Properties

Label 270.3.d.a.161.1
Level $270$
Weight $3$
Character 270.161
Analytic conductor $7.357$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(161,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 270.161
Dual form 270.3.d.a.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -2.23607i q^{5} -1.00000 q^{7} +2.82843i q^{8} -3.16228 q^{10} -13.4164i q^{11} -13.9737 q^{13} +1.41421i q^{14} +4.00000 q^{16} -8.48528i q^{17} -25.9737 q^{19} +4.47214i q^{20} -18.9737 q^{22} +3.55415i q^{23} -5.00000 q^{25} +19.7617i q^{26} +2.00000 q^{28} -4.93113i q^{29} -35.9473 q^{31} -5.65685i q^{32} -12.0000 q^{34} +2.23607i q^{35} -13.9737 q^{37} +36.7323i q^{38} +6.32456 q^{40} -29.0100i q^{41} +75.9473 q^{43} +26.8328i q^{44} +5.02633 q^{46} -69.2592i q^{47} -48.0000 q^{49} +7.07107i q^{50} +27.9473 q^{52} +89.7839i q^{53} -30.0000 q^{55} -2.82843i q^{56} -6.97367 q^{58} +8.48528i q^{59} +50.8947 q^{61} +50.8372i q^{62} -8.00000 q^{64} +31.2461i q^{65} +71.0000 q^{67} +16.9706i q^{68} +3.16228 q^{70} -126.479i q^{71} +22.0263 q^{73} +19.7617i q^{74} +51.9473 q^{76} +13.4164i q^{77} +75.8683 q^{79} -8.94427i q^{80} -41.0263 q^{82} -34.5179i q^{83} -18.9737 q^{85} -107.406i q^{86} +37.9473 q^{88} -147.004i q^{89} +13.9737 q^{91} -7.10831i q^{92} -97.9473 q^{94} +58.0789i q^{95} +99.8683 q^{97} +67.8823i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 4 q^{7} + 20 q^{13} + 16 q^{16} - 28 q^{19} - 20 q^{25} + 8 q^{28} + 8 q^{31} - 48 q^{34} + 20 q^{37} + 152 q^{43} + 96 q^{46} - 192 q^{49} - 40 q^{52} - 120 q^{55} + 48 q^{58} - 100 q^{61}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 2.23607i − 0.447214i
\(6\) 0 0
\(7\) −1.00000 −0.142857 −0.0714286 0.997446i \(-0.522756\pi\)
−0.0714286 + 0.997446i \(0.522756\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −3.16228 −0.316228
\(11\) − 13.4164i − 1.21967i −0.792527 0.609837i \(-0.791235\pi\)
0.792527 0.609837i \(-0.208765\pi\)
\(12\) 0 0
\(13\) −13.9737 −1.07490 −0.537449 0.843296i \(-0.680612\pi\)
−0.537449 + 0.843296i \(0.680612\pi\)
\(14\) 1.41421i 0.101015i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 8.48528i − 0.499134i −0.968358 0.249567i \(-0.919712\pi\)
0.968358 0.249567i \(-0.0802883\pi\)
\(18\) 0 0
\(19\) −25.9737 −1.36704 −0.683518 0.729934i \(-0.739551\pi\)
−0.683518 + 0.729934i \(0.739551\pi\)
\(20\) 4.47214i 0.223607i
\(21\) 0 0
\(22\) −18.9737 −0.862439
\(23\) 3.55415i 0.154528i 0.997011 + 0.0772642i \(0.0246185\pi\)
−0.997011 + 0.0772642i \(0.975381\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 19.7617i 0.760067i
\(27\) 0 0
\(28\) 2.00000 0.0714286
\(29\) − 4.93113i − 0.170039i −0.996379 0.0850194i \(-0.972905\pi\)
0.996379 0.0850194i \(-0.0270952\pi\)
\(30\) 0 0
\(31\) −35.9473 −1.15959 −0.579796 0.814762i \(-0.696868\pi\)
−0.579796 + 0.814762i \(0.696868\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −12.0000 −0.352941
\(35\) 2.23607i 0.0638877i
\(36\) 0 0
\(37\) −13.9737 −0.377667 −0.188833 0.982009i \(-0.560471\pi\)
−0.188833 + 0.982009i \(0.560471\pi\)
\(38\) 36.7323i 0.966640i
\(39\) 0 0
\(40\) 6.32456 0.158114
\(41\) − 29.0100i − 0.707561i −0.935328 0.353780i \(-0.884896\pi\)
0.935328 0.353780i \(-0.115104\pi\)
\(42\) 0 0
\(43\) 75.9473 1.76622 0.883109 0.469169i \(-0.155446\pi\)
0.883109 + 0.469169i \(0.155446\pi\)
\(44\) 26.8328i 0.609837i
\(45\) 0 0
\(46\) 5.02633 0.109268
\(47\) − 69.2592i − 1.47360i −0.676110 0.736800i \(-0.736336\pi\)
0.676110 0.736800i \(-0.263664\pi\)
\(48\) 0 0
\(49\) −48.0000 −0.979592
\(50\) 7.07107i 0.141421i
\(51\) 0 0
\(52\) 27.9473 0.537449
\(53\) 89.7839i 1.69404i 0.531564 + 0.847018i \(0.321605\pi\)
−0.531564 + 0.847018i \(0.678395\pi\)
\(54\) 0 0
\(55\) −30.0000 −0.545455
\(56\) − 2.82843i − 0.0505076i
\(57\) 0 0
\(58\) −6.97367 −0.120236
\(59\) 8.48528i 0.143818i 0.997411 + 0.0719092i \(0.0229092\pi\)
−0.997411 + 0.0719092i \(0.977091\pi\)
\(60\) 0 0
\(61\) 50.8947 0.834339 0.417169 0.908829i \(-0.363022\pi\)
0.417169 + 0.908829i \(0.363022\pi\)
\(62\) 50.8372i 0.819955i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 31.2461i 0.480709i
\(66\) 0 0
\(67\) 71.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(68\) 16.9706i 0.249567i
\(69\) 0 0
\(70\) 3.16228 0.0451754
\(71\) − 126.479i − 1.78139i −0.454597 0.890697i \(-0.650217\pi\)
0.454597 0.890697i \(-0.349783\pi\)
\(72\) 0 0
\(73\) 22.0263 0.301731 0.150865 0.988554i \(-0.451794\pi\)
0.150865 + 0.988554i \(0.451794\pi\)
\(74\) 19.7617i 0.267051i
\(75\) 0 0
\(76\) 51.9473 0.683518
\(77\) 13.4164i 0.174239i
\(78\) 0 0
\(79\) 75.8683 0.960359 0.480179 0.877170i \(-0.340572\pi\)
0.480179 + 0.877170i \(0.340572\pi\)
\(80\) − 8.94427i − 0.111803i
\(81\) 0 0
\(82\) −41.0263 −0.500321
\(83\) − 34.5179i − 0.415878i −0.978142 0.207939i \(-0.933324\pi\)
0.978142 0.207939i \(-0.0666756\pi\)
\(84\) 0 0
\(85\) −18.9737 −0.223220
\(86\) − 107.406i − 1.24890i
\(87\) 0 0
\(88\) 37.9473 0.431220
\(89\) − 147.004i − 1.65173i −0.563870 0.825864i \(-0.690688\pi\)
0.563870 0.825864i \(-0.309312\pi\)
\(90\) 0 0
\(91\) 13.9737 0.153557
\(92\) − 7.10831i − 0.0772642i
\(93\) 0 0
\(94\) −97.9473 −1.04199
\(95\) 58.0789i 0.611357i
\(96\) 0 0
\(97\) 99.8683 1.02957 0.514785 0.857319i \(-0.327872\pi\)
0.514785 + 0.857319i \(0.327872\pi\)
\(98\) 67.8823i 0.692676i
\(99\) 0 0
\(100\) 10.0000 0.100000
\(101\) − 4.35437i − 0.0431125i −0.999768 0.0215563i \(-0.993138\pi\)
0.999768 0.0215563i \(-0.00686211\pi\)
\(102\) 0 0
\(103\) 12.9473 0.125702 0.0628511 0.998023i \(-0.479981\pi\)
0.0628511 + 0.998023i \(0.479981\pi\)
\(104\) − 39.5235i − 0.380034i
\(105\) 0 0
\(106\) 126.974 1.19786
\(107\) − 103.777i − 0.969880i −0.874548 0.484940i \(-0.838842\pi\)
0.874548 0.484940i \(-0.161158\pi\)
\(108\) 0 0
\(109\) 99.9473 0.916948 0.458474 0.888708i \(-0.348396\pi\)
0.458474 + 0.888708i \(0.348396\pi\)
\(110\) 42.4264i 0.385695i
\(111\) 0 0
\(112\) −4.00000 −0.0357143
\(113\) 205.600i 1.81947i 0.415186 + 0.909737i \(0.363717\pi\)
−0.415186 + 0.909737i \(0.636283\pi\)
\(114\) 0 0
\(115\) 7.94733 0.0691072
\(116\) 9.86225i 0.0850194i
\(117\) 0 0
\(118\) 12.0000 0.101695
\(119\) 8.48528i 0.0713049i
\(120\) 0 0
\(121\) −59.0000 −0.487603
\(122\) − 71.9759i − 0.589967i
\(123\) 0 0
\(124\) 71.8947 0.579796
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −34.0000 −0.267717 −0.133858 0.991000i \(-0.542737\pi\)
−0.133858 + 0.991000i \(0.542737\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 44.1886 0.339912
\(131\) − 99.0694i − 0.756255i −0.925753 0.378128i \(-0.876568\pi\)
0.925753 0.378128i \(-0.123432\pi\)
\(132\) 0 0
\(133\) 25.9737 0.195291
\(134\) − 100.409i − 0.749322i
\(135\) 0 0
\(136\) 24.0000 0.176471
\(137\) 52.8654i 0.385879i 0.981211 + 0.192939i \(0.0618021\pi\)
−0.981211 + 0.192939i \(0.938198\pi\)
\(138\) 0 0
\(139\) −175.816 −1.26486 −0.632430 0.774617i \(-0.717943\pi\)
−0.632430 + 0.774617i \(0.717943\pi\)
\(140\) − 4.47214i − 0.0319438i
\(141\) 0 0
\(142\) −178.868 −1.25964
\(143\) 187.476i 1.31102i
\(144\) 0 0
\(145\) −11.0263 −0.0760437
\(146\) − 31.1499i − 0.213356i
\(147\) 0 0
\(148\) 27.9473 0.188833
\(149\) 238.741i 1.60229i 0.598469 + 0.801146i \(0.295776\pi\)
−0.598469 + 0.801146i \(0.704224\pi\)
\(150\) 0 0
\(151\) −209.868 −1.38986 −0.694928 0.719079i \(-0.744564\pi\)
−0.694928 + 0.719079i \(0.744564\pi\)
\(152\) − 73.4646i − 0.483320i
\(153\) 0 0
\(154\) 18.9737 0.123206
\(155\) 80.3807i 0.518585i
\(156\) 0 0
\(157\) 154.105 0.981563 0.490781 0.871283i \(-0.336711\pi\)
0.490781 + 0.871283i \(0.336711\pi\)
\(158\) − 107.294i − 0.679076i
\(159\) 0 0
\(160\) −12.6491 −0.0790569
\(161\) − 3.55415i − 0.0220755i
\(162\) 0 0
\(163\) −14.9473 −0.0917014 −0.0458507 0.998948i \(-0.514600\pi\)
−0.0458507 + 0.998948i \(0.514600\pi\)
\(164\) 58.0200i 0.353780i
\(165\) 0 0
\(166\) −48.8157 −0.294070
\(167\) 138.295i 0.828114i 0.910251 + 0.414057i \(0.135889\pi\)
−0.910251 + 0.414057i \(0.864111\pi\)
\(168\) 0 0
\(169\) 26.2633 0.155404
\(170\) 26.8328i 0.157840i
\(171\) 0 0
\(172\) −151.895 −0.883109
\(173\) 197.692i 1.14273i 0.820697 + 0.571364i \(0.193586\pi\)
−0.820697 + 0.571364i \(0.806414\pi\)
\(174\) 0 0
\(175\) 5.00000 0.0285714
\(176\) − 53.6656i − 0.304918i
\(177\) 0 0
\(178\) −207.895 −1.16795
\(179\) − 242.519i − 1.35485i −0.735590 0.677427i \(-0.763095\pi\)
0.735590 0.677427i \(-0.236905\pi\)
\(180\) 0 0
\(181\) −308.789 −1.70602 −0.853009 0.521896i \(-0.825225\pi\)
−0.853009 + 0.521896i \(0.825225\pi\)
\(182\) − 19.7617i − 0.108581i
\(183\) 0 0
\(184\) −10.0527 −0.0546341
\(185\) 31.2461i 0.168898i
\(186\) 0 0
\(187\) −113.842 −0.608781
\(188\) 138.518i 0.736800i
\(189\) 0 0
\(190\) 82.1359 0.432294
\(191\) − 308.001i − 1.61257i −0.591528 0.806284i \(-0.701475\pi\)
0.591528 0.806284i \(-0.298525\pi\)
\(192\) 0 0
\(193\) −341.868 −1.77134 −0.885669 0.464317i \(-0.846300\pi\)
−0.885669 + 0.464317i \(0.846300\pi\)
\(194\) − 141.235i − 0.728016i
\(195\) 0 0
\(196\) 96.0000 0.489796
\(197\) 128.433i 0.651943i 0.945380 + 0.325971i \(0.105691\pi\)
−0.945380 + 0.325971i \(0.894309\pi\)
\(198\) 0 0
\(199\) 178.026 0.894605 0.447302 0.894383i \(-0.352385\pi\)
0.447302 + 0.894383i \(0.352385\pi\)
\(200\) − 14.1421i − 0.0707107i
\(201\) 0 0
\(202\) −6.15800 −0.0304852
\(203\) 4.93113i 0.0242913i
\(204\) 0 0
\(205\) −64.8683 −0.316431
\(206\) − 18.3103i − 0.0888849i
\(207\) 0 0
\(208\) −55.8947 −0.268724
\(209\) 348.473i 1.66734i
\(210\) 0 0
\(211\) 69.7103 0.330381 0.165190 0.986262i \(-0.447176\pi\)
0.165190 + 0.986262i \(0.447176\pi\)
\(212\) − 179.568i − 0.847018i
\(213\) 0 0
\(214\) −146.763 −0.685808
\(215\) − 169.823i − 0.789876i
\(216\) 0 0
\(217\) 35.9473 0.165656
\(218\) − 141.347i − 0.648380i
\(219\) 0 0
\(220\) 60.0000 0.272727
\(221\) 118.570i 0.536518i
\(222\) 0 0
\(223\) −131.631 −0.590275 −0.295137 0.955455i \(-0.595365\pi\)
−0.295137 + 0.955455i \(0.595365\pi\)
\(224\) 5.65685i 0.0252538i
\(225\) 0 0
\(226\) 290.763 1.28656
\(227\) − 343.895i − 1.51496i −0.652859 0.757479i \(-0.726431\pi\)
0.652859 0.757479i \(-0.273569\pi\)
\(228\) 0 0
\(229\) 413.579 1.80602 0.903010 0.429619i \(-0.141352\pi\)
0.903010 + 0.429619i \(0.141352\pi\)
\(230\) − 11.2392i − 0.0488662i
\(231\) 0 0
\(232\) 13.9473 0.0601178
\(233\) 154.335i 0.662384i 0.943563 + 0.331192i \(0.107451\pi\)
−0.943563 + 0.331192i \(0.892549\pi\)
\(234\) 0 0
\(235\) −154.868 −0.659014
\(236\) − 16.9706i − 0.0719092i
\(237\) 0 0
\(238\) 12.0000 0.0504202
\(239\) 47.5810i 0.199084i 0.995033 + 0.0995418i \(0.0317377\pi\)
−0.995033 + 0.0995418i \(0.968262\pi\)
\(240\) 0 0
\(241\) −440.789 −1.82900 −0.914501 0.404584i \(-0.867416\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(242\) 83.4386i 0.344788i
\(243\) 0 0
\(244\) −101.789 −0.417169
\(245\) 107.331i 0.438087i
\(246\) 0 0
\(247\) 362.947 1.46942
\(248\) − 101.674i − 0.409977i
\(249\) 0 0
\(250\) 15.8114 0.0632456
\(251\) 342.742i 1.36551i 0.730649 + 0.682753i \(0.239217\pi\)
−0.730649 + 0.682753i \(0.760783\pi\)
\(252\) 0 0
\(253\) 47.6840 0.188474
\(254\) 48.0833i 0.189304i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 309.378i − 1.20380i −0.798570 0.601902i \(-0.794410\pi\)
0.798570 0.601902i \(-0.205590\pi\)
\(258\) 0 0
\(259\) 13.9737 0.0539524
\(260\) − 62.4921i − 0.240354i
\(261\) 0 0
\(262\) −140.105 −0.534753
\(263\) − 359.136i − 1.36554i −0.730636 0.682768i \(-0.760776\pi\)
0.730636 0.682768i \(-0.239224\pi\)
\(264\) 0 0
\(265\) 200.763 0.757596
\(266\) − 36.7323i − 0.138091i
\(267\) 0 0
\(268\) −142.000 −0.529851
\(269\) − 257.536i − 0.957382i −0.877983 0.478691i \(-0.841111\pi\)
0.877983 0.478691i \(-0.158889\pi\)
\(270\) 0 0
\(271\) 177.710 0.655758 0.327879 0.944720i \(-0.393666\pi\)
0.327879 + 0.944720i \(0.393666\pi\)
\(272\) − 33.9411i − 0.124784i
\(273\) 0 0
\(274\) 74.7630 0.272858
\(275\) 67.0820i 0.243935i
\(276\) 0 0
\(277\) −311.631 −1.12502 −0.562511 0.826790i \(-0.690165\pi\)
−0.562511 + 0.826790i \(0.690165\pi\)
\(278\) 248.641i 0.894392i
\(279\) 0 0
\(280\) −6.32456 −0.0225877
\(281\) − 55.2661i − 0.196676i −0.995153 0.0983382i \(-0.968647\pi\)
0.995153 0.0983382i \(-0.0313527\pi\)
\(282\) 0 0
\(283\) 155.737 0.550306 0.275153 0.961400i \(-0.411271\pi\)
0.275153 + 0.961400i \(0.411271\pi\)
\(284\) 252.958i 0.890697i
\(285\) 0 0
\(286\) 265.132 0.927034
\(287\) 29.0100i 0.101080i
\(288\) 0 0
\(289\) 217.000 0.750865
\(290\) 15.5936i 0.0537710i
\(291\) 0 0
\(292\) −44.0527 −0.150865
\(293\) − 338.611i − 1.15567i −0.816154 0.577835i \(-0.803898\pi\)
0.816154 0.577835i \(-0.196102\pi\)
\(294\) 0 0
\(295\) 18.9737 0.0643175
\(296\) − 39.5235i − 0.133525i
\(297\) 0 0
\(298\) 337.631 1.13299
\(299\) − 49.6646i − 0.166102i
\(300\) 0 0
\(301\) −75.9473 −0.252317
\(302\) 296.799i 0.982777i
\(303\) 0 0
\(304\) −103.895 −0.341759
\(305\) − 113.804i − 0.373128i
\(306\) 0 0
\(307\) 229.684 0.748156 0.374078 0.927397i \(-0.377959\pi\)
0.374078 + 0.927397i \(0.377959\pi\)
\(308\) − 26.8328i − 0.0871195i
\(309\) 0 0
\(310\) 113.675 0.366695
\(311\) 102.047i 0.328125i 0.986450 + 0.164062i \(0.0524599\pi\)
−0.986450 + 0.164062i \(0.947540\pi\)
\(312\) 0 0
\(313\) 335.658 1.07239 0.536194 0.844095i \(-0.319861\pi\)
0.536194 + 0.844095i \(0.319861\pi\)
\(314\) − 217.938i − 0.694070i
\(315\) 0 0
\(316\) −151.737 −0.480179
\(317\) 430.925i 1.35939i 0.733497 + 0.679693i \(0.237887\pi\)
−0.733497 + 0.679693i \(0.762113\pi\)
\(318\) 0 0
\(319\) −66.1580 −0.207392
\(320\) 17.8885i 0.0559017i
\(321\) 0 0
\(322\) −5.02633 −0.0156097
\(323\) 220.394i 0.682334i
\(324\) 0 0
\(325\) 69.8683 0.214979
\(326\) 21.1387i 0.0648427i
\(327\) 0 0
\(328\) 82.0527 0.250161
\(329\) 69.2592i 0.210514i
\(330\) 0 0
\(331\) −181.974 −0.549769 −0.274885 0.961477i \(-0.588640\pi\)
−0.274885 + 0.961477i \(0.588640\pi\)
\(332\) 69.0358i 0.207939i
\(333\) 0 0
\(334\) 195.579 0.585565
\(335\) − 158.761i − 0.473913i
\(336\) 0 0
\(337\) 353.500 1.04896 0.524480 0.851423i \(-0.324260\pi\)
0.524480 + 0.851423i \(0.324260\pi\)
\(338\) − 37.1420i − 0.109887i
\(339\) 0 0
\(340\) 37.9473 0.111610
\(341\) 482.284i 1.41432i
\(342\) 0 0
\(343\) 97.0000 0.282799
\(344\) 214.811i 0.624452i
\(345\) 0 0
\(346\) 279.579 0.808031
\(347\) 123.725i 0.356556i 0.983980 + 0.178278i \(0.0570527\pi\)
−0.983980 + 0.178278i \(0.942947\pi\)
\(348\) 0 0
\(349\) 67.1053 0.192279 0.0961395 0.995368i \(-0.469351\pi\)
0.0961395 + 0.995368i \(0.469351\pi\)
\(350\) − 7.07107i − 0.0202031i
\(351\) 0 0
\(352\) −75.8947 −0.215610
\(353\) − 665.759i − 1.88600i −0.332787 0.943002i \(-0.607989\pi\)
0.332787 0.943002i \(-0.392011\pi\)
\(354\) 0 0
\(355\) −282.816 −0.796664
\(356\) 294.007i 0.825864i
\(357\) 0 0
\(358\) −342.974 −0.958027
\(359\) − 434.927i − 1.21149i −0.795657 0.605747i \(-0.792874\pi\)
0.795657 0.605747i \(-0.207126\pi\)
\(360\) 0 0
\(361\) 313.631 0.868785
\(362\) 436.694i 1.20634i
\(363\) 0 0
\(364\) −27.9473 −0.0767784
\(365\) − 49.2524i − 0.134938i
\(366\) 0 0
\(367\) 286.684 0.781155 0.390578 0.920570i \(-0.372275\pi\)
0.390578 + 0.920570i \(0.372275\pi\)
\(368\) 14.2166i 0.0386321i
\(369\) 0 0
\(370\) 44.1886 0.119429
\(371\) − 89.7839i − 0.242005i
\(372\) 0 0
\(373\) 3.86833 0.0103709 0.00518543 0.999987i \(-0.498349\pi\)
0.00518543 + 0.999987i \(0.498349\pi\)
\(374\) 160.997i 0.430473i
\(375\) 0 0
\(376\) 195.895 0.520996
\(377\) 68.9059i 0.182774i
\(378\) 0 0
\(379\) −114.184 −0.301278 −0.150639 0.988589i \(-0.548133\pi\)
−0.150639 + 0.988589i \(0.548133\pi\)
\(380\) − 116.158i − 0.305678i
\(381\) 0 0
\(382\) −435.579 −1.14026
\(383\) − 333.903i − 0.871810i −0.899993 0.435905i \(-0.856428\pi\)
0.899993 0.435905i \(-0.143572\pi\)
\(384\) 0 0
\(385\) 30.0000 0.0779221
\(386\) 483.475i 1.25253i
\(387\) 0 0
\(388\) −199.737 −0.514785
\(389\) 682.507i 1.75452i 0.480020 + 0.877258i \(0.340630\pi\)
−0.480020 + 0.877258i \(0.659370\pi\)
\(390\) 0 0
\(391\) 30.1580 0.0771304
\(392\) − 135.765i − 0.346338i
\(393\) 0 0
\(394\) 181.631 0.460993
\(395\) − 169.647i − 0.429485i
\(396\) 0 0
\(397\) 258.211 0.650405 0.325202 0.945644i \(-0.394568\pi\)
0.325202 + 0.945644i \(0.394568\pi\)
\(398\) − 251.767i − 0.632581i
\(399\) 0 0
\(400\) −20.0000 −0.0500000
\(401\) − 388.852i − 0.969707i −0.874595 0.484853i \(-0.838873\pi\)
0.874595 0.484853i \(-0.161127\pi\)
\(402\) 0 0
\(403\) 502.316 1.24644
\(404\) 8.70873i 0.0215563i
\(405\) 0 0
\(406\) 6.97367 0.0171765
\(407\) 187.476i 0.460630i
\(408\) 0 0
\(409\) −302.315 −0.739157 −0.369579 0.929199i \(-0.620498\pi\)
−0.369579 + 0.929199i \(0.620498\pi\)
\(410\) 91.7377i 0.223750i
\(411\) 0 0
\(412\) −25.8947 −0.0628511
\(413\) − 8.48528i − 0.0205455i
\(414\) 0 0
\(415\) −77.1843 −0.185986
\(416\) 79.0470i 0.190017i
\(417\) 0 0
\(418\) 492.816 1.17898
\(419\) − 264.197i − 0.630542i −0.949002 0.315271i \(-0.897905\pi\)
0.949002 0.315271i \(-0.102095\pi\)
\(420\) 0 0
\(421\) −131.369 −0.312040 −0.156020 0.987754i \(-0.549866\pi\)
−0.156020 + 0.987754i \(0.549866\pi\)
\(422\) − 98.5853i − 0.233614i
\(423\) 0 0
\(424\) −253.947 −0.598932
\(425\) 42.4264i 0.0998268i
\(426\) 0 0
\(427\) −50.8947 −0.119191
\(428\) 207.554i 0.484940i
\(429\) 0 0
\(430\) −240.167 −0.558527
\(431\) 184.722i 0.428590i 0.976769 + 0.214295i \(0.0687455\pi\)
−0.976769 + 0.214295i \(0.931255\pi\)
\(432\) 0 0
\(433\) −793.263 −1.83202 −0.916008 0.401161i \(-0.868607\pi\)
−0.916008 + 0.401161i \(0.868607\pi\)
\(434\) − 50.8372i − 0.117136i
\(435\) 0 0
\(436\) −199.895 −0.458474
\(437\) − 92.3144i − 0.211246i
\(438\) 0 0
\(439\) −598.000 −1.36219 −0.681093 0.732197i \(-0.738495\pi\)
−0.681093 + 0.732197i \(0.738495\pi\)
\(440\) − 84.8528i − 0.192847i
\(441\) 0 0
\(442\) 167.684 0.379376
\(443\) − 740.750i − 1.67212i −0.548637 0.836061i \(-0.684853\pi\)
0.548637 0.836061i \(-0.315147\pi\)
\(444\) 0 0
\(445\) −328.710 −0.738675
\(446\) 186.155i 0.417387i
\(447\) 0 0
\(448\) 8.00000 0.0178571
\(449\) − 881.799i − 1.96392i −0.189096 0.981959i \(-0.560556\pi\)
0.189096 0.981959i \(-0.439444\pi\)
\(450\) 0 0
\(451\) −389.210 −0.862993
\(452\) − 411.201i − 0.909737i
\(453\) 0 0
\(454\) −486.342 −1.07124
\(455\) − 31.2461i − 0.0686727i
\(456\) 0 0
\(457\) −238.000 −0.520788 −0.260394 0.965502i \(-0.583852\pi\)
−0.260394 + 0.965502i \(0.583852\pi\)
\(458\) − 584.889i − 1.27705i
\(459\) 0 0
\(460\) −15.8947 −0.0345536
\(461\) 463.490i 1.00540i 0.864461 + 0.502700i \(0.167660\pi\)
−0.864461 + 0.502700i \(0.832340\pi\)
\(462\) 0 0
\(463\) −178.737 −0.386040 −0.193020 0.981195i \(-0.561828\pi\)
−0.193020 + 0.981195i \(0.561828\pi\)
\(464\) − 19.7245i − 0.0425097i
\(465\) 0 0
\(466\) 218.263 0.468376
\(467\) 147.004i 0.314783i 0.987536 + 0.157392i \(0.0503085\pi\)
−0.987536 + 0.157392i \(0.949692\pi\)
\(468\) 0 0
\(469\) −71.0000 −0.151386
\(470\) 219.017i 0.465993i
\(471\) 0 0
\(472\) −24.0000 −0.0508475
\(473\) − 1018.94i − 2.15421i
\(474\) 0 0
\(475\) 129.868 0.273407
\(476\) − 16.9706i − 0.0356524i
\(477\) 0 0
\(478\) 67.2897 0.140773
\(479\) 472.999i 0.987471i 0.869612 + 0.493735i \(0.164369\pi\)
−0.869612 + 0.493735i \(0.835631\pi\)
\(480\) 0 0
\(481\) 195.263 0.405953
\(482\) 623.370i 1.29330i
\(483\) 0 0
\(484\) 118.000 0.243802
\(485\) − 223.312i − 0.460438i
\(486\) 0 0
\(487\) −502.105 −1.03102 −0.515508 0.856885i \(-0.672397\pi\)
−0.515508 + 0.856885i \(0.672397\pi\)
\(488\) 143.952i 0.294983i
\(489\) 0 0
\(490\) 151.789 0.309774
\(491\) 677.575i 1.37999i 0.723814 + 0.689995i \(0.242387\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(492\) 0 0
\(493\) −41.8420 −0.0848722
\(494\) − 513.285i − 1.03904i
\(495\) 0 0
\(496\) −143.789 −0.289898
\(497\) 126.479i 0.254485i
\(498\) 0 0
\(499\) −226.000 −0.452906 −0.226453 0.974022i \(-0.572713\pi\)
−0.226453 + 0.974022i \(0.572713\pi\)
\(500\) − 22.3607i − 0.0447214i
\(501\) 0 0
\(502\) 484.710 0.965558
\(503\) 361.089i 0.717872i 0.933362 + 0.358936i \(0.116860\pi\)
−0.933362 + 0.358936i \(0.883140\pi\)
\(504\) 0 0
\(505\) −9.73666 −0.0192805
\(506\) − 67.4353i − 0.133271i
\(507\) 0 0
\(508\) 68.0000 0.133858
\(509\) 103.070i 0.202496i 0.994861 + 0.101248i \(0.0322836\pi\)
−0.994861 + 0.101248i \(0.967716\pi\)
\(510\) 0 0
\(511\) −22.0263 −0.0431044
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −437.526 −0.851218
\(515\) − 28.9511i − 0.0562158i
\(516\) 0 0
\(517\) −929.210 −1.79731
\(518\) − 19.7617i − 0.0381501i
\(519\) 0 0
\(520\) −88.3772 −0.169956
\(521\) − 280.144i − 0.537705i −0.963181 0.268852i \(-0.913356\pi\)
0.963181 0.268852i \(-0.0866444\pi\)
\(522\) 0 0
\(523\) 668.421 1.27805 0.639025 0.769186i \(-0.279338\pi\)
0.639025 + 0.769186i \(0.279338\pi\)
\(524\) 198.139i 0.378128i
\(525\) 0 0
\(526\) −507.895 −0.965579
\(527\) 305.023i 0.578792i
\(528\) 0 0
\(529\) 516.368 0.976121
\(530\) − 283.922i − 0.535701i
\(531\) 0 0
\(532\) −51.9473 −0.0976454
\(533\) 405.376i 0.760555i
\(534\) 0 0
\(535\) −232.053 −0.433743
\(536\) 200.818i 0.374661i
\(537\) 0 0
\(538\) −364.211 −0.676972
\(539\) 643.988i 1.19478i
\(540\) 0 0
\(541\) −157.000 −0.290203 −0.145102 0.989417i \(-0.546351\pi\)
−0.145102 + 0.989417i \(0.546351\pi\)
\(542\) − 251.320i − 0.463691i
\(543\) 0 0
\(544\) −48.0000 −0.0882353
\(545\) − 223.489i − 0.410072i
\(546\) 0 0
\(547\) 396.947 0.725681 0.362840 0.931851i \(-0.381807\pi\)
0.362840 + 0.931851i \(0.381807\pi\)
\(548\) − 105.731i − 0.192939i
\(549\) 0 0
\(550\) 94.8683 0.172488
\(551\) 128.079i 0.232449i
\(552\) 0 0
\(553\) −75.8683 −0.137194
\(554\) 440.713i 0.795511i
\(555\) 0 0
\(556\) 351.631 0.632430
\(557\) 235.764i 0.423275i 0.977348 + 0.211637i \(0.0678796\pi\)
−0.977348 + 0.211637i \(0.932120\pi\)
\(558\) 0 0
\(559\) −1061.26 −1.89850
\(560\) 8.94427i 0.0159719i
\(561\) 0 0
\(562\) −78.1580 −0.139071
\(563\) − 202.046i − 0.358874i −0.983769 0.179437i \(-0.942572\pi\)
0.983769 0.179437i \(-0.0574277\pi\)
\(564\) 0 0
\(565\) 459.737 0.813693
\(566\) − 220.245i − 0.389125i
\(567\) 0 0
\(568\) 357.737 0.629818
\(569\) − 192.408i − 0.338150i −0.985603 0.169075i \(-0.945922\pi\)
0.985603 0.169075i \(-0.0540781\pi\)
\(570\) 0 0
\(571\) 206.553 0.361739 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(572\) − 374.953i − 0.655512i
\(573\) 0 0
\(574\) 41.0263 0.0714744
\(575\) − 17.7708i − 0.0309057i
\(576\) 0 0
\(577\) 263.658 0.456946 0.228473 0.973550i \(-0.426627\pi\)
0.228473 + 0.973550i \(0.426627\pi\)
\(578\) − 306.884i − 0.530942i
\(579\) 0 0
\(580\) 22.0527 0.0380218
\(581\) 34.5179i 0.0594112i
\(582\) 0 0
\(583\) 1204.58 2.06617
\(584\) 62.2999i 0.106678i
\(585\) 0 0
\(586\) −478.868 −0.817181
\(587\) − 293.654i − 0.500263i −0.968212 0.250131i \(-0.919526\pi\)
0.968212 0.250131i \(-0.0804738\pi\)
\(588\) 0 0
\(589\) 933.684 1.58520
\(590\) − 26.8328i − 0.0454793i
\(591\) 0 0
\(592\) −55.8947 −0.0944167
\(593\) 139.095i 0.234562i 0.993099 + 0.117281i \(0.0374178\pi\)
−0.993099 + 0.117281i \(0.962582\pi\)
\(594\) 0 0
\(595\) 18.9737 0.0318885
\(596\) − 477.483i − 0.801146i
\(597\) 0 0
\(598\) −70.2363 −0.117452
\(599\) 1069.98i 1.78628i 0.449778 + 0.893140i \(0.351503\pi\)
−0.449778 + 0.893140i \(0.648497\pi\)
\(600\) 0 0
\(601\) 75.9473 0.126368 0.0631841 0.998002i \(-0.479874\pi\)
0.0631841 + 0.998002i \(0.479874\pi\)
\(602\) 107.406i 0.178415i
\(603\) 0 0
\(604\) 419.737 0.694928
\(605\) 131.928i 0.218063i
\(606\) 0 0
\(607\) −383.053 −0.631059 −0.315529 0.948916i \(-0.602182\pi\)
−0.315529 + 0.948916i \(0.602182\pi\)
\(608\) 146.929i 0.241660i
\(609\) 0 0
\(610\) −160.943 −0.263841
\(611\) 967.805i 1.58397i
\(612\) 0 0
\(613\) −817.658 −1.33386 −0.666931 0.745119i \(-0.732393\pi\)
−0.666931 + 0.745119i \(0.732393\pi\)
\(614\) − 324.822i − 0.529026i
\(615\) 0 0
\(616\) −37.9473 −0.0616028
\(617\) − 525.994i − 0.852502i −0.904605 0.426251i \(-0.859834\pi\)
0.904605 0.426251i \(-0.140166\pi\)
\(618\) 0 0
\(619\) −600.026 −0.969348 −0.484674 0.874695i \(-0.661062\pi\)
−0.484674 + 0.874695i \(0.661062\pi\)
\(620\) − 160.761i − 0.259293i
\(621\) 0 0
\(622\) 144.316 0.232019
\(623\) 147.004i 0.235961i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) − 474.692i − 0.758293i
\(627\) 0 0
\(628\) −308.211 −0.490781
\(629\) 118.570i 0.188506i
\(630\) 0 0
\(631\) 1019.34 1.61544 0.807719 0.589567i \(-0.200702\pi\)
0.807719 + 0.589567i \(0.200702\pi\)
\(632\) 214.588i 0.339538i
\(633\) 0 0
\(634\) 609.421 0.961231
\(635\) 76.0263i 0.119726i
\(636\) 0 0
\(637\) 670.736 1.05296
\(638\) 93.5615i 0.146648i
\(639\) 0 0
\(640\) 25.2982 0.0395285
\(641\) 865.052i 1.34953i 0.738030 + 0.674767i \(0.235756\pi\)
−0.738030 + 0.674767i \(0.764244\pi\)
\(642\) 0 0
\(643\) −609.368 −0.947695 −0.473848 0.880607i \(-0.657135\pi\)
−0.473848 + 0.880607i \(0.657135\pi\)
\(644\) 7.10831i 0.0110377i
\(645\) 0 0
\(646\) 311.684 0.482483
\(647\) 545.942i 0.843805i 0.906641 + 0.421902i \(0.138638\pi\)
−0.906641 + 0.421902i \(0.861362\pi\)
\(648\) 0 0
\(649\) 113.842 0.175411
\(650\) − 98.8087i − 0.152013i
\(651\) 0 0
\(652\) 29.8947 0.0458507
\(653\) 239.188i 0.366291i 0.983086 + 0.183146i \(0.0586280\pi\)
−0.983086 + 0.183146i \(0.941372\pi\)
\(654\) 0 0
\(655\) −221.526 −0.338208
\(656\) − 116.040i − 0.176890i
\(657\) 0 0
\(658\) 97.9473 0.148856
\(659\) 11.4627i 0.0173940i 0.999962 + 0.00869702i \(0.00276838\pi\)
−0.999962 + 0.00869702i \(0.997232\pi\)
\(660\) 0 0
\(661\) 210.473 0.318417 0.159208 0.987245i \(-0.449106\pi\)
0.159208 + 0.987245i \(0.449106\pi\)
\(662\) 257.350i 0.388746i
\(663\) 0 0
\(664\) 97.6313 0.147035
\(665\) − 58.0789i − 0.0873367i
\(666\) 0 0
\(667\) 17.5260 0.0262758
\(668\) − 276.590i − 0.414057i
\(669\) 0 0
\(670\) −224.522 −0.335107
\(671\) − 682.824i − 1.01762i
\(672\) 0 0
\(673\) 316.184 0.469813 0.234907 0.972018i \(-0.424522\pi\)
0.234907 + 0.972018i \(0.424522\pi\)
\(674\) − 499.924i − 0.741727i
\(675\) 0 0
\(676\) −52.5267 −0.0777022
\(677\) − 77.9680i − 0.115167i −0.998341 0.0575834i \(-0.981660\pi\)
0.998341 0.0575834i \(-0.0183395\pi\)
\(678\) 0 0
\(679\) −99.8683 −0.147081
\(680\) − 53.6656i − 0.0789200i
\(681\) 0 0
\(682\) 682.053 1.00008
\(683\) 718.401i 1.05183i 0.850536 + 0.525916i \(0.176277\pi\)
−0.850536 + 0.525916i \(0.823723\pi\)
\(684\) 0 0
\(685\) 118.211 0.172570
\(686\) − 137.179i − 0.199969i
\(687\) 0 0
\(688\) 303.789 0.441554
\(689\) − 1254.61i − 1.82092i
\(690\) 0 0
\(691\) 930.578 1.34671 0.673356 0.739318i \(-0.264852\pi\)
0.673356 + 0.739318i \(0.264852\pi\)
\(692\) − 395.384i − 0.571364i
\(693\) 0 0
\(694\) 174.974 0.252123
\(695\) 393.136i 0.565663i
\(696\) 0 0
\(697\) −246.158 −0.353168
\(698\) − 94.9013i − 0.135962i
\(699\) 0 0
\(700\) −10.0000 −0.0142857
\(701\) − 24.1725i − 0.0344828i −0.999851 0.0172414i \(-0.994512\pi\)
0.999851 0.0172414i \(-0.00548839\pi\)
\(702\) 0 0
\(703\) 362.947 0.516284
\(704\) 107.331i 0.152459i
\(705\) 0 0
\(706\) −941.526 −1.33361
\(707\) 4.35437i 0.00615893i
\(708\) 0 0
\(709\) 930.789 1.31282 0.656410 0.754404i \(-0.272074\pi\)
0.656410 + 0.754404i \(0.272074\pi\)
\(710\) 399.962i 0.563326i
\(711\) 0 0
\(712\) 415.789 0.583974
\(713\) − 127.762i − 0.179190i
\(714\) 0 0
\(715\) 419.210 0.586308
\(716\) 485.038i 0.677427i
\(717\) 0 0
\(718\) −615.079 −0.856656
\(719\) − 403.963i − 0.561840i −0.959731 0.280920i \(-0.909360\pi\)
0.959731 0.280920i \(-0.0906395\pi\)
\(720\) 0 0
\(721\) −12.9473 −0.0179575
\(722\) − 443.542i − 0.614324i
\(723\) 0 0
\(724\) 617.579 0.853009
\(725\) 24.6556i 0.0340078i
\(726\) 0 0
\(727\) −490.000 −0.674003 −0.337001 0.941504i \(-0.609413\pi\)
−0.337001 + 0.941504i \(0.609413\pi\)
\(728\) 39.5235i 0.0542905i
\(729\) 0 0
\(730\) −69.6534 −0.0954156
\(731\) − 644.434i − 0.881579i
\(732\) 0 0
\(733\) −1012.16 −1.38084 −0.690422 0.723407i \(-0.742575\pi\)
−0.690422 + 0.723407i \(0.742575\pi\)
\(734\) − 405.432i − 0.552360i
\(735\) 0 0
\(736\) 20.1053 0.0273170
\(737\) − 952.565i − 1.29249i
\(738\) 0 0
\(739\) 499.210 0.675521 0.337760 0.941232i \(-0.390331\pi\)
0.337760 + 0.941232i \(0.390331\pi\)
\(740\) − 62.4921i − 0.0844488i
\(741\) 0 0
\(742\) −126.974 −0.171124
\(743\) 748.788i 1.00779i 0.863765 + 0.503895i \(0.168100\pi\)
−0.863765 + 0.503895i \(0.831900\pi\)
\(744\) 0 0
\(745\) 533.842 0.716566
\(746\) − 5.47064i − 0.00733330i
\(747\) 0 0
\(748\) 227.684 0.304390
\(749\) 103.777i 0.138554i
\(750\) 0 0
\(751\) 777.710 1.03557 0.517783 0.855512i \(-0.326757\pi\)
0.517783 + 0.855512i \(0.326757\pi\)
\(752\) − 277.037i − 0.368400i
\(753\) 0 0
\(754\) 97.4477 0.129241
\(755\) 469.280i 0.621563i
\(756\) 0 0
\(757\) 1145.18 1.51279 0.756396 0.654114i \(-0.226958\pi\)
0.756396 + 0.654114i \(0.226958\pi\)
\(758\) 161.481i 0.213036i
\(759\) 0 0
\(760\) −164.272 −0.216147
\(761\) − 1042.93i − 1.37047i −0.728323 0.685234i \(-0.759700\pi\)
0.728323 0.685234i \(-0.240300\pi\)
\(762\) 0 0
\(763\) −99.9473 −0.130993
\(764\) 616.001i 0.806284i
\(765\) 0 0
\(766\) −472.211 −0.616463
\(767\) − 118.570i − 0.154590i
\(768\) 0 0
\(769\) 991.105 1.28882 0.644412 0.764679i \(-0.277102\pi\)
0.644412 + 0.764679i \(0.277102\pi\)
\(770\) − 42.4264i − 0.0550992i
\(771\) 0 0
\(772\) 683.737 0.885669
\(773\) 389.746i 0.504199i 0.967701 + 0.252100i \(0.0811211\pi\)
−0.967701 + 0.252100i \(0.918879\pi\)
\(774\) 0 0
\(775\) 179.737 0.231918
\(776\) 282.470i 0.364008i
\(777\) 0 0
\(778\) 965.210 1.24063
\(779\) 753.496i 0.967261i
\(780\) 0 0
\(781\) −1696.89 −2.17272
\(782\) − 42.6499i − 0.0545395i
\(783\) 0 0
\(784\) −192.000 −0.244898
\(785\) − 344.590i − 0.438968i
\(786\) 0 0
\(787\) −206.631 −0.262556 −0.131278 0.991346i \(-0.541908\pi\)
−0.131278 + 0.991346i \(0.541908\pi\)
\(788\) − 256.865i − 0.325971i
\(789\) 0 0
\(790\) −239.917 −0.303692
\(791\) − 205.600i − 0.259925i
\(792\) 0 0
\(793\) −711.185 −0.896829
\(794\) − 365.165i − 0.459906i
\(795\) 0 0
\(796\) −356.053 −0.447302
\(797\) 207.107i 0.259859i 0.991523 + 0.129929i \(0.0414750\pi\)
−0.991523 + 0.129929i \(0.958525\pi\)
\(798\) 0 0
\(799\) −587.684 −0.735524
\(800\) 28.2843i 0.0353553i
\(801\) 0 0
\(802\) −549.920 −0.685686
\(803\) − 295.514i − 0.368013i
\(804\) 0 0
\(805\) −7.94733 −0.00987246
\(806\) − 710.382i − 0.881367i
\(807\) 0 0
\(808\) 12.3160 0.0152426
\(809\) 663.452i 0.820089i 0.912065 + 0.410045i \(0.134487\pi\)
−0.912065 + 0.410045i \(0.865513\pi\)
\(810\) 0 0
\(811\) −394.683 −0.486663 −0.243331 0.969943i \(-0.578240\pi\)
−0.243331 + 0.969943i \(0.578240\pi\)
\(812\) − 9.86225i − 0.0121456i
\(813\) 0 0
\(814\) 265.132 0.325715
\(815\) 33.4233i 0.0410101i
\(816\) 0 0
\(817\) −1972.63 −2.41448
\(818\) 427.538i 0.522663i
\(819\) 0 0
\(820\) 129.737 0.158215
\(821\) − 1156.53i − 1.40868i −0.709861 0.704342i \(-0.751242\pi\)
0.709861 0.704342i \(-0.248758\pi\)
\(822\) 0 0
\(823\) 930.789 1.13097 0.565486 0.824758i \(-0.308689\pi\)
0.565486 + 0.824758i \(0.308689\pi\)
\(824\) 36.6206i 0.0444425i
\(825\) 0 0
\(826\) −12.0000 −0.0145278
\(827\) 1012.32i 1.22408i 0.790826 + 0.612041i \(0.209651\pi\)
−0.790826 + 0.612041i \(0.790349\pi\)
\(828\) 0 0
\(829\) −514.105 −0.620150 −0.310075 0.950712i \(-0.600354\pi\)
−0.310075 + 0.950712i \(0.600354\pi\)
\(830\) 109.155i 0.131512i
\(831\) 0 0
\(832\) 111.789 0.134362
\(833\) 407.294i 0.488948i
\(834\) 0 0
\(835\) 309.237 0.370344
\(836\) − 696.947i − 0.833668i
\(837\) 0 0
\(838\) −373.631 −0.445861
\(839\) − 549.013i − 0.654366i −0.944961 0.327183i \(-0.893901\pi\)
0.944961 0.327183i \(-0.106099\pi\)
\(840\) 0 0
\(841\) 816.684 0.971087
\(842\) 185.783i 0.220645i
\(843\) 0 0
\(844\) −139.421 −0.165190
\(845\) − 58.7266i − 0.0694990i
\(846\) 0 0
\(847\) 59.0000 0.0696576
\(848\) 359.136i 0.423509i
\(849\) 0 0
\(850\) 60.0000 0.0705882
\(851\) − 49.6646i − 0.0583603i
\(852\) 0 0
\(853\) −477.131 −0.559356 −0.279678 0.960094i \(-0.590228\pi\)
−0.279678 + 0.960094i \(0.590228\pi\)
\(854\) 71.9759i 0.0842809i
\(855\) 0 0
\(856\) 293.526 0.342904
\(857\) − 518.402i − 0.604904i −0.953165 0.302452i \(-0.902195\pi\)
0.953165 0.302452i \(-0.0978051\pi\)
\(858\) 0 0
\(859\) −224.448 −0.261289 −0.130645 0.991429i \(-0.541705\pi\)
−0.130645 + 0.991429i \(0.541705\pi\)
\(860\) 339.647i 0.394938i
\(861\) 0 0
\(862\) 261.237 0.303059
\(863\) − 765.759i − 0.887322i −0.896195 0.443661i \(-0.853679\pi\)
0.896195 0.443661i \(-0.146321\pi\)
\(864\) 0 0
\(865\) 442.053 0.511044
\(866\) 1121.84i 1.29543i
\(867\) 0 0
\(868\) −71.8947 −0.0828280
\(869\) − 1017.88i − 1.17132i
\(870\) 0 0
\(871\) −992.130 −1.13907
\(872\) 282.694i 0.324190i
\(873\) 0 0
\(874\) −130.552 −0.149373
\(875\) − 11.1803i − 0.0127775i
\(876\) 0 0
\(877\) −844.237 −0.962642 −0.481321 0.876544i \(-0.659843\pi\)
−0.481321 + 0.876544i \(0.659843\pi\)
\(878\) 845.700i 0.963212i
\(879\) 0 0
\(880\) −120.000 −0.136364
\(881\) − 1528.41i − 1.73486i −0.497560 0.867429i \(-0.665771\pi\)
0.497560 0.867429i \(-0.334229\pi\)
\(882\) 0 0
\(883\) −795.631 −0.901054 −0.450527 0.892763i \(-0.648764\pi\)
−0.450527 + 0.892763i \(0.648764\pi\)
\(884\) − 237.141i − 0.268259i
\(885\) 0 0
\(886\) −1047.58 −1.18237
\(887\) 249.051i 0.280779i 0.990096 + 0.140389i \(0.0448354\pi\)
−0.990096 + 0.140389i \(0.955165\pi\)
\(888\) 0 0
\(889\) 34.0000 0.0382452
\(890\) 464.867i 0.522322i
\(891\) 0 0
\(892\) 263.263 0.295137
\(893\) 1798.92i 2.01446i
\(894\) 0 0
\(895\) −542.289 −0.605909
\(896\) − 11.3137i − 0.0126269i
\(897\) 0 0
\(898\) −1247.05 −1.38870
\(899\) 177.261i 0.197176i
\(900\) 0 0
\(901\) 761.842 0.845552
\(902\) 550.426i 0.610228i
\(903\) 0 0
\(904\) −581.526 −0.643281
\(905\) 690.474i 0.762955i
\(906\) 0 0
\(907\) −951.631 −1.04921 −0.524603 0.851347i \(-0.675786\pi\)
−0.524603 + 0.851347i \(0.675786\pi\)
\(908\) 687.791i 0.757479i
\(909\) 0 0
\(910\) −44.1886 −0.0485589
\(911\) 357.535i 0.392465i 0.980557 + 0.196232i \(0.0628707\pi\)
−0.980557 + 0.196232i \(0.937129\pi\)
\(912\) 0 0
\(913\) −463.106 −0.507236
\(914\) 336.583i 0.368253i
\(915\) 0 0
\(916\) −827.157 −0.903010
\(917\) 99.0694i 0.108036i
\(918\) 0 0
\(919\) 313.368 0.340988 0.170494 0.985359i \(-0.445464\pi\)
0.170494 + 0.985359i \(0.445464\pi\)
\(920\) 22.4784i 0.0244331i
\(921\) 0 0
\(922\) 655.473 0.710926
\(923\) 1767.38i 1.91482i
\(924\) 0 0
\(925\) 69.8683 0.0755333
\(926\) 252.772i 0.272972i
\(927\) 0 0
\(928\) −27.8947 −0.0300589
\(929\) − 709.693i − 0.763932i −0.924176 0.381966i \(-0.875247\pi\)
0.924176 0.381966i \(-0.124753\pi\)
\(930\) 0 0
\(931\) 1246.74 1.33914
\(932\) − 308.671i − 0.331192i
\(933\) 0 0
\(934\) 207.895 0.222585
\(935\) 254.558i 0.272255i
\(936\) 0 0
\(937\) −1351.87 −1.44276 −0.721380 0.692539i \(-0.756492\pi\)
−0.721380 + 0.692539i \(0.756492\pi\)
\(938\) 100.409i 0.107046i
\(939\) 0 0
\(940\) 309.737 0.329507
\(941\) 16.8770i 0.0179351i 0.999960 + 0.00896757i \(0.00285450\pi\)
−0.999960 + 0.00896757i \(0.997145\pi\)
\(942\) 0 0
\(943\) 103.106 0.109338
\(944\) 33.9411i 0.0359546i
\(945\) 0 0
\(946\) −1441.00 −1.52326
\(947\) − 2.08359i − 0.00220020i −0.999999 0.00110010i \(-0.999650\pi\)
0.999999 0.00110010i \(-0.000350173\pi\)
\(948\) 0 0
\(949\) −307.789 −0.324329
\(950\) − 183.662i − 0.193328i
\(951\) 0 0
\(952\) −24.0000 −0.0252101
\(953\) − 1427.87i − 1.49829i −0.662406 0.749145i \(-0.730465\pi\)
0.662406 0.749145i \(-0.269535\pi\)
\(954\) 0 0
\(955\) −688.710 −0.721163
\(956\) − 95.1620i − 0.0995418i
\(957\) 0 0
\(958\) 668.921 0.698247
\(959\) − 52.8654i − 0.0551256i
\(960\) 0 0
\(961\) 331.211 0.344652
\(962\) − 276.144i − 0.287052i
\(963\) 0 0
\(964\) 881.579 0.914501
\(965\) 764.441i 0.792167i
\(966\) 0 0
\(967\) 1097.84 1.13531 0.567653 0.823268i \(-0.307851\pi\)
0.567653 + 0.823268i \(0.307851\pi\)
\(968\) − 166.877i − 0.172394i
\(969\) 0 0
\(970\) −315.811 −0.325579
\(971\) − 1709.90i − 1.76096i −0.474080 0.880482i \(-0.657219\pi\)
0.474080 0.880482i \(-0.342781\pi\)
\(972\) 0 0
\(973\) 175.816 0.180694
\(974\) 710.083i 0.729038i
\(975\) 0 0
\(976\) 203.579 0.208585
\(977\) − 231.056i − 0.236496i −0.992984 0.118248i \(-0.962272\pi\)
0.992984 0.118248i \(-0.0377277\pi\)
\(978\) 0 0
\(979\) −1972.26 −2.01457
\(980\) − 214.663i − 0.219043i
\(981\) 0 0
\(982\) 958.236 0.975801
\(983\) 1362.35i 1.38591i 0.720979 + 0.692957i \(0.243692\pi\)
−0.720979 + 0.692957i \(0.756308\pi\)
\(984\) 0 0
\(985\) 287.184 0.291558
\(986\) 59.1735i 0.0600137i
\(987\) 0 0
\(988\) −725.895 −0.734711
\(989\) 269.929i 0.272931i
\(990\) 0 0
\(991\) 1168.55 1.17916 0.589582 0.807708i \(-0.299292\pi\)
0.589582 + 0.807708i \(0.299292\pi\)
\(992\) 203.349i 0.204989i
\(993\) 0 0
\(994\) 178.868 0.179948
\(995\) − 398.079i − 0.400079i
\(996\) 0 0
\(997\) −291.526 −0.292403 −0.146202 0.989255i \(-0.546705\pi\)
−0.146202 + 0.989255i \(0.546705\pi\)
\(998\) 319.612i 0.320253i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.d.a.161.1 4
3.2 odd 2 inner 270.3.d.a.161.4 yes 4
4.3 odd 2 2160.3.l.f.161.1 4
5.2 odd 4 1350.3.b.h.1349.5 8
5.3 odd 4 1350.3.b.h.1349.3 8
5.4 even 2 1350.3.d.m.701.3 4
9.2 odd 6 810.3.h.b.701.3 8
9.4 even 3 810.3.h.b.431.3 8
9.5 odd 6 810.3.h.b.431.2 8
9.7 even 3 810.3.h.b.701.2 8
12.11 even 2 2160.3.l.f.161.3 4
15.2 even 4 1350.3.b.h.1349.2 8
15.8 even 4 1350.3.b.h.1349.8 8
15.14 odd 2 1350.3.d.m.701.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.d.a.161.1 4 1.1 even 1 trivial
270.3.d.a.161.4 yes 4 3.2 odd 2 inner
810.3.h.b.431.2 8 9.5 odd 6
810.3.h.b.431.3 8 9.4 even 3
810.3.h.b.701.2 8 9.7 even 3
810.3.h.b.701.3 8 9.2 odd 6
1350.3.b.h.1349.2 8 15.2 even 4
1350.3.b.h.1349.3 8 5.3 odd 4
1350.3.b.h.1349.5 8 5.2 odd 4
1350.3.b.h.1349.8 8 15.8 even 4
1350.3.d.m.701.2 4 15.14 odd 2
1350.3.d.m.701.3 4 5.4 even 2
2160.3.l.f.161.1 4 4.3 odd 2
2160.3.l.f.161.3 4 12.11 even 2