 −0.458474 0.888708i \(-0.651604\pi\)
−0.458474 + 0.888708i \(0.651604\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 4.00000i − 0.0357143i
\(113\) 205.600 1.81947 0.909737 0.415186i \(-0.136283\pi\)
0.909737 + 0.415186i \(0.136283\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 9.86225i 0.0850194i
\(117\) 0 0
\(118\) − 12.0000i − 0.101695i
\(119\) − 8.48528i − 0.0713049i
\(120\) 0 0
\(121\) −59.0000 −0.487603
\(122\) 71.9759 0.589967
\(123\) 0 0
\(124\) −71.8947 −0.579796
\(125\) 0 0
\(126\) 0 0
\(127\) − 34.0000i − 0.267717i −0.991000 0.133858i \(-0.957263\pi\)
0.991000 0.133858i \(-0.0427367\pi\)
\(128\) 11.3137 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) − 99.0694i − 0.756255i −0.925753 0.378128i \(-0.876568\pi\)
0.925753 0.378128i \(-0.123432\pi\)
\(132\) 0 0
\(133\) − 25.9737i − 0.195291i
\(134\) 100.409i 0.749322i
\(135\) 0 0
\(136\) 24.0000 0.176471
\(137\) −52.8654 −0.385879 −0.192939 0.981211i \(-0.561802\pi\)
−0.192939 + 0.981211i \(0.561802\pi\)
\(138\) 0 0
\(139\) 175.816 1.26486 0.632430 0.774617i \(-0.282057\pi\)
0.632430 + 0.774617i \(0.282057\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 178.868i − 1.25964i
\(143\) 187.476 1.31102
\(144\) 0 0
\(145\) 0 0
\(146\) − 31.1499i − 0.213356i
\(147\) 0 0
\(148\) − 27.9473i − 0.188833i
\(149\) − 238.741i − 1.60229i −0.598469 0.801146i \(-0.704224\pi\)
0.598469 0.801146i \(-0.295776\pi\)
\(150\) 0 0
\(151\) −209.868 −1.38986 −0.694928 0.719079i \(-0.744564\pi\)
−0.694928 + 0.719079i \(0.744564\pi\)
\(152\) 73.4646 0.483320
\(153\) 0 0
\(154\) −18.9737 −0.123206
\(155\) 0 0
\(156\) 0 0
\(157\) 154.105i 0.981563i 0.871283 + 0.490781i \(0.163289\pi\)
−0.871283 + 0.490781i \(0.836711\pi\)
\(158\) −107.294 −0.679076
\(159\) 0 0
\(160\) 0 0
\(161\) − 3.55415i − 0.0220755i
\(162\) 0 0
\(163\) 14.9473i 0.0917014i 0.998948 + 0.0458507i \(0.0145999\pi\)
−0.998948 + 0.0458507i \(0.985400\pi\)
\(164\) − 58.0200i − 0.353780i
\(165\) 0 0
\(166\) −48.8157 −0.294070
\(167\) −138.295 −0.828114 −0.414057 0.910251i \(-0.635889\pi\)
−0.414057 + 0.910251i \(0.635889\pi\)
\(168\) 0 0
\(169\) −26.2633 −0.155404
\(170\) 0 0
\(171\) 0 0
\(172\) − 151.895i − 0.883109i
\(173\) 197.692 1.14273 0.571364 0.820697i \(-0.306414\pi\)
0.571364 + 0.820697i \(0.306414\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 53.6656i − 0.304918i
\(177\) 0 0
\(178\) 207.895i 1.16795i
\(179\) 242.519i 1.35485i 0.735590 + 0.677427i \(0.236905\pi\)
−0.735590 + 0.677427i \(0.763095\pi\)
\(180\) 0 0
\(181\) −308.789 −1.70602 −0.853009 0.521896i \(-0.825225\pi\)
−0.853009 + 0.521896i \(0.825225\pi\)
\(182\) 19.7617 0.108581
\(183\) 0 0
\(184\) 10.0527 0.0546341
\(185\) 0 0
\(186\) 0 0
\(187\) − 113.842i − 0.608781i
\(188\) 138.518 0.736800
\(189\) 0 0
\(190\) 0 0
\(191\) − 308.001i − 1.61257i −0.591528 0.806284i \(-0.701475\pi\)
0.591528 0.806284i \(-0.298525\pi\)
\(192\) 0 0
\(193\) 341.868i 1.77134i 0.464317 + 0.885669i \(0.346300\pi\)
−0.464317 + 0.885669i \(0.653700\pi\)
\(194\) 141.235i 0.728016i
\(195\) 0 0
\(196\) 96.0000 0.489796
\(197\) −128.433 −0.651943 −0.325971 0.945380i \(-0.605691\pi\)
−0.325971 + 0.945380i \(0.605691\pi\)
\(198\) 0 0
\(199\) −178.026 −0.894605 −0.447302 0.894383i \(-0.647615\pi\)
−0.447302 + 0.894383i \(0.647615\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 6.15800i − 0.0304852i
\(203\) 4.93113 0.0242913
\(204\) 0 0
\(205\) 0 0
\(206\) − 18.3103i − 0.0888849i
\(207\) 0 0
\(208\) 55.8947i 0.268724i
\(209\) − 348.473i − 1.66734i
\(210\) 0 0
\(211\) 69.7103 0.330381 0.165190 0.986262i \(-0.447176\pi\)
0.165190 + 0.986262i \(0.447176\pi\)
\(212\) 179.568 0.847018
\(213\) 0 0
\(214\) 146.763 0.685808
\(215\) 0 0
\(216\) 0 0
\(217\) 35.9473i 0.165656i
\(218\) −141.347 −0.648380
\(219\) 0 0
\(220\) 0 0
\(221\) 118.570i 0.536518i
\(222\) 0 0
\(223\) 131.631i 0.590275i 0.955455 + 0.295137i \(0.0953655\pi\)
−0.955455 + 0.295137i \(0.904635\pi\)
\(224\) − 5.65685i − 0.0252538i
\(225\) 0 0
\(226\) 290.763 1.28656
\(227\) 343.895 1.51496 0.757479 0.652859i \(-0.226431\pi\)
0.757479 + 0.652859i \(0.226431\pi\)
\(228\) 0 0
\(229\) −413.579 −1.80602 −0.903010 0.429619i \(-0.858648\pi\)
−0.903010 + 0.429619i \(0.858648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 13.9473i 0.0601178i
\(233\) 154.335 0.662384 0.331192 0.943563i \(-0.392549\pi\)
0.331192 + 0.943563i \(0.392549\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 16.9706i − 0.0719092i
\(237\) 0 0
\(238\) − 12.0000i − 0.0504202i
\(239\) − 47.5810i − 0.199084i −0.995033 0.0995418i \(-0.968262\pi\)
0.995033 0.0995418i \(-0.0317377\pi\)
\(240\) 0 0
\(241\) −440.789 −1.82900 −0.914501 0.404584i \(-0.867416\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(242\) −83.4386 −0.344788
\(243\) 0 0
\(244\) 101.789 0.417169
\(245\) 0 0
\(246\) 0 0
\(247\) 362.947i 1.46942i
\(248\) −101.674 −0.409977
\(249\) 0 0
\(250\) 0 0
\(251\) 342.742i 1.36551i 0.730649 + 0.682753i \(0.239217\pi\)
−0.730649 + 0.682753i \(0.760783\pi\)
\(252\) 0 0
\(253\) − 47.6840i − 0.188474i
\(254\) − 48.0833i − 0.189304i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 309.378 1.20380 0.601902 0.798570i \(-0.294410\pi\)
0.601902 + 0.798570i \(0.294410\pi\)
\(258\) 0 0
\(259\) −13.9737 −0.0539524
\(260\) 0 0
\(261\) 0 0
\(262\) − 140.105i − 0.534753i
\(263\) −359.136 −1.36554 −0.682768 0.730636i \(-0.739224\pi\)
−0.682768 + 0.730636i \(0.739224\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 36.7323i − 0.138091i
\(267\) 0 0
\(268\) 142.000i 0.529851i
\(269\) 257.536i 0.957382i 0.877983 + 0.478691i \(0.158889\pi\)
−0.877983 + 0.478691i \(0.841111\pi\)
\(270\) 0 0
\(271\) 177.710 0.655758 0.327879 0.944720i \(-0.393666\pi\)
0.327879 + 0.944720i \(0.393666\pi\)
\(272\) 33.9411 0.124784
\(273\) 0 0
\(274\) −74.7630 −0.272858
\(275\) 0 0
\(276\) 0 0
\(277\) − 311.631i − 1.12502i −0.826790 0.562511i \(-0.809835\pi\)
0.826790 0.562511i \(-0.190165\pi\)
\(278\) 248.641 0.894392
\(279\) 0 0
\(280\) 0 0
\(281\) − 55.2661i − 0.196676i −0.995153 0.0983382i \(-0.968647\pi\)
0.995153 0.0983382i \(-0.0313527\pi\)
\(282\) 0 0
\(283\) − 155.737i − 0.550306i −0.961400 0.275153i \(-0.911271\pi\)
0.961400 0.275153i \(-0.0887285\pi\)
\(284\) − 252.958i − 0.890697i
\(285\) 0 0
\(286\) 265.132 0.927034
\(287\) −29.0100 −0.101080
\(288\) 0 0
\(289\) −217.000 −0.750865
\(290\) 0 0
\(291\) 0 0
\(292\) − 44.0527i − 0.150865i
\(293\) −338.611 −1.15567 −0.577835 0.816154i \(-0.696102\pi\)
−0.577835 + 0.816154i \(0.696102\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 39.5235i − 0.133525i
\(297\) 0 0
\(298\) − 337.631i − 1.13299i
\(299\) 49.6646i 0.166102i
\(300\) 0 0
\(301\) −75.9473 −0.252317
\(302\) −296.799 −0.982777
\(303\) 0 0
\(304\) 103.895 0.341759
\(305\) 0 0
\(306\) 0 0
\(307\) 229.684i 0.748156i 0.927397 + 0.374078i \(0.122041\pi\)
−0.927397 + 0.374078i \(0.877959\pi\)
\(308\) −26.8328 −0.0871195
\(309\) 0 0
\(310\) 0 0
\(311\) 102.047i 0.328125i 0.986450 + 0.164062i \(0.0524599\pi\)
−0.986450 + 0.164062i \(0.947540\pi\)
\(312\) 0 0
\(313\) − 335.658i − 1.07239i −0.844095 0.536194i \(-0.819861\pi\)
0.844095 0.536194i \(-0.180139\pi\)
\(314\) 217.938i 0.694070i
\(315\) 0 0
\(316\) −151.737 −0.480179
\(317\) −430.925 −1.35939 −0.679693 0.733497i \(-0.737887\pi\)
−0.679693 + 0.733497i \(0.737887\pi\)
\(318\) 0 0
\(319\) 66.1580 0.207392
\(320\) 0 0
\(321\) 0 0
\(322\) − 5.02633i − 0.0156097i
\(323\) 220.394 0.682334
\(324\) 0 0
\(325\) 0 0
\(326\) 21.1387i 0.0648427i
\(327\) 0 0
\(328\) − 82.0527i − 0.250161i
\(329\) − 69.2592i − 0.210514i
\(330\) 0 0
\(331\) −181.974 −0.549769 −0.274885 0.961477i \(-0.588640\pi\)
−0.274885 + 0.961477i \(0.588640\pi\)
\(332\) −69.0358 −0.207939
\(333\) 0 0
\(334\) −195.579 −0.585565
\(335\) 0 0
\(336\) 0 0
\(337\) 353.500i 1.04896i 0.851423 + 0.524480i \(0.175740\pi\)
−0.851423 + 0.524480i \(0.824260\pi\)
\(338\) −37.1420 −0.109887
\(339\) 0 0
\(340\) 0 0
\(341\) 482.284i 1.41432i
\(342\) 0 0
\(343\) − 97.0000i − 0.282799i
\(344\) − 214.811i − 0.624452i
\(345\) 0 0
\(346\) 279.579 0.808031
\(347\) −123.725 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(348\) 0 0
\(349\) −67.1053 −0.192279 −0.0961395 0.995368i \(-0.530649\pi\)
−0.0961395 + 0.995368i \(0.530649\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 75.8947i − 0.215610i
\(353\) −665.759 −1.88600 −0.943002 0.332787i \(-0.892011\pi\)
−0.943002 + 0.332787i \(0.892011\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 294.007i 0.825864i
\(357\) 0 0
\(358\) 342.974i 0.958027i
\(359\) 434.927i 1.21149i 0.795657 + 0.605747i \(0.207126\pi\)
−0.795657 + 0.605747i \(0.792874\pi\)
\(360\) 0 0
\(361\) 313.631 0.868785
\(362\) −436.694 −1.20634
\(363\) 0 0
\(364\) 27.9473 0.0767784
\(365\) 0 0
\(366\) 0 0
\(367\) 286.684i 0.781155i 0.920570 + 0.390578i \(0.127725\pi\)
−0.920570 + 0.390578i \(0.872275\pi\)
\(368\) 14.2166 0.0386321
\(369\) 0 0
\(370\) 0 0
\(371\) − 89.7839i − 0.242005i
\(372\) 0 0
\(373\) − 3.86833i − 0.0103709i −0.999987 0.00518543i \(-0.998349\pi\)
0.999987 0.00518543i \(-0.00165058\pi\)
\(374\) − 160.997i − 0.430473i
\(375\) 0 0
\(376\) 195.895 0.520996
\(377\) −68.9059 −0.182774
\(378\) 0 0
\(379\) 114.184 0.301278 0.150639 0.988589i \(-0.451867\pi\)
0.150639 + 0.988589i \(0.451867\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 435.579i − 1.14026i
\(383\) −333.903 −0.871810 −0.435905 0.899993i \(-0.643572\pi\)
−0.435905 + 0.899993i \(0.643572\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 483.475i 1.25253i
\(387\) 0 0
\(388\) 199.737i 0.514785i
\(389\) − 682.507i − 1.75452i −0.480020 0.877258i \(-0.659370\pi\)
0.480020 0.877258i \(-0.340630\pi\)
\(390\) 0 0
\(391\) 30.1580 0.0771304
\(392\) 135.765 0.346338
\(393\) 0 0
\(394\) −181.631 −0.460993
\(395\) 0 0
\(396\) 0 0
\(397\) 258.211i 0.650405i 0.945644 + 0.325202i \(0.105432\pi\)
−0.945644 + 0.325202i \(0.894568\pi\)
\(398\) −251.767 −0.632581
\(399\) 0 0
\(400\) 0 0
\(401\) − 388.852i − 0.969707i −0.874595 0.484853i \(-0.838873\pi\)
0.874595 0.484853i \(-0.161127\pi\)
\(402\) 0 0
\(403\) − 502.316i − 1.24644i
\(404\) − 8.70873i − 0.0215563i
\(405\) 0 0
\(406\) 6.97367 0.0171765
\(407\) −187.476 −0.460630
\(408\) 0 0
\(409\) 302.315 0.739157 0.369579 0.929199i \(-0.379502\pi\)
0.369579 + 0.929199i \(0.379502\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 25.8947i − 0.0628511i
\(413\) −8.48528 −0.0205455
\(414\) 0 0
\(415\) 0 0
\(416\) 79.0470i 0.190017i
\(417\) 0 0
\(418\) − 492.816i − 1.17898i
\(419\) 264.197i 0.630542i 0.949002 + 0.315271i \(0.102095\pi\)
−0.949002 + 0.315271i \(0.897905\pi\)
\(420\) 0 0
\(421\) −131.369 −0.312040 −0.156020 0.987754i \(-0.549866\pi\)
−0.156020 + 0.987754i \(0.549866\pi\)
\(422\) 98.5853 0.233614
\(423\) 0 0
\(424\) 253.947 0.598932
\(425\) 0 0
\(426\) 0 0
\(427\) − 50.8947i − 0.119191i
\(428\) 207.554 0.484940
\(429\) 0 0
\(430\) 0 0
\(431\) 184.722i 0.428590i 0.976769 + 0.214295i \(0.0687455\pi\)
−0.976769 + 0.214295i \(0.931255\pi\)
\(432\) 0 0
\(433\) 793.263i 1.83202i 0.401161 + 0.916008i \(0.368607\pi\)
−0.401161 + 0.916008i \(0.631393\pi\)
\(434\) 50.8372i 0.117136i
\(435\) 0 0
\(436\) −199.895 −0.458474
\(437\) 92.3144 0.211246
\(438\) 0 0
\(439\) 598.000 1.36219 0.681093 0.732197i \(-0.261505\pi\)
0.681093 + 0.732197i \(0.261505\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 167.684i 0.379376i
\(443\) −740.750 −1.67212 −0.836061 0.548637i \(-0.815147\pi\)
−0.836061 + 0.548637i \(0.815147\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 186.155i 0.417387i
\(447\) 0 0
\(448\) − 8.00000i − 0.0178571i
\(449\) 881.799i 1.96392i 0.189096 + 0.981959i \(0.439444\pi\)
−0.189096 + 0.981959i \(0.560556\pi\)
\(450\) 0 0
\(451\) −389.210 −0.862993
\(452\) 411.201 0.909737
\(453\) 0 0
\(454\) 486.342 1.07124
\(455\) 0 0
\(456\) 0 0
\(457\) − 238.000i − 0.520788i −0.965502 0.260394i \(-0.916148\pi\)
0.965502 0.260394i \(-0.0838524\pi\)
\(458\) −584.889 −1.27705
\(459\) 0 0
\(460\) 0 0
\(461\) 463.490i 1.00540i 0.864461 + 0.502700i \(0.167660\pi\)
−0.864461 + 0.502700i \(0.832340\pi\)
\(462\) 0 0
\(463\) 178.737i 0.386040i 0.981195 + 0.193020i \(0.0618283\pi\)
−0.981195 + 0.193020i \(0.938172\pi\)
\(464\) 19.7245i 0.0425097i
\(465\) 0 0
\(466\) 218.263 0.468376
\(467\) −147.004 −0.314783 −0.157392 0.987536i \(-0.550308\pi\)
−0.157392 + 0.987536i \(0.550308\pi\)
\(468\) 0 0
\(469\) 71.0000 0.151386
\(470\) 0 0
\(471\) 0 0
\(472\) − 24.0000i − 0.0508475i
\(473\) −1018.94 −2.15421
\(474\) 0 0
\(475\) 0 0
\(476\) − 16.9706i − 0.0356524i
\(477\) 0 0
\(478\) − 67.2897i − 0.140773i
\(479\) − 472.999i − 0.987471i −0.869612 0.493735i \(-0.835631\pi\)
0.869612 0.493735i \(-0.164369\pi\)
\(480\) 0 0
\(481\) 195.263 0.405953
\(482\) −623.370 −1.29330
\(483\) 0 0
\(484\) −118.000 −0.243802
\(485\) 0 0
\(486\) 0 0
\(487\) − 502.105i − 1.03102i −0.856885 0.515508i \(-0.827603\pi\)
0.856885 0.515508i \(-0.172397\pi\)
\(488\) 143.952 0.294983
\(489\) 0 0
\(490\) 0 0
\(491\) 677.575i 1.37999i 0.723814 + 0.689995i \(0.242387\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(492\) 0 0
\(493\) 41.8420i 0.0848722i
\(494\) 513.285i 1.03904i
\(495\) 0 0
\(496\) −143.789 −0.289898
\(497\) −126.479 −0.254485
\(498\) 0 0
\(499\) 226.000 0.452906 0.226453 0.974022i \(-0.427287\pi\)
0.226453 + 0.974022i \(0.427287\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 484.710i 0.965558i
\(503\) 361.089 0.717872 0.358936 0.933362i \(-0.383140\pi\)
0.358936 + 0.933362i \(0.383140\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 67.4353i − 0.133271i
\(507\) 0 0
\(508\) − 68.0000i − 0.133858i
\(509\) − 103.070i − 0.202496i −0.994861 0.101248i \(-0.967716\pi\)
0.994861 0.101248i \(-0.0322836\pi\)
\(510\) 0 0
\(511\) −22.0263 −0.0431044
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) 437.526 0.851218
\(515\) 0 0
\(516\) 0 0
\(517\) − 929.210i − 1.79731i
\(518\) −19.7617 −0.0381501
\(519\) 0 0
\(520\) 0 0
\(521\) − 280.144i − 0.537705i −0.963181 0.268852i \(-0.913356\pi\)
0.963181 0.268852i \(-0.0866444\pi\)
\(522\) 0 0
\(523\) − 668.421i − 1.27805i −0.769186 0.639025i \(-0.779338\pi\)
0.769186 0.639025i \(-0.220662\pi\)
\(524\) − 198.139i − 0.378128i
\(525\) 0 0
\(526\) −507.895 −0.965579
\(527\) −305.023 −0.578792
\(528\) 0 0
\(529\) −516.368 −0.976121
\(530\) 0 0
\(531\) 0 0
\(532\) − 51.9473i − 0.0976454i
\(533\) 405.376 0.760555
\(534\) 0 0
\(535\) 0 0
\(536\) 200.818i 0.374661i
\(537\) 0 0
\(538\) 364.211i 0.676972i
\(539\) − 643.988i − 1.19478i
\(540\) 0 0
\(541\) −157.000 −0.290203 −0.145102 0.989417i \(-0.546351\pi\)
−0.145102 + 0.989417i \(0.546351\pi\)
\(542\) 251.320 0.463691
\(543\) 0 0
\(544\) 48.0000 0.0882353
\(545\) 0 0
\(546\) 0 0
\(547\) 396.947i 0.725681i 0.931851 + 0.362840i \(0.118193\pi\)
−0.931851 + 0.362840i \(0.881807\pi\)
\(548\) −105.731 −0.192939
\(549\) 0 0
\(550\) 0 0
\(551\) 128.079i 0.232449i
\(552\) 0 0
\(553\) 75.8683i 0.137194i
\(554\) − 440.713i − 0.795511i
\(555\) 0 0
\(556\) 351.631 0.632430
\(557\) −235.764 −0.423275 −0.211637 0.977348i \(-0.567880\pi\)
−0.211637 + 0.977348i \(0.567880\pi\)
\(558\) 0 0
\(559\) 1061.26 1.89850
\(560\) 0 0
\(561\) 0 0
\(562\) − 78.1580i − 0.139071i
\(563\) −202.046 −0.358874 −0.179437 0.983769i \(-0.557428\pi\)
−0.179437 + 0.983769i \(0.557428\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 220.245i − 0.389125i
\(567\) 0 0
\(568\) − 357.737i − 0.629818i
\(569\) 192.408i 0.338150i 0.985603 + 0.169075i \(0.0540781\pi\)
−0.985603 + 0.169075i \(0.945922\pi\)
\(570\) 0 0
\(571\) 206.553 0.361739 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(572\) 374.953 0.655512
\(573\) 0 0
\(574\) −41.0263 −0.0714744
\(575\) 0 0
\(576\) 0 0
\(577\) 263.658i 0.456946i 0.973550 + 0.228473i \(0.0733732\pi\)
−0.973550 + 0.228473i \(0.926627\pi\)
\(578\) −306.884 −0.530942
\(579\) 0 0
\(580\) 0 0
\(581\) 34.5179i 0.0594112i
\(582\) 0 0
\(583\) − 1204.58i − 2.06617i
\(584\) − 62.2999i − 0.106678i
\(585\) 0 0
\(586\) −478.868 −0.817181
\(587\) 293.654 0.500263 0.250131 0.968212i \(-0.419526\pi\)
0.250131 + 0.968212i \(0.419526\pi\)
\(588\) 0 0
\(589\) −933.684 −1.58520
\(590\) 0 0
\(591\) 0 0
\(592\) − 55.8947i − 0.0944167i
\(593\) 139.095 0.234562 0.117281 0.993099i \(-0.462582\pi\)
0.117281 + 0.993099i \(0.462582\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 477.483i − 0.801146i
\(597\) 0 0
\(598\) 70.2363i 0.117452i
\(599\) − 1069.98i − 1.78628i −0.449778 0.893140i \(-0.648497\pi\)
0.449778 0.893140i \(-0.351503\pi\)
\(600\) 0 0
\(601\) 75.9473 0.126368 0.0631841 0.998002i \(-0.479874\pi\)
0.0631841 + 0.998002i \(0.479874\pi\)
\(602\) −107.406 −0.178415
\(603\) 0 0
\(604\) −419.737 −0.694928
\(605\) 0 0
\(606\) 0 0
\(607\) − 383.053i − 0.631059i −0.948916 0.315529i \(-0.897818\pi\)
0.948916 0.315529i \(-0.102182\pi\)
\(608\) 146.929 0.241660
\(609\) 0 0
\(610\) 0 0
\(611\) 967.805i 1.58397i
\(612\) 0 0
\(613\) 817.658i 1.33386i 0.745119 + 0.666931i \(0.232393\pi\)
−0.745119 + 0.666931i \(0.767607\pi\)
\(614\) 324.822i 0.529026i
\(615\) 0 0
\(616\) −37.9473 −0.0616028
\(617\) 525.994 0.852502 0.426251 0.904605i \(-0.359834\pi\)
0.426251 + 0.904605i \(0.359834\pi\)
\(618\) 0 0
\(619\) 600.026 0.969348 0.484674 0.874695i \(-0.338938\pi\)
0.484674 + 0.874695i \(0.338938\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 144.316i 0.232019i
\(623\) 147.004 0.235961
\(624\) 0 0
\(625\) 0 0
\(626\) − 474.692i − 0.758293i
\(627\) 0 0
\(628\) 308.211i 0.490781i
\(629\) − 118.570i − 0.188506i
\(630\) 0 0
\(631\) 1019.34 1.61544 0.807719 0.589567i \(-0.200702\pi\)
0.807719 + 0.589567i \(0.200702\pi\)
\(632\) −214.588 −0.339538
\(633\) 0 0
\(634\) −609.421 −0.961231
\(635\) 0 0
\(636\) 0 0
\(637\) 670.736i 1.05296i
\(638\) 93.5615 0.146648
\(639\) 0 0
\(640\) 0 0
\(641\) 865.052i 1.34953i 0.738030 + 0.674767i \(0.235756\pi\)
−0.738030 + 0.674767i \(0.764244\pi\)
\(642\) 0 0
\(643\) 609.368i 0.947695i 0.880607 + 0.473848i \(0.157135\pi\)
−0.880607 + 0.473848i \(0.842865\pi\)
\(644\) − 7.10831i − 0.0110377i
\(645\) 0 0
\(646\) 311.684 0.482483
\(647\) −545.942 −0.843805 −0.421902 0.906641i \(-0.638638\pi\)
−0.421902 + 0.906641i \(0.638638\pi\)
\(648\) 0 0
\(649\) −113.842 −0.175411
\(650\) 0 0
\(651\) 0 0
\(652\) 29.8947i 0.0458507i
\(653\) 239.188 0.366291 0.183146 0.983086i \(-0.441372\pi\)
0.183146 + 0.983086i \(0.441372\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 116.040i − 0.176890i
\(657\) 0 0
\(658\) − 97.9473i − 0.148856i
\(659\) − 11.4627i − 0.0173940i −0.999962 0.00869702i \(-0.997232\pi\)
0.999962 0.00869702i \(-0.00276838\pi\)
\(660\) 0 0
\(661\) 210.473 0.318417 0.159208 0.987245i \(-0.449106\pi\)
0.159208 + 0.987245i \(0.449106\pi\)
\(662\) −257.350 −0.388746
\(663\) 0 0
\(664\) −97.6313 −0.147035
\(665\) 0 0
\(666\) 0 0
\(667\) 17.5260i 0.0262758i
\(668\) −276.590 −0.414057
\(669\) 0 0
\(670\) 0 0
\(671\) − 682.824i − 1.01762i
\(672\) 0 0
\(673\) − 316.184i − 0.469813i −0.972018 0.234907i \(-0.924522\pi\)
0.972018 0.234907i \(-0.0754784\pi\)
\(674\) 499.924i 0.741727i
\(675\) 0 0
\(676\) −52.5267 −0.0777022
\(677\) 77.9680 0.115167 0.0575834 0.998341i \(-0.481660\pi\)
0.0575834 + 0.998341i \(0.481660\pi\)
\(678\) 0 0
\(679\) 99.8683 0.147081
\(680\) 0 0
\(681\) 0 0
\(682\) 682.053i 1.00008i
\(683\) 718.401 1.05183 0.525916 0.850536i \(-0.323723\pi\)
0.525916 + 0.850536i \(0.323723\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 137.179i − 0.199969i
\(687\) 0 0
\(688\) − 303.789i − 0.441554i
\(689\) 1254.61i 1.82092i
\(690\) 0 0
\(691\) 930.578 1.34671 0.673356 0.739318i \(-0.264852\pi\)
0.673356 + 0.739318i \(0.264852\pi\)
\(692\) 395.384 0.571364
\(693\) 0 0
\(694\) −174.974 −0.252123
\(695\) 0 0
\(696\) 0 0
\(697\) − 246.158i − 0.353168i
\(698\) −94.9013 −0.135962
\(699\) 0 0
\(700\) 0 0
\(701\) − 24.1725i − 0.0344828i −0.999851 0.0172414i \(-0.994512\pi\)
0.999851 0.0172414i \(-0.00548839\pi\)
\(702\) 0 0
\(703\) − 362.947i − 0.516284i
\(704\) − 107.331i − 0.152459i
\(705\) 0 0
\(706\) −941.526 −1.33361
\(707\) −4.35437 −0.00615893
\(708\) 0 0
\(709\) −930.789 −1.31282 −0.656410 0.754404i \(-0.727926\pi\)
−0.656410 + 0.754404i \(0.727926\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 415.789i 0.583974i
\(713\) −127.762 −0.179190
\(714\) 0 0
\(715\) 0 0
\(716\) 485.038i 0.677427i
\(717\) 0 0
\(718\) 615.079i 0.856656i
\(719\) 403.963i 0.561840i 0.959731 + 0.280920i \(0.0906395\pi\)
−0.959731 + 0.280920i \(0.909360\pi\)
\(720\) 0 0
\(721\) −12.9473 −0.0179575
\(722\) 443.542 0.614324
\(723\) 0 0
\(724\) −617.579 −0.853009
\(725\) 0 0
\(726\) 0 0
\(727\) − 490.000i − 0.674003i −0.941504 0.337001i \(-0.890587\pi\)
0.941504 0.337001i \(-0.109413\pi\)
\(728\) 39.5235 0.0542905
\(729\) 0 0
\(730\) 0 0
\(731\) − 644.434i − 0.881579i
\(732\) 0 0
\(733\) 1012.16i 1.38084i 0.723407 + 0.690422i \(0.242575\pi\)
−0.723407 + 0.690422i \(0.757425\pi\)
\(734\) 405.432i 0.552360i
\(735\) 0 0
\(736\) 20.1053 0.0273170
\(737\) 952.565 1.29249
\(738\) 0 0
\(739\) −499.210 −0.675521 −0.337760 0.941232i \(-0.609669\pi\)
−0.337760 + 0.941232i \(0.609669\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 126.974i − 0.171124i
\(743\) 748.788 1.00779 0.503895 0.863765i \(-0.331900\pi\)
0.503895 + 0.863765i \(0.331900\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 5.47064i − 0.00733330i
\(747\) 0 0
\(748\) − 227.684i − 0.304390i
\(749\) − 103.777i − 0.138554i
\(750\) 0 0
\(751\) 777.710 1.03557 0.517783 0.855512i \(-0.326757\pi\)
0.517783 + 0.855512i \(0.326757\pi\)
\(752\) 277.037 0.368400
\(753\) 0 0
\(754\) −97.4477 −0.129241
\(755\) 0 0
\(756\) 0 0
\(757\) 1145.18i 1.51279i 0.654114 + 0.756396i \(0.273042\pi\)
−0.654114 + 0.756396i \(0.726958\pi\)
\(758\) 161.481 0.213036
\(759\) 0 0
\(760\) 0 0
\(761\) − 1042.93i − 1.37047i −0.728323 0.685234i \(-0.759700\pi\)
0.728323 0.685234i \(-0.240300\pi\)
\(762\) 0 0
\(763\) 99.9473i 0.130993i
\(764\) − 616.001i − 0.806284i
\(765\) 0 0
\(766\) −472.211 −0.616463
\(767\) 118.570 0.154590
\(768\) 0 0
\(769\) −991.105 −1.28882 −0.644412 0.764679i \(-0.722898\pi\)
−0.644412 + 0.764679i \(0.722898\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 683.737i 0.885669i
\(773\) 389.746 0.504199 0.252100 0.967701i \(-0.418879\pi\)
0.252100 + 0.967701i \(0.418879\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 282.470i 0.364008i
\(777\) 0 0
\(778\) − 965.210i − 1.24063i
\(779\) − 753.496i − 0.967261i
\(780\) 0 0
\(781\) −1696.89 −2.17272
\(782\) 42.6499 0.0545395
\(783\) 0 0
\(784\) 192.000 0.244898
\(785\) 0 0
\(786\) 0 0
\(787\) − 206.631i − 0.262556i −0.991346 0.131278i \(-0.958092\pi\)
0.991346 0.131278i \(-0.0419080\pi\)
\(788\) −256.865 −0.325971
\(789\) 0 0
\(790\) 0 0
\(791\) − 205.600i − 0.259925i
\(792\) 0 0
\(793\) 711.185i 0.896829i
\(794\) 365.165i 0.459906i
\(795\) 0 0
\(796\) −356.053 −0.447302
\(797\) −207.107 −0.259859 −0.129929 0.991523i \(-0.541475\pi\)
−0.129929 + 0.991523i \(0.541475\pi\)
\(798\) 0 0
\(799\) 587.684 0.735524
\(800\) 0 0
\(801\) 0 0
\(802\) − 549.920i − 0.685686i
\(803\) −295.514 −0.368013
\(804\) 0 0
\(805\) 0 0
\(806\) − 710.382i − 0.881367i
\(807\) 0 0
\(808\) − 12.3160i − 0.0152426i
\(809\) − 663.452i − 0.820089i −0.912065 0.410045i \(-0.865513\pi\)
0.912065 0.410045i \(-0.134487\pi\)
\(810\) 0 0
\(811\) −394.683 −0.486663 −0.243331 0.969943i \(-0.578240\pi\)
−0.243331 + 0.969943i \(0.578240\pi\)
\(812\) 9.86225 0.0121456
\(813\) 0 0
\(814\) −265.132 −0.325715
\(815\) 0 0
\(816\) 0 0
\(817\) − 1972.63i − 2.41448i
\(818\) 427.538 0.522663
\(819\) 0 0
\(820\) 0 0
\(821\) − 1156.53i − 1.40868i −0.709861 0.704342i \(-0.751242\pi\)
0.709861 0.704342i \(-0.248758\pi\)
\(822\) 0 0
\(823\) − 930.789i − 1.13097i −0.824758 0.565486i \(-0.808689\pi\)
0.824758 0.565486i \(-0.191311\pi\)
\(824\) − 36.6206i − 0.0444425i
\(825\) 0 0
\(826\) −12.0000 −0.0145278
\(827\) −1012.32 −1.22408 −0.612041 0.790826i \(-0.709651\pi\)
−0.612041 + 0.790826i \(0.709651\pi\)
\(828\) 0 0
\(829\) 514.105 0.620150 0.310075 0.950712i \(-0.399646\pi\)
0.310075 + 0.950712i \(0.399646\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 111.789i 0.134362i
\(833\) 407.294 0.488948
\(834\) 0 0
\(835\) 0 0
\(836\) − 696.947i − 0.833668i
\(837\) 0 0
\(838\) 373.631i 0.445861i
\(839\) 549.013i 0.654366i 0.944961 + 0.327183i \(0.106099\pi\)
−0.944961 + 0.327183i \(0.893901\pi\)
\(840\) 0 0
\(841\) 816.684 0.971087
\(842\) −185.783 −0.220645
\(843\) 0 0
\(844\) 139.421 0.165190
\(845\) 0 0
\(846\) 0 0
\(847\) 59.0000i 0.0696576i
\(848\) 359.136 0.423509
\(849\) 0 0
\(850\) 0 0
\(851\) − 49.6646i − 0.0583603i
\(852\) 0 0
\(853\) 477.131i 0.559356i 0.960094 + 0.279678i \(0.0902278\pi\)
−0.960094 + 0.279678i \(0.909772\pi\)
\(854\) − 71.9759i − 0.0842809i
\(855\) 0 0
\(856\) 293.526 0.342904
\(857\) 518.402 0.604904 0.302452 0.953165i \(-0.402195\pi\)
0.302452 + 0.953165i \(0.402195\pi\)
\(858\) 0 0
\(859\) 224.448 0.261289 0.130645 0.991429i \(-0.458295\pi\)
0.130645 + 0.991429i \(0.458295\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 261.237i 0.303059i
\(863\) −765.759 −0.887322 −0.443661 0.896195i \(-0.646321\pi\)
−0.443661 + 0.896195i \(0.646321\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1121.84i 1.29543i
\(867\) 0 0
\(868\) 71.8947i 0.0828280i
\(869\) 1017.88i 1.17132i
\(870\) 0 0
\(871\) −992.130 −1.13907
\(872\) −282.694 −0.324190
\(873\) 0 0
\(874\) 130.552 0.149373
\(875\) 0 0
\(876\) 0 0
\(877\) − 844.237i − 0.962642i −0.876544 0.481321i \(-0.840157\pi\)
0.876544 0.481321i \(-0.159843\pi\)
\(878\) 845.700 0.963212
\(879\) 0 0
\(880\) 0 0
\(881\) − 1528.41i − 1.73486i −0.497560 0.867429i \(-0.665771\pi\)
0.497560 0.867429i \(-0.334229\pi\)
\(882\) 0 0
\(883\) 795.631i 0.901054i 0.892763 + 0.450527i \(0.148764\pi\)
−0.892763 + 0.450527i \(0.851236\pi\)
\(884\) 237.141i 0.268259i
\(885\) 0 0
\(886\) −1047.58 −1.18237
\(887\) −249.051 −0.280779 −0.140389 0.990096i \(-0.544835\pi\)
−0.140389 + 0.990096i \(0.544835\pi\)
\(888\) 0 0
\(889\) −34.0000 −0.0382452
\(890\) 0 0
\(891\) 0 0
\(892\) 263.263i 0.295137i
\(893\) 1798.92 2.01446
\(894\) 0 0
\(895\) 0 0
\(896\) − 11.3137i − 0.0126269i
\(897\) 0 0
\(898\) 1247.05i 1.38870i
\(899\) − 177.261i − 0.197176i
\(900\) 0 0
\(901\) 761.842 0.845552
\(902\) −550.426 −0.610228
\(903\) 0 0
\(904\) 581.526 0.643281
\(905\) 0 0
\(906\) 0 0
\(907\) − 951.631i − 1.04921i −0.851347 0.524603i \(-0.824214\pi\)
0.851347 0.524603i \(-0.175786\pi\)
\(908\) 687.791 0.757479
\(909\) 0 0
\(910\) 0 0
\(911\) 357.535i 0.392465i 0.980557 + 0.196232i \(0.0628707\pi\)
−0.980557 + 0.196232i \(0.937129\pi\)
\(912\) 0 0
\(913\) 463.106i 0.507236i
\(914\) − 336.583i − 0.368253i
\(915\) 0 0
\(916\) −827.157 −0.903010
\(917\) −99.0694 −0.108036
\(918\) 0 0
\(919\) −313.368 −0.340988 −0.170494 0.985359i \(-0.554536\pi\)
−0.170494 + 0.985359i \(0.554536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 655.473i 0.710926i
\(923\) 1767.38 1.91482
\(924\) 0 0
\(925\) 0 0
\(926\) 252.772i 0.272972i
\(927\) 0 0
\(928\) 27.8947i 0.0300589i
\(929\) 709.693i 0.763932i 0.924176 + 0.381966i \(0.124753\pi\)
−0.924176 + 0.381966i \(0.875247\pi\)
\(930\) 0 0
\(931\) 1246.74 1.33914
\(932\) 308.671 0.331192
\(933\) 0 0
\(934\) −207.895 −0.222585
\(935\) 0 0
\(936\) 0 0
\(937\) − 1351.87i − 1.44276i −0.692539 0.721380i \(-0.743508\pi\)
0.692539 0.721380i \(-0.256492\pi\)
\(938\) 100.409 0.107046
\(939\) 0 0
\(940\) 0 0
\(941\) 16.8770i 0.0179351i 0.999960 + 0.00896757i \(0.00285450\pi\)
−0.999960 + 0.00896757i \(0.997145\pi\)
\(942\) 0 0
\(943\) − 103.106i − 0.109338i
\(944\) − 33.9411i − 0.0359546i
\(945\) 0 0
\(946\) −1441.00 −1.52326
\(947\) 2.08359 0.00220020 0.00110010 0.999999i \(-0.499650\pi\)
0.00110010 + 0.999999i \(0.499650\pi\)
\(948\) 0 0
\(949\) 307.789 0.324329
\(950\) 0 0
\(951\) 0 0
\(952\) − 24.0000i − 0.0252101i
\(953\) −1427.87 −1.49829 −0.749145 0.662406i \(-0.769535\pi\)
−0.749145 + 0.662406i \(0.769535\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 95.1620i − 0.0995418i
\(957\) 0 0
\(958\) − 668.921i − 0.698247i
\(959\) 52.8654i 0.0551256i
\(960\) 0 0
\(961\) 331.211 0.344652
\(962\) 276.144 0.287052
\(963\) 0 0
\(964\) −881.579 −0.914501
\(965\) 0 0
\(966\) 0 0
\(967\) 1097.84i 1.13531i 0.823268 + 0.567653i \(0.192149\pi\)
−0.823268 + 0.567653i \(0.807851\pi\)
\(968\) −166.877 −0.172394
\(969\) 0 0
\(970\) 0 0
\(971\) − 1709.90i − 1.76096i −0.474080 0.880482i \(-0.657219\pi\)
0.474080 0.880482i \(-0.342781\pi\)
\(972\) 0 0
\(973\) − 175.816i − 0.180694i
\(974\) − 710.083i − 0.729038i
\(975\) 0 0
\(976\) 203.579 0.208585
\(977\) 231.056 0.236496 0.118248 0.992984i \(-0.462272\pi\)
0.118248 + 0.992984i \(0.462272\pi\)
\(978\) 0 0
\(979\) 1972.26 2.01457
\(980\) 0 0
\(981\) 0 0
\(982\) 958.236i 0.975801i
\(983\) 1362.35 1.38591 0.692957 0.720979i \(-0.256308\pi\)
0.692957 + 0.720979i \(0.256308\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 59.1735i 0.0600137i
\(987\) 0 0
\(988\) 725.895i 0.734711i
\(989\) − 269.929i − 0.272931i
\(990\) 0 0
\(991\) 1168.55 1.17916 0.589582 0.807708i \(-0.299292\pi\)
0.589582 + 0.807708i \(0.299292\pi\)
\(992\) −203.349 −0.204989
\(993\) 0 0
\(994\) −178.868 −0.179948
\(995\) 0 0
\(996\) 0 0
\(997\) − 291.526i − 0.292403i −0.989255 0.146202i \(-0.953295\pi\)
0.989255 0.146202i \(-0.0467048\pi\)
\(998\) 319.612 0.320253
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.b.h.1349.5 8
3.2 odd 2 inner 1350.3.b.h.1349.2 8
5.2 odd 4 1350.3.d.m.701.3 4
5.3 odd 4 270.3.d.a.161.1 4
5.4 even 2 inner 1350.3.b.h.1349.3 8
15.2 even 4 1350.3.d.m.701.2 4
15.8 even 4 270.3.d.a.161.4 yes 4
15.14 odd 2 inner 1350.3.b.h.1349.8 8
20.3 even 4 2160.3.l.f.161.1 4
45.13 odd 12 810.3.h.b.431.3 8
45.23 even 12 810.3.h.b.431.2 8
45.38 even 12 810.3.h.b.701.3 8
45.43 odd 12 810.3.h.b.701.2 8
60.23 odd 4 2160.3.l.f.161.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.d.a.161.1 4 5.3 odd 4
270.3.d.a.161.4 yes 4 15.8 even 4
810.3.h.b.431.2 8 45.23 even 12
810.3.h.b.431.3 8 45.13 odd 12
810.3.h.b.701.2 8 45.43 odd 12
810.3.h.b.701.3 8 45.38 even 12
1350.3.b.h.1349.2 8 3.2 odd 2 inner
1350.3.b.h.1349.3 8 5.4 even 2 inner
1350.3.b.h.1349.5 8 1.1 even 1 trivial
1350.3.b.h.1349.8 8 15.14 odd 2 inner
1350.3.d.m.701.2 4 15.2 even 4
1350.3.d.m.701.3 4 5.2 odd 4
2160.3.l.f.161.1 4 20.3 even 4
2160.3.l.f.161.3 4 60.23 odd 4