Properties

Label 1350.4.a.v.1.1
Level $1350$
Weight $4$
Character 1350.1
Self dual yes
Analytic conductor $79.653$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,4,Mod(1,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.6525785077\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} +7.00000 q^{7} +8.00000 q^{8} +O(q^{10})\) \(q+2.00000 q^{2} +4.00000 q^{4} +7.00000 q^{7} +8.00000 q^{8} -60.0000 q^{11} +79.0000 q^{13} +14.0000 q^{14} +16.0000 q^{16} -108.000 q^{17} +11.0000 q^{19} -120.000 q^{22} -132.000 q^{23} +158.000 q^{26} +28.0000 q^{28} -96.0000 q^{29} +20.0000 q^{31} +32.0000 q^{32} -216.000 q^{34} +169.000 q^{37} +22.0000 q^{38} -192.000 q^{41} -488.000 q^{43} -240.000 q^{44} -264.000 q^{46} +204.000 q^{47} -294.000 q^{49} +316.000 q^{52} +360.000 q^{53} +56.0000 q^{56} -192.000 q^{58} -156.000 q^{59} +83.0000 q^{61} +40.0000 q^{62} +64.0000 q^{64} -47.0000 q^{67} -432.000 q^{68} -216.000 q^{71} +511.000 q^{73} +338.000 q^{74} +44.0000 q^{76} -420.000 q^{77} -529.000 q^{79} -384.000 q^{82} -1128.00 q^{83} -976.000 q^{86} -480.000 q^{88} -36.0000 q^{89} +553.000 q^{91} -528.000 q^{92} +408.000 q^{94} -605.000 q^{97} -588.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) 0 0
\(13\) 79.0000 1.68544 0.842718 0.538356i \(-0.180954\pi\)
0.842718 + 0.538356i \(0.180954\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −108.000 −1.54081 −0.770407 0.637552i \(-0.779947\pi\)
−0.770407 + 0.637552i \(0.779947\pi\)
\(18\) 0 0
\(19\) 11.0000 0.132820 0.0664098 0.997792i \(-0.478846\pi\)
0.0664098 + 0.997792i \(0.478846\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −120.000 −1.16291
\(23\) −132.000 −1.19669 −0.598346 0.801238i \(-0.704175\pi\)
−0.598346 + 0.801238i \(0.704175\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 158.000 1.19178
\(27\) 0 0
\(28\) 28.0000 0.188982
\(29\) −96.0000 −0.614716 −0.307358 0.951594i \(-0.599445\pi\)
−0.307358 + 0.951594i \(0.599445\pi\)
\(30\) 0 0
\(31\) 20.0000 0.115874 0.0579372 0.998320i \(-0.481548\pi\)
0.0579372 + 0.998320i \(0.481548\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −216.000 −1.08952
\(35\) 0 0
\(36\) 0 0
\(37\) 169.000 0.750903 0.375452 0.926842i \(-0.377488\pi\)
0.375452 + 0.926842i \(0.377488\pi\)
\(38\) 22.0000 0.0939177
\(39\) 0 0
\(40\) 0 0
\(41\) −192.000 −0.731350 −0.365675 0.930743i \(-0.619162\pi\)
−0.365675 + 0.930743i \(0.619162\pi\)
\(42\) 0 0
\(43\) −488.000 −1.73068 −0.865341 0.501184i \(-0.832898\pi\)
−0.865341 + 0.501184i \(0.832898\pi\)
\(44\) −240.000 −0.822304
\(45\) 0 0
\(46\) −264.000 −0.846189
\(47\) 204.000 0.633116 0.316558 0.948573i \(-0.397473\pi\)
0.316558 + 0.948573i \(0.397473\pi\)
\(48\) 0 0
\(49\) −294.000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 316.000 0.842718
\(53\) 360.000 0.933015 0.466508 0.884517i \(-0.345512\pi\)
0.466508 + 0.884517i \(0.345512\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 56.0000 0.133631
\(57\) 0 0
\(58\) −192.000 −0.434670
\(59\) −156.000 −0.344228 −0.172114 0.985077i \(-0.555060\pi\)
−0.172114 + 0.985077i \(0.555060\pi\)
\(60\) 0 0
\(61\) 83.0000 0.174214 0.0871071 0.996199i \(-0.472238\pi\)
0.0871071 + 0.996199i \(0.472238\pi\)
\(62\) 40.0000 0.0819356
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −47.0000 −0.0857010 −0.0428505 0.999081i \(-0.513644\pi\)
−0.0428505 + 0.999081i \(0.513644\pi\)
\(68\) −432.000 −0.770407
\(69\) 0 0
\(70\) 0 0
\(71\) −216.000 −0.361049 −0.180525 0.983570i \(-0.557780\pi\)
−0.180525 + 0.983570i \(0.557780\pi\)
\(72\) 0 0
\(73\) 511.000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 338.000 0.530969
\(75\) 0 0
\(76\) 44.0000 0.0664098
\(77\) −420.000 −0.621603
\(78\) 0 0
\(79\) −529.000 −0.753382 −0.376691 0.926339i \(-0.622938\pi\)
−0.376691 + 0.926339i \(0.622938\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −384.000 −0.517143
\(83\) −1128.00 −1.49174 −0.745868 0.666094i \(-0.767965\pi\)
−0.745868 + 0.666094i \(0.767965\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −976.000 −1.22378
\(87\) 0 0
\(88\) −480.000 −0.581456
\(89\) −36.0000 −0.0428763 −0.0214382 0.999770i \(-0.506825\pi\)
−0.0214382 + 0.999770i \(0.506825\pi\)
\(90\) 0 0
\(91\) 553.000 0.637035
\(92\) −528.000 −0.598346
\(93\) 0 0
\(94\) 408.000 0.447681
\(95\) 0 0
\(96\) 0 0
\(97\) −605.000 −0.633283 −0.316641 0.948545i \(-0.602555\pi\)
−0.316641 + 0.948545i \(0.602555\pi\)
\(98\) −588.000 −0.606092
\(99\) 0 0
\(100\) 0 0
\(101\) −1248.00 −1.22951 −0.614756 0.788718i \(-0.710745\pi\)
−0.614756 + 0.788718i \(0.710745\pi\)
\(102\) 0 0
\(103\) −965.000 −0.923148 −0.461574 0.887102i \(-0.652715\pi\)
−0.461574 + 0.887102i \(0.652715\pi\)
\(104\) 632.000 0.595891
\(105\) 0 0
\(106\) 720.000 0.659741
\(107\) 1332.00 1.20345 0.601726 0.798703i \(-0.294480\pi\)
0.601726 + 0.798703i \(0.294480\pi\)
\(108\) 0 0
\(109\) −1942.00 −1.70651 −0.853256 0.521492i \(-0.825376\pi\)
−0.853256 + 0.521492i \(0.825376\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 112.000 0.0944911
\(113\) 516.000 0.429568 0.214784 0.976662i \(-0.431095\pi\)
0.214784 + 0.976662i \(0.431095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −384.000 −0.307358
\(117\) 0 0
\(118\) −312.000 −0.243406
\(119\) −756.000 −0.582373
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 166.000 0.123188
\(123\) 0 0
\(124\) 80.0000 0.0579372
\(125\) 0 0
\(126\) 0 0
\(127\) 52.0000 0.0363327 0.0181664 0.999835i \(-0.494217\pi\)
0.0181664 + 0.999835i \(0.494217\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −48.0000 −0.0320136 −0.0160068 0.999872i \(-0.505095\pi\)
−0.0160068 + 0.999872i \(0.505095\pi\)
\(132\) 0 0
\(133\) 77.0000 0.0502011
\(134\) −94.0000 −0.0605997
\(135\) 0 0
\(136\) −864.000 −0.544760
\(137\) 2364.00 1.47423 0.737117 0.675765i \(-0.236186\pi\)
0.737117 + 0.675765i \(0.236186\pi\)
\(138\) 0 0
\(139\) 173.000 0.105566 0.0527830 0.998606i \(-0.483191\pi\)
0.0527830 + 0.998606i \(0.483191\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −432.000 −0.255300
\(143\) −4740.00 −2.77188
\(144\) 0 0
\(145\) 0 0
\(146\) 1022.00 0.579324
\(147\) 0 0
\(148\) 676.000 0.375452
\(149\) 1608.00 0.884111 0.442055 0.896988i \(-0.354249\pi\)
0.442055 + 0.896988i \(0.354249\pi\)
\(150\) 0 0
\(151\) −997.000 −0.537316 −0.268658 0.963236i \(-0.586580\pi\)
−0.268658 + 0.963236i \(0.586580\pi\)
\(152\) 88.0000 0.0469588
\(153\) 0 0
\(154\) −840.000 −0.439540
\(155\) 0 0
\(156\) 0 0
\(157\) −614.000 −0.312118 −0.156059 0.987748i \(-0.549879\pi\)
−0.156059 + 0.987748i \(0.549879\pi\)
\(158\) −1058.00 −0.532721
\(159\) 0 0
\(160\) 0 0
\(161\) −924.000 −0.452307
\(162\) 0 0
\(163\) −2693.00 −1.29406 −0.647031 0.762464i \(-0.723989\pi\)
−0.647031 + 0.762464i \(0.723989\pi\)
\(164\) −768.000 −0.365675
\(165\) 0 0
\(166\) −2256.00 −1.05482
\(167\) 1164.00 0.539359 0.269680 0.962950i \(-0.413082\pi\)
0.269680 + 0.962950i \(0.413082\pi\)
\(168\) 0 0
\(169\) 4044.00 1.84069
\(170\) 0 0
\(171\) 0 0
\(172\) −1952.00 −0.865341
\(173\) −3648.00 −1.60319 −0.801596 0.597866i \(-0.796016\pi\)
−0.801596 + 0.597866i \(0.796016\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −960.000 −0.411152
\(177\) 0 0
\(178\) −72.0000 −0.0303181
\(179\) −1800.00 −0.751611 −0.375805 0.926699i \(-0.622634\pi\)
−0.375805 + 0.926699i \(0.622634\pi\)
\(180\) 0 0
\(181\) −547.000 −0.224631 −0.112315 0.993673i \(-0.535827\pi\)
−0.112315 + 0.993673i \(0.535827\pi\)
\(182\) 1106.00 0.450452
\(183\) 0 0
\(184\) −1056.00 −0.423094
\(185\) 0 0
\(186\) 0 0
\(187\) 6480.00 2.53403
\(188\) 816.000 0.316558
\(189\) 0 0
\(190\) 0 0
\(191\) −3156.00 −1.19560 −0.597801 0.801644i \(-0.703959\pi\)
−0.597801 + 0.801644i \(0.703959\pi\)
\(192\) 0 0
\(193\) −1127.00 −0.420328 −0.210164 0.977666i \(-0.567400\pi\)
−0.210164 + 0.977666i \(0.567400\pi\)
\(194\) −1210.00 −0.447799
\(195\) 0 0
\(196\) −1176.00 −0.428571
\(197\) 1116.00 0.403613 0.201806 0.979425i \(-0.435319\pi\)
0.201806 + 0.979425i \(0.435319\pi\)
\(198\) 0 0
\(199\) −3283.00 −1.16948 −0.584738 0.811222i \(-0.698803\pi\)
−0.584738 + 0.811222i \(0.698803\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2496.00 −0.869396
\(203\) −672.000 −0.232341
\(204\) 0 0
\(205\) 0 0
\(206\) −1930.00 −0.652764
\(207\) 0 0
\(208\) 1264.00 0.421359
\(209\) −660.000 −0.218436
\(210\) 0 0
\(211\) −295.000 −0.0962495 −0.0481247 0.998841i \(-0.515324\pi\)
−0.0481247 + 0.998841i \(0.515324\pi\)
\(212\) 1440.00 0.466508
\(213\) 0 0
\(214\) 2664.00 0.850969
\(215\) 0 0
\(216\) 0 0
\(217\) 140.000 0.0437964
\(218\) −3884.00 −1.20669
\(219\) 0 0
\(220\) 0 0
\(221\) −8532.00 −2.59694
\(222\) 0 0
\(223\) 2644.00 0.793970 0.396985 0.917825i \(-0.370056\pi\)
0.396985 + 0.917825i \(0.370056\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 1032.00 0.303751
\(227\) −6024.00 −1.76135 −0.880676 0.473719i \(-0.842911\pi\)
−0.880676 + 0.473719i \(0.842911\pi\)
\(228\) 0 0
\(229\) −4462.00 −1.28759 −0.643793 0.765200i \(-0.722640\pi\)
−0.643793 + 0.765200i \(0.722640\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −768.000 −0.217335
\(233\) −1008.00 −0.283417 −0.141709 0.989908i \(-0.545260\pi\)
−0.141709 + 0.989908i \(0.545260\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −624.000 −0.172114
\(237\) 0 0
\(238\) −1512.00 −0.411800
\(239\) 5064.00 1.37056 0.685278 0.728281i \(-0.259681\pi\)
0.685278 + 0.728281i \(0.259681\pi\)
\(240\) 0 0
\(241\) 6257.00 1.67240 0.836201 0.548423i \(-0.184772\pi\)
0.836201 + 0.548423i \(0.184772\pi\)
\(242\) 4538.00 1.20543
\(243\) 0 0
\(244\) 332.000 0.0871071
\(245\) 0 0
\(246\) 0 0
\(247\) 869.000 0.223859
\(248\) 160.000 0.0409678
\(249\) 0 0
\(250\) 0 0
\(251\) 2160.00 0.543179 0.271590 0.962413i \(-0.412451\pi\)
0.271590 + 0.962413i \(0.412451\pi\)
\(252\) 0 0
\(253\) 7920.00 1.96809
\(254\) 104.000 0.0256911
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −168.000 −0.0407765 −0.0203882 0.999792i \(-0.506490\pi\)
−0.0203882 + 0.999792i \(0.506490\pi\)
\(258\) 0 0
\(259\) 1183.00 0.283815
\(260\) 0 0
\(261\) 0 0
\(262\) −96.0000 −0.0226370
\(263\) −2424.00 −0.568328 −0.284164 0.958776i \(-0.591716\pi\)
−0.284164 + 0.958776i \(0.591716\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 154.000 0.0354975
\(267\) 0 0
\(268\) −188.000 −0.0428505
\(269\) 396.000 0.0897567 0.0448783 0.998992i \(-0.485710\pi\)
0.0448783 + 0.998992i \(0.485710\pi\)
\(270\) 0 0
\(271\) 1811.00 0.405942 0.202971 0.979185i \(-0.434940\pi\)
0.202971 + 0.979185i \(0.434940\pi\)
\(272\) −1728.00 −0.385204
\(273\) 0 0
\(274\) 4728.00 1.04244
\(275\) 0 0
\(276\) 0 0
\(277\) 3022.00 0.655503 0.327752 0.944764i \(-0.393709\pi\)
0.327752 + 0.944764i \(0.393709\pi\)
\(278\) 346.000 0.0746464
\(279\) 0 0
\(280\) 0 0
\(281\) 3072.00 0.652171 0.326086 0.945340i \(-0.394270\pi\)
0.326086 + 0.945340i \(0.394270\pi\)
\(282\) 0 0
\(283\) 8080.00 1.69719 0.848597 0.529039i \(-0.177448\pi\)
0.848597 + 0.529039i \(0.177448\pi\)
\(284\) −864.000 −0.180525
\(285\) 0 0
\(286\) −9480.00 −1.96001
\(287\) −1344.00 −0.276424
\(288\) 0 0
\(289\) 6751.00 1.37411
\(290\) 0 0
\(291\) 0 0
\(292\) 2044.00 0.409644
\(293\) −4668.00 −0.930742 −0.465371 0.885116i \(-0.654079\pi\)
−0.465371 + 0.885116i \(0.654079\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1352.00 0.265484
\(297\) 0 0
\(298\) 3216.00 0.625161
\(299\) −10428.0 −2.01695
\(300\) 0 0
\(301\) −3416.00 −0.654136
\(302\) −1994.00 −0.379940
\(303\) 0 0
\(304\) 176.000 0.0332049
\(305\) 0 0
\(306\) 0 0
\(307\) −6752.00 −1.25523 −0.627617 0.778522i \(-0.715970\pi\)
−0.627617 + 0.778522i \(0.715970\pi\)
\(308\) −1680.00 −0.310802
\(309\) 0 0
\(310\) 0 0
\(311\) −1812.00 −0.330383 −0.165191 0.986262i \(-0.552824\pi\)
−0.165191 + 0.986262i \(0.552824\pi\)
\(312\) 0 0
\(313\) −6203.00 −1.12017 −0.560087 0.828434i \(-0.689232\pi\)
−0.560087 + 0.828434i \(0.689232\pi\)
\(314\) −1228.00 −0.220701
\(315\) 0 0
\(316\) −2116.00 −0.376691
\(317\) 10968.0 1.94329 0.971647 0.236436i \(-0.0759793\pi\)
0.971647 + 0.236436i \(0.0759793\pi\)
\(318\) 0 0
\(319\) 5760.00 1.01097
\(320\) 0 0
\(321\) 0 0
\(322\) −1848.00 −0.319829
\(323\) −1188.00 −0.204650
\(324\) 0 0
\(325\) 0 0
\(326\) −5386.00 −0.915040
\(327\) 0 0
\(328\) −1536.00 −0.258571
\(329\) 1428.00 0.239295
\(330\) 0 0
\(331\) 8165.00 1.35586 0.677929 0.735127i \(-0.262878\pi\)
0.677929 + 0.735127i \(0.262878\pi\)
\(332\) −4512.00 −0.745868
\(333\) 0 0
\(334\) 2328.00 0.381385
\(335\) 0 0
\(336\) 0 0
\(337\) 6523.00 1.05439 0.527197 0.849743i \(-0.323243\pi\)
0.527197 + 0.849743i \(0.323243\pi\)
\(338\) 8088.00 1.30157
\(339\) 0 0
\(340\) 0 0
\(341\) −1200.00 −0.190568
\(342\) 0 0
\(343\) −4459.00 −0.701934
\(344\) −3904.00 −0.611888
\(345\) 0 0
\(346\) −7296.00 −1.13363
\(347\) 6168.00 0.954224 0.477112 0.878843i \(-0.341684\pi\)
0.477112 + 0.878843i \(0.341684\pi\)
\(348\) 0 0
\(349\) −6001.00 −0.920419 −0.460209 0.887810i \(-0.652226\pi\)
−0.460209 + 0.887810i \(0.652226\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1920.00 −0.290728
\(353\) −552.000 −0.0832294 −0.0416147 0.999134i \(-0.513250\pi\)
−0.0416147 + 0.999134i \(0.513250\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −144.000 −0.0214382
\(357\) 0 0
\(358\) −3600.00 −0.531469
\(359\) 5004.00 0.735657 0.367829 0.929894i \(-0.380101\pi\)
0.367829 + 0.929894i \(0.380101\pi\)
\(360\) 0 0
\(361\) −6738.00 −0.982359
\(362\) −1094.00 −0.158838
\(363\) 0 0
\(364\) 2212.00 0.318517
\(365\) 0 0
\(366\) 0 0
\(367\) 4291.00 0.610323 0.305161 0.952301i \(-0.401290\pi\)
0.305161 + 0.952301i \(0.401290\pi\)
\(368\) −2112.00 −0.299173
\(369\) 0 0
\(370\) 0 0
\(371\) 2520.00 0.352647
\(372\) 0 0
\(373\) 2833.00 0.393263 0.196632 0.980477i \(-0.437000\pi\)
0.196632 + 0.980477i \(0.437000\pi\)
\(374\) 12960.0 1.79183
\(375\) 0 0
\(376\) 1632.00 0.223840
\(377\) −7584.00 −1.03606
\(378\) 0 0
\(379\) −5137.00 −0.696227 −0.348113 0.937452i \(-0.613178\pi\)
−0.348113 + 0.937452i \(0.613178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6312.00 −0.845419
\(383\) 5088.00 0.678811 0.339406 0.940640i \(-0.389774\pi\)
0.339406 + 0.940640i \(0.389774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2254.00 −0.297217
\(387\) 0 0
\(388\) −2420.00 −0.316641
\(389\) −7980.00 −1.04011 −0.520054 0.854133i \(-0.674088\pi\)
−0.520054 + 0.854133i \(0.674088\pi\)
\(390\) 0 0
\(391\) 14256.0 1.84388
\(392\) −2352.00 −0.303046
\(393\) 0 0
\(394\) 2232.00 0.285397
\(395\) 0 0
\(396\) 0 0
\(397\) 1834.00 0.231853 0.115927 0.993258i \(-0.463016\pi\)
0.115927 + 0.993258i \(0.463016\pi\)
\(398\) −6566.00 −0.826944
\(399\) 0 0
\(400\) 0 0
\(401\) 1464.00 0.182316 0.0911579 0.995836i \(-0.470943\pi\)
0.0911579 + 0.995836i \(0.470943\pi\)
\(402\) 0 0
\(403\) 1580.00 0.195299
\(404\) −4992.00 −0.614756
\(405\) 0 0
\(406\) −1344.00 −0.164290
\(407\) −10140.0 −1.23494
\(408\) 0 0
\(409\) −151.000 −0.0182554 −0.00912771 0.999958i \(-0.502905\pi\)
−0.00912771 + 0.999958i \(0.502905\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3860.00 −0.461574
\(413\) −1092.00 −0.130106
\(414\) 0 0
\(415\) 0 0
\(416\) 2528.00 0.297946
\(417\) 0 0
\(418\) −1320.00 −0.154458
\(419\) 11508.0 1.34177 0.670886 0.741560i \(-0.265914\pi\)
0.670886 + 0.741560i \(0.265914\pi\)
\(420\) 0 0
\(421\) −6271.00 −0.725962 −0.362981 0.931797i \(-0.618241\pi\)
−0.362981 + 0.931797i \(0.618241\pi\)
\(422\) −590.000 −0.0680587
\(423\) 0 0
\(424\) 2880.00 0.329871
\(425\) 0 0
\(426\) 0 0
\(427\) 581.000 0.0658467
\(428\) 5328.00 0.601726
\(429\) 0 0
\(430\) 0 0
\(431\) −9468.00 −1.05814 −0.529069 0.848579i \(-0.677459\pi\)
−0.529069 + 0.848579i \(0.677459\pi\)
\(432\) 0 0
\(433\) −3026.00 −0.335844 −0.167922 0.985800i \(-0.553706\pi\)
−0.167922 + 0.985800i \(0.553706\pi\)
\(434\) 280.000 0.0309687
\(435\) 0 0
\(436\) −7768.00 −0.853256
\(437\) −1452.00 −0.158944
\(438\) 0 0
\(439\) 11180.0 1.21547 0.607736 0.794139i \(-0.292078\pi\)
0.607736 + 0.794139i \(0.292078\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −17064.0 −1.83632
\(443\) −840.000 −0.0900894 −0.0450447 0.998985i \(-0.514343\pi\)
−0.0450447 + 0.998985i \(0.514343\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5288.00 0.561422
\(447\) 0 0
\(448\) 448.000 0.0472456
\(449\) −12780.0 −1.34326 −0.671632 0.740885i \(-0.734406\pi\)
−0.671632 + 0.740885i \(0.734406\pi\)
\(450\) 0 0
\(451\) 11520.0 1.20278
\(452\) 2064.00 0.214784
\(453\) 0 0
\(454\) −12048.0 −1.24546
\(455\) 0 0
\(456\) 0 0
\(457\) 15658.0 1.60274 0.801368 0.598172i \(-0.204106\pi\)
0.801368 + 0.598172i \(0.204106\pi\)
\(458\) −8924.00 −0.910461
\(459\) 0 0
\(460\) 0 0
\(461\) 15564.0 1.57242 0.786212 0.617956i \(-0.212039\pi\)
0.786212 + 0.617956i \(0.212039\pi\)
\(462\) 0 0
\(463\) 4183.00 0.419871 0.209936 0.977715i \(-0.432675\pi\)
0.209936 + 0.977715i \(0.432675\pi\)
\(464\) −1536.00 −0.153679
\(465\) 0 0
\(466\) −2016.00 −0.200406
\(467\) 13932.0 1.38051 0.690253 0.723568i \(-0.257499\pi\)
0.690253 + 0.723568i \(0.257499\pi\)
\(468\) 0 0
\(469\) −329.000 −0.0323919
\(470\) 0 0
\(471\) 0 0
\(472\) −1248.00 −0.121703
\(473\) 29280.0 2.84629
\(474\) 0 0
\(475\) 0 0
\(476\) −3024.00 −0.291187
\(477\) 0 0
\(478\) 10128.0 0.969130
\(479\) 2712.00 0.258694 0.129347 0.991599i \(-0.458712\pi\)
0.129347 + 0.991599i \(0.458712\pi\)
\(480\) 0 0
\(481\) 13351.0 1.26560
\(482\) 12514.0 1.18257
\(483\) 0 0
\(484\) 9076.00 0.852367
\(485\) 0 0
\(486\) 0 0
\(487\) 9439.00 0.878279 0.439140 0.898419i \(-0.355283\pi\)
0.439140 + 0.898419i \(0.355283\pi\)
\(488\) 664.000 0.0615940
\(489\) 0 0
\(490\) 0 0
\(491\) 11724.0 1.07759 0.538795 0.842437i \(-0.318880\pi\)
0.538795 + 0.842437i \(0.318880\pi\)
\(492\) 0 0
\(493\) 10368.0 0.947163
\(494\) 1738.00 0.158292
\(495\) 0 0
\(496\) 320.000 0.0289686
\(497\) −1512.00 −0.136464
\(498\) 0 0
\(499\) −11968.0 −1.07367 −0.536835 0.843687i \(-0.680380\pi\)
−0.536835 + 0.843687i \(0.680380\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 4320.00 0.384086
\(503\) 8892.00 0.788220 0.394110 0.919063i \(-0.371053\pi\)
0.394110 + 0.919063i \(0.371053\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 15840.0 1.39165
\(507\) 0 0
\(508\) 208.000 0.0181664
\(509\) 6756.00 0.588319 0.294160 0.955756i \(-0.404960\pi\)
0.294160 + 0.955756i \(0.404960\pi\)
\(510\) 0 0
\(511\) 3577.00 0.309662
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −336.000 −0.0288333
\(515\) 0 0
\(516\) 0 0
\(517\) −12240.0 −1.04123
\(518\) 2366.00 0.200687
\(519\) 0 0
\(520\) 0 0
\(521\) 6228.00 0.523711 0.261856 0.965107i \(-0.415666\pi\)
0.261856 + 0.965107i \(0.415666\pi\)
\(522\) 0 0
\(523\) −11639.0 −0.973113 −0.486556 0.873649i \(-0.661747\pi\)
−0.486556 + 0.873649i \(0.661747\pi\)
\(524\) −192.000 −0.0160068
\(525\) 0 0
\(526\) −4848.00 −0.401869
\(527\) −2160.00 −0.178541
\(528\) 0 0
\(529\) 5257.00 0.432070
\(530\) 0 0
\(531\) 0 0
\(532\) 308.000 0.0251006
\(533\) −15168.0 −1.23264
\(534\) 0 0
\(535\) 0 0
\(536\) −376.000 −0.0302999
\(537\) 0 0
\(538\) 792.000 0.0634676
\(539\) 17640.0 1.40966
\(540\) 0 0
\(541\) 17705.0 1.40702 0.703510 0.710686i \(-0.251615\pi\)
0.703510 + 0.710686i \(0.251615\pi\)
\(542\) 3622.00 0.287045
\(543\) 0 0
\(544\) −3456.00 −0.272380
\(545\) 0 0
\(546\) 0 0
\(547\) −3485.00 −0.272409 −0.136205 0.990681i \(-0.543490\pi\)
−0.136205 + 0.990681i \(0.543490\pi\)
\(548\) 9456.00 0.737117
\(549\) 0 0
\(550\) 0 0
\(551\) −1056.00 −0.0816463
\(552\) 0 0
\(553\) −3703.00 −0.284751
\(554\) 6044.00 0.463511
\(555\) 0 0
\(556\) 692.000 0.0527830
\(557\) −19116.0 −1.45417 −0.727083 0.686549i \(-0.759125\pi\)
−0.727083 + 0.686549i \(0.759125\pi\)
\(558\) 0 0
\(559\) −38552.0 −2.91695
\(560\) 0 0
\(561\) 0 0
\(562\) 6144.00 0.461155
\(563\) 22368.0 1.67442 0.837210 0.546881i \(-0.184185\pi\)
0.837210 + 0.546881i \(0.184185\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16160.0 1.20010
\(567\) 0 0
\(568\) −1728.00 −0.127650
\(569\) −8340.00 −0.614466 −0.307233 0.951634i \(-0.599403\pi\)
−0.307233 + 0.951634i \(0.599403\pi\)
\(570\) 0 0
\(571\) −14677.0 −1.07568 −0.537840 0.843047i \(-0.680760\pi\)
−0.537840 + 0.843047i \(0.680760\pi\)
\(572\) −18960.0 −1.38594
\(573\) 0 0
\(574\) −2688.00 −0.195462
\(575\) 0 0
\(576\) 0 0
\(577\) 10069.0 0.726478 0.363239 0.931696i \(-0.381671\pi\)
0.363239 + 0.931696i \(0.381671\pi\)
\(578\) 13502.0 0.971642
\(579\) 0 0
\(580\) 0 0
\(581\) −7896.00 −0.563823
\(582\) 0 0
\(583\) −21600.0 −1.53444
\(584\) 4088.00 0.289662
\(585\) 0 0
\(586\) −9336.00 −0.658134
\(587\) 1572.00 0.110534 0.0552669 0.998472i \(-0.482399\pi\)
0.0552669 + 0.998472i \(0.482399\pi\)
\(588\) 0 0
\(589\) 220.000 0.0153904
\(590\) 0 0
\(591\) 0 0
\(592\) 2704.00 0.187726
\(593\) 1368.00 0.0947336 0.0473668 0.998878i \(-0.484917\pi\)
0.0473668 + 0.998878i \(0.484917\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6432.00 0.442055
\(597\) 0 0
\(598\) −20856.0 −1.42620
\(599\) 23712.0 1.61744 0.808720 0.588194i \(-0.200161\pi\)
0.808720 + 0.588194i \(0.200161\pi\)
\(600\) 0 0
\(601\) −11014.0 −0.747538 −0.373769 0.927522i \(-0.621935\pi\)
−0.373769 + 0.927522i \(0.621935\pi\)
\(602\) −6832.00 −0.462544
\(603\) 0 0
\(604\) −3988.00 −0.268658
\(605\) 0 0
\(606\) 0 0
\(607\) 6415.00 0.428957 0.214478 0.976729i \(-0.431195\pi\)
0.214478 + 0.976729i \(0.431195\pi\)
\(608\) 352.000 0.0234794
\(609\) 0 0
\(610\) 0 0
\(611\) 16116.0 1.06708
\(612\) 0 0
\(613\) −15851.0 −1.04440 −0.522199 0.852824i \(-0.674888\pi\)
−0.522199 + 0.852824i \(0.674888\pi\)
\(614\) −13504.0 −0.887585
\(615\) 0 0
\(616\) −3360.00 −0.219770
\(617\) 5772.00 0.376616 0.188308 0.982110i \(-0.439700\pi\)
0.188308 + 0.982110i \(0.439700\pi\)
\(618\) 0 0
\(619\) −27781.0 −1.80390 −0.901949 0.431843i \(-0.857863\pi\)
−0.901949 + 0.431843i \(0.857863\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3624.00 −0.233616
\(623\) −252.000 −0.0162057
\(624\) 0 0
\(625\) 0 0
\(626\) −12406.0 −0.792082
\(627\) 0 0
\(628\) −2456.00 −0.156059
\(629\) −18252.0 −1.15700
\(630\) 0 0
\(631\) −29869.0 −1.88442 −0.942208 0.335029i \(-0.891254\pi\)
−0.942208 + 0.335029i \(0.891254\pi\)
\(632\) −4232.00 −0.266361
\(633\) 0 0
\(634\) 21936.0 1.37412
\(635\) 0 0
\(636\) 0 0
\(637\) −23226.0 −1.44466
\(638\) 11520.0 0.714861
\(639\) 0 0
\(640\) 0 0
\(641\) −3480.00 −0.214433 −0.107217 0.994236i \(-0.534194\pi\)
−0.107217 + 0.994236i \(0.534194\pi\)
\(642\) 0 0
\(643\) 7432.00 0.455816 0.227908 0.973683i \(-0.426812\pi\)
0.227908 + 0.973683i \(0.426812\pi\)
\(644\) −3696.00 −0.226153
\(645\) 0 0
\(646\) −2376.00 −0.144710
\(647\) −12960.0 −0.787496 −0.393748 0.919218i \(-0.628822\pi\)
−0.393748 + 0.919218i \(0.628822\pi\)
\(648\) 0 0
\(649\) 9360.00 0.566120
\(650\) 0 0
\(651\) 0 0
\(652\) −10772.0 −0.647031
\(653\) 23592.0 1.41382 0.706911 0.707302i \(-0.250088\pi\)
0.706911 + 0.707302i \(0.250088\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3072.00 −0.182838
\(657\) 0 0
\(658\) 2856.00 0.169207
\(659\) −32280.0 −1.90812 −0.954059 0.299618i \(-0.903141\pi\)
−0.954059 + 0.299618i \(0.903141\pi\)
\(660\) 0 0
\(661\) 22619.0 1.33098 0.665490 0.746407i \(-0.268223\pi\)
0.665490 + 0.746407i \(0.268223\pi\)
\(662\) 16330.0 0.958736
\(663\) 0 0
\(664\) −9024.00 −0.527408
\(665\) 0 0
\(666\) 0 0
\(667\) 12672.0 0.735625
\(668\) 4656.00 0.269680
\(669\) 0 0
\(670\) 0 0
\(671\) −4980.00 −0.286514
\(672\) 0 0
\(673\) 19861.0 1.13757 0.568786 0.822486i \(-0.307413\pi\)
0.568786 + 0.822486i \(0.307413\pi\)
\(674\) 13046.0 0.745568
\(675\) 0 0
\(676\) 16176.0 0.920346
\(677\) −8292.00 −0.470735 −0.235367 0.971906i \(-0.575629\pi\)
−0.235367 + 0.971906i \(0.575629\pi\)
\(678\) 0 0
\(679\) −4235.00 −0.239358
\(680\) 0 0
\(681\) 0 0
\(682\) −2400.00 −0.134752
\(683\) 19728.0 1.10523 0.552614 0.833437i \(-0.313630\pi\)
0.552614 + 0.833437i \(0.313630\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8918.00 −0.496342
\(687\) 0 0
\(688\) −7808.00 −0.432670
\(689\) 28440.0 1.57254
\(690\) 0 0
\(691\) 27272.0 1.50141 0.750706 0.660636i \(-0.229713\pi\)
0.750706 + 0.660636i \(0.229713\pi\)
\(692\) −14592.0 −0.801596
\(693\) 0 0
\(694\) 12336.0 0.674738
\(695\) 0 0
\(696\) 0 0
\(697\) 20736.0 1.12688
\(698\) −12002.0 −0.650834
\(699\) 0 0
\(700\) 0 0
\(701\) 21996.0 1.18513 0.592566 0.805522i \(-0.298115\pi\)
0.592566 + 0.805522i \(0.298115\pi\)
\(702\) 0 0
\(703\) 1859.00 0.0997347
\(704\) −3840.00 −0.205576
\(705\) 0 0
\(706\) −1104.00 −0.0588521
\(707\) −8736.00 −0.464712
\(708\) 0 0
\(709\) 2009.00 0.106417 0.0532084 0.998583i \(-0.483055\pi\)
0.0532084 + 0.998583i \(0.483055\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −288.000 −0.0151591
\(713\) −2640.00 −0.138666
\(714\) 0 0
\(715\) 0 0
\(716\) −7200.00 −0.375805
\(717\) 0 0
\(718\) 10008.0 0.520188
\(719\) −26280.0 −1.36311 −0.681557 0.731765i \(-0.738697\pi\)
−0.681557 + 0.731765i \(0.738697\pi\)
\(720\) 0 0
\(721\) −6755.00 −0.348917
\(722\) −13476.0 −0.694633
\(723\) 0 0
\(724\) −2188.00 −0.112315
\(725\) 0 0
\(726\) 0 0
\(727\) −20900.0 −1.06621 −0.533107 0.846048i \(-0.678976\pi\)
−0.533107 + 0.846048i \(0.678976\pi\)
\(728\) 4424.00 0.225226
\(729\) 0 0
\(730\) 0 0
\(731\) 52704.0 2.66666
\(732\) 0 0
\(733\) 17638.0 0.888778 0.444389 0.895834i \(-0.353421\pi\)
0.444389 + 0.895834i \(0.353421\pi\)
\(734\) 8582.00 0.431563
\(735\) 0 0
\(736\) −4224.00 −0.211547
\(737\) 2820.00 0.140944
\(738\) 0 0
\(739\) 30080.0 1.49731 0.748654 0.662961i \(-0.230700\pi\)
0.748654 + 0.662961i \(0.230700\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5040.00 0.249359
\(743\) 15708.0 0.775600 0.387800 0.921744i \(-0.373235\pi\)
0.387800 + 0.921744i \(0.373235\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5666.00 0.278079
\(747\) 0 0
\(748\) 25920.0 1.26702
\(749\) 9324.00 0.454862
\(750\) 0 0
\(751\) 20423.0 0.992338 0.496169 0.868226i \(-0.334740\pi\)
0.496169 + 0.868226i \(0.334740\pi\)
\(752\) 3264.00 0.158279
\(753\) 0 0
\(754\) −15168.0 −0.732607
\(755\) 0 0
\(756\) 0 0
\(757\) 4399.00 0.211208 0.105604 0.994408i \(-0.466322\pi\)
0.105604 + 0.994408i \(0.466322\pi\)
\(758\) −10274.0 −0.492307
\(759\) 0 0
\(760\) 0 0
\(761\) 20652.0 0.983751 0.491875 0.870666i \(-0.336312\pi\)
0.491875 + 0.870666i \(0.336312\pi\)
\(762\) 0 0
\(763\) −13594.0 −0.645001
\(764\) −12624.0 −0.597801
\(765\) 0 0
\(766\) 10176.0 0.479992
\(767\) −12324.0 −0.580175
\(768\) 0 0
\(769\) 27407.0 1.28520 0.642602 0.766200i \(-0.277855\pi\)
0.642602 + 0.766200i \(0.277855\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4508.00 −0.210164
\(773\) 5976.00 0.278062 0.139031 0.990288i \(-0.455601\pi\)
0.139031 + 0.990288i \(0.455601\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4840.00 −0.223899
\(777\) 0 0
\(778\) −15960.0 −0.735468
\(779\) −2112.00 −0.0971377
\(780\) 0 0
\(781\) 12960.0 0.593784
\(782\) 28512.0 1.30382
\(783\) 0 0
\(784\) −4704.00 −0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) −24131.0 −1.09298 −0.546491 0.837465i \(-0.684037\pi\)
−0.546491 + 0.837465i \(0.684037\pi\)
\(788\) 4464.00 0.201806
\(789\) 0 0
\(790\) 0 0
\(791\) 3612.00 0.162361
\(792\) 0 0
\(793\) 6557.00 0.293627
\(794\) 3668.00 0.163945
\(795\) 0 0
\(796\) −13132.0 −0.584738
\(797\) 912.000 0.0405329 0.0202664 0.999795i \(-0.493549\pi\)
0.0202664 + 0.999795i \(0.493549\pi\)
\(798\) 0 0
\(799\) −22032.0 −0.975515
\(800\) 0 0
\(801\) 0 0
\(802\) 2928.00 0.128917
\(803\) −30660.0 −1.34741
\(804\) 0 0
\(805\) 0 0
\(806\) 3160.00 0.138097
\(807\) 0 0
\(808\) −9984.00 −0.434698
\(809\) 12888.0 0.560096 0.280048 0.959986i \(-0.409650\pi\)
0.280048 + 0.959986i \(0.409650\pi\)
\(810\) 0 0
\(811\) −6856.00 −0.296852 −0.148426 0.988924i \(-0.547421\pi\)
−0.148426 + 0.988924i \(0.547421\pi\)
\(812\) −2688.00 −0.116170
\(813\) 0 0
\(814\) −20280.0 −0.873235
\(815\) 0 0
\(816\) 0 0
\(817\) −5368.00 −0.229868
\(818\) −302.000 −0.0129085
\(819\) 0 0
\(820\) 0 0
\(821\) −636.000 −0.0270360 −0.0135180 0.999909i \(-0.504303\pi\)
−0.0135180 + 0.999909i \(0.504303\pi\)
\(822\) 0 0
\(823\) −39827.0 −1.68686 −0.843428 0.537243i \(-0.819466\pi\)
−0.843428 + 0.537243i \(0.819466\pi\)
\(824\) −7720.00 −0.326382
\(825\) 0 0
\(826\) −2184.00 −0.0919989
\(827\) 38124.0 1.60302 0.801512 0.597978i \(-0.204029\pi\)
0.801512 + 0.597978i \(0.204029\pi\)
\(828\) 0 0
\(829\) 18965.0 0.794550 0.397275 0.917700i \(-0.369956\pi\)
0.397275 + 0.917700i \(0.369956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5056.00 0.210679
\(833\) 31752.0 1.32070
\(834\) 0 0
\(835\) 0 0
\(836\) −2640.00 −0.109218
\(837\) 0 0
\(838\) 23016.0 0.948776
\(839\) −27816.0 −1.14459 −0.572297 0.820046i \(-0.693948\pi\)
−0.572297 + 0.820046i \(0.693948\pi\)
\(840\) 0 0
\(841\) −15173.0 −0.622125
\(842\) −12542.0 −0.513332
\(843\) 0 0
\(844\) −1180.00 −0.0481247
\(845\) 0 0
\(846\) 0 0
\(847\) 15883.0 0.644329
\(848\) 5760.00 0.233254
\(849\) 0 0
\(850\) 0 0
\(851\) −22308.0 −0.898600
\(852\) 0 0
\(853\) 12337.0 0.495206 0.247603 0.968862i \(-0.420357\pi\)
0.247603 + 0.968862i \(0.420357\pi\)
\(854\) 1162.00 0.0465607
\(855\) 0 0
\(856\) 10656.0 0.425484
\(857\) −11352.0 −0.452482 −0.226241 0.974071i \(-0.572644\pi\)
−0.226241 + 0.974071i \(0.572644\pi\)
\(858\) 0 0
\(859\) −2527.00 −0.100373 −0.0501863 0.998740i \(-0.515982\pi\)
−0.0501863 + 0.998740i \(0.515982\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −18936.0 −0.748217
\(863\) −26388.0 −1.04086 −0.520428 0.853906i \(-0.674227\pi\)
−0.520428 + 0.853906i \(0.674227\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −6052.00 −0.237477
\(867\) 0 0
\(868\) 560.000 0.0218982
\(869\) 31740.0 1.23902
\(870\) 0 0
\(871\) −3713.00 −0.144443
\(872\) −15536.0 −0.603343
\(873\) 0 0
\(874\) −2904.00 −0.112390
\(875\) 0 0
\(876\) 0 0
\(877\) −6383.00 −0.245768 −0.122884 0.992421i \(-0.539214\pi\)
−0.122884 + 0.992421i \(0.539214\pi\)
\(878\) 22360.0 0.859469
\(879\) 0 0
\(880\) 0 0
\(881\) −28908.0 −1.10549 −0.552744 0.833351i \(-0.686419\pi\)
−0.552744 + 0.833351i \(0.686419\pi\)
\(882\) 0 0
\(883\) −36893.0 −1.40606 −0.703028 0.711162i \(-0.748169\pi\)
−0.703028 + 0.711162i \(0.748169\pi\)
\(884\) −34128.0 −1.29847
\(885\) 0 0
\(886\) −1680.00 −0.0637028
\(887\) −45528.0 −1.72343 −0.861714 0.507394i \(-0.830609\pi\)
−0.861714 + 0.507394i \(0.830609\pi\)
\(888\) 0 0
\(889\) 364.000 0.0137325
\(890\) 0 0
\(891\) 0 0
\(892\) 10576.0 0.396985
\(893\) 2244.00 0.0840903
\(894\) 0 0
\(895\) 0 0
\(896\) 896.000 0.0334077
\(897\) 0 0
\(898\) −25560.0 −0.949831
\(899\) −1920.00 −0.0712298
\(900\) 0 0
\(901\) −38880.0 −1.43760
\(902\) 23040.0 0.850497
\(903\) 0 0
\(904\) 4128.00 0.151875
\(905\) 0 0
\(906\) 0 0
\(907\) 31201.0 1.14224 0.571120 0.820866i \(-0.306509\pi\)
0.571120 + 0.820866i \(0.306509\pi\)
\(908\) −24096.0 −0.880676
\(909\) 0 0
\(910\) 0 0
\(911\) −23856.0 −0.867601 −0.433801 0.901009i \(-0.642828\pi\)
−0.433801 + 0.901009i \(0.642828\pi\)
\(912\) 0 0
\(913\) 67680.0 2.45332
\(914\) 31316.0 1.13331
\(915\) 0 0
\(916\) −17848.0 −0.643793
\(917\) −336.000 −0.0121000
\(918\) 0 0
\(919\) 23492.0 0.843231 0.421616 0.906775i \(-0.361463\pi\)
0.421616 + 0.906775i \(0.361463\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 31128.0 1.11187
\(923\) −17064.0 −0.608525
\(924\) 0 0
\(925\) 0 0
\(926\) 8366.00 0.296894
\(927\) 0 0
\(928\) −3072.00 −0.108667
\(929\) 15096.0 0.533136 0.266568 0.963816i \(-0.414110\pi\)
0.266568 + 0.963816i \(0.414110\pi\)
\(930\) 0 0
\(931\) −3234.00 −0.113845
\(932\) −4032.00 −0.141709
\(933\) 0 0
\(934\) 27864.0 0.976165
\(935\) 0 0
\(936\) 0 0
\(937\) 14965.0 0.521756 0.260878 0.965372i \(-0.415988\pi\)
0.260878 + 0.965372i \(0.415988\pi\)
\(938\) −658.000 −0.0229045
\(939\) 0 0
\(940\) 0 0
\(941\) −19524.0 −0.676370 −0.338185 0.941080i \(-0.609813\pi\)
−0.338185 + 0.941080i \(0.609813\pi\)
\(942\) 0 0
\(943\) 25344.0 0.875201
\(944\) −2496.00 −0.0860571
\(945\) 0 0
\(946\) 58560.0 2.01263
\(947\) 11076.0 0.380065 0.190033 0.981778i \(-0.439141\pi\)
0.190033 + 0.981778i \(0.439141\pi\)
\(948\) 0 0
\(949\) 40369.0 1.38086
\(950\) 0 0
\(951\) 0 0
\(952\) −6048.00 −0.205900
\(953\) −44748.0 −1.52102 −0.760509 0.649328i \(-0.775050\pi\)
−0.760509 + 0.649328i \(0.775050\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 20256.0 0.685278
\(957\) 0 0
\(958\) 5424.00 0.182924
\(959\) 16548.0 0.557208
\(960\) 0 0
\(961\) −29391.0 −0.986573
\(962\) 26702.0 0.894914
\(963\) 0 0
\(964\) 25028.0 0.836201
\(965\) 0 0
\(966\) 0 0
\(967\) −41519.0 −1.38072 −0.690362 0.723464i \(-0.742549\pi\)
−0.690362 + 0.723464i \(0.742549\pi\)
\(968\) 18152.0 0.602714
\(969\) 0 0
\(970\) 0 0
\(971\) −28404.0 −0.938752 −0.469376 0.882999i \(-0.655521\pi\)
−0.469376 + 0.882999i \(0.655521\pi\)
\(972\) 0 0
\(973\) 1211.00 0.0399002
\(974\) 18878.0 0.621037
\(975\) 0 0
\(976\) 1328.00 0.0435535
\(977\) 43032.0 1.40913 0.704563 0.709642i \(-0.251143\pi\)
0.704563 + 0.709642i \(0.251143\pi\)
\(978\) 0 0
\(979\) 2160.00 0.0705147
\(980\) 0 0
\(981\) 0 0
\(982\) 23448.0 0.761971
\(983\) 18132.0 0.588322 0.294161 0.955756i \(-0.404960\pi\)
0.294161 + 0.955756i \(0.404960\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 20736.0 0.669745
\(987\) 0 0
\(988\) 3476.00 0.111929
\(989\) 64416.0 2.07109
\(990\) 0 0
\(991\) −44467.0 −1.42537 −0.712685 0.701485i \(-0.752521\pi\)
−0.712685 + 0.701485i \(0.752521\pi\)
\(992\) 640.000 0.0204839
\(993\) 0 0
\(994\) −3024.00 −0.0964944
\(995\) 0 0
\(996\) 0 0
\(997\) −19550.0 −0.621018 −0.310509 0.950570i \(-0.600499\pi\)
−0.310509 + 0.950570i \(0.600499\pi\)
\(998\) −23936.0 −0.759199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.4.a.v.1.1 1
3.2 odd 2 1350.4.a.h.1.1 1
5.2 odd 4 1350.4.c.a.649.2 2
5.3 odd 4 1350.4.c.a.649.1 2
5.4 even 2 54.4.a.a.1.1 1
15.2 even 4 1350.4.c.t.649.1 2
15.8 even 4 1350.4.c.t.649.2 2
15.14 odd 2 54.4.a.d.1.1 yes 1
20.19 odd 2 432.4.a.b.1.1 1
40.19 odd 2 1728.4.a.bb.1.1 1
40.29 even 2 1728.4.a.ba.1.1 1
45.4 even 6 162.4.c.h.55.1 2
45.14 odd 6 162.4.c.a.55.1 2
45.29 odd 6 162.4.c.a.109.1 2
45.34 even 6 162.4.c.h.109.1 2
60.59 even 2 432.4.a.m.1.1 1
120.29 odd 2 1728.4.a.e.1.1 1
120.59 even 2 1728.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.a.a.1.1 1 5.4 even 2
54.4.a.d.1.1 yes 1 15.14 odd 2
162.4.c.a.55.1 2 45.14 odd 6
162.4.c.a.109.1 2 45.29 odd 6
162.4.c.h.55.1 2 45.4 even 6
162.4.c.h.109.1 2 45.34 even 6
432.4.a.b.1.1 1 20.19 odd 2
432.4.a.m.1.1 1 60.59 even 2
1350.4.a.h.1.1 1 3.2 odd 2
1350.4.a.v.1.1 1 1.1 even 1 trivial
1350.4.c.a.649.1 2 5.3 odd 4
1350.4.c.a.649.2 2 5.2 odd 4
1350.4.c.t.649.1 2 15.2 even 4
1350.4.c.t.649.2 2 15.8 even 4
1728.4.a.e.1.1 1 120.29 odd 2
1728.4.a.f.1.1 1 120.59 even 2
1728.4.a.ba.1.1 1 40.29 even 2
1728.4.a.bb.1.1 1 40.19 odd 2