Properties

Label 1350.4.c.n.649.1
Level $1350$
Weight $4$
Character 1350.649
Analytic conductor $79.653$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,4,Mod(649,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.6525785077\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1350.649
Dual form 1350.4.c.n.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} -8.00000i q^{7} +8.00000i q^{8} +18.0000 q^{11} +8.00000i q^{13} -16.0000 q^{14} +16.0000 q^{16} -15.0000i q^{17} -23.0000 q^{19} -36.0000i q^{22} +63.0000i q^{23} +16.0000 q^{26} +32.0000i q^{28} -156.000 q^{29} -85.0000 q^{31} -32.0000i q^{32} -30.0000 q^{34} -74.0000i q^{37} +46.0000i q^{38} +246.000 q^{41} -190.000i q^{43} -72.0000 q^{44} +126.000 q^{46} -288.000i q^{47} +279.000 q^{49} -32.0000i q^{52} -177.000i q^{53} +64.0000 q^{56} +312.000i q^{58} -792.000 q^{59} -907.000 q^{61} +170.000i q^{62} -64.0000 q^{64} +322.000i q^{67} +60.0000i q^{68} -270.000 q^{71} +254.000i q^{73} -148.000 q^{74} +92.0000 q^{76} -144.000i q^{77} +1123.00 q^{79} -492.000i q^{82} -771.000i q^{83} -380.000 q^{86} +144.000i q^{88} +198.000 q^{89} +64.0000 q^{91} -252.000i q^{92} -576.000 q^{94} +1192.00i q^{97} -558.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 36 q^{11} - 32 q^{14} + 32 q^{16} - 46 q^{19} + 32 q^{26} - 312 q^{29} - 170 q^{31} - 60 q^{34} + 492 q^{41} - 144 q^{44} + 252 q^{46} + 558 q^{49} + 128 q^{56} - 1584 q^{59} - 1814 q^{61}+ \cdots - 1152 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 8.00000i − 0.431959i −0.976398 0.215980i \(-0.930705\pi\)
0.976398 0.215980i \(-0.0692945\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 18.0000 0.493382 0.246691 0.969094i \(-0.420657\pi\)
0.246691 + 0.969094i \(0.420657\pi\)
\(12\) 0 0
\(13\) 8.00000i 0.170677i 0.996352 + 0.0853385i \(0.0271972\pi\)
−0.996352 + 0.0853385i \(0.972803\pi\)
\(14\) −16.0000 −0.305441
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 15.0000i − 0.214002i −0.994259 0.107001i \(-0.965875\pi\)
0.994259 0.107001i \(-0.0341248\pi\)
\(18\) 0 0
\(19\) −23.0000 −0.277714 −0.138857 0.990312i \(-0.544343\pi\)
−0.138857 + 0.990312i \(0.544343\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 36.0000i − 0.348874i
\(23\) 63.0000i 0.571148i 0.958357 + 0.285574i \(0.0921843\pi\)
−0.958357 + 0.285574i \(0.907816\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 16.0000 0.120687
\(27\) 0 0
\(28\) 32.0000i 0.215980i
\(29\) −156.000 −0.998913 −0.499456 0.866339i \(-0.666467\pi\)
−0.499456 + 0.866339i \(0.666467\pi\)
\(30\) 0 0
\(31\) −85.0000 −0.492466 −0.246233 0.969211i \(-0.579193\pi\)
−0.246233 + 0.969211i \(0.579193\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 0 0
\(34\) −30.0000 −0.151322
\(35\) 0 0
\(36\) 0 0
\(37\) − 74.0000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 46.0000i 0.196373i
\(39\) 0 0
\(40\) 0 0
\(41\) 246.000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) − 190.000i − 0.673831i −0.941535 0.336915i \(-0.890616\pi\)
0.941535 0.336915i \(-0.109384\pi\)
\(44\) −72.0000 −0.246691
\(45\) 0 0
\(46\) 126.000 0.403863
\(47\) − 288.000i − 0.893811i −0.894581 0.446906i \(-0.852526\pi\)
0.894581 0.446906i \(-0.147474\pi\)
\(48\) 0 0
\(49\) 279.000 0.813411
\(50\) 0 0
\(51\) 0 0
\(52\) − 32.0000i − 0.0853385i
\(53\) − 177.000i − 0.458732i −0.973340 0.229366i \(-0.926335\pi\)
0.973340 0.229366i \(-0.0736653\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 64.0000 0.152721
\(57\) 0 0
\(58\) 312.000i 0.706338i
\(59\) −792.000 −1.74762 −0.873810 0.486267i \(-0.838358\pi\)
−0.873810 + 0.486267i \(0.838358\pi\)
\(60\) 0 0
\(61\) −907.000 −1.90376 −0.951881 0.306469i \(-0.900853\pi\)
−0.951881 + 0.306469i \(0.900853\pi\)
\(62\) 170.000i 0.348226i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 322.000i 0.587143i 0.955937 + 0.293571i \(0.0948438\pi\)
−0.955937 + 0.293571i \(0.905156\pi\)
\(68\) 60.0000i 0.107001i
\(69\) 0 0
\(70\) 0 0
\(71\) −270.000 −0.451311 −0.225656 0.974207i \(-0.572452\pi\)
−0.225656 + 0.974207i \(0.572452\pi\)
\(72\) 0 0
\(73\) 254.000i 0.407239i 0.979050 + 0.203620i \(0.0652706\pi\)
−0.979050 + 0.203620i \(0.934729\pi\)
\(74\) −148.000 −0.232495
\(75\) 0 0
\(76\) 92.0000 0.138857
\(77\) − 144.000i − 0.213121i
\(78\) 0 0
\(79\) 1123.00 1.59933 0.799667 0.600444i \(-0.205009\pi\)
0.799667 + 0.600444i \(0.205009\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 492.000i − 0.662589i
\(83\) − 771.000i − 1.01962i −0.860288 0.509809i \(-0.829716\pi\)
0.860288 0.509809i \(-0.170284\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −380.000 −0.476470
\(87\) 0 0
\(88\) 144.000i 0.174437i
\(89\) 198.000 0.235820 0.117910 0.993024i \(-0.462381\pi\)
0.117910 + 0.993024i \(0.462381\pi\)
\(90\) 0 0
\(91\) 64.0000 0.0737255
\(92\) − 252.000i − 0.285574i
\(93\) 0 0
\(94\) −576.000 −0.632020
\(95\) 0 0
\(96\) 0 0
\(97\) 1192.00i 1.24772i 0.781534 + 0.623862i \(0.214437\pi\)
−0.781534 + 0.623862i \(0.785563\pi\)
\(98\) − 558.000i − 0.575168i
\(99\) 0 0
\(100\) 0 0
\(101\) −1692.00 −1.66693 −0.833467 0.552570i \(-0.813647\pi\)
−0.833467 + 0.552570i \(0.813647\pi\)
\(102\) 0 0
\(103\) 1748.00i 1.67219i 0.548585 + 0.836095i \(0.315167\pi\)
−0.548585 + 0.836095i \(0.684833\pi\)
\(104\) −64.0000 −0.0603434
\(105\) 0 0
\(106\) −354.000 −0.324373
\(107\) 948.000i 0.856510i 0.903658 + 0.428255i \(0.140872\pi\)
−0.903658 + 0.428255i \(0.859128\pi\)
\(108\) 0 0
\(109\) −593.000 −0.521093 −0.260546 0.965461i \(-0.583903\pi\)
−0.260546 + 0.965461i \(0.583903\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 128.000i − 0.107990i
\(113\) − 1062.00i − 0.884111i −0.896988 0.442056i \(-0.854249\pi\)
0.896988 0.442056i \(-0.145751\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 624.000 0.499456
\(117\) 0 0
\(118\) 1584.00i 1.23575i
\(119\) −120.000 −0.0924402
\(120\) 0 0
\(121\) −1007.00 −0.756574
\(122\) 1814.00i 1.34616i
\(123\) 0 0
\(124\) 340.000 0.246233
\(125\) 0 0
\(126\) 0 0
\(127\) − 326.000i − 0.227778i −0.993493 0.113889i \(-0.963669\pi\)
0.993493 0.113889i \(-0.0363308\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −990.000 −0.660280 −0.330140 0.943932i \(-0.607096\pi\)
−0.330140 + 0.943932i \(0.607096\pi\)
\(132\) 0 0
\(133\) 184.000i 0.119961i
\(134\) 644.000 0.415173
\(135\) 0 0
\(136\) 120.000 0.0756611
\(137\) 147.000i 0.0916720i 0.998949 + 0.0458360i \(0.0145952\pi\)
−0.998949 + 0.0458360i \(0.985405\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 540.000i 0.319125i
\(143\) 144.000i 0.0842090i
\(144\) 0 0
\(145\) 0 0
\(146\) 508.000 0.287962
\(147\) 0 0
\(148\) 296.000i 0.164399i
\(149\) −1218.00 −0.669681 −0.334840 0.942275i \(-0.608682\pi\)
−0.334840 + 0.942275i \(0.608682\pi\)
\(150\) 0 0
\(151\) −2248.00 −1.21152 −0.605760 0.795647i \(-0.707131\pi\)
−0.605760 + 0.795647i \(0.707131\pi\)
\(152\) − 184.000i − 0.0981866i
\(153\) 0 0
\(154\) −288.000 −0.150699
\(155\) 0 0
\(156\) 0 0
\(157\) 2998.00i 1.52399i 0.647583 + 0.761995i \(0.275780\pi\)
−0.647583 + 0.761995i \(0.724220\pi\)
\(158\) − 2246.00i − 1.13090i
\(159\) 0 0
\(160\) 0 0
\(161\) 504.000 0.246713
\(162\) 0 0
\(163\) 3470.00i 1.66743i 0.552194 + 0.833716i \(0.313791\pi\)
−0.552194 + 0.833716i \(0.686209\pi\)
\(164\) −984.000 −0.468521
\(165\) 0 0
\(166\) −1542.00 −0.720978
\(167\) − 387.000i − 0.179323i −0.995972 0.0896616i \(-0.971421\pi\)
0.995972 0.0896616i \(-0.0285785\pi\)
\(168\) 0 0
\(169\) 2133.00 0.970869
\(170\) 0 0
\(171\) 0 0
\(172\) 760.000i 0.336915i
\(173\) − 855.000i − 0.375748i −0.982193 0.187874i \(-0.939840\pi\)
0.982193 0.187874i \(-0.0601597\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 288.000 0.123346
\(177\) 0 0
\(178\) − 396.000i − 0.166750i
\(179\) 264.000 0.110236 0.0551181 0.998480i \(-0.482446\pi\)
0.0551181 + 0.998480i \(0.482446\pi\)
\(180\) 0 0
\(181\) −2551.00 −1.04759 −0.523797 0.851843i \(-0.675485\pi\)
−0.523797 + 0.851843i \(0.675485\pi\)
\(182\) − 128.000i − 0.0521318i
\(183\) 0 0
\(184\) −504.000 −0.201931
\(185\) 0 0
\(186\) 0 0
\(187\) − 270.000i − 0.105585i
\(188\) 1152.00i 0.446906i
\(189\) 0 0
\(190\) 0 0
\(191\) −2238.00 −0.847832 −0.423916 0.905701i \(-0.639345\pi\)
−0.423916 + 0.905701i \(0.639345\pi\)
\(192\) 0 0
\(193\) 2180.00i 0.813056i 0.913638 + 0.406528i \(0.133261\pi\)
−0.913638 + 0.406528i \(0.866739\pi\)
\(194\) 2384.00 0.882274
\(195\) 0 0
\(196\) −1116.00 −0.406706
\(197\) − 2577.00i − 0.931998i −0.884785 0.465999i \(-0.845695\pi\)
0.884785 0.465999i \(-0.154305\pi\)
\(198\) 0 0
\(199\) −1412.00 −0.502985 −0.251493 0.967859i \(-0.580921\pi\)
−0.251493 + 0.967859i \(0.580921\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3384.00i 1.17870i
\(203\) 1248.00i 0.431490i
\(204\) 0 0
\(205\) 0 0
\(206\) 3496.00 1.18242
\(207\) 0 0
\(208\) 128.000i 0.0426692i
\(209\) −414.000 −0.137019
\(210\) 0 0
\(211\) −307.000 −0.100165 −0.0500823 0.998745i \(-0.515948\pi\)
−0.0500823 + 0.998745i \(0.515948\pi\)
\(212\) 708.000i 0.229366i
\(213\) 0 0
\(214\) 1896.00 0.605644
\(215\) 0 0
\(216\) 0 0
\(217\) 680.000i 0.212725i
\(218\) 1186.00i 0.368468i
\(219\) 0 0
\(220\) 0 0
\(221\) 120.000 0.0365252
\(222\) 0 0
\(223\) 5234.00i 1.57172i 0.618402 + 0.785862i \(0.287781\pi\)
−0.618402 + 0.785862i \(0.712219\pi\)
\(224\) −256.000 −0.0763604
\(225\) 0 0
\(226\) −2124.00 −0.625161
\(227\) − 1509.00i − 0.441215i −0.975363 0.220608i \(-0.929196\pi\)
0.975363 0.220608i \(-0.0708040\pi\)
\(228\) 0 0
\(229\) −1211.00 −0.349455 −0.174727 0.984617i \(-0.555904\pi\)
−0.174727 + 0.984617i \(0.555904\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 1248.00i − 0.353169i
\(233\) 6246.00i 1.75618i 0.478499 + 0.878088i \(0.341181\pi\)
−0.478499 + 0.878088i \(0.658819\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3168.00 0.873810
\(237\) 0 0
\(238\) 240.000i 0.0653651i
\(239\) −4650.00 −1.25851 −0.629254 0.777200i \(-0.716640\pi\)
−0.629254 + 0.777200i \(0.716640\pi\)
\(240\) 0 0
\(241\) −3145.00 −0.840611 −0.420306 0.907383i \(-0.638077\pi\)
−0.420306 + 0.907383i \(0.638077\pi\)
\(242\) 2014.00i 0.534979i
\(243\) 0 0
\(244\) 3628.00 0.951881
\(245\) 0 0
\(246\) 0 0
\(247\) − 184.000i − 0.0473994i
\(248\) − 680.000i − 0.174113i
\(249\) 0 0
\(250\) 0 0
\(251\) 1020.00 0.256501 0.128251 0.991742i \(-0.459064\pi\)
0.128251 + 0.991742i \(0.459064\pi\)
\(252\) 0 0
\(253\) 1134.00i 0.281794i
\(254\) −652.000 −0.161063
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 6741.00i − 1.63616i −0.575107 0.818078i \(-0.695040\pi\)
0.575107 0.818078i \(-0.304960\pi\)
\(258\) 0 0
\(259\) −592.000 −0.142027
\(260\) 0 0
\(261\) 0 0
\(262\) 1980.00i 0.466889i
\(263\) 2340.00i 0.548633i 0.961639 + 0.274317i \(0.0884517\pi\)
−0.961639 + 0.274317i \(0.911548\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 368.000 0.0848253
\(267\) 0 0
\(268\) − 1288.00i − 0.293571i
\(269\) 6198.00 1.40483 0.702414 0.711769i \(-0.252106\pi\)
0.702414 + 0.711769i \(0.252106\pi\)
\(270\) 0 0
\(271\) 875.000 0.196135 0.0980673 0.995180i \(-0.468734\pi\)
0.0980673 + 0.995180i \(0.468734\pi\)
\(272\) − 240.000i − 0.0535005i
\(273\) 0 0
\(274\) 294.000 0.0648219
\(275\) 0 0
\(276\) 0 0
\(277\) − 5486.00i − 1.18997i −0.803737 0.594985i \(-0.797158\pi\)
0.803737 0.594985i \(-0.202842\pi\)
\(278\) 3208.00i 0.692097i
\(279\) 0 0
\(280\) 0 0
\(281\) −3204.00 −0.680194 −0.340097 0.940390i \(-0.610460\pi\)
−0.340097 + 0.940390i \(0.610460\pi\)
\(282\) 0 0
\(283\) 7322.00i 1.53798i 0.639262 + 0.768989i \(0.279240\pi\)
−0.639262 + 0.768989i \(0.720760\pi\)
\(284\) 1080.00 0.225656
\(285\) 0 0
\(286\) 288.000 0.0595447
\(287\) − 1968.00i − 0.404764i
\(288\) 0 0
\(289\) 4688.00 0.954203
\(290\) 0 0
\(291\) 0 0
\(292\) − 1016.00i − 0.203620i
\(293\) 1353.00i 0.269772i 0.990861 + 0.134886i \(0.0430668\pi\)
−0.990861 + 0.134886i \(0.956933\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 592.000 0.116248
\(297\) 0 0
\(298\) 2436.00i 0.473536i
\(299\) −504.000 −0.0974818
\(300\) 0 0
\(301\) −1520.00 −0.291068
\(302\) 4496.00i 0.856675i
\(303\) 0 0
\(304\) −368.000 −0.0694284
\(305\) 0 0
\(306\) 0 0
\(307\) − 1658.00i − 0.308231i −0.988053 0.154116i \(-0.950747\pi\)
0.988053 0.154116i \(-0.0492529\pi\)
\(308\) 576.000i 0.106561i
\(309\) 0 0
\(310\) 0 0
\(311\) −1044.00 −0.190353 −0.0951765 0.995460i \(-0.530342\pi\)
−0.0951765 + 0.995460i \(0.530342\pi\)
\(312\) 0 0
\(313\) 2588.00i 0.467356i 0.972314 + 0.233678i \(0.0750761\pi\)
−0.972314 + 0.233678i \(0.924924\pi\)
\(314\) 5996.00 1.07762
\(315\) 0 0
\(316\) −4492.00 −0.799667
\(317\) 1449.00i 0.256732i 0.991727 + 0.128366i \(0.0409732\pi\)
−0.991727 + 0.128366i \(0.959027\pi\)
\(318\) 0 0
\(319\) −2808.00 −0.492846
\(320\) 0 0
\(321\) 0 0
\(322\) − 1008.00i − 0.174452i
\(323\) 345.000i 0.0594313i
\(324\) 0 0
\(325\) 0 0
\(326\) 6940.00 1.17905
\(327\) 0 0
\(328\) 1968.00i 0.331295i
\(329\) −2304.00 −0.386090
\(330\) 0 0
\(331\) 4880.00 0.810360 0.405180 0.914237i \(-0.367209\pi\)
0.405180 + 0.914237i \(0.367209\pi\)
\(332\) 3084.00i 0.509809i
\(333\) 0 0
\(334\) −774.000 −0.126801
\(335\) 0 0
\(336\) 0 0
\(337\) 7744.00i 1.25176i 0.779920 + 0.625879i \(0.215260\pi\)
−0.779920 + 0.625879i \(0.784740\pi\)
\(338\) − 4266.00i − 0.686508i
\(339\) 0 0
\(340\) 0 0
\(341\) −1530.00 −0.242974
\(342\) 0 0
\(343\) − 4976.00i − 0.783320i
\(344\) 1520.00 0.238235
\(345\) 0 0
\(346\) −1710.00 −0.265694
\(347\) − 804.000i − 0.124383i −0.998064 0.0621916i \(-0.980191\pi\)
0.998064 0.0621916i \(-0.0198090\pi\)
\(348\) 0 0
\(349\) 2815.00 0.431758 0.215879 0.976420i \(-0.430738\pi\)
0.215879 + 0.976420i \(0.430738\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 576.000i − 0.0872185i
\(353\) − 3738.00i − 0.563608i −0.959472 0.281804i \(-0.909067\pi\)
0.959472 0.281804i \(-0.0909328\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −792.000 −0.117910
\(357\) 0 0
\(358\) − 528.000i − 0.0779488i
\(359\) 11022.0 1.62039 0.810193 0.586163i \(-0.199362\pi\)
0.810193 + 0.586163i \(0.199362\pi\)
\(360\) 0 0
\(361\) −6330.00 −0.922875
\(362\) 5102.00i 0.740760i
\(363\) 0 0
\(364\) −256.000 −0.0368628
\(365\) 0 0
\(366\) 0 0
\(367\) − 7544.00i − 1.07301i −0.843898 0.536504i \(-0.819745\pi\)
0.843898 0.536504i \(-0.180255\pi\)
\(368\) 1008.00i 0.142787i
\(369\) 0 0
\(370\) 0 0
\(371\) −1416.00 −0.198154
\(372\) 0 0
\(373\) − 5404.00i − 0.750157i −0.926993 0.375078i \(-0.877616\pi\)
0.926993 0.375078i \(-0.122384\pi\)
\(374\) −540.000 −0.0746597
\(375\) 0 0
\(376\) 2304.00 0.316010
\(377\) − 1248.00i − 0.170491i
\(378\) 0 0
\(379\) 2335.00 0.316467 0.158233 0.987402i \(-0.449420\pi\)
0.158233 + 0.987402i \(0.449420\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4476.00i 0.599508i
\(383\) − 6633.00i − 0.884936i −0.896784 0.442468i \(-0.854103\pi\)
0.896784 0.442468i \(-0.145897\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4360.00 0.574918
\(387\) 0 0
\(388\) − 4768.00i − 0.623862i
\(389\) 7566.00 0.986148 0.493074 0.869987i \(-0.335873\pi\)
0.493074 + 0.869987i \(0.335873\pi\)
\(390\) 0 0
\(391\) 945.000 0.122227
\(392\) 2232.00i 0.287584i
\(393\) 0 0
\(394\) −5154.00 −0.659022
\(395\) 0 0
\(396\) 0 0
\(397\) 7420.00i 0.938033i 0.883189 + 0.469017i \(0.155392\pi\)
−0.883189 + 0.469017i \(0.844608\pi\)
\(398\) 2824.00i 0.355664i
\(399\) 0 0
\(400\) 0 0
\(401\) −8502.00 −1.05878 −0.529389 0.848379i \(-0.677579\pi\)
−0.529389 + 0.848379i \(0.677579\pi\)
\(402\) 0 0
\(403\) − 680.000i − 0.0840526i
\(404\) 6768.00 0.833467
\(405\) 0 0
\(406\) 2496.00 0.305109
\(407\) − 1332.00i − 0.162223i
\(408\) 0 0
\(409\) 1903.00 0.230067 0.115033 0.993362i \(-0.463303\pi\)
0.115033 + 0.993362i \(0.463303\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 6992.00i − 0.836095i
\(413\) 6336.00i 0.754901i
\(414\) 0 0
\(415\) 0 0
\(416\) 256.000 0.0301717
\(417\) 0 0
\(418\) 828.000i 0.0968871i
\(419\) −13482.0 −1.57193 −0.785965 0.618271i \(-0.787834\pi\)
−0.785965 + 0.618271i \(0.787834\pi\)
\(420\) 0 0
\(421\) −1537.00 −0.177931 −0.0889653 0.996035i \(-0.528356\pi\)
−0.0889653 + 0.996035i \(0.528356\pi\)
\(422\) 614.000i 0.0708271i
\(423\) 0 0
\(424\) 1416.00 0.162186
\(425\) 0 0
\(426\) 0 0
\(427\) 7256.00i 0.822348i
\(428\) − 3792.00i − 0.428255i
\(429\) 0 0
\(430\) 0 0
\(431\) −10368.0 −1.15872 −0.579361 0.815071i \(-0.696698\pi\)
−0.579361 + 0.815071i \(0.696698\pi\)
\(432\) 0 0
\(433\) − 13168.0i − 1.46146i −0.682665 0.730732i \(-0.739179\pi\)
0.682665 0.730732i \(-0.260821\pi\)
\(434\) 1360.00 0.150420
\(435\) 0 0
\(436\) 2372.00 0.260546
\(437\) − 1449.00i − 0.158616i
\(438\) 0 0
\(439\) −7319.00 −0.795710 −0.397855 0.917448i \(-0.630245\pi\)
−0.397855 + 0.917448i \(0.630245\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 240.000i − 0.0258272i
\(443\) − 4119.00i − 0.441760i −0.975301 0.220880i \(-0.929107\pi\)
0.975301 0.220880i \(-0.0708929\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10468.0 1.11138
\(447\) 0 0
\(448\) 512.000i 0.0539949i
\(449\) 5388.00 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) 4428.00 0.462320
\(452\) 4248.00i 0.442056i
\(453\) 0 0
\(454\) −3018.00 −0.311986
\(455\) 0 0
\(456\) 0 0
\(457\) 2752.00i 0.281692i 0.990032 + 0.140846i \(0.0449822\pi\)
−0.990032 + 0.140846i \(0.955018\pi\)
\(458\) 2422.00i 0.247102i
\(459\) 0 0
\(460\) 0 0
\(461\) −4314.00 −0.435842 −0.217921 0.975966i \(-0.569927\pi\)
−0.217921 + 0.975966i \(0.569927\pi\)
\(462\) 0 0
\(463\) − 5794.00i − 0.581577i −0.956787 0.290788i \(-0.906082\pi\)
0.956787 0.290788i \(-0.0939176\pi\)
\(464\) −2496.00 −0.249728
\(465\) 0 0
\(466\) 12492.0 1.24180
\(467\) − 6309.00i − 0.625151i −0.949893 0.312576i \(-0.898808\pi\)
0.949893 0.312576i \(-0.101192\pi\)
\(468\) 0 0
\(469\) 2576.00 0.253622
\(470\) 0 0
\(471\) 0 0
\(472\) − 6336.00i − 0.617877i
\(473\) − 3420.00i − 0.332456i
\(474\) 0 0
\(475\) 0 0
\(476\) 480.000 0.0462201
\(477\) 0 0
\(478\) 9300.00i 0.889900i
\(479\) −14826.0 −1.41423 −0.707116 0.707097i \(-0.750004\pi\)
−0.707116 + 0.707097i \(0.750004\pi\)
\(480\) 0 0
\(481\) 592.000 0.0561182
\(482\) 6290.00i 0.594402i
\(483\) 0 0
\(484\) 4028.00 0.378287
\(485\) 0 0
\(486\) 0 0
\(487\) − 6758.00i − 0.628818i −0.949288 0.314409i \(-0.898194\pi\)
0.949288 0.314409i \(-0.101806\pi\)
\(488\) − 7256.00i − 0.673081i
\(489\) 0 0
\(490\) 0 0
\(491\) −14574.0 −1.33954 −0.669771 0.742567i \(-0.733608\pi\)
−0.669771 + 0.742567i \(0.733608\pi\)
\(492\) 0 0
\(493\) 2340.00i 0.213769i
\(494\) −368.000 −0.0335164
\(495\) 0 0
\(496\) −1360.00 −0.123117
\(497\) 2160.00i 0.194948i
\(498\) 0 0
\(499\) −12611.0 −1.13135 −0.565677 0.824627i \(-0.691385\pi\)
−0.565677 + 0.824627i \(0.691385\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 2040.00i − 0.181374i
\(503\) 15639.0i 1.38630i 0.720794 + 0.693150i \(0.243778\pi\)
−0.720794 + 0.693150i \(0.756222\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2268.00 0.199259
\(507\) 0 0
\(508\) 1304.00i 0.113889i
\(509\) −15420.0 −1.34279 −0.671394 0.741100i \(-0.734304\pi\)
−0.671394 + 0.741100i \(0.734304\pi\)
\(510\) 0 0
\(511\) 2032.00 0.175911
\(512\) − 512.000i − 0.0441942i
\(513\) 0 0
\(514\) −13482.0 −1.15694
\(515\) 0 0
\(516\) 0 0
\(517\) − 5184.00i − 0.440990i
\(518\) 1184.00i 0.100429i
\(519\) 0 0
\(520\) 0 0
\(521\) 10494.0 0.882439 0.441219 0.897399i \(-0.354546\pi\)
0.441219 + 0.897399i \(0.354546\pi\)
\(522\) 0 0
\(523\) − 10708.0i − 0.895274i −0.894215 0.447637i \(-0.852266\pi\)
0.894215 0.447637i \(-0.147734\pi\)
\(524\) 3960.00 0.330140
\(525\) 0 0
\(526\) 4680.00 0.387942
\(527\) 1275.00i 0.105389i
\(528\) 0 0
\(529\) 8198.00 0.673790
\(530\) 0 0
\(531\) 0 0
\(532\) − 736.000i − 0.0599805i
\(533\) 1968.00i 0.159932i
\(534\) 0 0
\(535\) 0 0
\(536\) −2576.00 −0.207586
\(537\) 0 0
\(538\) − 12396.0i − 0.993363i
\(539\) 5022.00 0.401323
\(540\) 0 0
\(541\) 23030.0 1.83020 0.915099 0.403229i \(-0.132112\pi\)
0.915099 + 0.403229i \(0.132112\pi\)
\(542\) − 1750.00i − 0.138688i
\(543\) 0 0
\(544\) −480.000 −0.0378306
\(545\) 0 0
\(546\) 0 0
\(547\) 3814.00i 0.298126i 0.988828 + 0.149063i \(0.0476257\pi\)
−0.988828 + 0.149063i \(0.952374\pi\)
\(548\) − 588.000i − 0.0458360i
\(549\) 0 0
\(550\) 0 0
\(551\) 3588.00 0.277412
\(552\) 0 0
\(553\) − 8984.00i − 0.690847i
\(554\) −10972.0 −0.841436
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) − 22266.0i − 1.69379i −0.531761 0.846895i \(-0.678469\pi\)
0.531761 0.846895i \(-0.321531\pi\)
\(558\) 0 0
\(559\) 1520.00 0.115007
\(560\) 0 0
\(561\) 0 0
\(562\) 6408.00i 0.480970i
\(563\) − 23844.0i − 1.78491i −0.451136 0.892455i \(-0.648981\pi\)
0.451136 0.892455i \(-0.351019\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14644.0 1.08751
\(567\) 0 0
\(568\) − 2160.00i − 0.159563i
\(569\) −7488.00 −0.551693 −0.275846 0.961202i \(-0.588958\pi\)
−0.275846 + 0.961202i \(0.588958\pi\)
\(570\) 0 0
\(571\) 5111.00 0.374586 0.187293 0.982304i \(-0.440029\pi\)
0.187293 + 0.982304i \(0.440029\pi\)
\(572\) − 576.000i − 0.0421045i
\(573\) 0 0
\(574\) −3936.00 −0.286212
\(575\) 0 0
\(576\) 0 0
\(577\) − 6986.00i − 0.504040i −0.967722 0.252020i \(-0.918905\pi\)
0.967722 0.252020i \(-0.0810948\pi\)
\(578\) − 9376.00i − 0.674724i
\(579\) 0 0
\(580\) 0 0
\(581\) −6168.00 −0.440433
\(582\) 0 0
\(583\) − 3186.00i − 0.226330i
\(584\) −2032.00 −0.143981
\(585\) 0 0
\(586\) 2706.00 0.190757
\(587\) − 20571.0i − 1.44643i −0.690622 0.723216i \(-0.742663\pi\)
0.690622 0.723216i \(-0.257337\pi\)
\(588\) 0 0
\(589\) 1955.00 0.136765
\(590\) 0 0
\(591\) 0 0
\(592\) − 1184.00i − 0.0821995i
\(593\) 23241.0i 1.60943i 0.593660 + 0.804716i \(0.297683\pi\)
−0.593660 + 0.804716i \(0.702317\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4872.00 0.334840
\(597\) 0 0
\(598\) 1008.00i 0.0689301i
\(599\) −20208.0 −1.37842 −0.689212 0.724559i \(-0.742043\pi\)
−0.689212 + 0.724559i \(0.742043\pi\)
\(600\) 0 0
\(601\) −9055.00 −0.614578 −0.307289 0.951616i \(-0.599422\pi\)
−0.307289 + 0.951616i \(0.599422\pi\)
\(602\) 3040.00i 0.205816i
\(603\) 0 0
\(604\) 8992.00 0.605760
\(605\) 0 0
\(606\) 0 0
\(607\) − 15554.0i − 1.04006i −0.854148 0.520031i \(-0.825920\pi\)
0.854148 0.520031i \(-0.174080\pi\)
\(608\) 736.000i 0.0490933i
\(609\) 0 0
\(610\) 0 0
\(611\) 2304.00 0.152553
\(612\) 0 0
\(613\) − 5632.00i − 0.371084i −0.982636 0.185542i \(-0.940596\pi\)
0.982636 0.185542i \(-0.0594040\pi\)
\(614\) −3316.00 −0.217953
\(615\) 0 0
\(616\) 1152.00 0.0753497
\(617\) 9141.00i 0.596439i 0.954497 + 0.298219i \(0.0963927\pi\)
−0.954497 + 0.298219i \(0.903607\pi\)
\(618\) 0 0
\(619\) 13372.0 0.868281 0.434141 0.900845i \(-0.357052\pi\)
0.434141 + 0.900845i \(0.357052\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2088.00i 0.134600i
\(623\) − 1584.00i − 0.101865i
\(624\) 0 0
\(625\) 0 0
\(626\) 5176.00 0.330471
\(627\) 0 0
\(628\) − 11992.0i − 0.761995i
\(629\) −1110.00 −0.0703634
\(630\) 0 0
\(631\) 11165.0 0.704392 0.352196 0.935926i \(-0.385435\pi\)
0.352196 + 0.935926i \(0.385435\pi\)
\(632\) 8984.00i 0.565450i
\(633\) 0 0
\(634\) 2898.00 0.181537
\(635\) 0 0
\(636\) 0 0
\(637\) 2232.00i 0.138831i
\(638\) 5616.00i 0.348495i
\(639\) 0 0
\(640\) 0 0
\(641\) −912.000 −0.0561963 −0.0280982 0.999605i \(-0.508945\pi\)
−0.0280982 + 0.999605i \(0.508945\pi\)
\(642\) 0 0
\(643\) − 27952.0i − 1.71434i −0.515035 0.857169i \(-0.672221\pi\)
0.515035 0.857169i \(-0.327779\pi\)
\(644\) −2016.00 −0.123356
\(645\) 0 0
\(646\) 690.000 0.0420243
\(647\) 6285.00i 0.381899i 0.981600 + 0.190950i \(0.0611567\pi\)
−0.981600 + 0.190950i \(0.938843\pi\)
\(648\) 0 0
\(649\) −14256.0 −0.862245
\(650\) 0 0
\(651\) 0 0
\(652\) − 13880.0i − 0.833716i
\(653\) − 16497.0i − 0.988633i −0.869282 0.494317i \(-0.835418\pi\)
0.869282 0.494317i \(-0.164582\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3936.00 0.234261
\(657\) 0 0
\(658\) 4608.00i 0.273007i
\(659\) −14844.0 −0.877451 −0.438725 0.898621i \(-0.644570\pi\)
−0.438725 + 0.898621i \(0.644570\pi\)
\(660\) 0 0
\(661\) 31934.0 1.87911 0.939553 0.342404i \(-0.111241\pi\)
0.939553 + 0.342404i \(0.111241\pi\)
\(662\) − 9760.00i − 0.573011i
\(663\) 0 0
\(664\) 6168.00 0.360489
\(665\) 0 0
\(666\) 0 0
\(667\) − 9828.00i − 0.570527i
\(668\) 1548.00i 0.0896616i
\(669\) 0 0
\(670\) 0 0
\(671\) −16326.0 −0.939282
\(672\) 0 0
\(673\) − 24352.0i − 1.39480i −0.716682 0.697400i \(-0.754340\pi\)
0.716682 0.697400i \(-0.245660\pi\)
\(674\) 15488.0 0.885127
\(675\) 0 0
\(676\) −8532.00 −0.485435
\(677\) 10374.0i 0.588929i 0.955662 + 0.294465i \(0.0951413\pi\)
−0.955662 + 0.294465i \(0.904859\pi\)
\(678\) 0 0
\(679\) 9536.00 0.538966
\(680\) 0 0
\(681\) 0 0
\(682\) 3060.00i 0.171809i
\(683\) − 7347.00i − 0.411603i −0.978594 0.205802i \(-0.934020\pi\)
0.978594 0.205802i \(-0.0659802\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −9952.00 −0.553891
\(687\) 0 0
\(688\) − 3040.00i − 0.168458i
\(689\) 1416.00 0.0782951
\(690\) 0 0
\(691\) −5371.00 −0.295691 −0.147845 0.989010i \(-0.547234\pi\)
−0.147845 + 0.989010i \(0.547234\pi\)
\(692\) 3420.00i 0.187874i
\(693\) 0 0
\(694\) −1608.00 −0.0879522
\(695\) 0 0
\(696\) 0 0
\(697\) − 3690.00i − 0.200529i
\(698\) − 5630.00i − 0.305299i
\(699\) 0 0
\(700\) 0 0
\(701\) 7086.00 0.381790 0.190895 0.981610i \(-0.438861\pi\)
0.190895 + 0.981610i \(0.438861\pi\)
\(702\) 0 0
\(703\) 1702.00i 0.0913117i
\(704\) −1152.00 −0.0616728
\(705\) 0 0
\(706\) −7476.00 −0.398531
\(707\) 13536.0i 0.720048i
\(708\) 0 0
\(709\) −17186.0 −0.910344 −0.455172 0.890404i \(-0.650422\pi\)
−0.455172 + 0.890404i \(0.650422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1584.00i 0.0833749i
\(713\) − 5355.00i − 0.281271i
\(714\) 0 0
\(715\) 0 0
\(716\) −1056.00 −0.0551181
\(717\) 0 0
\(718\) − 22044.0i − 1.14579i
\(719\) 23814.0 1.23520 0.617602 0.786490i \(-0.288104\pi\)
0.617602 + 0.786490i \(0.288104\pi\)
\(720\) 0 0
\(721\) 13984.0 0.722318
\(722\) 12660.0i 0.652571i
\(723\) 0 0
\(724\) 10204.0 0.523797
\(725\) 0 0
\(726\) 0 0
\(727\) 22732.0i 1.15967i 0.814732 + 0.579837i \(0.196884\pi\)
−0.814732 + 0.579837i \(0.803116\pi\)
\(728\) 512.000i 0.0260659i
\(729\) 0 0
\(730\) 0 0
\(731\) −2850.00 −0.144201
\(732\) 0 0
\(733\) 4664.00i 0.235019i 0.993072 + 0.117509i \(0.0374910\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(734\) −15088.0 −0.758731
\(735\) 0 0
\(736\) 2016.00 0.100966
\(737\) 5796.00i 0.289686i
\(738\) 0 0
\(739\) −5501.00 −0.273826 −0.136913 0.990583i \(-0.543718\pi\)
−0.136913 + 0.990583i \(0.543718\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2832.00i 0.140116i
\(743\) − 27096.0i − 1.33789i −0.743310 0.668947i \(-0.766745\pi\)
0.743310 0.668947i \(-0.233255\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10808.0 −0.530441
\(747\) 0 0
\(748\) 1080.00i 0.0527924i
\(749\) 7584.00 0.369978
\(750\) 0 0
\(751\) −5659.00 −0.274967 −0.137483 0.990504i \(-0.543901\pi\)
−0.137483 + 0.990504i \(0.543901\pi\)
\(752\) − 4608.00i − 0.223453i
\(753\) 0 0
\(754\) −2496.00 −0.120556
\(755\) 0 0
\(756\) 0 0
\(757\) − 37694.0i − 1.80979i −0.425634 0.904895i \(-0.639949\pi\)
0.425634 0.904895i \(-0.360051\pi\)
\(758\) − 4670.00i − 0.223776i
\(759\) 0 0
\(760\) 0 0
\(761\) −6588.00 −0.313817 −0.156909 0.987613i \(-0.550153\pi\)
−0.156909 + 0.987613i \(0.550153\pi\)
\(762\) 0 0
\(763\) 4744.00i 0.225091i
\(764\) 8952.00 0.423916
\(765\) 0 0
\(766\) −13266.0 −0.625744
\(767\) − 6336.00i − 0.298279i
\(768\) 0 0
\(769\) 19.0000 0.000890972 0 0.000445486 1.00000i \(-0.499858\pi\)
0.000445486 1.00000i \(0.499858\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 8720.00i − 0.406528i
\(773\) 33639.0i 1.56521i 0.622516 + 0.782607i \(0.286111\pi\)
−0.622516 + 0.782607i \(0.713889\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −9536.00 −0.441137
\(777\) 0 0
\(778\) − 15132.0i − 0.697312i
\(779\) −5658.00 −0.260230
\(780\) 0 0
\(781\) −4860.00 −0.222669
\(782\) − 1890.00i − 0.0864274i
\(783\) 0 0
\(784\) 4464.00 0.203353
\(785\) 0 0
\(786\) 0 0
\(787\) − 23474.0i − 1.06322i −0.846988 0.531612i \(-0.821586\pi\)
0.846988 0.531612i \(-0.178414\pi\)
\(788\) 10308.0i 0.465999i
\(789\) 0 0
\(790\) 0 0
\(791\) −8496.00 −0.381900
\(792\) 0 0
\(793\) − 7256.00i − 0.324928i
\(794\) 14840.0 0.663290
\(795\) 0 0
\(796\) 5648.00 0.251493
\(797\) − 7917.00i − 0.351863i −0.984402 0.175931i \(-0.943706\pi\)
0.984402 0.175931i \(-0.0562937\pi\)
\(798\) 0 0
\(799\) −4320.00 −0.191277
\(800\) 0 0
\(801\) 0 0
\(802\) 17004.0i 0.748668i
\(803\) 4572.00i 0.200925i
\(804\) 0 0
\(805\) 0 0
\(806\) −1360.00 −0.0594342
\(807\) 0 0
\(808\) − 13536.0i − 0.589350i
\(809\) 41202.0 1.79059 0.895294 0.445476i \(-0.146966\pi\)
0.895294 + 0.445476i \(0.146966\pi\)
\(810\) 0 0
\(811\) 35492.0 1.53674 0.768368 0.640008i \(-0.221069\pi\)
0.768368 + 0.640008i \(0.221069\pi\)
\(812\) − 4992.00i − 0.215745i
\(813\) 0 0
\(814\) −2664.00 −0.114709
\(815\) 0 0
\(816\) 0 0
\(817\) 4370.00i 0.187132i
\(818\) − 3806.00i − 0.162682i
\(819\) 0 0
\(820\) 0 0
\(821\) −7146.00 −0.303772 −0.151886 0.988398i \(-0.548535\pi\)
−0.151886 + 0.988398i \(0.548535\pi\)
\(822\) 0 0
\(823\) 8882.00i 0.376193i 0.982151 + 0.188097i \(0.0602318\pi\)
−0.982151 + 0.188097i \(0.939768\pi\)
\(824\) −13984.0 −0.591208
\(825\) 0 0
\(826\) 12672.0 0.533796
\(827\) 21705.0i 0.912644i 0.889815 + 0.456322i \(0.150834\pi\)
−0.889815 + 0.456322i \(0.849166\pi\)
\(828\) 0 0
\(829\) −29018.0 −1.21573 −0.607863 0.794042i \(-0.707973\pi\)
−0.607863 + 0.794042i \(0.707973\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 512.000i − 0.0213346i
\(833\) − 4185.00i − 0.174072i
\(834\) 0 0
\(835\) 0 0
\(836\) 1656.00 0.0685095
\(837\) 0 0
\(838\) 26964.0i 1.11152i
\(839\) −31164.0 −1.28236 −0.641180 0.767390i \(-0.721555\pi\)
−0.641180 + 0.767390i \(0.721555\pi\)
\(840\) 0 0
\(841\) −53.0000 −0.00217311
\(842\) 3074.00i 0.125816i
\(843\) 0 0
\(844\) 1228.00 0.0500823
\(845\) 0 0
\(846\) 0 0
\(847\) 8056.00i 0.326809i
\(848\) − 2832.00i − 0.114683i
\(849\) 0 0
\(850\) 0 0
\(851\) 4662.00 0.187792
\(852\) 0 0
\(853\) 49160.0i 1.97328i 0.162921 + 0.986639i \(0.447908\pi\)
−0.162921 + 0.986639i \(0.552092\pi\)
\(854\) 14512.0 0.581488
\(855\) 0 0
\(856\) −7584.00 −0.302822
\(857\) 2349.00i 0.0936293i 0.998904 + 0.0468147i \(0.0149070\pi\)
−0.998904 + 0.0468147i \(0.985093\pi\)
\(858\) 0 0
\(859\) 28195.0 1.11991 0.559954 0.828524i \(-0.310819\pi\)
0.559954 + 0.828524i \(0.310819\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 20736.0i 0.819340i
\(863\) − 23997.0i − 0.946544i −0.880916 0.473272i \(-0.843073\pi\)
0.880916 0.473272i \(-0.156927\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −26336.0 −1.03341
\(867\) 0 0
\(868\) − 2720.00i − 0.106363i
\(869\) 20214.0 0.789083
\(870\) 0 0
\(871\) −2576.00 −0.100212
\(872\) − 4744.00i − 0.184234i
\(873\) 0 0
\(874\) −2898.00 −0.112158
\(875\) 0 0
\(876\) 0 0
\(877\) − 46286.0i − 1.78217i −0.453832 0.891087i \(-0.649943\pi\)
0.453832 0.891087i \(-0.350057\pi\)
\(878\) 14638.0i 0.562652i
\(879\) 0 0
\(880\) 0 0
\(881\) 39636.0 1.51574 0.757872 0.652403i \(-0.226239\pi\)
0.757872 + 0.652403i \(0.226239\pi\)
\(882\) 0 0
\(883\) − 16744.0i − 0.638143i −0.947731 0.319072i \(-0.896629\pi\)
0.947731 0.319072i \(-0.103371\pi\)
\(884\) −480.000 −0.0182626
\(885\) 0 0
\(886\) −8238.00 −0.312371
\(887\) − 1251.00i − 0.0473557i −0.999720 0.0236778i \(-0.992462\pi\)
0.999720 0.0236778i \(-0.00753759\pi\)
\(888\) 0 0
\(889\) −2608.00 −0.0983909
\(890\) 0 0
\(891\) 0 0
\(892\) − 20936.0i − 0.785862i
\(893\) 6624.00i 0.248224i
\(894\) 0 0
\(895\) 0 0
\(896\) 1024.00 0.0381802
\(897\) 0 0
\(898\) − 10776.0i − 0.400445i
\(899\) 13260.0 0.491931
\(900\) 0 0
\(901\) −2655.00 −0.0981697
\(902\) − 8856.00i − 0.326910i
\(903\) 0 0
\(904\) 8496.00 0.312580
\(905\) 0 0
\(906\) 0 0
\(907\) 36988.0i 1.35410i 0.735938 + 0.677049i \(0.236741\pi\)
−0.735938 + 0.677049i \(0.763259\pi\)
\(908\) 6036.00i 0.220608i
\(909\) 0 0
\(910\) 0 0
\(911\) 16404.0 0.596585 0.298292 0.954475i \(-0.403583\pi\)
0.298292 + 0.954475i \(0.403583\pi\)
\(912\) 0 0
\(913\) − 13878.0i − 0.503061i
\(914\) 5504.00 0.199186
\(915\) 0 0
\(916\) 4844.00 0.174727
\(917\) 7920.00i 0.285214i
\(918\) 0 0
\(919\) 664.000 0.0238339 0.0119169 0.999929i \(-0.496207\pi\)
0.0119169 + 0.999929i \(0.496207\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8628.00i 0.308187i
\(923\) − 2160.00i − 0.0770285i
\(924\) 0 0
\(925\) 0 0
\(926\) −11588.0 −0.411237
\(927\) 0 0
\(928\) 4992.00i 0.176585i
\(929\) 39642.0 1.40001 0.700006 0.714137i \(-0.253180\pi\)
0.700006 + 0.714137i \(0.253180\pi\)
\(930\) 0 0
\(931\) −6417.00 −0.225895
\(932\) − 24984.0i − 0.878088i
\(933\) 0 0
\(934\) −12618.0 −0.442049
\(935\) 0 0
\(936\) 0 0
\(937\) 36028.0i 1.25612i 0.778165 + 0.628059i \(0.216151\pi\)
−0.778165 + 0.628059i \(0.783849\pi\)
\(938\) − 5152.00i − 0.179338i
\(939\) 0 0
\(940\) 0 0
\(941\) 23058.0 0.798798 0.399399 0.916777i \(-0.369219\pi\)
0.399399 + 0.916777i \(0.369219\pi\)
\(942\) 0 0
\(943\) 15498.0i 0.535190i
\(944\) −12672.0 −0.436905
\(945\) 0 0
\(946\) −6840.00 −0.235082
\(947\) − 19953.0i − 0.684673i −0.939577 0.342337i \(-0.888782\pi\)
0.939577 0.342337i \(-0.111218\pi\)
\(948\) 0 0
\(949\) −2032.00 −0.0695063
\(950\) 0 0
\(951\) 0 0
\(952\) − 960.000i − 0.0326825i
\(953\) 25638.0i 0.871455i 0.900079 + 0.435727i \(0.143509\pi\)
−0.900079 + 0.435727i \(0.856491\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18600.0 0.629254
\(957\) 0 0
\(958\) 29652.0i 1.00001i
\(959\) 1176.00 0.0395986
\(960\) 0 0
\(961\) −22566.0 −0.757477
\(962\) − 1184.00i − 0.0396816i
\(963\) 0 0
\(964\) 12580.0 0.420306
\(965\) 0 0
\(966\) 0 0
\(967\) 27034.0i 0.899023i 0.893275 + 0.449511i \(0.148402\pi\)
−0.893275 + 0.449511i \(0.851598\pi\)
\(968\) − 8056.00i − 0.267489i
\(969\) 0 0
\(970\) 0 0
\(971\) 14802.0 0.489206 0.244603 0.969623i \(-0.421342\pi\)
0.244603 + 0.969623i \(0.421342\pi\)
\(972\) 0 0
\(973\) 12832.0i 0.422790i
\(974\) −13516.0 −0.444641
\(975\) 0 0
\(976\) −14512.0 −0.475940
\(977\) 9186.00i 0.300805i 0.988625 + 0.150402i \(0.0480569\pi\)
−0.988625 + 0.150402i \(0.951943\pi\)
\(978\) 0 0
\(979\) 3564.00 0.116349
\(980\) 0 0
\(981\) 0 0
\(982\) 29148.0i 0.947200i
\(983\) 31647.0i 1.02684i 0.858138 + 0.513419i \(0.171621\pi\)
−0.858138 + 0.513419i \(0.828379\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4680.00 0.151158
\(987\) 0 0
\(988\) 736.000i 0.0236997i
\(989\) 11970.0 0.384857
\(990\) 0 0
\(991\) −48823.0 −1.56500 −0.782499 0.622651i \(-0.786055\pi\)
−0.782499 + 0.622651i \(0.786055\pi\)
\(992\) 2720.00i 0.0870565i
\(993\) 0 0
\(994\) 4320.00 0.137849
\(995\) 0 0
\(996\) 0 0
\(997\) 13066.0i 0.415050i 0.978230 + 0.207525i \(0.0665408\pi\)
−0.978230 + 0.207525i \(0.933459\pi\)
\(998\) 25222.0i 0.799988i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.4.c.n.649.1 2
3.2 odd 2 1350.4.c.g.649.2 2
5.2 odd 4 270.4.a.l.1.1 yes 1
5.3 odd 4 1350.4.a.f.1.1 1
5.4 even 2 inner 1350.4.c.n.649.2 2
15.2 even 4 270.4.a.b.1.1 1
15.8 even 4 1350.4.a.t.1.1 1
15.14 odd 2 1350.4.c.g.649.1 2
20.7 even 4 2160.4.a.m.1.1 1
45.2 even 12 810.4.e.v.271.1 2
45.7 odd 12 810.4.e.b.271.1 2
45.22 odd 12 810.4.e.b.541.1 2
45.32 even 12 810.4.e.v.541.1 2
60.47 odd 4 2160.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.a.b.1.1 1 15.2 even 4
270.4.a.l.1.1 yes 1 5.2 odd 4
810.4.e.b.271.1 2 45.7 odd 12
810.4.e.b.541.1 2 45.22 odd 12
810.4.e.v.271.1 2 45.2 even 12
810.4.e.v.541.1 2 45.32 even 12
1350.4.a.f.1.1 1 5.3 odd 4
1350.4.a.t.1.1 1 15.8 even 4
1350.4.c.g.649.1 2 15.14 odd 2
1350.4.c.g.649.2 2 3.2 odd 2
1350.4.c.n.649.1 2 1.1 even 1 trivial
1350.4.c.n.649.2 2 5.4 even 2 inner
2160.4.a.c.1.1 1 60.47 odd 4
2160.4.a.m.1.1 1 20.7 even 4