Properties

Label 162.4.c.h.109.1
Level $162$
Weight $4$
Character 162.109
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.4.c.h.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(6.00000 - 10.3923i) q^{5} +(3.50000 + 6.06218i) q^{7} -8.00000 q^{8} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(6.00000 - 10.3923i) q^{5} +(3.50000 + 6.06218i) q^{7} -8.00000 q^{8} +24.0000 q^{10} +(30.0000 + 51.9615i) q^{11} +(39.5000 - 68.4160i) q^{13} +(-7.00000 + 12.1244i) q^{14} +(-8.00000 - 13.8564i) q^{16} +108.000 q^{17} +11.0000 q^{19} +(24.0000 + 41.5692i) q^{20} +(-60.0000 + 103.923i) q^{22} +(-66.0000 + 114.315i) q^{23} +(-9.50000 - 16.4545i) q^{25} +158.000 q^{26} -28.0000 q^{28} +(48.0000 + 83.1384i) q^{29} +(-10.0000 + 17.3205i) q^{31} +(16.0000 - 27.7128i) q^{32} +(108.000 + 187.061i) q^{34} +84.0000 q^{35} -169.000 q^{37} +(11.0000 + 19.0526i) q^{38} +(-48.0000 + 83.1384i) q^{40} +(96.0000 - 166.277i) q^{41} +(-244.000 - 422.620i) q^{43} -240.000 q^{44} -264.000 q^{46} +(102.000 + 176.669i) q^{47} +(147.000 - 254.611i) q^{49} +(19.0000 - 32.9090i) q^{50} +(158.000 + 273.664i) q^{52} -360.000 q^{53} +720.000 q^{55} +(-28.0000 - 48.4974i) q^{56} +(-96.0000 + 166.277i) q^{58} +(78.0000 - 135.100i) q^{59} +(-41.5000 - 71.8801i) q^{61} -40.0000 q^{62} +64.0000 q^{64} +(-474.000 - 820.992i) q^{65} +(-23.5000 + 40.7032i) q^{67} +(-216.000 + 374.123i) q^{68} +(84.0000 + 145.492i) q^{70} -216.000 q^{71} -511.000 q^{73} +(-169.000 - 292.717i) q^{74} +(-22.0000 + 38.1051i) q^{76} +(-210.000 + 363.731i) q^{77} +(264.500 + 458.127i) q^{79} -192.000 q^{80} +384.000 q^{82} +(-564.000 - 976.877i) q^{83} +(648.000 - 1122.37i) q^{85} +(488.000 - 845.241i) q^{86} +(-240.000 - 415.692i) q^{88} -36.0000 q^{89} +553.000 q^{91} +(-264.000 - 457.261i) q^{92} +(-204.000 + 353.338i) q^{94} +(66.0000 - 114.315i) q^{95} +(-302.500 - 523.945i) q^{97} +588.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} + 12 q^{5} + 7 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 4 q^{4} + 12 q^{5} + 7 q^{7} - 16 q^{8} + 48 q^{10} + 60 q^{11} + 79 q^{13} - 14 q^{14} - 16 q^{16} + 216 q^{17} + 22 q^{19} + 48 q^{20} - 120 q^{22} - 132 q^{23} - 19 q^{25} + 316 q^{26} - 56 q^{28} + 96 q^{29} - 20 q^{31} + 32 q^{32} + 216 q^{34} + 168 q^{35} - 338 q^{37} + 22 q^{38} - 96 q^{40} + 192 q^{41} - 488 q^{43} - 480 q^{44} - 528 q^{46} + 204 q^{47} + 294 q^{49} + 38 q^{50} + 316 q^{52} - 720 q^{53} + 1440 q^{55} - 56 q^{56} - 192 q^{58} + 156 q^{59} - 83 q^{61} - 80 q^{62} + 128 q^{64} - 948 q^{65} - 47 q^{67} - 432 q^{68} + 168 q^{70} - 432 q^{71} - 1022 q^{73} - 338 q^{74} - 44 q^{76} - 420 q^{77} + 529 q^{79} - 384 q^{80} + 768 q^{82} - 1128 q^{83} + 1296 q^{85} + 976 q^{86} - 480 q^{88} - 72 q^{89} + 1106 q^{91} - 528 q^{92} - 408 q^{94} + 132 q^{95} - 605 q^{97} + 1176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 6.00000 10.3923i 0.536656 0.929516i −0.462425 0.886658i \(-0.653021\pi\)
0.999081 0.0428575i \(-0.0136462\pi\)
\(6\) 0 0
\(7\) 3.50000 + 6.06218i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 24.0000 0.758947
\(11\) 30.0000 + 51.9615i 0.822304 + 1.42427i 0.903963 + 0.427611i \(0.140645\pi\)
−0.0816590 + 0.996660i \(0.526022\pi\)
\(12\) 0 0
\(13\) 39.5000 68.4160i 0.842718 1.45963i −0.0448711 0.998993i \(-0.514288\pi\)
0.887589 0.460637i \(-0.152379\pi\)
\(14\) −7.00000 + 12.1244i −0.133631 + 0.231455i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 108.000 1.54081 0.770407 0.637552i \(-0.220053\pi\)
0.770407 + 0.637552i \(0.220053\pi\)
\(18\) 0 0
\(19\) 11.0000 0.132820 0.0664098 0.997792i \(-0.478846\pi\)
0.0664098 + 0.997792i \(0.478846\pi\)
\(20\) 24.0000 + 41.5692i 0.268328 + 0.464758i
\(21\) 0 0
\(22\) −60.0000 + 103.923i −0.581456 + 1.00711i
\(23\) −66.0000 + 114.315i −0.598346 + 1.03637i 0.394720 + 0.918802i \(0.370842\pi\)
−0.993065 + 0.117564i \(0.962492\pi\)
\(24\) 0 0
\(25\) −9.50000 16.4545i −0.0760000 0.131636i
\(26\) 158.000 1.19178
\(27\) 0 0
\(28\) −28.0000 −0.188982
\(29\) 48.0000 + 83.1384i 0.307358 + 0.532359i 0.977783 0.209617i \(-0.0672218\pi\)
−0.670426 + 0.741977i \(0.733888\pi\)
\(30\) 0 0
\(31\) −10.0000 + 17.3205i −0.0579372 + 0.100350i −0.893539 0.448985i \(-0.851786\pi\)
0.835602 + 0.549335i \(0.185119\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 108.000 + 187.061i 0.544760 + 0.943552i
\(35\) 84.0000 0.405674
\(36\) 0 0
\(37\) −169.000 −0.750903 −0.375452 0.926842i \(-0.622512\pi\)
−0.375452 + 0.926842i \(0.622512\pi\)
\(38\) 11.0000 + 19.0526i 0.0469588 + 0.0813351i
\(39\) 0 0
\(40\) −48.0000 + 83.1384i −0.189737 + 0.328634i
\(41\) 96.0000 166.277i 0.365675 0.633368i −0.623209 0.782055i \(-0.714171\pi\)
0.988884 + 0.148687i \(0.0475048\pi\)
\(42\) 0 0
\(43\) −244.000 422.620i −0.865341 1.49881i −0.866708 0.498815i \(-0.833769\pi\)
0.00136774 0.999999i \(-0.499565\pi\)
\(44\) −240.000 −0.822304
\(45\) 0 0
\(46\) −264.000 −0.846189
\(47\) 102.000 + 176.669i 0.316558 + 0.548295i 0.979767 0.200139i \(-0.0641395\pi\)
−0.663209 + 0.748434i \(0.730806\pi\)
\(48\) 0 0
\(49\) 147.000 254.611i 0.428571 0.742307i
\(50\) 19.0000 32.9090i 0.0537401 0.0930806i
\(51\) 0 0
\(52\) 158.000 + 273.664i 0.421359 + 0.729815i
\(53\) −360.000 −0.933015 −0.466508 0.884517i \(-0.654488\pi\)
−0.466508 + 0.884517i \(0.654488\pi\)
\(54\) 0 0
\(55\) 720.000 1.76518
\(56\) −28.0000 48.4974i −0.0668153 0.115728i
\(57\) 0 0
\(58\) −96.0000 + 166.277i −0.217335 + 0.376435i
\(59\) 78.0000 135.100i 0.172114 0.298110i −0.767045 0.641594i \(-0.778274\pi\)
0.939159 + 0.343483i \(0.111607\pi\)
\(60\) 0 0
\(61\) −41.5000 71.8801i −0.0871071 0.150874i 0.819180 0.573536i \(-0.194429\pi\)
−0.906287 + 0.422663i \(0.861096\pi\)
\(62\) −40.0000 −0.0819356
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −474.000 820.992i −0.904499 1.56664i
\(66\) 0 0
\(67\) −23.5000 + 40.7032i −0.0428505 + 0.0742192i −0.886655 0.462431i \(-0.846977\pi\)
0.843805 + 0.536650i \(0.180311\pi\)
\(68\) −216.000 + 374.123i −0.385204 + 0.667192i
\(69\) 0 0
\(70\) 84.0000 + 145.492i 0.143427 + 0.248424i
\(71\) −216.000 −0.361049 −0.180525 0.983570i \(-0.557780\pi\)
−0.180525 + 0.983570i \(0.557780\pi\)
\(72\) 0 0
\(73\) −511.000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −169.000 292.717i −0.265484 0.459833i
\(75\) 0 0
\(76\) −22.0000 + 38.1051i −0.0332049 + 0.0575126i
\(77\) −210.000 + 363.731i −0.310802 + 0.538324i
\(78\) 0 0
\(79\) 264.500 + 458.127i 0.376691 + 0.652448i 0.990579 0.136946i \(-0.0437286\pi\)
−0.613888 + 0.789393i \(0.710395\pi\)
\(80\) −192.000 −0.268328
\(81\) 0 0
\(82\) 384.000 0.517143
\(83\) −564.000 976.877i −0.745868 1.29188i −0.949788 0.312894i \(-0.898702\pi\)
0.203920 0.978988i \(-0.434632\pi\)
\(84\) 0 0
\(85\) 648.000 1122.37i 0.826888 1.43221i
\(86\) 488.000 845.241i 0.611888 1.05982i
\(87\) 0 0
\(88\) −240.000 415.692i −0.290728 0.503556i
\(89\) −36.0000 −0.0428763 −0.0214382 0.999770i \(-0.506825\pi\)
−0.0214382 + 0.999770i \(0.506825\pi\)
\(90\) 0 0
\(91\) 553.000 0.637035
\(92\) −264.000 457.261i −0.299173 0.518183i
\(93\) 0 0
\(94\) −204.000 + 353.338i −0.223840 + 0.387703i
\(95\) 66.0000 114.315i 0.0712785 0.123458i
\(96\) 0 0
\(97\) −302.500 523.945i −0.316641 0.548439i 0.663144 0.748492i \(-0.269222\pi\)
−0.979785 + 0.200053i \(0.935889\pi\)
\(98\) 588.000 0.606092
\(99\) 0 0
\(100\) 76.0000 0.0760000
\(101\) 624.000 + 1080.80i 0.614756 + 1.06479i 0.990427 + 0.138035i \(0.0440787\pi\)
−0.375672 + 0.926753i \(0.622588\pi\)
\(102\) 0 0
\(103\) −482.500 + 835.715i −0.461574 + 0.799470i −0.999040 0.0438159i \(-0.986049\pi\)
0.537465 + 0.843286i \(0.319382\pi\)
\(104\) −316.000 + 547.328i −0.297946 + 0.516057i
\(105\) 0 0
\(106\) −360.000 623.538i −0.329871 0.571353i
\(107\) −1332.00 −1.20345 −0.601726 0.798703i \(-0.705520\pi\)
−0.601726 + 0.798703i \(0.705520\pi\)
\(108\) 0 0
\(109\) −1942.00 −1.70651 −0.853256 0.521492i \(-0.825376\pi\)
−0.853256 + 0.521492i \(0.825376\pi\)
\(110\) 720.000 + 1247.08i 0.624085 + 1.08095i
\(111\) 0 0
\(112\) 56.0000 96.9948i 0.0472456 0.0818317i
\(113\) 258.000 446.869i 0.214784 0.372017i −0.738422 0.674339i \(-0.764429\pi\)
0.953206 + 0.302322i \(0.0977619\pi\)
\(114\) 0 0
\(115\) 792.000 + 1371.78i 0.642212 + 1.11234i
\(116\) −384.000 −0.307358
\(117\) 0 0
\(118\) 312.000 0.243406
\(119\) 378.000 + 654.715i 0.291187 + 0.504350i
\(120\) 0 0
\(121\) −1134.50 + 1965.01i −0.852367 + 1.47634i
\(122\) 83.0000 143.760i 0.0615940 0.106684i
\(123\) 0 0
\(124\) −40.0000 69.2820i −0.0289686 0.0501751i
\(125\) 1272.00 0.910169
\(126\) 0 0
\(127\) −52.0000 −0.0363327 −0.0181664 0.999835i \(-0.505783\pi\)
−0.0181664 + 0.999835i \(0.505783\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 948.000 1641.98i 0.639578 1.10778i
\(131\) 24.0000 41.5692i 0.0160068 0.0277246i −0.857911 0.513798i \(-0.828238\pi\)
0.873918 + 0.486074i \(0.161571\pi\)
\(132\) 0 0
\(133\) 38.5000 + 66.6840i 0.0251006 + 0.0434754i
\(134\) −94.0000 −0.0605997
\(135\) 0 0
\(136\) −864.000 −0.544760
\(137\) 1182.00 + 2047.28i 0.737117 + 1.27672i 0.953788 + 0.300480i \(0.0971468\pi\)
−0.216671 + 0.976245i \(0.569520\pi\)
\(138\) 0 0
\(139\) −86.5000 + 149.822i −0.0527830 + 0.0914228i −0.891210 0.453592i \(-0.850142\pi\)
0.838427 + 0.545014i \(0.183476\pi\)
\(140\) −168.000 + 290.985i −0.101419 + 0.175662i
\(141\) 0 0
\(142\) −216.000 374.123i −0.127650 0.221096i
\(143\) 4740.00 2.77188
\(144\) 0 0
\(145\) 1152.00 0.659782
\(146\) −511.000 885.078i −0.289662 0.501709i
\(147\) 0 0
\(148\) 338.000 585.433i 0.187726 0.325151i
\(149\) −804.000 + 1392.57i −0.442055 + 0.765662i −0.997842 0.0656627i \(-0.979084\pi\)
0.555787 + 0.831325i \(0.312417\pi\)
\(150\) 0 0
\(151\) 498.500 + 863.427i 0.268658 + 0.465329i 0.968516 0.248953i \(-0.0800865\pi\)
−0.699858 + 0.714282i \(0.746753\pi\)
\(152\) −88.0000 −0.0469588
\(153\) 0 0
\(154\) −840.000 −0.439540
\(155\) 120.000 + 207.846i 0.0621847 + 0.107707i
\(156\) 0 0
\(157\) −307.000 + 531.740i −0.156059 + 0.270302i −0.933444 0.358723i \(-0.883212\pi\)
0.777385 + 0.629025i \(0.216546\pi\)
\(158\) −529.000 + 916.255i −0.266361 + 0.461350i
\(159\) 0 0
\(160\) −192.000 332.554i −0.0948683 0.164317i
\(161\) −924.000 −0.452307
\(162\) 0 0
\(163\) 2693.00 1.29406 0.647031 0.762464i \(-0.276011\pi\)
0.647031 + 0.762464i \(0.276011\pi\)
\(164\) 384.000 + 665.108i 0.182838 + 0.316684i
\(165\) 0 0
\(166\) 1128.00 1953.75i 0.527408 0.913498i
\(167\) 582.000 1008.05i 0.269680 0.467099i −0.699099 0.715025i \(-0.746416\pi\)
0.968779 + 0.247926i \(0.0797488\pi\)
\(168\) 0 0
\(169\) −2022.00 3502.21i −0.920346 1.59409i
\(170\) 2592.00 1.16940
\(171\) 0 0
\(172\) 1952.00 0.865341
\(173\) −1824.00 3159.26i −0.801596 1.38841i −0.918565 0.395270i \(-0.870651\pi\)
0.116969 0.993136i \(-0.462682\pi\)
\(174\) 0 0
\(175\) 66.5000 115.181i 0.0287253 0.0497537i
\(176\) 480.000 831.384i 0.205576 0.356068i
\(177\) 0 0
\(178\) −36.0000 62.3538i −0.0151591 0.0262563i
\(179\) −1800.00 −0.751611 −0.375805 0.926699i \(-0.622634\pi\)
−0.375805 + 0.926699i \(0.622634\pi\)
\(180\) 0 0
\(181\) −547.000 −0.224631 −0.112315 0.993673i \(-0.535827\pi\)
−0.112315 + 0.993673i \(0.535827\pi\)
\(182\) 553.000 + 957.824i 0.225226 + 0.390102i
\(183\) 0 0
\(184\) 528.000 914.523i 0.211547 0.366410i
\(185\) −1014.00 + 1756.30i −0.402977 + 0.697977i
\(186\) 0 0
\(187\) 3240.00 + 5611.84i 1.26702 + 2.19454i
\(188\) −816.000 −0.316558
\(189\) 0 0
\(190\) 264.000 0.100803
\(191\) 1578.00 + 2733.18i 0.597801 + 1.03542i 0.993145 + 0.116889i \(0.0372922\pi\)
−0.395344 + 0.918533i \(0.629374\pi\)
\(192\) 0 0
\(193\) −563.500 + 976.011i −0.210164 + 0.364014i −0.951766 0.306826i \(-0.900733\pi\)
0.741602 + 0.670840i \(0.234066\pi\)
\(194\) 605.000 1047.89i 0.223899 0.387805i
\(195\) 0 0
\(196\) 588.000 + 1018.45i 0.214286 + 0.371154i
\(197\) −1116.00 −0.403613 −0.201806 0.979425i \(-0.564681\pi\)
−0.201806 + 0.979425i \(0.564681\pi\)
\(198\) 0 0
\(199\) −3283.00 −1.16948 −0.584738 0.811222i \(-0.698803\pi\)
−0.584738 + 0.811222i \(0.698803\pi\)
\(200\) 76.0000 + 131.636i 0.0268701 + 0.0465403i
\(201\) 0 0
\(202\) −1248.00 + 2161.60i −0.434698 + 0.752919i
\(203\) −336.000 + 581.969i −0.116170 + 0.201213i
\(204\) 0 0
\(205\) −1152.00 1995.32i −0.392484 0.679802i
\(206\) −1930.00 −0.652764
\(207\) 0 0
\(208\) −1264.00 −0.421359
\(209\) 330.000 + 571.577i 0.109218 + 0.189171i
\(210\) 0 0
\(211\) 147.500 255.477i 0.0481247 0.0833545i −0.840960 0.541098i \(-0.818009\pi\)
0.889084 + 0.457743i \(0.151342\pi\)
\(212\) 720.000 1247.08i 0.233254 0.404007i
\(213\) 0 0
\(214\) −1332.00 2307.09i −0.425484 0.736960i
\(215\) −5856.00 −1.85756
\(216\) 0 0
\(217\) −140.000 −0.0437964
\(218\) −1942.00 3363.64i −0.603343 1.04502i
\(219\) 0 0
\(220\) −1440.00 + 2494.15i −0.441294 + 0.764344i
\(221\) 4266.00 7388.93i 1.29847 2.24902i
\(222\) 0 0
\(223\) 1322.00 + 2289.77i 0.396985 + 0.687598i 0.993352 0.115113i \(-0.0367231\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 1032.00 0.303751
\(227\) −3012.00 5216.94i −0.880676 1.52538i −0.850591 0.525828i \(-0.823755\pi\)
−0.0300853 0.999547i \(-0.509578\pi\)
\(228\) 0 0
\(229\) 2231.00 3864.21i 0.643793 1.11508i −0.340786 0.940141i \(-0.610693\pi\)
0.984579 0.174941i \(-0.0559736\pi\)
\(230\) −1584.00 + 2743.57i −0.454112 + 0.786546i
\(231\) 0 0
\(232\) −384.000 665.108i −0.108667 0.188217i
\(233\) 1008.00 0.283417 0.141709 0.989908i \(-0.454740\pi\)
0.141709 + 0.989908i \(0.454740\pi\)
\(234\) 0 0
\(235\) 2448.00 0.679532
\(236\) 312.000 + 540.400i 0.0860571 + 0.149055i
\(237\) 0 0
\(238\) −756.000 + 1309.43i −0.205900 + 0.356629i
\(239\) −2532.00 + 4385.55i −0.685278 + 1.18694i 0.288071 + 0.957609i \(0.406986\pi\)
−0.973349 + 0.229327i \(0.926347\pi\)
\(240\) 0 0
\(241\) −3128.50 5418.72i −0.836201 1.44834i −0.893049 0.449959i \(-0.851438\pi\)
0.0568481 0.998383i \(-0.481895\pi\)
\(242\) −4538.00 −1.20543
\(243\) 0 0
\(244\) 332.000 0.0871071
\(245\) −1764.00 3055.34i −0.459991 0.796728i
\(246\) 0 0
\(247\) 434.500 752.576i 0.111929 0.193867i
\(248\) 80.0000 138.564i 0.0204839 0.0354791i
\(249\) 0 0
\(250\) 1272.00 + 2203.17i 0.321793 + 0.557362i
\(251\) 2160.00 0.543179 0.271590 0.962413i \(-0.412451\pi\)
0.271590 + 0.962413i \(0.412451\pi\)
\(252\) 0 0
\(253\) −7920.00 −1.96809
\(254\) −52.0000 90.0666i −0.0128456 0.0222491i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −84.0000 + 145.492i −0.0203882 + 0.0353135i −0.876040 0.482239i \(-0.839824\pi\)
0.855651 + 0.517553i \(0.173157\pi\)
\(258\) 0 0
\(259\) −591.500 1024.51i −0.141907 0.245791i
\(260\) 3792.00 0.904499
\(261\) 0 0
\(262\) 96.0000 0.0226370
\(263\) −1212.00 2099.25i −0.284164 0.492186i 0.688242 0.725481i \(-0.258383\pi\)
−0.972406 + 0.233295i \(0.925049\pi\)
\(264\) 0 0
\(265\) −2160.00 + 3741.23i −0.500708 + 0.867253i
\(266\) −77.0000 + 133.368i −0.0177488 + 0.0307418i
\(267\) 0 0
\(268\) −94.0000 162.813i −0.0214252 0.0371096i
\(269\) 396.000 0.0897567 0.0448783 0.998992i \(-0.485710\pi\)
0.0448783 + 0.998992i \(0.485710\pi\)
\(270\) 0 0
\(271\) 1811.00 0.405942 0.202971 0.979185i \(-0.434940\pi\)
0.202971 + 0.979185i \(0.434940\pi\)
\(272\) −864.000 1496.49i −0.192602 0.333596i
\(273\) 0 0
\(274\) −2364.00 + 4094.57i −0.521221 + 0.902781i
\(275\) 570.000 987.269i 0.124990 0.216489i
\(276\) 0 0
\(277\) 1511.00 + 2617.13i 0.327752 + 0.567682i 0.982065 0.188541i \(-0.0603758\pi\)
−0.654314 + 0.756223i \(0.727042\pi\)
\(278\) −346.000 −0.0746464
\(279\) 0 0
\(280\) −672.000 −0.143427
\(281\) −1536.00 2660.43i −0.326086 0.564797i 0.655646 0.755069i \(-0.272396\pi\)
−0.981731 + 0.190272i \(0.939063\pi\)
\(282\) 0 0
\(283\) 4040.00 6997.49i 0.848597 1.46981i −0.0338626 0.999426i \(-0.510781\pi\)
0.882460 0.470387i \(-0.155886\pi\)
\(284\) 432.000 748.246i 0.0902623 0.156339i
\(285\) 0 0
\(286\) 4740.00 + 8209.92i 0.980007 + 1.69742i
\(287\) 1344.00 0.276424
\(288\) 0 0
\(289\) 6751.00 1.37411
\(290\) 1152.00 + 1995.32i 0.233268 + 0.404032i
\(291\) 0 0
\(292\) 1022.00 1770.16i 0.204822 0.354762i
\(293\) −2334.00 + 4042.61i −0.465371 + 0.806046i −0.999218 0.0395346i \(-0.987412\pi\)
0.533847 + 0.845581i \(0.320746\pi\)
\(294\) 0 0
\(295\) −936.000 1621.20i −0.184732 0.319966i
\(296\) 1352.00 0.265484
\(297\) 0 0
\(298\) −3216.00 −0.625161
\(299\) 5214.00 + 9030.91i 1.00847 + 1.74673i
\(300\) 0 0
\(301\) 1708.00 2958.34i 0.327068 0.566498i
\(302\) −997.000 + 1726.85i −0.189970 + 0.329037i
\(303\) 0 0
\(304\) −88.0000 152.420i −0.0166025 0.0287563i
\(305\) −996.000 −0.186986
\(306\) 0 0
\(307\) 6752.00 1.25523 0.627617 0.778522i \(-0.284030\pi\)
0.627617 + 0.778522i \(0.284030\pi\)
\(308\) −840.000 1454.92i −0.155401 0.269162i
\(309\) 0 0
\(310\) −240.000 + 415.692i −0.0439712 + 0.0761604i
\(311\) 906.000 1569.24i 0.165191 0.286120i −0.771532 0.636191i \(-0.780509\pi\)
0.936723 + 0.350071i \(0.113842\pi\)
\(312\) 0 0
\(313\) −3101.50 5371.96i −0.560087 0.970099i −0.997488 0.0708323i \(-0.977434\pi\)
0.437402 0.899266i \(-0.355899\pi\)
\(314\) −1228.00 −0.220701
\(315\) 0 0
\(316\) −2116.00 −0.376691
\(317\) 5484.00 + 9498.57i 0.971647 + 1.68294i 0.690583 + 0.723253i \(0.257354\pi\)
0.281064 + 0.959689i \(0.409313\pi\)
\(318\) 0 0
\(319\) −2880.00 + 4988.31i −0.505483 + 0.875522i
\(320\) 384.000 665.108i 0.0670820 0.116190i
\(321\) 0 0
\(322\) −924.000 1600.41i −0.159915 0.276980i
\(323\) 1188.00 0.204650
\(324\) 0 0
\(325\) −1501.00 −0.256186
\(326\) 2693.00 + 4664.41i 0.457520 + 0.792448i
\(327\) 0 0
\(328\) −768.000 + 1330.22i −0.129286 + 0.223929i
\(329\) −714.000 + 1236.68i −0.119648 + 0.207236i
\(330\) 0 0
\(331\) −4082.50 7071.10i −0.677929 1.17421i −0.975603 0.219540i \(-0.929544\pi\)
0.297675 0.954667i \(-0.403789\pi\)
\(332\) 4512.00 0.745868
\(333\) 0 0
\(334\) 2328.00 0.381385
\(335\) 282.000 + 488.438i 0.0459920 + 0.0796604i
\(336\) 0 0
\(337\) 3261.50 5649.08i 0.527197 0.913131i −0.472301 0.881437i \(-0.656577\pi\)
0.999498 0.0316939i \(-0.0100902\pi\)
\(338\) 4044.00 7004.41i 0.650783 1.12719i
\(339\) 0 0
\(340\) 2592.00 + 4489.48i 0.413444 + 0.716106i
\(341\) −1200.00 −0.190568
\(342\) 0 0
\(343\) 4459.00 0.701934
\(344\) 1952.00 + 3380.96i 0.305944 + 0.529911i
\(345\) 0 0
\(346\) 3648.00 6318.52i 0.566814 0.981751i
\(347\) 3084.00 5341.64i 0.477112 0.826382i −0.522544 0.852612i \(-0.675017\pi\)
0.999656 + 0.0262304i \(0.00835034\pi\)
\(348\) 0 0
\(349\) 3000.50 + 5197.02i 0.460209 + 0.797106i 0.998971 0.0453522i \(-0.0144410\pi\)
−0.538762 + 0.842458i \(0.681108\pi\)
\(350\) 266.000 0.0406237
\(351\) 0 0
\(352\) 1920.00 0.290728
\(353\) −276.000 478.046i −0.0416147 0.0720788i 0.844468 0.535606i \(-0.179917\pi\)
−0.886083 + 0.463527i \(0.846584\pi\)
\(354\) 0 0
\(355\) −1296.00 + 2244.74i −0.193759 + 0.335601i
\(356\) 72.0000 124.708i 0.0107191 0.0185660i
\(357\) 0 0
\(358\) −1800.00 3117.69i −0.265735 0.460266i
\(359\) 5004.00 0.735657 0.367829 0.929894i \(-0.380101\pi\)
0.367829 + 0.929894i \(0.380101\pi\)
\(360\) 0 0
\(361\) −6738.00 −0.982359
\(362\) −547.000 947.432i −0.0794190 0.137558i
\(363\) 0 0
\(364\) −1106.00 + 1915.65i −0.159259 + 0.275844i
\(365\) −3066.00 + 5310.47i −0.439676 + 0.761541i
\(366\) 0 0
\(367\) 2145.50 + 3716.12i 0.305161 + 0.528555i 0.977297 0.211873i \(-0.0679563\pi\)
−0.672136 + 0.740428i \(0.734623\pi\)
\(368\) 2112.00 0.299173
\(369\) 0 0
\(370\) −4056.00 −0.569896
\(371\) −1260.00 2182.38i −0.176323 0.305401i
\(372\) 0 0
\(373\) 1416.50 2453.45i 0.196632 0.340576i −0.750803 0.660527i \(-0.770333\pi\)
0.947434 + 0.319951i \(0.103666\pi\)
\(374\) −6480.00 + 11223.7i −0.895917 + 1.55177i
\(375\) 0 0
\(376\) −816.000 1413.35i −0.111920 0.193851i
\(377\) 7584.00 1.03606
\(378\) 0 0
\(379\) −5137.00 −0.696227 −0.348113 0.937452i \(-0.613178\pi\)
−0.348113 + 0.937452i \(0.613178\pi\)
\(380\) 264.000 + 457.261i 0.0356392 + 0.0617290i
\(381\) 0 0
\(382\) −3156.00 + 5466.35i −0.422709 + 0.732154i
\(383\) 2544.00 4406.34i 0.339406 0.587868i −0.644915 0.764254i \(-0.723107\pi\)
0.984321 + 0.176386i \(0.0564408\pi\)
\(384\) 0 0
\(385\) 2520.00 + 4364.77i 0.333587 + 0.577790i
\(386\) −2254.00 −0.297217
\(387\) 0 0
\(388\) 2420.00 0.316641
\(389\) 3990.00 + 6910.88i 0.520054 + 0.900760i 0.999728 + 0.0233134i \(0.00742154\pi\)
−0.479674 + 0.877447i \(0.659245\pi\)
\(390\) 0 0
\(391\) −7128.00 + 12346.1i −0.921940 + 1.59685i
\(392\) −1176.00 + 2036.89i −0.151523 + 0.262445i
\(393\) 0 0
\(394\) −1116.00 1932.97i −0.142699 0.247161i
\(395\) 6348.00 0.808614
\(396\) 0 0
\(397\) −1834.00 −0.231853 −0.115927 0.993258i \(-0.536984\pi\)
−0.115927 + 0.993258i \(0.536984\pi\)
\(398\) −3283.00 5686.32i −0.413472 0.716155i
\(399\) 0 0
\(400\) −152.000 + 263.272i −0.0190000 + 0.0329090i
\(401\) −732.000 + 1267.86i −0.0911579 + 0.157890i −0.907999 0.418973i \(-0.862390\pi\)
0.816841 + 0.576863i \(0.195723\pi\)
\(402\) 0 0
\(403\) 790.000 + 1368.32i 0.0976494 + 0.169134i
\(404\) −4992.00 −0.614756
\(405\) 0 0
\(406\) −1344.00 −0.164290
\(407\) −5070.00 8781.50i −0.617471 1.06949i
\(408\) 0 0
\(409\) 75.5000 130.770i 0.00912771 0.0158097i −0.861425 0.507884i \(-0.830428\pi\)
0.870553 + 0.492074i \(0.163761\pi\)
\(410\) 2304.00 3990.65i 0.277528 0.480692i
\(411\) 0 0
\(412\) −1930.00 3342.86i −0.230787 0.399735i
\(413\) 1092.00 0.130106
\(414\) 0 0
\(415\) −13536.0 −1.60110
\(416\) −1264.00 2189.31i −0.148973 0.258029i
\(417\) 0 0
\(418\) −660.000 + 1143.15i −0.0772288 + 0.133764i
\(419\) −5754.00 + 9966.22i −0.670886 + 1.16201i 0.306767 + 0.951785i \(0.400753\pi\)
−0.977653 + 0.210224i \(0.932581\pi\)
\(420\) 0 0
\(421\) 3135.50 + 5430.85i 0.362981 + 0.628701i 0.988450 0.151548i \(-0.0484257\pi\)
−0.625469 + 0.780249i \(0.715092\pi\)
\(422\) 590.000 0.0680587
\(423\) 0 0
\(424\) 2880.00 0.329871
\(425\) −1026.00 1777.08i −0.117102 0.202826i
\(426\) 0 0
\(427\) 290.500 503.161i 0.0329234 0.0570250i
\(428\) 2664.00 4614.18i 0.300863 0.521110i
\(429\) 0 0
\(430\) −5856.00 10142.9i −0.656747 1.13752i
\(431\) −9468.00 −1.05814 −0.529069 0.848579i \(-0.677459\pi\)
−0.529069 + 0.848579i \(0.677459\pi\)
\(432\) 0 0
\(433\) 3026.00 0.335844 0.167922 0.985800i \(-0.446294\pi\)
0.167922 + 0.985800i \(0.446294\pi\)
\(434\) −140.000 242.487i −0.0154844 0.0268197i
\(435\) 0 0
\(436\) 3884.00 6727.29i 0.426628 0.738942i
\(437\) −726.000 + 1257.47i −0.0794721 + 0.137650i
\(438\) 0 0
\(439\) −5590.00 9682.16i −0.607736 1.05263i −0.991613 0.129245i \(-0.958745\pi\)
0.383877 0.923384i \(-0.374589\pi\)
\(440\) −5760.00 −0.624085
\(441\) 0 0
\(442\) 17064.0 1.83632
\(443\) −420.000 727.461i −0.0450447 0.0780197i 0.842624 0.538502i \(-0.181010\pi\)
−0.887669 + 0.460483i \(0.847676\pi\)
\(444\) 0 0
\(445\) −216.000 + 374.123i −0.0230098 + 0.0398542i
\(446\) −2644.00 + 4579.54i −0.280711 + 0.486205i
\(447\) 0 0
\(448\) 224.000 + 387.979i 0.0236228 + 0.0409159i
\(449\) −12780.0 −1.34326 −0.671632 0.740885i \(-0.734406\pi\)
−0.671632 + 0.740885i \(0.734406\pi\)
\(450\) 0 0
\(451\) 11520.0 1.20278
\(452\) 1032.00 + 1787.48i 0.107392 + 0.186008i
\(453\) 0 0
\(454\) 6024.00 10433.9i 0.622732 1.07860i
\(455\) 3318.00 5746.94i 0.341869 0.592134i
\(456\) 0 0
\(457\) 7829.00 + 13560.2i 0.801368 + 1.38801i 0.918716 + 0.394919i \(0.129227\pi\)
−0.117348 + 0.993091i \(0.537439\pi\)
\(458\) 8924.00 0.910461
\(459\) 0 0
\(460\) −6336.00 −0.642212
\(461\) −7782.00 13478.8i −0.786212 1.36176i −0.928272 0.371902i \(-0.878706\pi\)
0.142060 0.989858i \(-0.454627\pi\)
\(462\) 0 0
\(463\) 2091.50 3622.58i 0.209936 0.363619i −0.741758 0.670667i \(-0.766008\pi\)
0.951694 + 0.307048i \(0.0993412\pi\)
\(464\) 768.000 1330.22i 0.0768395 0.133090i
\(465\) 0 0
\(466\) 1008.00 + 1745.91i 0.100203 + 0.173557i
\(467\) −13932.0 −1.38051 −0.690253 0.723568i \(-0.742501\pi\)
−0.690253 + 0.723568i \(0.742501\pi\)
\(468\) 0 0
\(469\) −329.000 −0.0323919
\(470\) 2448.00 + 4240.06i 0.240251 + 0.416126i
\(471\) 0 0
\(472\) −624.000 + 1080.80i −0.0608515 + 0.105398i
\(473\) 14640.0 25357.2i 1.42315 2.46496i
\(474\) 0 0
\(475\) −104.500 180.999i −0.0100943 0.0174838i
\(476\) −3024.00 −0.291187
\(477\) 0 0
\(478\) −10128.0 −0.969130
\(479\) −1356.00 2348.66i −0.129347 0.224036i 0.794077 0.607817i \(-0.207955\pi\)
−0.923424 + 0.383782i \(0.874621\pi\)
\(480\) 0 0
\(481\) −6675.50 + 11562.3i −0.632800 + 1.09604i
\(482\) 6257.00 10837.4i 0.591283 1.02413i
\(483\) 0 0
\(484\) −4538.00 7860.05i −0.426183 0.738171i
\(485\) −7260.00 −0.679711
\(486\) 0 0
\(487\) −9439.00 −0.878279 −0.439140 0.898419i \(-0.644717\pi\)
−0.439140 + 0.898419i \(0.644717\pi\)
\(488\) 332.000 + 575.041i 0.0307970 + 0.0533420i
\(489\) 0 0
\(490\) 3528.00 6110.68i 0.325263 0.563372i
\(491\) −5862.00 + 10153.3i −0.538795 + 0.933220i 0.460174 + 0.887829i \(0.347787\pi\)
−0.998969 + 0.0453917i \(0.985546\pi\)
\(492\) 0 0
\(493\) 5184.00 + 8978.95i 0.473581 + 0.820267i
\(494\) 1738.00 0.158292
\(495\) 0 0
\(496\) 320.000 0.0289686
\(497\) −756.000 1309.43i −0.0682319 0.118181i
\(498\) 0 0
\(499\) 5984.00 10364.6i 0.536835 0.929825i −0.462237 0.886756i \(-0.652953\pi\)
0.999072 0.0430690i \(-0.0137135\pi\)
\(500\) −2544.00 + 4406.34i −0.227542 + 0.394115i
\(501\) 0 0
\(502\) 2160.00 + 3741.23i 0.192043 + 0.332628i
\(503\) −8892.00 −0.788220 −0.394110 0.919063i \(-0.628947\pi\)
−0.394110 + 0.919063i \(0.628947\pi\)
\(504\) 0 0
\(505\) 14976.0 1.31965
\(506\) −7920.00 13717.8i −0.695824 1.20520i
\(507\) 0 0
\(508\) 104.000 180.133i 0.00908318 0.0157325i
\(509\) −3378.00 + 5850.87i −0.294160 + 0.509499i −0.974789 0.223129i \(-0.928373\pi\)
0.680629 + 0.732628i \(0.261706\pi\)
\(510\) 0 0
\(511\) −1788.50 3097.77i −0.154831 0.268175i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −336.000 −0.0288333
\(515\) 5790.00 + 10028.6i 0.495413 + 0.858081i
\(516\) 0 0
\(517\) −6120.00 + 10600.2i −0.520614 + 0.901729i
\(518\) 1183.00 2049.02i 0.100344 0.173800i
\(519\) 0 0
\(520\) 3792.00 + 6567.94i 0.319789 + 0.553891i
\(521\) 6228.00 0.523711 0.261856 0.965107i \(-0.415666\pi\)
0.261856 + 0.965107i \(0.415666\pi\)
\(522\) 0 0
\(523\) 11639.0 0.973113 0.486556 0.873649i \(-0.338253\pi\)
0.486556 + 0.873649i \(0.338253\pi\)
\(524\) 96.0000 + 166.277i 0.00800340 + 0.0138623i
\(525\) 0 0
\(526\) 2424.00 4198.49i 0.200934 0.348028i
\(527\) −1080.00 + 1870.61i −0.0892705 + 0.154621i
\(528\) 0 0
\(529\) −2628.50 4552.70i −0.216035 0.374184i
\(530\) −8640.00 −0.708109
\(531\) 0 0
\(532\) −308.000 −0.0251006
\(533\) −7584.00 13135.9i −0.616322 1.06750i
\(534\) 0 0
\(535\) −7992.00 + 13842.6i −0.645840 + 1.11863i
\(536\) 188.000 325.626i 0.0151499 0.0262405i
\(537\) 0 0
\(538\) 396.000 + 685.892i 0.0317338 + 0.0549645i
\(539\) 17640.0 1.40966
\(540\) 0 0
\(541\) 17705.0 1.40702 0.703510 0.710686i \(-0.251615\pi\)
0.703510 + 0.710686i \(0.251615\pi\)
\(542\) 1811.00 + 3136.74i 0.143522 + 0.248588i
\(543\) 0 0
\(544\) 1728.00 2992.98i 0.136190 0.235888i
\(545\) −11652.0 + 20181.9i −0.915811 + 1.58623i
\(546\) 0 0
\(547\) −1742.50 3018.10i −0.136205 0.235913i 0.789852 0.613297i \(-0.210157\pi\)
−0.926057 + 0.377384i \(0.876824\pi\)
\(548\) −9456.00 −0.737117
\(549\) 0 0
\(550\) 2280.00 0.176763
\(551\) 528.000 + 914.523i 0.0408232 + 0.0707078i
\(552\) 0 0
\(553\) −1851.50 + 3206.89i −0.142376 + 0.246602i
\(554\) −3022.00 + 5234.26i −0.231755 + 0.401412i
\(555\) 0 0
\(556\) −346.000 599.290i −0.0263915 0.0457114i
\(557\) 19116.0 1.45417 0.727083 0.686549i \(-0.240875\pi\)
0.727083 + 0.686549i \(0.240875\pi\)
\(558\) 0 0
\(559\) −38552.0 −2.91695
\(560\) −672.000 1163.94i −0.0507093 0.0878310i
\(561\) 0 0
\(562\) 3072.00 5320.86i 0.230577 0.399372i
\(563\) 11184.0 19371.3i 0.837210 1.45009i −0.0550077 0.998486i \(-0.517518\pi\)
0.892218 0.451605i \(-0.149148\pi\)
\(564\) 0 0
\(565\) −3096.00 5362.43i −0.230530 0.399290i
\(566\) 16160.0 1.20010
\(567\) 0 0
\(568\) 1728.00 0.127650
\(569\) 4170.00 + 7222.65i 0.307233 + 0.532143i 0.977756 0.209746i \(-0.0672636\pi\)
−0.670523 + 0.741889i \(0.733930\pi\)
\(570\) 0 0
\(571\) 7338.50 12710.7i 0.537840 0.931566i −0.461180 0.887307i \(-0.652574\pi\)
0.999020 0.0442597i \(-0.0140929\pi\)
\(572\) −9480.00 + 16419.8i −0.692970 + 1.20026i
\(573\) 0 0
\(574\) 1344.00 + 2327.88i 0.0977308 + 0.169275i
\(575\) 2508.00 0.181897
\(576\) 0 0
\(577\) −10069.0 −0.726478 −0.363239 0.931696i \(-0.618329\pi\)
−0.363239 + 0.931696i \(0.618329\pi\)
\(578\) 6751.00 + 11693.1i 0.485821 + 0.841467i
\(579\) 0 0
\(580\) −2304.00 + 3990.65i −0.164946 + 0.285694i
\(581\) 3948.00 6838.14i 0.281912 0.488285i
\(582\) 0 0
\(583\) −10800.0 18706.1i −0.767222 1.32887i
\(584\) 4088.00 0.289662
\(585\) 0 0
\(586\) −9336.00 −0.658134
\(587\) 786.000 + 1361.39i 0.0552669 + 0.0957251i 0.892335 0.451373i \(-0.149066\pi\)
−0.837068 + 0.547098i \(0.815732\pi\)
\(588\) 0 0
\(589\) −110.000 + 190.526i −0.00769520 + 0.0133285i
\(590\) 1872.00 3242.40i 0.130625 0.226250i
\(591\) 0 0
\(592\) 1352.00 + 2341.73i 0.0938629 + 0.162575i
\(593\) −1368.00 −0.0947336 −0.0473668 0.998878i \(-0.515083\pi\)
−0.0473668 + 0.998878i \(0.515083\pi\)
\(594\) 0 0
\(595\) 9072.00 0.625068
\(596\) −3216.00 5570.28i −0.221028 0.382831i
\(597\) 0 0
\(598\) −10428.0 + 18061.8i −0.713098 + 1.23512i
\(599\) −11856.0 + 20535.2i −0.808720 + 1.40074i 0.105031 + 0.994469i \(0.466506\pi\)
−0.913751 + 0.406275i \(0.866828\pi\)
\(600\) 0 0
\(601\) 5507.00 + 9538.40i 0.373769 + 0.647387i 0.990142 0.140067i \(-0.0447319\pi\)
−0.616373 + 0.787454i \(0.711399\pi\)
\(602\) 6832.00 0.462544
\(603\) 0 0
\(604\) −3988.00 −0.268658
\(605\) 13614.0 + 23580.1i 0.914856 + 1.58458i
\(606\) 0 0
\(607\) 3207.50 5555.55i 0.214478 0.371488i −0.738633 0.674108i \(-0.764528\pi\)
0.953111 + 0.302621i \(0.0978615\pi\)
\(608\) 176.000 304.841i 0.0117397 0.0203338i
\(609\) 0 0
\(610\) −996.000 1725.12i −0.0661096 0.114505i
\(611\) 16116.0 1.06708
\(612\) 0 0
\(613\) 15851.0 1.04440 0.522199 0.852824i \(-0.325112\pi\)
0.522199 + 0.852824i \(0.325112\pi\)
\(614\) 6752.00 + 11694.8i 0.443792 + 0.768671i
\(615\) 0 0
\(616\) 1680.00 2909.85i 0.109885 0.190326i
\(617\) 2886.00 4998.70i 0.188308 0.326159i −0.756378 0.654134i \(-0.773033\pi\)
0.944686 + 0.327976i \(0.106366\pi\)
\(618\) 0 0
\(619\) 13890.5 + 24059.1i 0.901949 + 1.56222i 0.824961 + 0.565189i \(0.191197\pi\)
0.0769875 + 0.997032i \(0.475470\pi\)
\(620\) −960.000 −0.0621847
\(621\) 0 0
\(622\) 3624.00 0.233616
\(623\) −126.000 218.238i −0.00810286 0.0140346i
\(624\) 0 0
\(625\) 8819.50 15275.8i 0.564448 0.977653i
\(626\) 6203.00 10743.9i 0.396041 0.685963i
\(627\) 0 0
\(628\) −1228.00 2126.96i −0.0780295 0.135151i
\(629\) −18252.0 −1.15700
\(630\) 0 0
\(631\) −29869.0 −1.88442 −0.942208 0.335029i \(-0.891254\pi\)
−0.942208 + 0.335029i \(0.891254\pi\)
\(632\) −2116.00 3665.02i −0.133180 0.230675i
\(633\) 0 0
\(634\) −10968.0 + 18997.1i −0.687058 + 1.19002i
\(635\) −312.000 + 540.400i −0.0194982 + 0.0337718i
\(636\) 0 0
\(637\) −11613.0 20114.3i −0.722329 1.25111i
\(638\) −11520.0 −0.714861
\(639\) 0 0
\(640\) 1536.00 0.0948683
\(641\) 1740.00 + 3013.77i 0.107217 + 0.185705i 0.914642 0.404266i \(-0.132473\pi\)
−0.807425 + 0.589970i \(0.799139\pi\)
\(642\) 0 0
\(643\) 3716.00 6436.30i 0.227908 0.394748i −0.729280 0.684215i \(-0.760145\pi\)
0.957188 + 0.289467i \(0.0934782\pi\)
\(644\) 1848.00 3200.83i 0.113077 0.195855i
\(645\) 0 0
\(646\) 1188.00 + 2057.68i 0.0723549 + 0.125322i
\(647\) 12960.0 0.787496 0.393748 0.919218i \(-0.371178\pi\)
0.393748 + 0.919218i \(0.371178\pi\)
\(648\) 0 0
\(649\) 9360.00 0.566120
\(650\) −1501.00 2599.81i −0.0905755 0.156881i
\(651\) 0 0
\(652\) −5386.00 + 9328.83i −0.323515 + 0.560345i
\(653\) 11796.0 20431.3i 0.706911 1.22441i −0.259086 0.965854i \(-0.583421\pi\)
0.965997 0.258552i \(-0.0832454\pi\)
\(654\) 0 0
\(655\) −288.000 498.831i −0.0171803 0.0297571i
\(656\) −3072.00 −0.182838
\(657\) 0 0
\(658\) −2856.00 −0.169207
\(659\) 16140.0 + 27955.3i 0.954059 + 1.65248i 0.736506 + 0.676431i \(0.236474\pi\)
0.217553 + 0.976048i \(0.430192\pi\)
\(660\) 0 0
\(661\) −11309.5 + 19588.6i −0.665490 + 1.15266i 0.313663 + 0.949534i \(0.398444\pi\)
−0.979152 + 0.203127i \(0.934889\pi\)
\(662\) 8165.00 14142.2i 0.479368 0.830290i
\(663\) 0 0
\(664\) 4512.00 + 7815.01i 0.263704 + 0.456749i
\(665\) 924.000 0.0538815
\(666\) 0 0
\(667\) −12672.0 −0.735625
\(668\) 2328.00 + 4032.21i 0.134840 + 0.233549i
\(669\) 0 0
\(670\) −564.000 + 976.877i −0.0325212 + 0.0563284i
\(671\) 2490.00 4312.81i 0.143257 0.248128i
\(672\) 0 0
\(673\) 9930.50 + 17200.1i 0.568786 + 0.985165i 0.996686 + 0.0813397i \(0.0259199\pi\)
−0.427901 + 0.903826i \(0.640747\pi\)
\(674\) 13046.0 0.745568
\(675\) 0 0
\(676\) 16176.0 0.920346
\(677\) −4146.00 7181.08i −0.235367 0.407668i 0.724012 0.689787i \(-0.242296\pi\)
−0.959379 + 0.282119i \(0.908963\pi\)
\(678\) 0 0
\(679\) 2117.50 3667.62i 0.119679 0.207290i
\(680\) −5184.00 + 8978.95i −0.292349 + 0.506363i
\(681\) 0 0
\(682\) −1200.00 2078.46i −0.0673759 0.116699i
\(683\) −19728.0 −1.10523 −0.552614 0.833437i \(-0.686370\pi\)
−0.552614 + 0.833437i \(0.686370\pi\)
\(684\) 0 0
\(685\) 28368.0 1.58231
\(686\) 4459.00 + 7723.21i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) −3904.00 + 6761.93i −0.216335 + 0.374704i
\(689\) −14220.0 + 24629.8i −0.786268 + 1.36186i
\(690\) 0 0
\(691\) −13636.0 23618.2i −0.750706 1.30026i −0.947481 0.319812i \(-0.896380\pi\)
0.196775 0.980449i \(-0.436953\pi\)
\(692\) 14592.0 0.801596
\(693\) 0 0
\(694\) 12336.0 0.674738
\(695\) 1038.00 + 1797.87i 0.0566526 + 0.0981252i
\(696\) 0 0
\(697\) 10368.0 17957.9i 0.563438 0.975903i
\(698\) −6001.00 + 10394.0i −0.325417 + 0.563639i
\(699\) 0 0
\(700\) 266.000 + 460.726i 0.0143626 + 0.0248768i
\(701\) 21996.0 1.18513 0.592566 0.805522i \(-0.298115\pi\)
0.592566 + 0.805522i \(0.298115\pi\)
\(702\) 0 0
\(703\) −1859.00 −0.0997347
\(704\) 1920.00 + 3325.54i 0.102788 + 0.178034i
\(705\) 0 0
\(706\) 552.000 956.092i 0.0294261 0.0509674i
\(707\) −4368.00 + 7565.60i −0.232356 + 0.402452i
\(708\) 0 0
\(709\) −1004.50 1739.85i −0.0532084 0.0921597i 0.838194 0.545372i \(-0.183611\pi\)
−0.891403 + 0.453212i \(0.850278\pi\)
\(710\) −5184.00 −0.274017
\(711\) 0 0
\(712\) 288.000 0.0151591
\(713\) −1320.00 2286.31i −0.0693329 0.120088i
\(714\) 0 0
\(715\) 28440.0 49259.5i 1.48755 2.57651i
\(716\) 3600.00 6235.38i 0.187903 0.325457i
\(717\) 0 0
\(718\) 5004.00 + 8667.18i 0.260094 + 0.450496i
\(719\) −26280.0 −1.36311 −0.681557 0.731765i \(-0.738697\pi\)
−0.681557 + 0.731765i \(0.738697\pi\)
\(720\) 0 0
\(721\) −6755.00 −0.348917
\(722\) −6738.00 11670.6i −0.347316 0.601570i
\(723\) 0 0
\(724\) 1094.00 1894.86i 0.0561577 0.0972680i
\(725\) 912.000 1579.63i 0.0467184 0.0809186i
\(726\) 0 0
\(727\) −10450.0 18099.9i −0.533107 0.923369i −0.999252 0.0386607i \(-0.987691\pi\)
0.466145 0.884708i \(-0.345642\pi\)
\(728\) −4424.00 −0.225226
\(729\) 0 0
\(730\) −12264.0 −0.621796
\(731\) −26352.0 45643.0i −1.33333 2.30939i
\(732\) 0 0
\(733\) 8819.00 15275.0i 0.444389 0.769704i −0.553620 0.832769i \(-0.686754\pi\)
0.998009 + 0.0630647i \(0.0200874\pi\)
\(734\) −4291.00 + 7432.23i −0.215782 + 0.373745i
\(735\) 0 0
\(736\) 2112.00 + 3658.09i 0.105774 + 0.183205i
\(737\) −2820.00 −0.140944
\(738\) 0 0
\(739\) 30080.0 1.49731 0.748654 0.662961i \(-0.230700\pi\)
0.748654 + 0.662961i \(0.230700\pi\)
\(740\) −4056.00 7025.20i −0.201489 0.348988i
\(741\) 0 0
\(742\) 2520.00 4364.77i 0.124679 0.215951i
\(743\) 7854.00 13603.5i 0.387800 0.671689i −0.604353 0.796716i \(-0.706568\pi\)
0.992153 + 0.125027i \(0.0399018\pi\)
\(744\) 0 0
\(745\) 9648.00 + 16710.8i 0.474464 + 0.821795i
\(746\) 5666.00 0.278079
\(747\) 0 0
\(748\) −25920.0 −1.26702
\(749\) −4662.00 8074.82i −0.227431 0.393922i
\(750\) 0 0
\(751\) −10211.5 + 17686.8i −0.496169 + 0.859390i −0.999990 0.00441801i \(-0.998594\pi\)
0.503821 + 0.863808i \(0.331927\pi\)
\(752\) 1632.00 2826.71i 0.0791395 0.137074i
\(753\) 0 0
\(754\) 7584.00 + 13135.9i 0.366304 + 0.634457i
\(755\) 11964.0 0.576708
\(756\) 0 0
\(757\) −4399.00 −0.211208 −0.105604 0.994408i \(-0.533678\pi\)
−0.105604 + 0.994408i \(0.533678\pi\)
\(758\) −5137.00 8897.54i −0.246153 0.426350i
\(759\) 0 0
\(760\) −528.000 + 914.523i −0.0252008 + 0.0436490i
\(761\) −10326.0 + 17885.2i −0.491875 + 0.851953i −0.999956 0.00935617i \(-0.997022\pi\)
0.508081 + 0.861309i \(0.330355\pi\)
\(762\) 0 0
\(763\) −6797.00 11772.7i −0.322501 0.558587i
\(764\) −12624.0 −0.597801
\(765\) 0 0
\(766\) 10176.0 0.479992
\(767\) −6162.00 10672.9i −0.290087 0.502446i
\(768\) 0 0
\(769\) −13703.5 + 23735.2i −0.642602 + 1.11302i 0.342248 + 0.939610i \(0.388812\pi\)
−0.984850 + 0.173409i \(0.944522\pi\)
\(770\) −5040.00 + 8729.54i −0.235882 + 0.408559i
\(771\) 0 0
\(772\) −2254.00 3904.04i −0.105082 0.182007i
\(773\) −5976.00 −0.278062 −0.139031 0.990288i \(-0.544399\pi\)
−0.139031 + 0.990288i \(0.544399\pi\)
\(774\) 0 0
\(775\) 380.000 0.0176129
\(776\) 2420.00 + 4191.56i 0.111950 + 0.193903i
\(777\) 0 0
\(778\) −7980.00 + 13821.8i −0.367734 + 0.636934i
\(779\) 1056.00 1829.05i 0.0485688 0.0841237i
\(780\) 0 0
\(781\) −6480.00 11223.7i −0.296892 0.514232i
\(782\) −28512.0 −1.30382
\(783\) 0 0
\(784\) −4704.00 −0.214286
\(785\) 3684.00 + 6380.88i 0.167500 + 0.290119i
\(786\) 0 0
\(787\) −12065.5 + 20898.1i −0.546491 + 0.946551i 0.452020 + 0.892008i \(0.350704\pi\)
−0.998511 + 0.0545429i \(0.982630\pi\)
\(788\) 2232.00 3865.94i 0.100903 0.174769i
\(789\) 0 0
\(790\) 6348.00 + 10995.1i 0.285888 + 0.495173i
\(791\) 3612.00 0.162361
\(792\) 0 0
\(793\) −6557.00 −0.293627
\(794\) −1834.00 3176.58i −0.0819726 0.141981i
\(795\) 0 0
\(796\) 6566.00 11372.6i 0.292369 0.506398i
\(797\) 456.000 789.815i 0.0202664 0.0351025i −0.855714 0.517449i \(-0.826882\pi\)
0.875981 + 0.482346i \(0.160215\pi\)
\(798\) 0 0
\(799\) 11016.0 + 19080.3i 0.487757 + 0.844820i
\(800\) −608.000 −0.0268701
\(801\) 0 0
\(802\) −2928.00 −0.128917
\(803\) −15330.0 26552.3i −0.673704 1.16689i
\(804\) 0 0
\(805\) −5544.00 + 9602.49i −0.242733 + 0.420426i
\(806\) −1580.00 + 2736.64i −0.0690485 + 0.119596i
\(807\) 0 0
\(808\) −4992.00 8646.40i −0.217349 0.376459i
\(809\) 12888.0 0.560096 0.280048 0.959986i \(-0.409650\pi\)
0.280048 + 0.959986i \(0.409650\pi\)
\(810\) 0 0
\(811\) −6856.00 −0.296852 −0.148426 0.988924i \(-0.547421\pi\)
−0.148426 + 0.988924i \(0.547421\pi\)
\(812\) −1344.00 2327.88i −0.0580852 0.100606i
\(813\) 0 0
\(814\) 10140.0 17563.0i 0.436618 0.756244i
\(815\) 16158.0 27986.5i 0.694466 1.20285i
\(816\) 0 0
\(817\) −2684.00 4648.82i −0.114934 0.199072i
\(818\) 302.000 0.0129085
\(819\) 0 0
\(820\) 9216.00 0.392484
\(821\) 318.000 + 550.792i 0.0135180 + 0.0234139i 0.872705 0.488247i \(-0.162364\pi\)
−0.859187 + 0.511661i \(0.829030\pi\)
\(822\) 0 0
\(823\) −19913.5 + 34491.2i −0.843428 + 1.46086i 0.0435520 + 0.999051i \(0.486133\pi\)
−0.886980 + 0.461808i \(0.847201\pi\)
\(824\) 3860.00 6685.72i 0.163191 0.282655i
\(825\) 0 0
\(826\) 1092.00 + 1891.40i 0.0459994 + 0.0796734i
\(827\) −38124.0 −1.60302 −0.801512 0.597978i \(-0.795971\pi\)
−0.801512 + 0.597978i \(0.795971\pi\)
\(828\) 0 0
\(829\) 18965.0 0.794550 0.397275 0.917700i \(-0.369956\pi\)
0.397275 + 0.917700i \(0.369956\pi\)
\(830\) −13536.0 23445.0i −0.566074 0.980469i
\(831\) 0 0
\(832\) 2528.00 4378.62i 0.105340 0.182454i
\(833\) 15876.0 27498.0i 0.660349 1.14376i
\(834\) 0 0
\(835\) −6984.00 12096.6i −0.289451 0.501343i
\(836\) −2640.00 −0.109218
\(837\) 0 0
\(838\) −23016.0 −0.948776
\(839\) 13908.0 + 24089.4i 0.572297 + 0.991248i 0.996330 + 0.0856010i \(0.0272810\pi\)
−0.424032 + 0.905647i \(0.639386\pi\)
\(840\) 0 0
\(841\) 7586.50 13140.2i 0.311062 0.538776i
\(842\) −6271.00 + 10861.7i −0.256666 + 0.444559i
\(843\) 0 0
\(844\) 590.000 + 1021.91i 0.0240624 + 0.0416772i
\(845\) −48528.0 −1.97564
\(846\) 0 0
\(847\) −15883.0 −0.644329
\(848\) 2880.00 + 4988.31i 0.116627 + 0.202004i
\(849\) 0 0
\(850\) 2052.00 3554.17i 0.0828036 0.143420i
\(851\) 11154.0 19319.3i 0.449300 0.778210i
\(852\) 0 0
\(853\) 6168.50 + 10684.2i 0.247603 + 0.428861i 0.962860 0.270000i \(-0.0870238\pi\)
−0.715257 + 0.698861i \(0.753690\pi\)
\(854\) 1162.00 0.0465607
\(855\) 0 0
\(856\) 10656.0 0.425484
\(857\) −5676.00 9831.12i −0.226241 0.391861i 0.730450 0.682966i \(-0.239310\pi\)
−0.956691 + 0.291105i \(0.905977\pi\)
\(858\) 0 0
\(859\) 1263.50 2188.45i 0.0501863 0.0869253i −0.839841 0.542833i \(-0.817352\pi\)
0.890027 + 0.455907i \(0.150685\pi\)
\(860\) 11712.0 20285.8i 0.464391 0.804348i
\(861\) 0 0
\(862\) −9468.00 16399.1i −0.374108 0.647975i
\(863\) 26388.0 1.04086 0.520428 0.853906i \(-0.325773\pi\)
0.520428 + 0.853906i \(0.325773\pi\)
\(864\) 0 0
\(865\) −43776.0 −1.72073
\(866\) 3026.00 + 5241.19i 0.118739 + 0.205661i
\(867\) 0 0
\(868\) 280.000 484.974i 0.0109491 0.0189644i
\(869\) −15870.0 + 27487.6i −0.619508 + 1.07302i
\(870\) 0 0
\(871\) 1856.50 + 3215.55i 0.0722217 + 0.125092i
\(872\) 15536.0 0.603343
\(873\) 0 0
\(874\) −2904.00 −0.112390
\(875\) 4452.00 + 7711.09i 0.172006 + 0.297923i
\(876\) 0 0
\(877\) −3191.50 + 5527.84i −0.122884 + 0.212841i −0.920904 0.389790i \(-0.872548\pi\)
0.798020 + 0.602631i \(0.205881\pi\)
\(878\) 11180.0 19364.3i 0.429734 0.744322i
\(879\) 0 0
\(880\) −5760.00 9976.61i −0.220647 0.382172i
\(881\) −28908.0 −1.10549 −0.552744 0.833351i \(-0.686419\pi\)
−0.552744 + 0.833351i \(0.686419\pi\)
\(882\) 0 0
\(883\) 36893.0 1.40606 0.703028 0.711162i \(-0.251831\pi\)
0.703028 + 0.711162i \(0.251831\pi\)
\(884\) 17064.0 + 29555.7i 0.649236 + 1.12451i
\(885\) 0 0
\(886\) 840.000 1454.92i 0.0318514 0.0551683i
\(887\) −22764.0 + 39428.4i −0.861714 + 1.49253i 0.00855937 + 0.999963i \(0.497275\pi\)
−0.870273 + 0.492569i \(0.836058\pi\)
\(888\) 0 0
\(889\) −182.000 315.233i −0.00686624 0.0118927i
\(890\) −864.000 −0.0325408
\(891\) 0 0
\(892\) −10576.0 −0.396985
\(893\) 1122.00 + 1943.36i 0.0420451 + 0.0728243i
\(894\) 0 0
\(895\) −10800.0 + 18706.1i −0.403357 + 0.698634i
\(896\) −448.000 + 775.959i −0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) −12780.0 22135.6i −0.474916 0.822578i
\(899\) −1920.00 −0.0712298
\(900\) 0 0
\(901\) −38880.0 −1.43760
\(902\) 11520.0 + 19953.2i 0.425248 + 0.736552i
\(903\) 0 0
\(904\) −2064.00 + 3574.95i −0.0759376 + 0.131528i
\(905\) −3282.00 + 5684.59i −0.120550 + 0.208798i
\(906\) 0 0
\(907\) 15600.5 + 27020.9i 0.571120 + 0.989209i 0.996451 + 0.0841715i \(0.0268244\pi\)
−0.425331 + 0.905038i \(0.639842\pi\)
\(908\) 24096.0 0.880676
\(909\) 0 0
\(910\) 13272.0 0.483475
\(911\) 11928.0 + 20659.9i 0.433801 + 0.751365i 0.997197 0.0748222i \(-0.0238389\pi\)
−0.563396 + 0.826187i \(0.690506\pi\)
\(912\) 0 0
\(913\) 33840.0 58612.6i 1.22666 2.12464i
\(914\) −15658.0 + 27120.5i −0.566653 + 0.981471i
\(915\) 0 0
\(916\) 8924.00 + 15456.8i 0.321897 + 0.557541i
\(917\) 336.000 0.0121000
\(918\) 0 0
\(919\) 23492.0 0.843231 0.421616 0.906775i \(-0.361463\pi\)
0.421616 + 0.906775i \(0.361463\pi\)
\(920\) −6336.00 10974.3i −0.227056 0.393273i
\(921\) 0 0
\(922\) 15564.0 26957.6i 0.555936 0.962909i
\(923\) −8532.00 + 14777.9i −0.304262 + 0.526998i
\(924\) 0 0
\(925\) 1605.50 + 2780.81i 0.0570687 + 0.0988458i
\(926\) 8366.00 0.296894
\(927\) 0 0
\(928\) 3072.00 0.108667
\(929\) −7548.00 13073.5i −0.266568 0.461710i 0.701405 0.712763i \(-0.252556\pi\)
−0.967973 + 0.251053i \(0.919223\pi\)
\(930\) 0 0
\(931\) 1617.00 2800.73i 0.0569227 0.0985930i
\(932\) −2016.00 + 3491.81i −0.0708544 + 0.122723i
\(933\) 0 0
\(934\) −13932.0 24130.9i −0.488082 0.845384i
\(935\) 77760.0 2.71981
\(936\) 0 0
\(937\) −14965.0 −0.521756 −0.260878 0.965372i \(-0.584012\pi\)
−0.260878 + 0.965372i \(0.584012\pi\)
\(938\) −329.000 569.845i −0.0114523 0.0198359i
\(939\) 0 0
\(940\) −4896.00 + 8480.12i −0.169883 + 0.294246i
\(941\) 9762.00 16908.3i 0.338185 0.585754i −0.645906 0.763417i \(-0.723520\pi\)
0.984091 + 0.177663i \(0.0568537\pi\)
\(942\) 0 0
\(943\) 12672.0 + 21948.5i 0.437600 + 0.757946i
\(944\) −2496.00 −0.0860571
\(945\) 0 0
\(946\) 58560.0 2.01263
\(947\) 5538.00 + 9592.10i 0.190033 + 0.329146i 0.945261 0.326316i \(-0.105807\pi\)
−0.755228 + 0.655462i \(0.772474\pi\)
\(948\) 0 0
\(949\) −20184.5 + 34960.6i −0.690428 + 1.19586i
\(950\) 209.000 361.999i 0.00713774 0.0123629i
\(951\) 0 0
\(952\) −3024.00 5237.72i −0.102950 0.178315i
\(953\) 44748.0 1.52102 0.760509 0.649328i \(-0.224950\pi\)
0.760509 + 0.649328i \(0.224950\pi\)
\(954\) 0 0
\(955\) 37872.0 1.28326
\(956\) −10128.0 17542.2i −0.342639 0.593468i
\(957\) 0 0
\(958\) 2712.00 4697.32i 0.0914622 0.158417i
\(959\) −8274.00 + 14331.0i −0.278604 + 0.482557i
\(960\) 0 0
\(961\) 14695.5 + 25453.4i 0.493287 + 0.854397i
\(962\) −26702.0 −0.894914
\(963\) 0 0
\(964\) 25028.0 0.836201
\(965\) 6762.00 + 11712.1i 0.225571 + 0.390701i
\(966\) 0 0
\(967\) −20759.5 + 35956.5i −0.690362 + 1.19574i 0.281357 + 0.959603i \(0.409216\pi\)
−0.971719 + 0.236140i \(0.924118\pi\)
\(968\) 9076.00 15720.1i 0.301357 0.521966i
\(969\) 0 0
\(970\) −7260.00 12574.7i −0.240314 0.416236i
\(971\) −28404.0 −0.938752 −0.469376 0.882999i \(-0.655521\pi\)
−0.469376 + 0.882999i \(0.655521\pi\)
\(972\) 0 0
\(973\) −1211.00 −0.0399002
\(974\) −9439.00 16348.8i −0.310519 0.537834i
\(975\) 0 0
\(976\) −664.000 + 1150.08i −0.0217768 + 0.0377185i
\(977\) 21516.0 37266.8i 0.704563 1.22034i −0.262286 0.964990i \(-0.584476\pi\)
0.966849 0.255348i \(-0.0821902\pi\)
\(978\) 0 0
\(979\) −1080.00 1870.61i −0.0352574 0.0610675i
\(980\) 14112.0 0.459991
\(981\) 0 0
\(982\) −23448.0 −0.761971
\(983\) 9066.00 + 15702.8i 0.294161 + 0.509502i 0.974789 0.223127i \(-0.0716264\pi\)
−0.680628 + 0.732629i \(0.738293\pi\)
\(984\) 0 0
\(985\) −6696.00 + 11597.8i −0.216601 + 0.375164i
\(986\) −10368.0 + 17957.9i −0.334873 + 0.580016i
\(987\) 0 0
\(988\) 1738.00 + 3010.30i 0.0559647 + 0.0969337i
\(989\) 64416.0 2.07109
\(990\) 0 0
\(991\) −44467.0 −1.42537 −0.712685 0.701485i \(-0.752521\pi\)
−0.712685 + 0.701485i \(0.752521\pi\)
\(992\) 320.000 + 554.256i 0.0102419 + 0.0177396i
\(993\) 0 0
\(994\) 1512.00 2618.86i 0.0482472 0.0835666i
\(995\) −19698.0 + 34117.9i −0.627607 + 1.08705i
\(996\) 0 0
\(997\) −9775.00 16930.8i −0.310509 0.537817i 0.667964 0.744194i \(-0.267166\pi\)
−0.978473 + 0.206377i \(0.933833\pi\)
\(998\) 23936.0 0.759199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.c.h.109.1 2
3.2 odd 2 162.4.c.a.109.1 2
9.2 odd 6 162.4.c.a.55.1 2
9.4 even 3 54.4.a.a.1.1 1
9.5 odd 6 54.4.a.d.1.1 yes 1
9.7 even 3 inner 162.4.c.h.55.1 2
36.23 even 6 432.4.a.m.1.1 1
36.31 odd 6 432.4.a.b.1.1 1
45.4 even 6 1350.4.a.v.1.1 1
45.13 odd 12 1350.4.c.a.649.2 2
45.14 odd 6 1350.4.a.h.1.1 1
45.22 odd 12 1350.4.c.a.649.1 2
45.23 even 12 1350.4.c.t.649.1 2
45.32 even 12 1350.4.c.t.649.2 2
72.5 odd 6 1728.4.a.e.1.1 1
72.13 even 6 1728.4.a.ba.1.1 1
72.59 even 6 1728.4.a.f.1.1 1
72.67 odd 6 1728.4.a.bb.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.a.a.1.1 1 9.4 even 3
54.4.a.d.1.1 yes 1 9.5 odd 6
162.4.c.a.55.1 2 9.2 odd 6
162.4.c.a.109.1 2 3.2 odd 2
162.4.c.h.55.1 2 9.7 even 3 inner
162.4.c.h.109.1 2 1.1 even 1 trivial
432.4.a.b.1.1 1 36.31 odd 6
432.4.a.m.1.1 1 36.23 even 6
1350.4.a.h.1.1 1 45.14 odd 6
1350.4.a.v.1.1 1 45.4 even 6
1350.4.c.a.649.1 2 45.22 odd 12
1350.4.c.a.649.2 2 45.13 odd 12
1350.4.c.t.649.1 2 45.23 even 12
1350.4.c.t.649.2 2 45.32 even 12
1728.4.a.e.1.1 1 72.5 odd 6
1728.4.a.f.1.1 1 72.59 even 6
1728.4.a.ba.1.1 1 72.13 even 6
1728.4.a.bb.1.1 1 72.67 odd 6