Properties

Label 1350.4.a.f.1.1
Level $1350$
Weight $4$
Character 1350.1
Self dual yes
Analytic conductor $79.653$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,4,Mod(1,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.6525785077\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -8.00000 q^{7} -8.00000 q^{8} +18.0000 q^{11} -8.00000 q^{13} +16.0000 q^{14} +16.0000 q^{16} -15.0000 q^{17} +23.0000 q^{19} -36.0000 q^{22} -63.0000 q^{23} +16.0000 q^{26} -32.0000 q^{28} +156.000 q^{29} -85.0000 q^{31} -32.0000 q^{32} +30.0000 q^{34} -74.0000 q^{37} -46.0000 q^{38} +246.000 q^{41} +190.000 q^{43} +72.0000 q^{44} +126.000 q^{46} -288.000 q^{47} -279.000 q^{49} -32.0000 q^{52} +177.000 q^{53} +64.0000 q^{56} -312.000 q^{58} +792.000 q^{59} -907.000 q^{61} +170.000 q^{62} +64.0000 q^{64} +322.000 q^{67} -60.0000 q^{68} -270.000 q^{71} -254.000 q^{73} +148.000 q^{74} +92.0000 q^{76} -144.000 q^{77} -1123.00 q^{79} -492.000 q^{82} +771.000 q^{83} -380.000 q^{86} -144.000 q^{88} -198.000 q^{89} +64.0000 q^{91} -252.000 q^{92} +576.000 q^{94} +1192.00 q^{97} +558.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −8.00000 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 18.0000 0.493382 0.246691 0.969094i \(-0.420657\pi\)
0.246691 + 0.969094i \(0.420657\pi\)
\(12\) 0 0
\(13\) −8.00000 −0.170677 −0.0853385 0.996352i \(-0.527197\pi\)
−0.0853385 + 0.996352i \(0.527197\pi\)
\(14\) 16.0000 0.305441
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −15.0000 −0.214002 −0.107001 0.994259i \(-0.534125\pi\)
−0.107001 + 0.994259i \(0.534125\pi\)
\(18\) 0 0
\(19\) 23.0000 0.277714 0.138857 0.990312i \(-0.455657\pi\)
0.138857 + 0.990312i \(0.455657\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −36.0000 −0.348874
\(23\) −63.0000 −0.571148 −0.285574 0.958357i \(-0.592184\pi\)
−0.285574 + 0.958357i \(0.592184\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 16.0000 0.120687
\(27\) 0 0
\(28\) −32.0000 −0.215980
\(29\) 156.000 0.998913 0.499456 0.866339i \(-0.333533\pi\)
0.499456 + 0.866339i \(0.333533\pi\)
\(30\) 0 0
\(31\) −85.0000 −0.492466 −0.246233 0.969211i \(-0.579193\pi\)
−0.246233 + 0.969211i \(0.579193\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 30.0000 0.151322
\(35\) 0 0
\(36\) 0 0
\(37\) −74.0000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −46.0000 −0.196373
\(39\) 0 0
\(40\) 0 0
\(41\) 246.000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 190.000 0.673831 0.336915 0.941535i \(-0.390616\pi\)
0.336915 + 0.941535i \(0.390616\pi\)
\(44\) 72.0000 0.246691
\(45\) 0 0
\(46\) 126.000 0.403863
\(47\) −288.000 −0.893811 −0.446906 0.894581i \(-0.647474\pi\)
−0.446906 + 0.894581i \(0.647474\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) 0 0
\(52\) −32.0000 −0.0853385
\(53\) 177.000 0.458732 0.229366 0.973340i \(-0.426335\pi\)
0.229366 + 0.973340i \(0.426335\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 64.0000 0.152721
\(57\) 0 0
\(58\) −312.000 −0.706338
\(59\) 792.000 1.74762 0.873810 0.486267i \(-0.161642\pi\)
0.873810 + 0.486267i \(0.161642\pi\)
\(60\) 0 0
\(61\) −907.000 −1.90376 −0.951881 0.306469i \(-0.900853\pi\)
−0.951881 + 0.306469i \(0.900853\pi\)
\(62\) 170.000 0.348226
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 322.000 0.587143 0.293571 0.955937i \(-0.405156\pi\)
0.293571 + 0.955937i \(0.405156\pi\)
\(68\) −60.0000 −0.107001
\(69\) 0 0
\(70\) 0 0
\(71\) −270.000 −0.451311 −0.225656 0.974207i \(-0.572452\pi\)
−0.225656 + 0.974207i \(0.572452\pi\)
\(72\) 0 0
\(73\) −254.000 −0.407239 −0.203620 0.979050i \(-0.565271\pi\)
−0.203620 + 0.979050i \(0.565271\pi\)
\(74\) 148.000 0.232495
\(75\) 0 0
\(76\) 92.0000 0.138857
\(77\) −144.000 −0.213121
\(78\) 0 0
\(79\) −1123.00 −1.59933 −0.799667 0.600444i \(-0.794991\pi\)
−0.799667 + 0.600444i \(0.794991\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −492.000 −0.662589
\(83\) 771.000 1.01962 0.509809 0.860288i \(-0.329716\pi\)
0.509809 + 0.860288i \(0.329716\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −380.000 −0.476470
\(87\) 0 0
\(88\) −144.000 −0.174437
\(89\) −198.000 −0.235820 −0.117910 0.993024i \(-0.537619\pi\)
−0.117910 + 0.993024i \(0.537619\pi\)
\(90\) 0 0
\(91\) 64.0000 0.0737255
\(92\) −252.000 −0.285574
\(93\) 0 0
\(94\) 576.000 0.632020
\(95\) 0 0
\(96\) 0 0
\(97\) 1192.00 1.24772 0.623862 0.781534i \(-0.285563\pi\)
0.623862 + 0.781534i \(0.285563\pi\)
\(98\) 558.000 0.575168
\(99\) 0 0
\(100\) 0 0
\(101\) −1692.00 −1.66693 −0.833467 0.552570i \(-0.813647\pi\)
−0.833467 + 0.552570i \(0.813647\pi\)
\(102\) 0 0
\(103\) −1748.00 −1.67219 −0.836095 0.548585i \(-0.815167\pi\)
−0.836095 + 0.548585i \(0.815167\pi\)
\(104\) 64.0000 0.0603434
\(105\) 0 0
\(106\) −354.000 −0.324373
\(107\) 948.000 0.856510 0.428255 0.903658i \(-0.359128\pi\)
0.428255 + 0.903658i \(0.359128\pi\)
\(108\) 0 0
\(109\) 593.000 0.521093 0.260546 0.965461i \(-0.416097\pi\)
0.260546 + 0.965461i \(0.416097\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −128.000 −0.107990
\(113\) 1062.00 0.884111 0.442056 0.896988i \(-0.354249\pi\)
0.442056 + 0.896988i \(0.354249\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 624.000 0.499456
\(117\) 0 0
\(118\) −1584.00 −1.23575
\(119\) 120.000 0.0924402
\(120\) 0 0
\(121\) −1007.00 −0.756574
\(122\) 1814.00 1.34616
\(123\) 0 0
\(124\) −340.000 −0.246233
\(125\) 0 0
\(126\) 0 0
\(127\) −326.000 −0.227778 −0.113889 0.993493i \(-0.536331\pi\)
−0.113889 + 0.993493i \(0.536331\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −990.000 −0.660280 −0.330140 0.943932i \(-0.607096\pi\)
−0.330140 + 0.943932i \(0.607096\pi\)
\(132\) 0 0
\(133\) −184.000 −0.119961
\(134\) −644.000 −0.415173
\(135\) 0 0
\(136\) 120.000 0.0756611
\(137\) 147.000 0.0916720 0.0458360 0.998949i \(-0.485405\pi\)
0.0458360 + 0.998949i \(0.485405\pi\)
\(138\) 0 0
\(139\) 1604.00 0.978773 0.489387 0.872067i \(-0.337221\pi\)
0.489387 + 0.872067i \(0.337221\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 540.000 0.319125
\(143\) −144.000 −0.0842090
\(144\) 0 0
\(145\) 0 0
\(146\) 508.000 0.287962
\(147\) 0 0
\(148\) −296.000 −0.164399
\(149\) 1218.00 0.669681 0.334840 0.942275i \(-0.391318\pi\)
0.334840 + 0.942275i \(0.391318\pi\)
\(150\) 0 0
\(151\) −2248.00 −1.21152 −0.605760 0.795647i \(-0.707131\pi\)
−0.605760 + 0.795647i \(0.707131\pi\)
\(152\) −184.000 −0.0981866
\(153\) 0 0
\(154\) 288.000 0.150699
\(155\) 0 0
\(156\) 0 0
\(157\) 2998.00 1.52399 0.761995 0.647583i \(-0.224220\pi\)
0.761995 + 0.647583i \(0.224220\pi\)
\(158\) 2246.00 1.13090
\(159\) 0 0
\(160\) 0 0
\(161\) 504.000 0.246713
\(162\) 0 0
\(163\) −3470.00 −1.66743 −0.833716 0.552194i \(-0.813791\pi\)
−0.833716 + 0.552194i \(0.813791\pi\)
\(164\) 984.000 0.468521
\(165\) 0 0
\(166\) −1542.00 −0.720978
\(167\) −387.000 −0.179323 −0.0896616 0.995972i \(-0.528579\pi\)
−0.0896616 + 0.995972i \(0.528579\pi\)
\(168\) 0 0
\(169\) −2133.00 −0.970869
\(170\) 0 0
\(171\) 0 0
\(172\) 760.000 0.336915
\(173\) 855.000 0.375748 0.187874 0.982193i \(-0.439840\pi\)
0.187874 + 0.982193i \(0.439840\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 288.000 0.123346
\(177\) 0 0
\(178\) 396.000 0.166750
\(179\) −264.000 −0.110236 −0.0551181 0.998480i \(-0.517554\pi\)
−0.0551181 + 0.998480i \(0.517554\pi\)
\(180\) 0 0
\(181\) −2551.00 −1.04759 −0.523797 0.851843i \(-0.675485\pi\)
−0.523797 + 0.851843i \(0.675485\pi\)
\(182\) −128.000 −0.0521318
\(183\) 0 0
\(184\) 504.000 0.201931
\(185\) 0 0
\(186\) 0 0
\(187\) −270.000 −0.105585
\(188\) −1152.00 −0.446906
\(189\) 0 0
\(190\) 0 0
\(191\) −2238.00 −0.847832 −0.423916 0.905701i \(-0.639345\pi\)
−0.423916 + 0.905701i \(0.639345\pi\)
\(192\) 0 0
\(193\) −2180.00 −0.813056 −0.406528 0.913638i \(-0.633261\pi\)
−0.406528 + 0.913638i \(0.633261\pi\)
\(194\) −2384.00 −0.882274
\(195\) 0 0
\(196\) −1116.00 −0.406706
\(197\) −2577.00 −0.931998 −0.465999 0.884785i \(-0.654305\pi\)
−0.465999 + 0.884785i \(0.654305\pi\)
\(198\) 0 0
\(199\) 1412.00 0.502985 0.251493 0.967859i \(-0.419079\pi\)
0.251493 + 0.967859i \(0.419079\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3384.00 1.17870
\(203\) −1248.00 −0.431490
\(204\) 0 0
\(205\) 0 0
\(206\) 3496.00 1.18242
\(207\) 0 0
\(208\) −128.000 −0.0426692
\(209\) 414.000 0.137019
\(210\) 0 0
\(211\) −307.000 −0.100165 −0.0500823 0.998745i \(-0.515948\pi\)
−0.0500823 + 0.998745i \(0.515948\pi\)
\(212\) 708.000 0.229366
\(213\) 0 0
\(214\) −1896.00 −0.605644
\(215\) 0 0
\(216\) 0 0
\(217\) 680.000 0.212725
\(218\) −1186.00 −0.368468
\(219\) 0 0
\(220\) 0 0
\(221\) 120.000 0.0365252
\(222\) 0 0
\(223\) −5234.00 −1.57172 −0.785862 0.618402i \(-0.787781\pi\)
−0.785862 + 0.618402i \(0.787781\pi\)
\(224\) 256.000 0.0763604
\(225\) 0 0
\(226\) −2124.00 −0.625161
\(227\) −1509.00 −0.441215 −0.220608 0.975363i \(-0.570804\pi\)
−0.220608 + 0.975363i \(0.570804\pi\)
\(228\) 0 0
\(229\) 1211.00 0.349455 0.174727 0.984617i \(-0.444096\pi\)
0.174727 + 0.984617i \(0.444096\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1248.00 −0.353169
\(233\) −6246.00 −1.75618 −0.878088 0.478499i \(-0.841181\pi\)
−0.878088 + 0.478499i \(0.841181\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3168.00 0.873810
\(237\) 0 0
\(238\) −240.000 −0.0653651
\(239\) 4650.00 1.25851 0.629254 0.777200i \(-0.283360\pi\)
0.629254 + 0.777200i \(0.283360\pi\)
\(240\) 0 0
\(241\) −3145.00 −0.840611 −0.420306 0.907383i \(-0.638077\pi\)
−0.420306 + 0.907383i \(0.638077\pi\)
\(242\) 2014.00 0.534979
\(243\) 0 0
\(244\) −3628.00 −0.951881
\(245\) 0 0
\(246\) 0 0
\(247\) −184.000 −0.0473994
\(248\) 680.000 0.174113
\(249\) 0 0
\(250\) 0 0
\(251\) 1020.00 0.256501 0.128251 0.991742i \(-0.459064\pi\)
0.128251 + 0.991742i \(0.459064\pi\)
\(252\) 0 0
\(253\) −1134.00 −0.281794
\(254\) 652.000 0.161063
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −6741.00 −1.63616 −0.818078 0.575107i \(-0.804960\pi\)
−0.818078 + 0.575107i \(0.804960\pi\)
\(258\) 0 0
\(259\) 592.000 0.142027
\(260\) 0 0
\(261\) 0 0
\(262\) 1980.00 0.466889
\(263\) −2340.00 −0.548633 −0.274317 0.961639i \(-0.588452\pi\)
−0.274317 + 0.961639i \(0.588452\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 368.000 0.0848253
\(267\) 0 0
\(268\) 1288.00 0.293571
\(269\) −6198.00 −1.40483 −0.702414 0.711769i \(-0.747894\pi\)
−0.702414 + 0.711769i \(0.747894\pi\)
\(270\) 0 0
\(271\) 875.000 0.196135 0.0980673 0.995180i \(-0.468734\pi\)
0.0980673 + 0.995180i \(0.468734\pi\)
\(272\) −240.000 −0.0535005
\(273\) 0 0
\(274\) −294.000 −0.0648219
\(275\) 0 0
\(276\) 0 0
\(277\) −5486.00 −1.18997 −0.594985 0.803737i \(-0.702842\pi\)
−0.594985 + 0.803737i \(0.702842\pi\)
\(278\) −3208.00 −0.692097
\(279\) 0 0
\(280\) 0 0
\(281\) −3204.00 −0.680194 −0.340097 0.940390i \(-0.610460\pi\)
−0.340097 + 0.940390i \(0.610460\pi\)
\(282\) 0 0
\(283\) −7322.00 −1.53798 −0.768989 0.639262i \(-0.779240\pi\)
−0.768989 + 0.639262i \(0.779240\pi\)
\(284\) −1080.00 −0.225656
\(285\) 0 0
\(286\) 288.000 0.0595447
\(287\) −1968.00 −0.404764
\(288\) 0 0
\(289\) −4688.00 −0.954203
\(290\) 0 0
\(291\) 0 0
\(292\) −1016.00 −0.203620
\(293\) −1353.00 −0.269772 −0.134886 0.990861i \(-0.543067\pi\)
−0.134886 + 0.990861i \(0.543067\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 592.000 0.116248
\(297\) 0 0
\(298\) −2436.00 −0.473536
\(299\) 504.000 0.0974818
\(300\) 0 0
\(301\) −1520.00 −0.291068
\(302\) 4496.00 0.856675
\(303\) 0 0
\(304\) 368.000 0.0694284
\(305\) 0 0
\(306\) 0 0
\(307\) −1658.00 −0.308231 −0.154116 0.988053i \(-0.549253\pi\)
−0.154116 + 0.988053i \(0.549253\pi\)
\(308\) −576.000 −0.106561
\(309\) 0 0
\(310\) 0 0
\(311\) −1044.00 −0.190353 −0.0951765 0.995460i \(-0.530342\pi\)
−0.0951765 + 0.995460i \(0.530342\pi\)
\(312\) 0 0
\(313\) −2588.00 −0.467356 −0.233678 0.972314i \(-0.575076\pi\)
−0.233678 + 0.972314i \(0.575076\pi\)
\(314\) −5996.00 −1.07762
\(315\) 0 0
\(316\) −4492.00 −0.799667
\(317\) 1449.00 0.256732 0.128366 0.991727i \(-0.459027\pi\)
0.128366 + 0.991727i \(0.459027\pi\)
\(318\) 0 0
\(319\) 2808.00 0.492846
\(320\) 0 0
\(321\) 0 0
\(322\) −1008.00 −0.174452
\(323\) −345.000 −0.0594313
\(324\) 0 0
\(325\) 0 0
\(326\) 6940.00 1.17905
\(327\) 0 0
\(328\) −1968.00 −0.331295
\(329\) 2304.00 0.386090
\(330\) 0 0
\(331\) 4880.00 0.810360 0.405180 0.914237i \(-0.367209\pi\)
0.405180 + 0.914237i \(0.367209\pi\)
\(332\) 3084.00 0.509809
\(333\) 0 0
\(334\) 774.000 0.126801
\(335\) 0 0
\(336\) 0 0
\(337\) 7744.00 1.25176 0.625879 0.779920i \(-0.284740\pi\)
0.625879 + 0.779920i \(0.284740\pi\)
\(338\) 4266.00 0.686508
\(339\) 0 0
\(340\) 0 0
\(341\) −1530.00 −0.242974
\(342\) 0 0
\(343\) 4976.00 0.783320
\(344\) −1520.00 −0.238235
\(345\) 0 0
\(346\) −1710.00 −0.265694
\(347\) −804.000 −0.124383 −0.0621916 0.998064i \(-0.519809\pi\)
−0.0621916 + 0.998064i \(0.519809\pi\)
\(348\) 0 0
\(349\) −2815.00 −0.431758 −0.215879 0.976420i \(-0.569262\pi\)
−0.215879 + 0.976420i \(0.569262\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −576.000 −0.0872185
\(353\) 3738.00 0.563608 0.281804 0.959472i \(-0.409067\pi\)
0.281804 + 0.959472i \(0.409067\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −792.000 −0.117910
\(357\) 0 0
\(358\) 528.000 0.0779488
\(359\) −11022.0 −1.62039 −0.810193 0.586163i \(-0.800638\pi\)
−0.810193 + 0.586163i \(0.800638\pi\)
\(360\) 0 0
\(361\) −6330.00 −0.922875
\(362\) 5102.00 0.740760
\(363\) 0 0
\(364\) 256.000 0.0368628
\(365\) 0 0
\(366\) 0 0
\(367\) −7544.00 −1.07301 −0.536504 0.843898i \(-0.680255\pi\)
−0.536504 + 0.843898i \(0.680255\pi\)
\(368\) −1008.00 −0.142787
\(369\) 0 0
\(370\) 0 0
\(371\) −1416.00 −0.198154
\(372\) 0 0
\(373\) 5404.00 0.750157 0.375078 0.926993i \(-0.377616\pi\)
0.375078 + 0.926993i \(0.377616\pi\)
\(374\) 540.000 0.0746597
\(375\) 0 0
\(376\) 2304.00 0.316010
\(377\) −1248.00 −0.170491
\(378\) 0 0
\(379\) −2335.00 −0.316467 −0.158233 0.987402i \(-0.550580\pi\)
−0.158233 + 0.987402i \(0.550580\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4476.00 0.599508
\(383\) 6633.00 0.884936 0.442468 0.896784i \(-0.354103\pi\)
0.442468 + 0.896784i \(0.354103\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4360.00 0.574918
\(387\) 0 0
\(388\) 4768.00 0.623862
\(389\) −7566.00 −0.986148 −0.493074 0.869987i \(-0.664127\pi\)
−0.493074 + 0.869987i \(0.664127\pi\)
\(390\) 0 0
\(391\) 945.000 0.122227
\(392\) 2232.00 0.287584
\(393\) 0 0
\(394\) 5154.00 0.659022
\(395\) 0 0
\(396\) 0 0
\(397\) 7420.00 0.938033 0.469017 0.883189i \(-0.344608\pi\)
0.469017 + 0.883189i \(0.344608\pi\)
\(398\) −2824.00 −0.355664
\(399\) 0 0
\(400\) 0 0
\(401\) −8502.00 −1.05878 −0.529389 0.848379i \(-0.677579\pi\)
−0.529389 + 0.848379i \(0.677579\pi\)
\(402\) 0 0
\(403\) 680.000 0.0840526
\(404\) −6768.00 −0.833467
\(405\) 0 0
\(406\) 2496.00 0.305109
\(407\) −1332.00 −0.162223
\(408\) 0 0
\(409\) −1903.00 −0.230067 −0.115033 0.993362i \(-0.536697\pi\)
−0.115033 + 0.993362i \(0.536697\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6992.00 −0.836095
\(413\) −6336.00 −0.754901
\(414\) 0 0
\(415\) 0 0
\(416\) 256.000 0.0301717
\(417\) 0 0
\(418\) −828.000 −0.0968871
\(419\) 13482.0 1.57193 0.785965 0.618271i \(-0.212166\pi\)
0.785965 + 0.618271i \(0.212166\pi\)
\(420\) 0 0
\(421\) −1537.00 −0.177931 −0.0889653 0.996035i \(-0.528356\pi\)
−0.0889653 + 0.996035i \(0.528356\pi\)
\(422\) 614.000 0.0708271
\(423\) 0 0
\(424\) −1416.00 −0.162186
\(425\) 0 0
\(426\) 0 0
\(427\) 7256.00 0.822348
\(428\) 3792.00 0.428255
\(429\) 0 0
\(430\) 0 0
\(431\) −10368.0 −1.15872 −0.579361 0.815071i \(-0.696698\pi\)
−0.579361 + 0.815071i \(0.696698\pi\)
\(432\) 0 0
\(433\) 13168.0 1.46146 0.730732 0.682665i \(-0.239179\pi\)
0.730732 + 0.682665i \(0.239179\pi\)
\(434\) −1360.00 −0.150420
\(435\) 0 0
\(436\) 2372.00 0.260546
\(437\) −1449.00 −0.158616
\(438\) 0 0
\(439\) 7319.00 0.795710 0.397855 0.917448i \(-0.369755\pi\)
0.397855 + 0.917448i \(0.369755\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −240.000 −0.0258272
\(443\) 4119.00 0.441760 0.220880 0.975301i \(-0.429107\pi\)
0.220880 + 0.975301i \(0.429107\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10468.0 1.11138
\(447\) 0 0
\(448\) −512.000 −0.0539949
\(449\) −5388.00 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 4428.00 0.462320
\(452\) 4248.00 0.442056
\(453\) 0 0
\(454\) 3018.00 0.311986
\(455\) 0 0
\(456\) 0 0
\(457\) 2752.00 0.281692 0.140846 0.990032i \(-0.455018\pi\)
0.140846 + 0.990032i \(0.455018\pi\)
\(458\) −2422.00 −0.247102
\(459\) 0 0
\(460\) 0 0
\(461\) −4314.00 −0.435842 −0.217921 0.975966i \(-0.569927\pi\)
−0.217921 + 0.975966i \(0.569927\pi\)
\(462\) 0 0
\(463\) 5794.00 0.581577 0.290788 0.956787i \(-0.406082\pi\)
0.290788 + 0.956787i \(0.406082\pi\)
\(464\) 2496.00 0.249728
\(465\) 0 0
\(466\) 12492.0 1.24180
\(467\) −6309.00 −0.625151 −0.312576 0.949893i \(-0.601192\pi\)
−0.312576 + 0.949893i \(0.601192\pi\)
\(468\) 0 0
\(469\) −2576.00 −0.253622
\(470\) 0 0
\(471\) 0 0
\(472\) −6336.00 −0.617877
\(473\) 3420.00 0.332456
\(474\) 0 0
\(475\) 0 0
\(476\) 480.000 0.0462201
\(477\) 0 0
\(478\) −9300.00 −0.889900
\(479\) 14826.0 1.41423 0.707116 0.707097i \(-0.249996\pi\)
0.707116 + 0.707097i \(0.249996\pi\)
\(480\) 0 0
\(481\) 592.000 0.0561182
\(482\) 6290.00 0.594402
\(483\) 0 0
\(484\) −4028.00 −0.378287
\(485\) 0 0
\(486\) 0 0
\(487\) −6758.00 −0.628818 −0.314409 0.949288i \(-0.601806\pi\)
−0.314409 + 0.949288i \(0.601806\pi\)
\(488\) 7256.00 0.673081
\(489\) 0 0
\(490\) 0 0
\(491\) −14574.0 −1.33954 −0.669771 0.742567i \(-0.733608\pi\)
−0.669771 + 0.742567i \(0.733608\pi\)
\(492\) 0 0
\(493\) −2340.00 −0.213769
\(494\) 368.000 0.0335164
\(495\) 0 0
\(496\) −1360.00 −0.123117
\(497\) 2160.00 0.194948
\(498\) 0 0
\(499\) 12611.0 1.13135 0.565677 0.824627i \(-0.308615\pi\)
0.565677 + 0.824627i \(0.308615\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2040.00 −0.181374
\(503\) −15639.0 −1.38630 −0.693150 0.720794i \(-0.743778\pi\)
−0.693150 + 0.720794i \(0.743778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2268.00 0.199259
\(507\) 0 0
\(508\) −1304.00 −0.113889
\(509\) 15420.0 1.34279 0.671394 0.741100i \(-0.265696\pi\)
0.671394 + 0.741100i \(0.265696\pi\)
\(510\) 0 0
\(511\) 2032.00 0.175911
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 13482.0 1.15694
\(515\) 0 0
\(516\) 0 0
\(517\) −5184.00 −0.440990
\(518\) −1184.00 −0.100429
\(519\) 0 0
\(520\) 0 0
\(521\) 10494.0 0.882439 0.441219 0.897399i \(-0.354546\pi\)
0.441219 + 0.897399i \(0.354546\pi\)
\(522\) 0 0
\(523\) 10708.0 0.895274 0.447637 0.894215i \(-0.352266\pi\)
0.447637 + 0.894215i \(0.352266\pi\)
\(524\) −3960.00 −0.330140
\(525\) 0 0
\(526\) 4680.00 0.387942
\(527\) 1275.00 0.105389
\(528\) 0 0
\(529\) −8198.00 −0.673790
\(530\) 0 0
\(531\) 0 0
\(532\) −736.000 −0.0599805
\(533\) −1968.00 −0.159932
\(534\) 0 0
\(535\) 0 0
\(536\) −2576.00 −0.207586
\(537\) 0 0
\(538\) 12396.0 0.993363
\(539\) −5022.00 −0.401323
\(540\) 0 0
\(541\) 23030.0 1.83020 0.915099 0.403229i \(-0.132112\pi\)
0.915099 + 0.403229i \(0.132112\pi\)
\(542\) −1750.00 −0.138688
\(543\) 0 0
\(544\) 480.000 0.0378306
\(545\) 0 0
\(546\) 0 0
\(547\) 3814.00 0.298126 0.149063 0.988828i \(-0.452374\pi\)
0.149063 + 0.988828i \(0.452374\pi\)
\(548\) 588.000 0.0458360
\(549\) 0 0
\(550\) 0 0
\(551\) 3588.00 0.277412
\(552\) 0 0
\(553\) 8984.00 0.690847
\(554\) 10972.0 0.841436
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) −22266.0 −1.69379 −0.846895 0.531761i \(-0.821531\pi\)
−0.846895 + 0.531761i \(0.821531\pi\)
\(558\) 0 0
\(559\) −1520.00 −0.115007
\(560\) 0 0
\(561\) 0 0
\(562\) 6408.00 0.480970
\(563\) 23844.0 1.78491 0.892455 0.451136i \(-0.148981\pi\)
0.892455 + 0.451136i \(0.148981\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14644.0 1.08751
\(567\) 0 0
\(568\) 2160.00 0.159563
\(569\) 7488.00 0.551693 0.275846 0.961202i \(-0.411042\pi\)
0.275846 + 0.961202i \(0.411042\pi\)
\(570\) 0 0
\(571\) 5111.00 0.374586 0.187293 0.982304i \(-0.440029\pi\)
0.187293 + 0.982304i \(0.440029\pi\)
\(572\) −576.000 −0.0421045
\(573\) 0 0
\(574\) 3936.00 0.286212
\(575\) 0 0
\(576\) 0 0
\(577\) −6986.00 −0.504040 −0.252020 0.967722i \(-0.581095\pi\)
−0.252020 + 0.967722i \(0.581095\pi\)
\(578\) 9376.00 0.674724
\(579\) 0 0
\(580\) 0 0
\(581\) −6168.00 −0.440433
\(582\) 0 0
\(583\) 3186.00 0.226330
\(584\) 2032.00 0.143981
\(585\) 0 0
\(586\) 2706.00 0.190757
\(587\) −20571.0 −1.44643 −0.723216 0.690622i \(-0.757337\pi\)
−0.723216 + 0.690622i \(0.757337\pi\)
\(588\) 0 0
\(589\) −1955.00 −0.136765
\(590\) 0 0
\(591\) 0 0
\(592\) −1184.00 −0.0821995
\(593\) −23241.0 −1.60943 −0.804716 0.593660i \(-0.797683\pi\)
−0.804716 + 0.593660i \(0.797683\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4872.00 0.334840
\(597\) 0 0
\(598\) −1008.00 −0.0689301
\(599\) 20208.0 1.37842 0.689212 0.724559i \(-0.257957\pi\)
0.689212 + 0.724559i \(0.257957\pi\)
\(600\) 0 0
\(601\) −9055.00 −0.614578 −0.307289 0.951616i \(-0.599422\pi\)
−0.307289 + 0.951616i \(0.599422\pi\)
\(602\) 3040.00 0.205816
\(603\) 0 0
\(604\) −8992.00 −0.605760
\(605\) 0 0
\(606\) 0 0
\(607\) −15554.0 −1.04006 −0.520031 0.854148i \(-0.674080\pi\)
−0.520031 + 0.854148i \(0.674080\pi\)
\(608\) −736.000 −0.0490933
\(609\) 0 0
\(610\) 0 0
\(611\) 2304.00 0.152553
\(612\) 0 0
\(613\) 5632.00 0.371084 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(614\) 3316.00 0.217953
\(615\) 0 0
\(616\) 1152.00 0.0753497
\(617\) 9141.00 0.596439 0.298219 0.954497i \(-0.403607\pi\)
0.298219 + 0.954497i \(0.403607\pi\)
\(618\) 0 0
\(619\) −13372.0 −0.868281 −0.434141 0.900845i \(-0.642948\pi\)
−0.434141 + 0.900845i \(0.642948\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2088.00 0.134600
\(623\) 1584.00 0.101865
\(624\) 0 0
\(625\) 0 0
\(626\) 5176.00 0.330471
\(627\) 0 0
\(628\) 11992.0 0.761995
\(629\) 1110.00 0.0703634
\(630\) 0 0
\(631\) 11165.0 0.704392 0.352196 0.935926i \(-0.385435\pi\)
0.352196 + 0.935926i \(0.385435\pi\)
\(632\) 8984.00 0.565450
\(633\) 0 0
\(634\) −2898.00 −0.181537
\(635\) 0 0
\(636\) 0 0
\(637\) 2232.00 0.138831
\(638\) −5616.00 −0.348495
\(639\) 0 0
\(640\) 0 0
\(641\) −912.000 −0.0561963 −0.0280982 0.999605i \(-0.508945\pi\)
−0.0280982 + 0.999605i \(0.508945\pi\)
\(642\) 0 0
\(643\) 27952.0 1.71434 0.857169 0.515035i \(-0.172221\pi\)
0.857169 + 0.515035i \(0.172221\pi\)
\(644\) 2016.00 0.123356
\(645\) 0 0
\(646\) 690.000 0.0420243
\(647\) 6285.00 0.381899 0.190950 0.981600i \(-0.438843\pi\)
0.190950 + 0.981600i \(0.438843\pi\)
\(648\) 0 0
\(649\) 14256.0 0.862245
\(650\) 0 0
\(651\) 0 0
\(652\) −13880.0 −0.833716
\(653\) 16497.0 0.988633 0.494317 0.869282i \(-0.335418\pi\)
0.494317 + 0.869282i \(0.335418\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3936.00 0.234261
\(657\) 0 0
\(658\) −4608.00 −0.273007
\(659\) 14844.0 0.877451 0.438725 0.898621i \(-0.355430\pi\)
0.438725 + 0.898621i \(0.355430\pi\)
\(660\) 0 0
\(661\) 31934.0 1.87911 0.939553 0.342404i \(-0.111241\pi\)
0.939553 + 0.342404i \(0.111241\pi\)
\(662\) −9760.00 −0.573011
\(663\) 0 0
\(664\) −6168.00 −0.360489
\(665\) 0 0
\(666\) 0 0
\(667\) −9828.00 −0.570527
\(668\) −1548.00 −0.0896616
\(669\) 0 0
\(670\) 0 0
\(671\) −16326.0 −0.939282
\(672\) 0 0
\(673\) 24352.0 1.39480 0.697400 0.716682i \(-0.254340\pi\)
0.697400 + 0.716682i \(0.254340\pi\)
\(674\) −15488.0 −0.885127
\(675\) 0 0
\(676\) −8532.00 −0.485435
\(677\) 10374.0 0.588929 0.294465 0.955662i \(-0.404859\pi\)
0.294465 + 0.955662i \(0.404859\pi\)
\(678\) 0 0
\(679\) −9536.00 −0.538966
\(680\) 0 0
\(681\) 0 0
\(682\) 3060.00 0.171809
\(683\) 7347.00 0.411603 0.205802 0.978594i \(-0.434020\pi\)
0.205802 + 0.978594i \(0.434020\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −9952.00 −0.553891
\(687\) 0 0
\(688\) 3040.00 0.168458
\(689\) −1416.00 −0.0782951
\(690\) 0 0
\(691\) −5371.00 −0.295691 −0.147845 0.989010i \(-0.547234\pi\)
−0.147845 + 0.989010i \(0.547234\pi\)
\(692\) 3420.00 0.187874
\(693\) 0 0
\(694\) 1608.00 0.0879522
\(695\) 0 0
\(696\) 0 0
\(697\) −3690.00 −0.200529
\(698\) 5630.00 0.305299
\(699\) 0 0
\(700\) 0 0
\(701\) 7086.00 0.381790 0.190895 0.981610i \(-0.438861\pi\)
0.190895 + 0.981610i \(0.438861\pi\)
\(702\) 0 0
\(703\) −1702.00 −0.0913117
\(704\) 1152.00 0.0616728
\(705\) 0 0
\(706\) −7476.00 −0.398531
\(707\) 13536.0 0.720048
\(708\) 0 0
\(709\) 17186.0 0.910344 0.455172 0.890404i \(-0.349578\pi\)
0.455172 + 0.890404i \(0.349578\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1584.00 0.0833749
\(713\) 5355.00 0.281271
\(714\) 0 0
\(715\) 0 0
\(716\) −1056.00 −0.0551181
\(717\) 0 0
\(718\) 22044.0 1.14579
\(719\) −23814.0 −1.23520 −0.617602 0.786490i \(-0.711896\pi\)
−0.617602 + 0.786490i \(0.711896\pi\)
\(720\) 0 0
\(721\) 13984.0 0.722318
\(722\) 12660.0 0.652571
\(723\) 0 0
\(724\) −10204.0 −0.523797
\(725\) 0 0
\(726\) 0 0
\(727\) 22732.0 1.15967 0.579837 0.814732i \(-0.303116\pi\)
0.579837 + 0.814732i \(0.303116\pi\)
\(728\) −512.000 −0.0260659
\(729\) 0 0
\(730\) 0 0
\(731\) −2850.00 −0.144201
\(732\) 0 0
\(733\) −4664.00 −0.235019 −0.117509 0.993072i \(-0.537491\pi\)
−0.117509 + 0.993072i \(0.537491\pi\)
\(734\) 15088.0 0.758731
\(735\) 0 0
\(736\) 2016.00 0.100966
\(737\) 5796.00 0.289686
\(738\) 0 0
\(739\) 5501.00 0.273826 0.136913 0.990583i \(-0.456282\pi\)
0.136913 + 0.990583i \(0.456282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2832.00 0.140116
\(743\) 27096.0 1.33789 0.668947 0.743310i \(-0.266745\pi\)
0.668947 + 0.743310i \(0.266745\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10808.0 −0.530441
\(747\) 0 0
\(748\) −1080.00 −0.0527924
\(749\) −7584.00 −0.369978
\(750\) 0 0
\(751\) −5659.00 −0.274967 −0.137483 0.990504i \(-0.543901\pi\)
−0.137483 + 0.990504i \(0.543901\pi\)
\(752\) −4608.00 −0.223453
\(753\) 0 0
\(754\) 2496.00 0.120556
\(755\) 0 0
\(756\) 0 0
\(757\) −37694.0 −1.80979 −0.904895 0.425634i \(-0.860051\pi\)
−0.904895 + 0.425634i \(0.860051\pi\)
\(758\) 4670.00 0.223776
\(759\) 0 0
\(760\) 0 0
\(761\) −6588.00 −0.313817 −0.156909 0.987613i \(-0.550153\pi\)
−0.156909 + 0.987613i \(0.550153\pi\)
\(762\) 0 0
\(763\) −4744.00 −0.225091
\(764\) −8952.00 −0.423916
\(765\) 0 0
\(766\) −13266.0 −0.625744
\(767\) −6336.00 −0.298279
\(768\) 0 0
\(769\) −19.0000 −0.000890972 0 −0.000445486 1.00000i \(-0.500142\pi\)
−0.000445486 1.00000i \(0.500142\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8720.00 −0.406528
\(773\) −33639.0 −1.56521 −0.782607 0.622516i \(-0.786111\pi\)
−0.782607 + 0.622516i \(0.786111\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −9536.00 −0.441137
\(777\) 0 0
\(778\) 15132.0 0.697312
\(779\) 5658.00 0.260230
\(780\) 0 0
\(781\) −4860.00 −0.222669
\(782\) −1890.00 −0.0864274
\(783\) 0 0
\(784\) −4464.00 −0.203353
\(785\) 0 0
\(786\) 0 0
\(787\) −23474.0 −1.06322 −0.531612 0.846988i \(-0.678414\pi\)
−0.531612 + 0.846988i \(0.678414\pi\)
\(788\) −10308.0 −0.465999
\(789\) 0 0
\(790\) 0 0
\(791\) −8496.00 −0.381900
\(792\) 0 0
\(793\) 7256.00 0.324928
\(794\) −14840.0 −0.663290
\(795\) 0 0
\(796\) 5648.00 0.251493
\(797\) −7917.00 −0.351863 −0.175931 0.984402i \(-0.556294\pi\)
−0.175931 + 0.984402i \(0.556294\pi\)
\(798\) 0 0
\(799\) 4320.00 0.191277
\(800\) 0 0
\(801\) 0 0
\(802\) 17004.0 0.748668
\(803\) −4572.00 −0.200925
\(804\) 0 0
\(805\) 0 0
\(806\) −1360.00 −0.0594342
\(807\) 0 0
\(808\) 13536.0 0.589350
\(809\) −41202.0 −1.79059 −0.895294 0.445476i \(-0.853034\pi\)
−0.895294 + 0.445476i \(0.853034\pi\)
\(810\) 0 0
\(811\) 35492.0 1.53674 0.768368 0.640008i \(-0.221069\pi\)
0.768368 + 0.640008i \(0.221069\pi\)
\(812\) −4992.00 −0.215745
\(813\) 0 0
\(814\) 2664.00 0.114709
\(815\) 0 0
\(816\) 0 0
\(817\) 4370.00 0.187132
\(818\) 3806.00 0.162682
\(819\) 0 0
\(820\) 0 0
\(821\) −7146.00 −0.303772 −0.151886 0.988398i \(-0.548535\pi\)
−0.151886 + 0.988398i \(0.548535\pi\)
\(822\) 0 0
\(823\) −8882.00 −0.376193 −0.188097 0.982151i \(-0.560232\pi\)
−0.188097 + 0.982151i \(0.560232\pi\)
\(824\) 13984.0 0.591208
\(825\) 0 0
\(826\) 12672.0 0.533796
\(827\) 21705.0 0.912644 0.456322 0.889815i \(-0.349166\pi\)
0.456322 + 0.889815i \(0.349166\pi\)
\(828\) 0 0
\(829\) 29018.0 1.21573 0.607863 0.794042i \(-0.292027\pi\)
0.607863 + 0.794042i \(0.292027\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −512.000 −0.0213346
\(833\) 4185.00 0.174072
\(834\) 0 0
\(835\) 0 0
\(836\) 1656.00 0.0685095
\(837\) 0 0
\(838\) −26964.0 −1.11152
\(839\) 31164.0 1.28236 0.641180 0.767390i \(-0.278445\pi\)
0.641180 + 0.767390i \(0.278445\pi\)
\(840\) 0 0
\(841\) −53.0000 −0.00217311
\(842\) 3074.00 0.125816
\(843\) 0 0
\(844\) −1228.00 −0.0500823
\(845\) 0 0
\(846\) 0 0
\(847\) 8056.00 0.326809
\(848\) 2832.00 0.114683
\(849\) 0 0
\(850\) 0 0
\(851\) 4662.00 0.187792
\(852\) 0 0
\(853\) −49160.0 −1.97328 −0.986639 0.162921i \(-0.947908\pi\)
−0.986639 + 0.162921i \(0.947908\pi\)
\(854\) −14512.0 −0.581488
\(855\) 0 0
\(856\) −7584.00 −0.302822
\(857\) 2349.00 0.0936293 0.0468147 0.998904i \(-0.485093\pi\)
0.0468147 + 0.998904i \(0.485093\pi\)
\(858\) 0 0
\(859\) −28195.0 −1.11991 −0.559954 0.828524i \(-0.689181\pi\)
−0.559954 + 0.828524i \(0.689181\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 20736.0 0.819340
\(863\) 23997.0 0.946544 0.473272 0.880916i \(-0.343073\pi\)
0.473272 + 0.880916i \(0.343073\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −26336.0 −1.03341
\(867\) 0 0
\(868\) 2720.00 0.106363
\(869\) −20214.0 −0.789083
\(870\) 0 0
\(871\) −2576.00 −0.100212
\(872\) −4744.00 −0.184234
\(873\) 0 0
\(874\) 2898.00 0.112158
\(875\) 0 0
\(876\) 0 0
\(877\) −46286.0 −1.78217 −0.891087 0.453832i \(-0.850057\pi\)
−0.891087 + 0.453832i \(0.850057\pi\)
\(878\) −14638.0 −0.562652
\(879\) 0 0
\(880\) 0 0
\(881\) 39636.0 1.51574 0.757872 0.652403i \(-0.226239\pi\)
0.757872 + 0.652403i \(0.226239\pi\)
\(882\) 0 0
\(883\) 16744.0 0.638143 0.319072 0.947731i \(-0.396629\pi\)
0.319072 + 0.947731i \(0.396629\pi\)
\(884\) 480.000 0.0182626
\(885\) 0 0
\(886\) −8238.00 −0.312371
\(887\) −1251.00 −0.0473557 −0.0236778 0.999720i \(-0.507538\pi\)
−0.0236778 + 0.999720i \(0.507538\pi\)
\(888\) 0 0
\(889\) 2608.00 0.0983909
\(890\) 0 0
\(891\) 0 0
\(892\) −20936.0 −0.785862
\(893\) −6624.00 −0.248224
\(894\) 0 0
\(895\) 0 0
\(896\) 1024.00 0.0381802
\(897\) 0 0
\(898\) 10776.0 0.400445
\(899\) −13260.0 −0.491931
\(900\) 0 0
\(901\) −2655.00 −0.0981697
\(902\) −8856.00 −0.326910
\(903\) 0 0
\(904\) −8496.00 −0.312580
\(905\) 0 0
\(906\) 0 0
\(907\) 36988.0 1.35410 0.677049 0.735938i \(-0.263259\pi\)
0.677049 + 0.735938i \(0.263259\pi\)
\(908\) −6036.00 −0.220608
\(909\) 0 0
\(910\) 0 0
\(911\) 16404.0 0.596585 0.298292 0.954475i \(-0.403583\pi\)
0.298292 + 0.954475i \(0.403583\pi\)
\(912\) 0 0
\(913\) 13878.0 0.503061
\(914\) −5504.00 −0.199186
\(915\) 0 0
\(916\) 4844.00 0.174727
\(917\) 7920.00 0.285214
\(918\) 0 0
\(919\) −664.000 −0.0238339 −0.0119169 0.999929i \(-0.503793\pi\)
−0.0119169 + 0.999929i \(0.503793\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8628.00 0.308187
\(923\) 2160.00 0.0770285
\(924\) 0 0
\(925\) 0 0
\(926\) −11588.0 −0.411237
\(927\) 0 0
\(928\) −4992.00 −0.176585
\(929\) −39642.0 −1.40001 −0.700006 0.714137i \(-0.746820\pi\)
−0.700006 + 0.714137i \(0.746820\pi\)
\(930\) 0 0
\(931\) −6417.00 −0.225895
\(932\) −24984.0 −0.878088
\(933\) 0 0
\(934\) 12618.0 0.442049
\(935\) 0 0
\(936\) 0 0
\(937\) 36028.0 1.25612 0.628059 0.778165i \(-0.283849\pi\)
0.628059 + 0.778165i \(0.283849\pi\)
\(938\) 5152.00 0.179338
\(939\) 0 0
\(940\) 0 0
\(941\) 23058.0 0.798798 0.399399 0.916777i \(-0.369219\pi\)
0.399399 + 0.916777i \(0.369219\pi\)
\(942\) 0 0
\(943\) −15498.0 −0.535190
\(944\) 12672.0 0.436905
\(945\) 0 0
\(946\) −6840.00 −0.235082
\(947\) −19953.0 −0.684673 −0.342337 0.939577i \(-0.611218\pi\)
−0.342337 + 0.939577i \(0.611218\pi\)
\(948\) 0 0
\(949\) 2032.00 0.0695063
\(950\) 0 0
\(951\) 0 0
\(952\) −960.000 −0.0326825
\(953\) −25638.0 −0.871455 −0.435727 0.900079i \(-0.643509\pi\)
−0.435727 + 0.900079i \(0.643509\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18600.0 0.629254
\(957\) 0 0
\(958\) −29652.0 −1.00001
\(959\) −1176.00 −0.0395986
\(960\) 0 0
\(961\) −22566.0 −0.757477
\(962\) −1184.00 −0.0396816
\(963\) 0 0
\(964\) −12580.0 −0.420306
\(965\) 0 0
\(966\) 0 0
\(967\) 27034.0 0.899023 0.449511 0.893275i \(-0.351598\pi\)
0.449511 + 0.893275i \(0.351598\pi\)
\(968\) 8056.00 0.267489
\(969\) 0 0
\(970\) 0 0
\(971\) 14802.0 0.489206 0.244603 0.969623i \(-0.421342\pi\)
0.244603 + 0.969623i \(0.421342\pi\)
\(972\) 0 0
\(973\) −12832.0 −0.422790
\(974\) 13516.0 0.444641
\(975\) 0 0
\(976\) −14512.0 −0.475940
\(977\) 9186.00 0.300805 0.150402 0.988625i \(-0.451943\pi\)
0.150402 + 0.988625i \(0.451943\pi\)
\(978\) 0 0
\(979\) −3564.00 −0.116349
\(980\) 0 0
\(981\) 0 0
\(982\) 29148.0 0.947200
\(983\) −31647.0 −1.02684 −0.513419 0.858138i \(-0.671621\pi\)
−0.513419 + 0.858138i \(0.671621\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4680.00 0.151158
\(987\) 0 0
\(988\) −736.000 −0.0236997
\(989\) −11970.0 −0.384857
\(990\) 0 0
\(991\) −48823.0 −1.56500 −0.782499 0.622651i \(-0.786055\pi\)
−0.782499 + 0.622651i \(0.786055\pi\)
\(992\) 2720.00 0.0870565
\(993\) 0 0
\(994\) −4320.00 −0.137849
\(995\) 0 0
\(996\) 0 0
\(997\) 13066.0 0.415050 0.207525 0.978230i \(-0.433459\pi\)
0.207525 + 0.978230i \(0.433459\pi\)
\(998\) −25222.0 −0.799988
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.4.a.f.1.1 1
3.2 odd 2 1350.4.a.t.1.1 1
5.2 odd 4 1350.4.c.n.649.1 2
5.3 odd 4 1350.4.c.n.649.2 2
5.4 even 2 270.4.a.l.1.1 yes 1
15.2 even 4 1350.4.c.g.649.2 2
15.8 even 4 1350.4.c.g.649.1 2
15.14 odd 2 270.4.a.b.1.1 1
20.19 odd 2 2160.4.a.m.1.1 1
45.4 even 6 810.4.e.b.541.1 2
45.14 odd 6 810.4.e.v.541.1 2
45.29 odd 6 810.4.e.v.271.1 2
45.34 even 6 810.4.e.b.271.1 2
60.59 even 2 2160.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.a.b.1.1 1 15.14 odd 2
270.4.a.l.1.1 yes 1 5.4 even 2
810.4.e.b.271.1 2 45.34 even 6
810.4.e.b.541.1 2 45.4 even 6
810.4.e.v.271.1 2 45.29 odd 6
810.4.e.v.541.1 2 45.14 odd 6
1350.4.a.f.1.1 1 1.1 even 1 trivial
1350.4.a.t.1.1 1 3.2 odd 2
1350.4.c.g.649.1 2 15.8 even 4
1350.4.c.g.649.2 2 15.2 even 4
1350.4.c.n.649.1 2 5.2 odd 4
1350.4.c.n.649.2 2 5.3 odd 4
2160.4.a.c.1.1 1 60.59 even 2
2160.4.a.m.1.1 1 20.19 odd 2