Properties

Label 1386.2.bk.b.703.6
Level $1386$
Weight $2$
Character 1386.703
Analytic conductor $11.067$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(703,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0672657201\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + \cdots + 13417 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 703.6
Root \(0.500000 + 0.921602i\) of defining polynomial
Character \(\chi\) \(=\) 1386.703
Dual form 1386.2.bk.b.901.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.54813 + 0.893814i) q^{5} +(-0.165362 - 2.64058i) q^{7} -1.00000i q^{8} +(-0.893814 + 1.54813i) q^{10} +(-2.46279 + 2.22141i) q^{11} -6.37742 q^{13} +(-1.46350 - 2.20413i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.0530476 - 0.0918811i) q^{17} +(2.07581 + 3.59541i) q^{19} +1.78763i q^{20} +(-1.02213 + 3.15519i) q^{22} +(3.97933 + 6.89240i) q^{23} +(-0.902194 + 1.56265i) q^{25} +(-5.52301 + 3.18871i) q^{26} +(-2.36949 - 1.17708i) q^{28} +7.65230i q^{29} +(1.10740 + 0.639360i) q^{31} +(-0.866025 - 0.500000i) q^{32} -0.106095i q^{34} +(2.61619 + 3.94016i) q^{35} +(-2.26092 - 3.91603i) q^{37} +(3.59541 + 2.07581i) q^{38} +(0.893814 + 1.54813i) q^{40} +0.0321383 q^{41} -6.87723i q^{43} +(0.692408 + 3.24354i) q^{44} +(6.89240 + 3.97933i) q^{46} +(-8.55805 + 4.94099i) q^{47} +(-6.94531 + 0.873304i) q^{49} +1.80439i q^{50} +(-3.18871 + 5.52301i) q^{52} +(-0.313720 + 0.543380i) q^{53} +(1.82718 - 5.64031i) q^{55} +(-2.64058 + 0.165362i) q^{56} +(3.82615 + 6.62708i) q^{58} +(-10.7863 - 6.22747i) q^{59} +(-4.97512 - 8.61716i) q^{61} +1.27872 q^{62} -1.00000 q^{64} +(9.87308 - 5.70022i) q^{65} +(-5.43609 + 9.41558i) q^{67} +(-0.0530476 - 0.0918811i) q^{68} +(4.23576 + 2.10418i) q^{70} +8.42785 q^{71} +(-0.0625042 + 0.108260i) q^{73} +(-3.91603 - 2.26092i) q^{74} +4.15162 q^{76} +(6.27307 + 6.13584i) q^{77} +(8.80673 - 5.08457i) q^{79} +(1.54813 + 0.893814i) q^{80} +(0.0278326 - 0.0160691i) q^{82} -12.0657 q^{83} +0.189659i q^{85} +(-3.43862 - 5.95586i) q^{86} +(2.22141 + 2.46279i) q^{88} +(4.64198 - 2.68005i) q^{89} +(1.05458 + 16.8401i) q^{91} +7.95866 q^{92} +(-4.94099 + 8.55805i) q^{94} +(-6.42726 - 3.71078i) q^{95} +15.7498i q^{97} +(-5.57816 + 4.22896i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 12 q^{5} + 6 q^{7} - 2 q^{10} + 4 q^{11} - 8 q^{14} - 8 q^{16} + 10 q^{19} + 2 q^{22} + 4 q^{23} + 10 q^{25} - 12 q^{26} + 6 q^{31} - 8 q^{35} + 14 q^{37} + 12 q^{38} + 2 q^{40} + 32 q^{41}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.54813 + 0.893814i −0.692345 + 0.399726i −0.804490 0.593966i \(-0.797561\pi\)
0.112145 + 0.993692i \(0.464228\pi\)
\(6\) 0 0
\(7\) −0.165362 2.64058i −0.0625011 0.998045i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.893814 + 1.54813i −0.282649 + 0.489562i
\(11\) −2.46279 + 2.22141i −0.742558 + 0.669782i
\(12\) 0 0
\(13\) −6.37742 −1.76878 −0.884389 0.466751i \(-0.845424\pi\)
−0.884389 + 0.466751i \(0.845424\pi\)
\(14\) −1.46350 2.20413i −0.391136 0.589078i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.0530476 0.0918811i 0.0128659 0.0222844i −0.859521 0.511101i \(-0.829238\pi\)
0.872387 + 0.488816i \(0.162571\pi\)
\(18\) 0 0
\(19\) 2.07581 + 3.59541i 0.476224 + 0.824844i 0.999629 0.0272400i \(-0.00867184\pi\)
−0.523405 + 0.852084i \(0.675339\pi\)
\(20\) 1.78763i 0.399726i
\(21\) 0 0
\(22\) −1.02213 + 3.15519i −0.217919 + 0.672690i
\(23\) 3.97933 + 6.89240i 0.829748 + 1.43717i 0.898236 + 0.439514i \(0.144849\pi\)
−0.0684879 + 0.997652i \(0.521817\pi\)
\(24\) 0 0
\(25\) −0.902194 + 1.56265i −0.180439 + 0.312529i
\(26\) −5.52301 + 3.18871i −1.08315 + 0.625357i
\(27\) 0 0
\(28\) −2.36949 1.17708i −0.447791 0.222447i
\(29\) 7.65230i 1.42100i 0.703699 + 0.710498i \(0.251530\pi\)
−0.703699 + 0.710498i \(0.748470\pi\)
\(30\) 0 0
\(31\) 1.10740 + 0.639360i 0.198896 + 0.114833i 0.596140 0.802880i \(-0.296700\pi\)
−0.397245 + 0.917713i \(0.630034\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 0.106095i 0.0181952i
\(35\) 2.61619 + 3.94016i 0.442216 + 0.666008i
\(36\) 0 0
\(37\) −2.26092 3.91603i −0.371693 0.643792i 0.618133 0.786074i \(-0.287889\pi\)
−0.989826 + 0.142282i \(0.954556\pi\)
\(38\) 3.59541 + 2.07581i 0.583253 + 0.336741i
\(39\) 0 0
\(40\) 0.893814 + 1.54813i 0.141324 + 0.244781i
\(41\) 0.0321383 0.00501915 0.00250958 0.999997i \(-0.499201\pi\)
0.00250958 + 0.999997i \(0.499201\pi\)
\(42\) 0 0
\(43\) 6.87723i 1.04877i −0.851482 0.524384i \(-0.824296\pi\)
0.851482 0.524384i \(-0.175704\pi\)
\(44\) 0.692408 + 3.24354i 0.104384 + 0.488983i
\(45\) 0 0
\(46\) 6.89240 + 3.97933i 1.01623 + 0.586720i
\(47\) −8.55805 + 4.94099i −1.24832 + 0.720718i −0.970774 0.239995i \(-0.922854\pi\)
−0.277545 + 0.960713i \(0.589521\pi\)
\(48\) 0 0
\(49\) −6.94531 + 0.873304i −0.992187 + 0.124758i
\(50\) 1.80439i 0.255179i
\(51\) 0 0
\(52\) −3.18871 + 5.52301i −0.442194 + 0.765903i
\(53\) −0.313720 + 0.543380i −0.0430928 + 0.0746389i −0.886767 0.462216i \(-0.847054\pi\)
0.843675 + 0.536855i \(0.180388\pi\)
\(54\) 0 0
\(55\) 1.82718 5.64031i 0.246378 0.760539i
\(56\) −2.64058 + 0.165362i −0.352862 + 0.0220975i
\(57\) 0 0
\(58\) 3.82615 + 6.62708i 0.502398 + 0.870179i
\(59\) −10.7863 6.22747i −1.40426 0.810748i −0.409431 0.912341i \(-0.634273\pi\)
−0.994826 + 0.101593i \(0.967606\pi\)
\(60\) 0 0
\(61\) −4.97512 8.61716i −0.636999 1.10331i −0.986088 0.166224i \(-0.946842\pi\)
0.349089 0.937089i \(-0.386491\pi\)
\(62\) 1.27872 0.162398
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 9.87308 5.70022i 1.22460 0.707026i
\(66\) 0 0
\(67\) −5.43609 + 9.41558i −0.664124 + 1.15030i 0.315398 + 0.948959i \(0.397862\pi\)
−0.979522 + 0.201337i \(0.935471\pi\)
\(68\) −0.0530476 0.0918811i −0.00643296 0.0111422i
\(69\) 0 0
\(70\) 4.23576 + 2.10418i 0.506271 + 0.251498i
\(71\) 8.42785 1.00020 0.500101 0.865967i \(-0.333296\pi\)
0.500101 + 0.865967i \(0.333296\pi\)
\(72\) 0 0
\(73\) −0.0625042 + 0.108260i −0.00731556 + 0.0126709i −0.869660 0.493651i \(-0.835662\pi\)
0.862344 + 0.506322i \(0.168995\pi\)
\(74\) −3.91603 2.26092i −0.455229 0.262827i
\(75\) 0 0
\(76\) 4.15162 0.476224
\(77\) 6.27307 + 6.13584i 0.714883 + 0.699244i
\(78\) 0 0
\(79\) 8.80673 5.08457i 0.990835 0.572059i 0.0853112 0.996354i \(-0.472812\pi\)
0.905524 + 0.424295i \(0.139478\pi\)
\(80\) 1.54813 + 0.893814i 0.173086 + 0.0999314i
\(81\) 0 0
\(82\) 0.0278326 0.0160691i 0.00307359 0.00177454i
\(83\) −12.0657 −1.32438 −0.662191 0.749335i \(-0.730373\pi\)
−0.662191 + 0.749335i \(0.730373\pi\)
\(84\) 0 0
\(85\) 0.189659i 0.0205714i
\(86\) −3.43862 5.95586i −0.370795 0.642237i
\(87\) 0 0
\(88\) 2.22141 + 2.46279i 0.236804 + 0.262534i
\(89\) 4.64198 2.68005i 0.492049 0.284084i −0.233375 0.972387i \(-0.574977\pi\)
0.725424 + 0.688302i \(0.241644\pi\)
\(90\) 0 0
\(91\) 1.05458 + 16.8401i 0.110550 + 1.76532i
\(92\) 7.95866 0.829748
\(93\) 0 0
\(94\) −4.94099 + 8.55805i −0.509624 + 0.882695i
\(95\) −6.42726 3.71078i −0.659423 0.380718i
\(96\) 0 0
\(97\) 15.7498i 1.59915i 0.600569 + 0.799573i \(0.294941\pi\)
−0.600569 + 0.799573i \(0.705059\pi\)
\(98\) −5.57816 + 4.22896i −0.563480 + 0.427189i
\(99\) 0 0
\(100\) 0.902194 + 1.56265i 0.0902194 + 0.156265i
\(101\) 3.78650 6.55841i 0.376771 0.652586i −0.613820 0.789446i \(-0.710368\pi\)
0.990590 + 0.136860i \(0.0437012\pi\)
\(102\) 0 0
\(103\) −4.53550 + 2.61857i −0.446896 + 0.258016i −0.706519 0.707695i \(-0.749735\pi\)
0.259622 + 0.965710i \(0.416402\pi\)
\(104\) 6.37742i 0.625357i
\(105\) 0 0
\(106\) 0.627441i 0.0609424i
\(107\) −4.12912 + 2.38395i −0.399177 + 0.230465i −0.686129 0.727480i \(-0.740691\pi\)
0.286952 + 0.957945i \(0.407358\pi\)
\(108\) 0 0
\(109\) 7.36585 + 4.25268i 0.705521 + 0.407332i 0.809400 0.587257i \(-0.199792\pi\)
−0.103880 + 0.994590i \(0.533126\pi\)
\(110\) −1.23777 5.79825i −0.118016 0.552841i
\(111\) 0 0
\(112\) −2.20413 + 1.46350i −0.208270 + 0.138287i
\(113\) −10.3003 −0.968969 −0.484484 0.874800i \(-0.660993\pi\)
−0.484484 + 0.874800i \(0.660993\pi\)
\(114\) 0 0
\(115\) −12.3210 7.11356i −1.14894 0.663343i
\(116\) 6.62708 + 3.82615i 0.615309 + 0.355249i
\(117\) 0 0
\(118\) −12.4549 −1.14657
\(119\) −0.251391 0.124883i −0.0230450 0.0114480i
\(120\) 0 0
\(121\) 1.13064 10.9417i 0.102785 0.994704i
\(122\) −8.61716 4.97512i −0.780161 0.450426i
\(123\) 0 0
\(124\) 1.10740 0.639360i 0.0994479 0.0574163i
\(125\) 12.1637i 1.08796i
\(126\) 0 0
\(127\) 3.18422i 0.282553i 0.989970 + 0.141277i \(0.0451207\pi\)
−0.989970 + 0.141277i \(0.954879\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 5.70022 9.87308i 0.499943 0.865926i
\(131\) 0.543099 + 0.940675i 0.0474508 + 0.0821872i 0.888775 0.458343i \(-0.151557\pi\)
−0.841324 + 0.540530i \(0.818224\pi\)
\(132\) 0 0
\(133\) 9.15071 6.07589i 0.793467 0.526846i
\(134\) 10.8722i 0.939213i
\(135\) 0 0
\(136\) −0.0918811 0.0530476i −0.00787874 0.00454879i
\(137\) −3.79098 + 6.56617i −0.323885 + 0.560986i −0.981286 0.192555i \(-0.938323\pi\)
0.657401 + 0.753541i \(0.271656\pi\)
\(138\) 0 0
\(139\) 1.34643 0.114203 0.0571013 0.998368i \(-0.481814\pi\)
0.0571013 + 0.998368i \(0.481814\pi\)
\(140\) 4.72037 0.295606i 0.398944 0.0249833i
\(141\) 0 0
\(142\) 7.29873 4.21392i 0.612496 0.353625i
\(143\) 15.7062 14.1669i 1.31342 1.18469i
\(144\) 0 0
\(145\) −6.83973 11.8468i −0.568008 0.983819i
\(146\) 0.125008i 0.0103458i
\(147\) 0 0
\(148\) −4.52184 −0.371693
\(149\) 0.424489 0.245079i 0.0347755 0.0200776i −0.482511 0.875890i \(-0.660275\pi\)
0.517287 + 0.855812i \(0.326942\pi\)
\(150\) 0 0
\(151\) 2.92130 + 1.68661i 0.237732 + 0.137255i 0.614134 0.789202i \(-0.289505\pi\)
−0.376402 + 0.926456i \(0.622839\pi\)
\(152\) 3.59541 2.07581i 0.291626 0.168371i
\(153\) 0 0
\(154\) 8.50056 + 2.17726i 0.684995 + 0.175449i
\(155\) −2.28588 −0.183606
\(156\) 0 0
\(157\) 3.51865 + 2.03150i 0.280819 + 0.162131i 0.633794 0.773502i \(-0.281497\pi\)
−0.352975 + 0.935633i \(0.614830\pi\)
\(158\) 5.08457 8.80673i 0.404507 0.700626i
\(159\) 0 0
\(160\) 1.78763 0.141324
\(161\) 17.5419 11.6475i 1.38250 0.917950i
\(162\) 0 0
\(163\) −10.3707 17.9626i −0.812297 1.40694i −0.911253 0.411848i \(-0.864883\pi\)
0.0989554 0.995092i \(-0.468450\pi\)
\(164\) 0.0160691 0.0278326i 0.00125479 0.00217336i
\(165\) 0 0
\(166\) −10.4492 + 6.03285i −0.811015 + 0.468240i
\(167\) −3.42870 −0.265321 −0.132660 0.991162i \(-0.542352\pi\)
−0.132660 + 0.991162i \(0.542352\pi\)
\(168\) 0 0
\(169\) 27.6715 2.12857
\(170\) 0.0948293 + 0.164249i 0.00727307 + 0.0125973i
\(171\) 0 0
\(172\) −5.95586 3.43862i −0.454130 0.262192i
\(173\) −10.5762 18.3185i −0.804094 1.39273i −0.916901 0.399115i \(-0.869317\pi\)
0.112807 0.993617i \(-0.464016\pi\)
\(174\) 0 0
\(175\) 4.27548 + 2.12391i 0.323196 + 0.160553i
\(176\) 3.15519 + 1.02213i 0.237832 + 0.0770458i
\(177\) 0 0
\(178\) 2.68005 4.64198i 0.200878 0.347931i
\(179\) −7.04330 + 12.1994i −0.526441 + 0.911822i 0.473085 + 0.881017i \(0.343140\pi\)
−0.999525 + 0.0308052i \(0.990193\pi\)
\(180\) 0 0
\(181\) 12.4579i 0.925992i −0.886360 0.462996i \(-0.846775\pi\)
0.886360 0.462996i \(-0.153225\pi\)
\(182\) 9.33333 + 14.0566i 0.691833 + 1.04195i
\(183\) 0 0
\(184\) 6.89240 3.97933i 0.508115 0.293360i
\(185\) 7.00040 + 4.04169i 0.514680 + 0.297151i
\(186\) 0 0
\(187\) 0.0734611 + 0.344124i 0.00537201 + 0.0251649i
\(188\) 9.88198i 0.720718i
\(189\) 0 0
\(190\) −7.42156 −0.538416
\(191\) −13.6147 23.5813i −0.985122 1.70628i −0.641391 0.767214i \(-0.721642\pi\)
−0.343731 0.939068i \(-0.611691\pi\)
\(192\) 0 0
\(193\) 23.0692 + 13.3190i 1.66056 + 0.958724i 0.972448 + 0.233119i \(0.0748933\pi\)
0.688111 + 0.725605i \(0.258440\pi\)
\(194\) 7.87488 + 13.6397i 0.565384 + 0.979273i
\(195\) 0 0
\(196\) −2.71635 + 6.45147i −0.194025 + 0.460819i
\(197\) 11.7764i 0.839031i 0.907748 + 0.419515i \(0.137800\pi\)
−0.907748 + 0.419515i \(0.862200\pi\)
\(198\) 0 0
\(199\) 18.5336 + 10.7004i 1.31381 + 0.758531i 0.982726 0.185069i \(-0.0592508\pi\)
0.331089 + 0.943600i \(0.392584\pi\)
\(200\) 1.56265 + 0.902194i 0.110496 + 0.0637948i
\(201\) 0 0
\(202\) 7.57300i 0.532834i
\(203\) 20.2065 1.26540i 1.41822 0.0888137i
\(204\) 0 0
\(205\) −0.0497542 + 0.0287256i −0.00347499 + 0.00200628i
\(206\) −2.61857 + 4.53550i −0.182445 + 0.316004i
\(207\) 0 0
\(208\) 3.18871 + 5.52301i 0.221097 + 0.382952i
\(209\) −13.0992 4.24349i −0.906089 0.293529i
\(210\) 0 0
\(211\) 25.2654i 1.73934i −0.493630 0.869672i \(-0.664330\pi\)
0.493630 0.869672i \(-0.335670\pi\)
\(212\) 0.313720 + 0.543380i 0.0215464 + 0.0373195i
\(213\) 0 0
\(214\) −2.38395 + 4.12912i −0.162963 + 0.282261i
\(215\) 6.14696 + 10.6469i 0.419219 + 0.726109i
\(216\) 0 0
\(217\) 1.50516 3.02992i 0.102177 0.205684i
\(218\) 8.50535 0.576055
\(219\) 0 0
\(220\) −3.97106 4.40254i −0.267729 0.296819i
\(221\) −0.338307 + 0.585964i −0.0227570 + 0.0394162i
\(222\) 0 0
\(223\) 9.80133i 0.656346i −0.944618 0.328173i \(-0.893567\pi\)
0.944618 0.328173i \(-0.106433\pi\)
\(224\) −1.17708 + 2.36949i −0.0786471 + 0.158318i
\(225\) 0 0
\(226\) −8.92030 + 5.15014i −0.593370 + 0.342582i
\(227\) −11.6454 + 20.1704i −0.772931 + 1.33875i 0.163020 + 0.986623i \(0.447877\pi\)
−0.935950 + 0.352132i \(0.885457\pi\)
\(228\) 0 0
\(229\) −5.65569 + 3.26531i −0.373739 + 0.215778i −0.675090 0.737735i \(-0.735895\pi\)
0.301352 + 0.953513i \(0.402562\pi\)
\(230\) −14.2271 −0.938109
\(231\) 0 0
\(232\) 7.65230 0.502398
\(233\) 9.41166 5.43383i 0.616579 0.355982i −0.158957 0.987285i \(-0.550813\pi\)
0.775536 + 0.631304i \(0.217480\pi\)
\(234\) 0 0
\(235\) 8.83265 15.2986i 0.576179 0.997971i
\(236\) −10.7863 + 6.22747i −0.702128 + 0.405374i
\(237\) 0 0
\(238\) −0.280153 + 0.0175441i −0.0181596 + 0.00113722i
\(239\) 7.69148i 0.497521i −0.968565 0.248760i \(-0.919977\pi\)
0.968565 0.248760i \(-0.0800231\pi\)
\(240\) 0 0
\(241\) −11.4067 + 19.7571i −0.734773 + 1.27266i 0.220050 + 0.975489i \(0.429378\pi\)
−0.954823 + 0.297176i \(0.903955\pi\)
\(242\) −4.49171 10.0411i −0.288738 0.645469i
\(243\) 0 0
\(244\) −9.95024 −0.636999
\(245\) 9.97168 7.55980i 0.637067 0.482978i
\(246\) 0 0
\(247\) −13.2383 22.9294i −0.842334 1.45897i
\(248\) 0.639360 1.10740i 0.0405994 0.0703203i
\(249\) 0 0
\(250\) −6.08186 10.5341i −0.384650 0.666234i
\(251\) 18.1111i 1.14317i 0.820544 + 0.571583i \(0.193670\pi\)
−0.820544 + 0.571583i \(0.806330\pi\)
\(252\) 0 0
\(253\) −25.1111 8.13478i −1.57872 0.511429i
\(254\) 1.59211 + 2.75761i 0.0998977 + 0.173028i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.41428 1.97123i 0.212977 0.122962i −0.389717 0.920935i \(-0.627427\pi\)
0.602694 + 0.797972i \(0.294094\pi\)
\(258\) 0 0
\(259\) −9.96672 + 6.61771i −0.619302 + 0.411204i
\(260\) 11.4004i 0.707026i
\(261\) 0 0
\(262\) 0.940675 + 0.543099i 0.0581151 + 0.0335528i
\(263\) −1.79020 1.03357i −0.110389 0.0637329i 0.443789 0.896131i \(-0.353634\pi\)
−0.554178 + 0.832398i \(0.686967\pi\)
\(264\) 0 0
\(265\) 1.12163i 0.0689012i
\(266\) 4.88680 9.83723i 0.299629 0.603159i
\(267\) 0 0
\(268\) 5.43609 + 9.41558i 0.332062 + 0.575148i
\(269\) −2.42902 1.40240i −0.148100 0.0855057i 0.424119 0.905607i \(-0.360584\pi\)
−0.572219 + 0.820101i \(0.693917\pi\)
\(270\) 0 0
\(271\) −4.64046 8.03751i −0.281888 0.488244i 0.689962 0.723846i \(-0.257627\pi\)
−0.971850 + 0.235602i \(0.924294\pi\)
\(272\) −0.106095 −0.00643296
\(273\) 0 0
\(274\) 7.58196i 0.458043i
\(275\) −1.24937 5.85261i −0.0753400 0.352926i
\(276\) 0 0
\(277\) −4.53015 2.61548i −0.272190 0.157149i 0.357692 0.933839i \(-0.383564\pi\)
−0.629883 + 0.776690i \(0.716897\pi\)
\(278\) 1.16604 0.673214i 0.0699345 0.0403767i
\(279\) 0 0
\(280\) 3.94016 2.61619i 0.235469 0.156347i
\(281\) 6.87281i 0.409998i 0.978762 + 0.204999i \(0.0657190\pi\)
−0.978762 + 0.204999i \(0.934281\pi\)
\(282\) 0 0
\(283\) −6.00542 + 10.4017i −0.356985 + 0.618316i −0.987456 0.157897i \(-0.949529\pi\)
0.630471 + 0.776213i \(0.282862\pi\)
\(284\) 4.21392 7.29873i 0.250050 0.433100i
\(285\) 0 0
\(286\) 6.51854 20.1220i 0.385449 1.18984i
\(287\) −0.00531446 0.0848636i −0.000313703 0.00500934i
\(288\) 0 0
\(289\) 8.49437 + 14.7127i 0.499669 + 0.865452i
\(290\) −11.8468 6.83973i −0.695665 0.401643i
\(291\) 0 0
\(292\) 0.0625042 + 0.108260i 0.00365778 + 0.00633546i
\(293\) −14.1147 −0.824592 −0.412296 0.911050i \(-0.635273\pi\)
−0.412296 + 0.911050i \(0.635273\pi\)
\(294\) 0 0
\(295\) 22.2648 1.29631
\(296\) −3.91603 + 2.26092i −0.227615 + 0.131413i
\(297\) 0 0
\(298\) 0.245079 0.424489i 0.0141970 0.0245900i
\(299\) −25.3779 43.9557i −1.46764 2.54203i
\(300\) 0 0
\(301\) −18.1599 + 1.13723i −1.04672 + 0.0655491i
\(302\) 3.37323 0.194107
\(303\) 0 0
\(304\) 2.07581 3.59541i 0.119056 0.206211i
\(305\) 15.4043 + 8.89366i 0.882046 + 0.509249i
\(306\) 0 0
\(307\) −21.0753 −1.20283 −0.601417 0.798936i \(-0.705397\pi\)
−0.601417 + 0.798936i \(0.705397\pi\)
\(308\) 8.45033 2.36472i 0.481502 0.134742i
\(309\) 0 0
\(310\) −1.97963 + 1.14294i −0.112435 + 0.0649145i
\(311\) 12.0806 + 6.97475i 0.685029 + 0.395502i 0.801747 0.597663i \(-0.203904\pi\)
−0.116718 + 0.993165i \(0.537237\pi\)
\(312\) 0 0
\(313\) 3.45030 1.99203i 0.195023 0.112596i −0.399309 0.916816i \(-0.630750\pi\)
0.594332 + 0.804220i \(0.297417\pi\)
\(314\) 4.06299 0.229288
\(315\) 0 0
\(316\) 10.1691i 0.572059i
\(317\) 6.14927 + 10.6509i 0.345377 + 0.598211i 0.985422 0.170126i \(-0.0544175\pi\)
−0.640045 + 0.768338i \(0.721084\pi\)
\(318\) 0 0
\(319\) −16.9989 18.8460i −0.951757 1.05517i
\(320\) 1.54813 0.893814i 0.0865431 0.0499657i
\(321\) 0 0
\(322\) 9.36799 18.8580i 0.522058 1.05091i
\(323\) 0.440467 0.0245082
\(324\) 0 0
\(325\) 5.75367 9.96565i 0.319156 0.552795i
\(326\) −17.9626 10.3707i −0.994857 0.574381i
\(327\) 0 0
\(328\) 0.0321383i 0.00177454i
\(329\) 14.4623 + 21.7811i 0.797330 + 1.20083i
\(330\) 0 0
\(331\) 15.5066 + 26.8582i 0.852319 + 1.47626i 0.879110 + 0.476619i \(0.158138\pi\)
−0.0267909 + 0.999641i \(0.508529\pi\)
\(332\) −6.03285 + 10.4492i −0.331096 + 0.573474i
\(333\) 0 0
\(334\) −2.96934 + 1.71435i −0.162475 + 0.0938051i
\(335\) 19.4354i 1.06187i
\(336\) 0 0
\(337\) 13.6161i 0.741718i 0.928689 + 0.370859i \(0.120937\pi\)
−0.928689 + 0.370859i \(0.879063\pi\)
\(338\) 23.9642 13.8357i 1.30348 0.752565i
\(339\) 0 0
\(340\) 0.164249 + 0.0948293i 0.00890766 + 0.00514284i
\(341\) −4.14759 + 0.885396i −0.224604 + 0.0479469i
\(342\) 0 0
\(343\) 3.45452 + 18.1952i 0.186527 + 0.982450i
\(344\) −6.87723 −0.370795
\(345\) 0 0
\(346\) −18.3185 10.5762i −0.984810 0.568580i
\(347\) −24.1708 13.9550i −1.29756 0.749144i −0.317574 0.948234i \(-0.602868\pi\)
−0.979981 + 0.199090i \(0.936201\pi\)
\(348\) 0 0
\(349\) 27.8147 1.48888 0.744442 0.667687i \(-0.232715\pi\)
0.744442 + 0.667687i \(0.232715\pi\)
\(350\) 4.76463 0.298378i 0.254680 0.0159490i
\(351\) 0 0
\(352\) 3.24354 0.692408i 0.172881 0.0369055i
\(353\) 18.6325 + 10.7575i 0.991706 + 0.572562i 0.905784 0.423740i \(-0.139283\pi\)
0.0859222 + 0.996302i \(0.472616\pi\)
\(354\) 0 0
\(355\) −13.0474 + 7.53293i −0.692485 + 0.399806i
\(356\) 5.36009i 0.284084i
\(357\) 0 0
\(358\) 14.0866i 0.744500i
\(359\) 18.0949 10.4471i 0.955015 0.551378i 0.0603796 0.998175i \(-0.480769\pi\)
0.894635 + 0.446798i \(0.147436\pi\)
\(360\) 0 0
\(361\) 0.882009 1.52769i 0.0464215 0.0804045i
\(362\) −6.22897 10.7889i −0.327387 0.567052i
\(363\) 0 0
\(364\) 15.1112 + 7.50674i 0.792043 + 0.393460i
\(365\) 0.223468i 0.0116969i
\(366\) 0 0
\(367\) 4.62731 + 2.67158i 0.241543 + 0.139455i 0.615886 0.787835i \(-0.288798\pi\)
−0.374342 + 0.927291i \(0.622132\pi\)
\(368\) 3.97933 6.89240i 0.207437 0.359291i
\(369\) 0 0
\(370\) 8.08337 0.420234
\(371\) 1.48671 + 0.738549i 0.0771864 + 0.0383435i
\(372\) 0 0
\(373\) −21.9741 + 12.6868i −1.13778 + 0.656895i −0.945879 0.324520i \(-0.894797\pi\)
−0.191897 + 0.981415i \(0.561464\pi\)
\(374\) 0.235681 + 0.261290i 0.0121868 + 0.0135110i
\(375\) 0 0
\(376\) 4.94099 + 8.55805i 0.254812 + 0.441348i
\(377\) 48.8019i 2.51343i
\(378\) 0 0
\(379\) 22.7532 1.16875 0.584377 0.811483i \(-0.301339\pi\)
0.584377 + 0.811483i \(0.301339\pi\)
\(380\) −6.42726 + 3.71078i −0.329711 + 0.190359i
\(381\) 0 0
\(382\) −23.5813 13.6147i −1.20652 0.696587i
\(383\) 14.3310 8.27402i 0.732281 0.422783i −0.0869750 0.996210i \(-0.527720\pi\)
0.819256 + 0.573428i \(0.194387\pi\)
\(384\) 0 0
\(385\) −15.1958 3.89213i −0.774451 0.198361i
\(386\) 26.6381 1.35584
\(387\) 0 0
\(388\) 13.6397 + 7.87488i 0.692451 + 0.399787i
\(389\) 3.69906 6.40696i 0.187550 0.324846i −0.756883 0.653550i \(-0.773279\pi\)
0.944433 + 0.328705i \(0.106612\pi\)
\(390\) 0 0
\(391\) 0.844376 0.0427019
\(392\) 0.873304 + 6.94531i 0.0441085 + 0.350791i
\(393\) 0 0
\(394\) 5.88818 + 10.1986i 0.296642 + 0.513799i
\(395\) −9.08932 + 15.7432i −0.457333 + 0.792124i
\(396\) 0 0
\(397\) 3.34925 1.93369i 0.168094 0.0970492i −0.413593 0.910462i \(-0.635726\pi\)
0.581687 + 0.813413i \(0.302393\pi\)
\(398\) 21.4008 1.07272
\(399\) 0 0
\(400\) 1.80439 0.0902194
\(401\) 1.56681 + 2.71379i 0.0782426 + 0.135520i 0.902492 0.430707i \(-0.141736\pi\)
−0.824249 + 0.566227i \(0.808402\pi\)
\(402\) 0 0
\(403\) −7.06238 4.07747i −0.351802 0.203113i
\(404\) −3.78650 6.55841i −0.188385 0.326293i
\(405\) 0 0
\(406\) 16.8666 11.1991i 0.837077 0.555803i
\(407\) 14.2673 + 4.62191i 0.707204 + 0.229099i
\(408\) 0 0
\(409\) −10.0511 + 17.4091i −0.496996 + 0.860822i −0.999994 0.00346526i \(-0.998897\pi\)
0.502998 + 0.864288i \(0.332230\pi\)
\(410\) −0.0287256 + 0.0497542i −0.00141866 + 0.00245719i
\(411\) 0 0
\(412\) 5.23715i 0.258016i
\(413\) −14.6605 + 29.5119i −0.721395 + 1.45218i
\(414\) 0 0
\(415\) 18.6793 10.7845i 0.916929 0.529389i
\(416\) 5.52301 + 3.18871i 0.270788 + 0.156339i
\(417\) 0 0
\(418\) −13.4660 + 2.87462i −0.658642 + 0.140602i
\(419\) 2.63035i 0.128501i 0.997934 + 0.0642506i \(0.0204657\pi\)
−0.997934 + 0.0642506i \(0.979534\pi\)
\(420\) 0 0
\(421\) 24.9232 1.21468 0.607341 0.794441i \(-0.292236\pi\)
0.607341 + 0.794441i \(0.292236\pi\)
\(422\) −12.6327 21.8805i −0.614951 1.06513i
\(423\) 0 0
\(424\) 0.543380 + 0.313720i 0.0263888 + 0.0152356i
\(425\) 0.0957185 + 0.165789i 0.00464303 + 0.00804196i
\(426\) 0 0
\(427\) −21.9316 + 14.5621i −1.06134 + 0.704712i
\(428\) 4.76790i 0.230465i
\(429\) 0 0
\(430\) 10.6469 + 6.14696i 0.513437 + 0.296433i
\(431\) −11.8175 6.82282i −0.569227 0.328644i 0.187613 0.982243i \(-0.439925\pi\)
−0.756841 + 0.653599i \(0.773258\pi\)
\(432\) 0 0
\(433\) 10.4001i 0.499795i −0.968272 0.249897i \(-0.919603\pi\)
0.968272 0.249897i \(-0.0803969\pi\)
\(434\) −0.211452 3.37656i −0.0101500 0.162080i
\(435\) 0 0
\(436\) 7.36585 4.25268i 0.352760 0.203666i
\(437\) −16.5207 + 28.6147i −0.790292 + 1.36883i
\(438\) 0 0
\(439\) −11.6619 20.1991i −0.556594 0.964049i −0.997778 0.0666324i \(-0.978775\pi\)
0.441183 0.897417i \(-0.354559\pi\)
\(440\) −5.64031 1.82718i −0.268891 0.0871076i
\(441\) 0 0
\(442\) 0.676613i 0.0321832i
\(443\) 4.91726 + 8.51694i 0.233626 + 0.404652i 0.958872 0.283837i \(-0.0916076\pi\)
−0.725247 + 0.688489i \(0.758274\pi\)
\(444\) 0 0
\(445\) −4.79092 + 8.29813i −0.227112 + 0.393369i
\(446\) −4.90067 8.48820i −0.232053 0.401928i
\(447\) 0 0
\(448\) 0.165362 + 2.64058i 0.00781263 + 0.124756i
\(449\) −9.26223 −0.437112 −0.218556 0.975824i \(-0.570135\pi\)
−0.218556 + 0.975824i \(0.570135\pi\)
\(450\) 0 0
\(451\) −0.0791497 + 0.0713924i −0.00372701 + 0.00336174i
\(452\) −5.15014 + 8.92030i −0.242242 + 0.419576i
\(453\) 0 0
\(454\) 23.2907i 1.09309i
\(455\) −16.6845 25.1280i −0.782182 1.17802i
\(456\) 0 0
\(457\) 2.21387 1.27818i 0.103560 0.0597906i −0.447325 0.894371i \(-0.647623\pi\)
0.550886 + 0.834581i \(0.314290\pi\)
\(458\) −3.26531 + 5.65569i −0.152578 + 0.264273i
\(459\) 0 0
\(460\) −12.3210 + 7.11356i −0.574472 + 0.331672i
\(461\) 29.5798 1.37767 0.688834 0.724919i \(-0.258123\pi\)
0.688834 + 0.724919i \(0.258123\pi\)
\(462\) 0 0
\(463\) −9.24447 −0.429627 −0.214813 0.976655i \(-0.568914\pi\)
−0.214813 + 0.976655i \(0.568914\pi\)
\(464\) 6.62708 3.82615i 0.307655 0.177624i
\(465\) 0 0
\(466\) 5.43383 9.41166i 0.251717 0.435987i
\(467\) 10.0889 5.82484i 0.466859 0.269541i −0.248065 0.968743i \(-0.579795\pi\)
0.714924 + 0.699202i \(0.246461\pi\)
\(468\) 0 0
\(469\) 25.7615 + 12.7974i 1.18956 + 0.590931i
\(470\) 17.6653i 0.814840i
\(471\) 0 0
\(472\) −6.22747 + 10.7863i −0.286643 + 0.496480i
\(473\) 15.2772 + 16.9372i 0.702445 + 0.778771i
\(474\) 0 0
\(475\) −7.49114 −0.343717
\(476\) −0.233847 + 0.155270i −0.0107184 + 0.00711679i
\(477\) 0 0
\(478\) −3.84574 6.66102i −0.175900 0.304668i
\(479\) −5.02758 + 8.70803i −0.229716 + 0.397880i −0.957724 0.287689i \(-0.907113\pi\)
0.728008 + 0.685569i \(0.240446\pi\)
\(480\) 0 0
\(481\) 14.4188 + 24.9742i 0.657443 + 1.13872i
\(482\) 22.8135i 1.03913i
\(483\) 0 0
\(484\) −8.91051 6.45003i −0.405023 0.293183i
\(485\) −14.0774 24.3827i −0.639220 1.10716i
\(486\) 0 0
\(487\) −8.65731 + 14.9949i −0.392300 + 0.679484i −0.992753 0.120176i \(-0.961654\pi\)
0.600452 + 0.799661i \(0.294987\pi\)
\(488\) −8.61716 + 4.97512i −0.390080 + 0.225213i
\(489\) 0 0
\(490\) 4.85582 11.5328i 0.219364 0.521000i
\(491\) 8.44002i 0.380893i −0.981698 0.190446i \(-0.939006\pi\)
0.981698 0.190446i \(-0.0609935\pi\)
\(492\) 0 0
\(493\) 0.703101 + 0.405936i 0.0316661 + 0.0182824i
\(494\) −22.9294 13.2383i −1.03164 0.595620i
\(495\) 0 0
\(496\) 1.27872i 0.0574163i
\(497\) −1.39365 22.2544i −0.0625137 0.998246i
\(498\) 0 0
\(499\) −9.53597 16.5168i −0.426889 0.739393i 0.569706 0.821849i \(-0.307057\pi\)
−0.996595 + 0.0824555i \(0.973724\pi\)
\(500\) −10.5341 6.08186i −0.471098 0.271989i
\(501\) 0 0
\(502\) 9.05557 + 15.6847i 0.404170 + 0.700043i
\(503\) 3.32018 0.148039 0.0740197 0.997257i \(-0.476417\pi\)
0.0740197 + 0.997257i \(0.476417\pi\)
\(504\) 0 0
\(505\) 13.5377i 0.602419i
\(506\) −25.8143 + 5.51064i −1.14758 + 0.244978i
\(507\) 0 0
\(508\) 2.75761 + 1.59211i 0.122349 + 0.0706384i
\(509\) −3.91339 + 2.25939i −0.173458 + 0.100146i −0.584215 0.811599i \(-0.698598\pi\)
0.410758 + 0.911745i \(0.365264\pi\)
\(510\) 0 0
\(511\) 0.296206 + 0.147145i 0.0131034 + 0.00650931i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.97123 3.41428i 0.0869474 0.150597i
\(515\) 4.68103 8.10779i 0.206271 0.357272i
\(516\) 0 0
\(517\) 10.1007 31.1796i 0.444226 1.37128i
\(518\) −5.32258 + 10.7145i −0.233861 + 0.470766i
\(519\) 0 0
\(520\) −5.70022 9.87308i −0.249971 0.432963i
\(521\) 8.10705 + 4.68061i 0.355176 + 0.205061i 0.666963 0.745091i \(-0.267594\pi\)
−0.311786 + 0.950152i \(0.600927\pi\)
\(522\) 0 0
\(523\) −8.70477 15.0771i −0.380633 0.659276i 0.610520 0.792001i \(-0.290961\pi\)
−0.991153 + 0.132725i \(0.957627\pi\)
\(524\) 1.08620 0.0474508
\(525\) 0 0
\(526\) −2.06715 −0.0901320
\(527\) 0.117490 0.0678330i 0.00511796 0.00295485i
\(528\) 0 0
\(529\) −20.1702 + 34.9357i −0.876963 + 1.51895i
\(530\) −0.560815 0.971360i −0.0243603 0.0421932i
\(531\) 0 0
\(532\) −0.686522 10.9627i −0.0297645 0.475293i
\(533\) −0.204959 −0.00887777
\(534\) 0 0
\(535\) 4.26161 7.38132i 0.184245 0.319122i
\(536\) 9.41558 + 5.43609i 0.406691 + 0.234803i
\(537\) 0 0
\(538\) −2.80480 −0.120923
\(539\) 15.1648 17.5792i 0.653196 0.757189i
\(540\) 0 0
\(541\) 34.0973 19.6861i 1.46596 0.846370i 0.466681 0.884426i \(-0.345450\pi\)
0.999276 + 0.0380552i \(0.0121163\pi\)
\(542\) −8.03751 4.64046i −0.345241 0.199325i
\(543\) 0 0
\(544\) −0.0918811 + 0.0530476i −0.00393937 + 0.00227440i
\(545\) −15.2044 −0.651285
\(546\) 0 0
\(547\) 20.3539i 0.870271i −0.900365 0.435135i \(-0.856701\pi\)
0.900365 0.435135i \(-0.143299\pi\)
\(548\) 3.79098 + 6.56617i 0.161943 + 0.280493i
\(549\) 0 0
\(550\) −4.00830 4.44383i −0.170914 0.189485i
\(551\) −27.5132 + 15.8847i −1.17210 + 0.676712i
\(552\) 0 0
\(553\) −14.8825 22.4141i −0.632869 0.953144i
\(554\) −5.23096 −0.222242
\(555\) 0 0
\(556\) 0.673214 1.16604i 0.0285506 0.0494512i
\(557\) 11.2830 + 6.51425i 0.478076 + 0.276017i 0.719614 0.694374i \(-0.244319\pi\)
−0.241538 + 0.970391i \(0.577652\pi\)
\(558\) 0 0
\(559\) 43.8590i 1.85504i
\(560\) 2.10418 4.23576i 0.0889179 0.178994i
\(561\) 0 0
\(562\) 3.43641 + 5.95203i 0.144956 + 0.251071i
\(563\) −16.7817 + 29.0667i −0.707262 + 1.22501i 0.258607 + 0.965983i \(0.416737\pi\)
−0.965869 + 0.259032i \(0.916597\pi\)
\(564\) 0 0
\(565\) 15.9462 9.20653i 0.670861 0.387322i
\(566\) 12.0108i 0.504853i
\(567\) 0 0
\(568\) 8.42785i 0.353625i
\(569\) 4.80366 2.77340i 0.201380 0.116267i −0.395919 0.918285i \(-0.629574\pi\)
0.597299 + 0.802019i \(0.296241\pi\)
\(570\) 0 0
\(571\) −32.1228 18.5461i −1.34430 0.776132i −0.356864 0.934156i \(-0.616154\pi\)
−0.987435 + 0.158025i \(0.949487\pi\)
\(572\) −4.41578 20.6854i −0.184633 0.864901i
\(573\) 0 0
\(574\) −0.0470343 0.0708368i −0.00196317 0.00295667i
\(575\) −14.3605 −0.598875
\(576\) 0 0
\(577\) 2.66926 + 1.54110i 0.111123 + 0.0641567i 0.554531 0.832163i \(-0.312898\pi\)
−0.443409 + 0.896320i \(0.646231\pi\)
\(578\) 14.7127 + 8.49437i 0.611967 + 0.353319i
\(579\) 0 0
\(580\) −13.6795 −0.568008
\(581\) 1.99521 + 31.8604i 0.0827753 + 1.32179i
\(582\) 0 0
\(583\) −0.434445 2.03513i −0.0179929 0.0842865i
\(584\) 0.108260 + 0.0625042i 0.00447985 + 0.00258644i
\(585\) 0 0
\(586\) −12.2237 + 7.05737i −0.504957 + 0.291537i
\(587\) 46.9255i 1.93682i 0.249356 + 0.968412i \(0.419781\pi\)
−0.249356 + 0.968412i \(0.580219\pi\)
\(588\) 0 0
\(589\) 5.30877i 0.218744i
\(590\) 19.2819 11.1324i 0.793823 0.458314i
\(591\) 0 0
\(592\) −2.26092 + 3.91603i −0.0929233 + 0.160948i
\(593\) 2.57479 + 4.45967i 0.105734 + 0.183137i 0.914038 0.405629i \(-0.132947\pi\)
−0.808304 + 0.588766i \(0.799614\pi\)
\(594\) 0 0
\(595\) 0.500808 0.0313624i 0.0205311 0.00128573i
\(596\) 0.490157i 0.0200776i
\(597\) 0 0
\(598\) −43.9557 25.3779i −1.79748 1.03778i
\(599\) −17.5731 + 30.4375i −0.718017 + 1.24364i 0.243768 + 0.969834i \(0.421616\pi\)
−0.961784 + 0.273808i \(0.911717\pi\)
\(600\) 0 0
\(601\) −42.8385 −1.74742 −0.873710 0.486447i \(-0.838293\pi\)
−0.873710 + 0.486447i \(0.838293\pi\)
\(602\) −15.1583 + 10.0648i −0.617806 + 0.410211i
\(603\) 0 0
\(604\) 2.92130 1.68661i 0.118866 0.0686273i
\(605\) 8.02950 + 17.9498i 0.326446 + 0.729764i
\(606\) 0 0
\(607\) 8.33275 + 14.4328i 0.338216 + 0.585807i 0.984097 0.177631i \(-0.0568432\pi\)
−0.645881 + 0.763438i \(0.723510\pi\)
\(608\) 4.15162i 0.168371i
\(609\) 0 0
\(610\) 17.7873 0.720187
\(611\) 54.5783 31.5108i 2.20800 1.27479i
\(612\) 0 0
\(613\) 10.3018 + 5.94776i 0.416087 + 0.240228i 0.693402 0.720551i \(-0.256111\pi\)
−0.277315 + 0.960779i \(0.589445\pi\)
\(614\) −18.2518 + 10.5377i −0.736582 + 0.425266i
\(615\) 0 0
\(616\) 6.13584 6.27307i 0.247220 0.252749i
\(617\) 0.0716192 0.00288328 0.00144164 0.999999i \(-0.499541\pi\)
0.00144164 + 0.999999i \(0.499541\pi\)
\(618\) 0 0
\(619\) 25.3042 + 14.6094i 1.01706 + 0.587200i 0.913251 0.407397i \(-0.133563\pi\)
0.103809 + 0.994597i \(0.466897\pi\)
\(620\) −1.14294 + 1.97963i −0.0459015 + 0.0795037i
\(621\) 0 0
\(622\) 13.9495 0.559324
\(623\) −7.84448 11.8143i −0.314283 0.473331i
\(624\) 0 0
\(625\) 6.36112 + 11.0178i 0.254445 + 0.440711i
\(626\) 1.99203 3.45030i 0.0796177 0.137902i
\(627\) 0 0
\(628\) 3.51865 2.03150i 0.140410 0.0810655i
\(629\) −0.479746 −0.0191287
\(630\) 0 0
\(631\) −43.3663 −1.72638 −0.863192 0.504876i \(-0.831538\pi\)
−0.863192 + 0.504876i \(0.831538\pi\)
\(632\) −5.08457 8.80673i −0.202253 0.350313i
\(633\) 0 0
\(634\) 10.6509 + 6.14927i 0.422999 + 0.244219i
\(635\) −2.84610 4.92958i −0.112944 0.195624i
\(636\) 0 0
\(637\) 44.2932 5.56943i 1.75496 0.220669i
\(638\) −24.1445 7.82163i −0.955889 0.309661i
\(639\) 0 0
\(640\) 0.893814 1.54813i 0.0353311 0.0611952i
\(641\) −2.72745 + 4.72408i −0.107728 + 0.186590i −0.914849 0.403795i \(-0.867691\pi\)
0.807122 + 0.590385i \(0.201024\pi\)
\(642\) 0 0
\(643\) 4.26488i 0.168190i 0.996458 + 0.0840952i \(0.0268000\pi\)
−0.996458 + 0.0840952i \(0.973200\pi\)
\(644\) −1.31606 21.0155i −0.0518601 0.828126i
\(645\) 0 0
\(646\) 0.381456 0.220234i 0.0150082 0.00866497i
\(647\) −20.5525 11.8660i −0.808004 0.466501i 0.0382582 0.999268i \(-0.487819\pi\)
−0.846262 + 0.532767i \(0.821152\pi\)
\(648\) 0 0
\(649\) 40.3982 8.62390i 1.58577 0.338518i
\(650\) 11.5073i 0.451355i
\(651\) 0 0
\(652\) −20.7414 −0.812297
\(653\) 16.8093 + 29.1145i 0.657797 + 1.13934i 0.981185 + 0.193071i \(0.0618448\pi\)
−0.323388 + 0.946266i \(0.604822\pi\)
\(654\) 0 0
\(655\) −1.68158 0.970859i −0.0657047 0.0379346i
\(656\) −0.0160691 0.0278326i −0.000627394 0.00108668i
\(657\) 0 0
\(658\) 23.4153 + 11.6319i 0.912822 + 0.453459i
\(659\) 28.9405i 1.12736i 0.825993 + 0.563681i \(0.190615\pi\)
−0.825993 + 0.563681i \(0.809385\pi\)
\(660\) 0 0
\(661\) −0.518650 0.299443i −0.0201732 0.0116470i 0.489880 0.871790i \(-0.337041\pi\)
−0.510053 + 0.860143i \(0.670374\pi\)
\(662\) 26.8582 + 15.5066i 1.04387 + 0.602681i
\(663\) 0 0
\(664\) 12.0657i 0.468240i
\(665\) −8.73578 + 17.5853i −0.338759 + 0.681929i
\(666\) 0 0
\(667\) −52.7427 + 30.4510i −2.04221 + 1.17907i
\(668\) −1.71435 + 2.96934i −0.0663302 + 0.114887i
\(669\) 0 0
\(670\) −9.71770 16.8315i −0.375427 0.650259i
\(671\) 31.3949 + 10.1704i 1.21199 + 0.392625i
\(672\) 0 0
\(673\) 36.3353i 1.40062i 0.713837 + 0.700312i \(0.246956\pi\)
−0.713837 + 0.700312i \(0.753044\pi\)
\(674\) 6.80807 + 11.7919i 0.262237 + 0.454208i
\(675\) 0 0
\(676\) 13.8357 23.9642i 0.532144 0.921700i
\(677\) 9.99570 + 17.3131i 0.384166 + 0.665395i 0.991653 0.128935i \(-0.0411558\pi\)
−0.607487 + 0.794329i \(0.707822\pi\)
\(678\) 0 0
\(679\) 41.5885 2.60442i 1.59602 0.0999484i
\(680\) 0.189659 0.00727307
\(681\) 0 0
\(682\) −3.14922 + 2.84057i −0.120590 + 0.108771i
\(683\) −11.0162 + 19.0807i −0.421524 + 0.730102i −0.996089 0.0883577i \(-0.971838\pi\)
0.574564 + 0.818459i \(0.305171\pi\)
\(684\) 0 0
\(685\) 13.5537i 0.517861i
\(686\) 12.0893 + 14.0303i 0.461572 + 0.535678i
\(687\) 0 0
\(688\) −5.95586 + 3.43862i −0.227065 + 0.131096i
\(689\) 2.00073 3.46536i 0.0762216 0.132020i
\(690\) 0 0
\(691\) 9.88161 5.70515i 0.375914 0.217034i −0.300125 0.953900i \(-0.597028\pi\)
0.676039 + 0.736866i \(0.263695\pi\)
\(692\) −21.1524 −0.804094
\(693\) 0 0
\(694\) −27.9100 −1.05945
\(695\) −2.08445 + 1.20346i −0.0790676 + 0.0456497i
\(696\) 0 0
\(697\) 0.00170486 0.00295290i 6.45761e−5 0.000111849i
\(698\) 24.0882 13.9073i 0.911752 0.526400i
\(699\) 0 0
\(700\) 3.97710 2.64072i 0.150320 0.0998098i
\(701\) 1.92874i 0.0728474i 0.999336 + 0.0364237i \(0.0115966\pi\)
−0.999336 + 0.0364237i \(0.988403\pi\)
\(702\) 0 0
\(703\) 9.38650 16.2579i 0.354018 0.613178i
\(704\) 2.46279 2.22141i 0.0928198 0.0837227i
\(705\) 0 0
\(706\) 21.5149 0.809725
\(707\) −17.9441 8.91403i −0.674859 0.335247i
\(708\) 0 0
\(709\) −9.50162 16.4573i −0.356841 0.618066i 0.630590 0.776116i \(-0.282813\pi\)
−0.987431 + 0.158050i \(0.949479\pi\)
\(710\) −7.53293 + 13.0474i −0.282706 + 0.489661i
\(711\) 0 0
\(712\) −2.68005 4.64198i −0.100439 0.173965i
\(713\) 10.1769i 0.381128i
\(714\) 0 0
\(715\) −11.6527 + 35.9706i −0.435787 + 1.34523i
\(716\) 7.04330 + 12.1994i 0.263220 + 0.455911i
\(717\) 0 0
\(718\) 10.4471 18.0949i 0.389883 0.675297i
\(719\) −17.8998 + 10.3345i −0.667551 + 0.385411i −0.795148 0.606415i \(-0.792607\pi\)
0.127597 + 0.991826i \(0.459274\pi\)
\(720\) 0 0
\(721\) 7.66455 + 11.5433i 0.285443 + 0.429896i
\(722\) 1.76402i 0.0656500i
\(723\) 0 0
\(724\) −10.7889 6.22897i −0.400966 0.231498i
\(725\) −11.9578 6.90386i −0.444103 0.256403i
\(726\) 0 0
\(727\) 1.72185i 0.0638600i 0.999490 + 0.0319300i \(0.0101654\pi\)
−0.999490 + 0.0319300i \(0.989835\pi\)
\(728\) 16.8401 1.05458i 0.624135 0.0390855i
\(729\) 0 0
\(730\) −0.111734 0.193529i −0.00413547 0.00716284i
\(731\) −0.631887 0.364820i −0.0233712 0.0134934i
\(732\) 0 0
\(733\) −0.597125 1.03425i −0.0220553 0.0382009i 0.854787 0.518979i \(-0.173688\pi\)
−0.876842 + 0.480778i \(0.840354\pi\)
\(734\) 5.34315 0.197219
\(735\) 0 0
\(736\) 7.95866i 0.293360i
\(737\) −7.52798 35.2644i −0.277297 1.29898i
\(738\) 0 0
\(739\) −10.7713 6.21881i −0.396228 0.228763i 0.288627 0.957442i \(-0.406801\pi\)
−0.684855 + 0.728679i \(0.740135\pi\)
\(740\) 7.00040 4.04169i 0.257340 0.148575i
\(741\) 0 0
\(742\) 1.65681 0.103755i 0.0608233 0.00380897i
\(743\) 19.1754i 0.703479i −0.936098 0.351739i \(-0.885590\pi\)
0.936098 0.351739i \(-0.114410\pi\)
\(744\) 0 0
\(745\) −0.438109 + 0.758827i −0.0160511 + 0.0278013i
\(746\) −12.6868 + 21.9741i −0.464495 + 0.804529i
\(747\) 0 0
\(748\) 0.334751 + 0.108443i 0.0122397 + 0.00396506i
\(749\) 6.97780 + 10.5090i 0.254963 + 0.383992i
\(750\) 0 0
\(751\) −22.9870 39.8146i −0.838807 1.45286i −0.890893 0.454213i \(-0.849921\pi\)
0.0520865 0.998643i \(-0.483413\pi\)
\(752\) 8.55805 + 4.94099i 0.312080 + 0.180179i
\(753\) 0 0
\(754\) −24.4009 42.2637i −0.888630 1.53915i
\(755\) −6.03007 −0.219457
\(756\) 0 0
\(757\) 32.1348 1.16796 0.583979 0.811768i \(-0.301495\pi\)
0.583979 + 0.811768i \(0.301495\pi\)
\(758\) 19.7048 11.3766i 0.715712 0.413217i
\(759\) 0 0
\(760\) −3.71078 + 6.42726i −0.134604 + 0.233141i
\(761\) −10.2499 17.7533i −0.371558 0.643558i 0.618247 0.785984i \(-0.287843\pi\)
−0.989805 + 0.142426i \(0.954510\pi\)
\(762\) 0 0
\(763\) 10.0115 20.1533i 0.362440 0.729600i
\(764\) −27.2293 −0.985122
\(765\) 0 0
\(766\) 8.27402 14.3310i 0.298953 0.517801i
\(767\) 68.7888 + 39.7152i 2.48382 + 1.43403i
\(768\) 0 0
\(769\) 14.3312 0.516796 0.258398 0.966039i \(-0.416805\pi\)
0.258398 + 0.966039i \(0.416805\pi\)
\(770\) −15.1060 + 4.22723i −0.544384 + 0.152339i
\(771\) 0 0
\(772\) 23.0692 13.3190i 0.830280 0.479362i
\(773\) 25.6118 + 14.7870i 0.921193 + 0.531851i 0.884016 0.467457i \(-0.154830\pi\)
0.0371778 + 0.999309i \(0.488163\pi\)
\(774\) 0 0
\(775\) −1.99819 + 1.15365i −0.0717771 + 0.0414405i
\(776\) 15.7498 0.565384
\(777\) 0 0
\(778\) 7.39812i 0.265235i
\(779\) 0.0667130 + 0.115550i 0.00239024 + 0.00414002i
\(780\) 0 0
\(781\) −20.7560 + 18.7217i −0.742708 + 0.669917i
\(782\) 0.731251 0.422188i 0.0261495 0.0150974i
\(783\) 0 0
\(784\) 4.22896 + 5.57816i 0.151034 + 0.199220i
\(785\) −7.26311 −0.259232
\(786\) 0 0
\(787\) −13.3487 + 23.1207i −0.475831 + 0.824164i −0.999617 0.0276865i \(-0.991186\pi\)
0.523786 + 0.851850i \(0.324519\pi\)
\(788\) 10.1986 + 5.88818i 0.363311 + 0.209758i
\(789\) 0 0
\(790\) 18.1786i 0.646767i
\(791\) 1.70328 + 27.1987i 0.0605616 + 0.967074i
\(792\) 0 0
\(793\) 31.7284 + 54.9552i 1.12671 + 1.95152i
\(794\) 1.93369 3.34925i 0.0686241 0.118860i
\(795\) 0 0
\(796\) 18.5336 10.7004i 0.656907 0.379265i
\(797\) 47.2556i 1.67388i −0.547294 0.836940i \(-0.684342\pi\)
0.547294 0.836940i \(-0.315658\pi\)
\(798\) 0 0
\(799\) 1.04843i 0.0370908i
\(800\) 1.56265 0.902194i 0.0552479 0.0318974i
\(801\) 0 0
\(802\) 2.71379 + 1.56681i 0.0958272 + 0.0553259i
\(803\) −0.0865568 0.405470i −0.00305452 0.0143087i
\(804\) 0 0
\(805\) −16.7465 + 33.7110i −0.590236 + 1.18816i
\(806\) −8.15494 −0.287245
\(807\) 0 0
\(808\) −6.55841 3.78650i −0.230724 0.133209i
\(809\) −18.2536 10.5387i −0.641763 0.370522i 0.143530 0.989646i \(-0.454155\pi\)
−0.785293 + 0.619124i \(0.787488\pi\)
\(810\) 0 0
\(811\) −38.7457 −1.36055 −0.680273 0.732959i \(-0.738139\pi\)
−0.680273 + 0.732959i \(0.738139\pi\)
\(812\) 9.00737 18.1320i 0.316097 0.636310i
\(813\) 0 0
\(814\) 14.6668 3.13096i 0.514071 0.109740i
\(815\) 32.1104 + 18.5390i 1.12478 + 0.649392i
\(816\) 0 0
\(817\) 24.7265 14.2758i 0.865070 0.499448i
\(818\) 20.1022i 0.702858i
\(819\) 0 0
\(820\) 0.0574512i 0.00200628i
\(821\) −37.0933 + 21.4158i −1.29456 + 0.747417i −0.979460 0.201639i \(-0.935373\pi\)
−0.315105 + 0.949057i \(0.602040\pi\)
\(822\) 0 0
\(823\) −16.9309 + 29.3253i −0.590176 + 1.02221i 0.404033 + 0.914744i \(0.367608\pi\)
−0.994208 + 0.107469i \(0.965725\pi\)
\(824\) 2.61857 + 4.53550i 0.0912224 + 0.158002i
\(825\) 0 0
\(826\) 2.05958 + 32.8883i 0.0716619 + 1.14433i
\(827\) 15.2572i 0.530544i −0.964174 0.265272i \(-0.914538\pi\)
0.964174 0.265272i \(-0.0854618\pi\)
\(828\) 0 0
\(829\) −14.9375 8.62414i −0.518799 0.299529i 0.217644 0.976028i \(-0.430163\pi\)
−0.736443 + 0.676499i \(0.763496\pi\)
\(830\) 10.7845 18.6793i 0.374335 0.648367i
\(831\) 0 0
\(832\) 6.37742 0.221097
\(833\) −0.288192 + 0.684469i −0.00998525 + 0.0237155i
\(834\) 0 0
\(835\) 5.30808 3.06462i 0.183694 0.106056i
\(836\) −10.2246 + 9.22248i −0.353624 + 0.318966i
\(837\) 0 0
\(838\) 1.31518 + 2.27795i 0.0454320 + 0.0786906i
\(839\) 9.80607i 0.338543i 0.985569 + 0.169272i \(0.0541415\pi\)
−0.985569 + 0.169272i \(0.945859\pi\)
\(840\) 0 0
\(841\) −29.5576 −1.01923
\(842\) 21.5841 12.4616i 0.743838 0.429455i
\(843\) 0 0
\(844\) −21.8805 12.6327i −0.753158 0.434836i
\(845\) −42.8390 + 24.7331i −1.47371 + 0.850846i
\(846\) 0 0
\(847\) −29.0795 1.17618i −0.999183 0.0404141i
\(848\) 0.627441 0.0215464
\(849\) 0 0
\(850\) 0.165789 + 0.0957185i 0.00568652 + 0.00328312i
\(851\) 17.9939 31.1664i 0.616823 1.06837i
\(852\) 0 0
\(853\) 58.0237 1.98669 0.993346 0.115168i \(-0.0367407\pi\)
0.993346 + 0.115168i \(0.0367407\pi\)
\(854\) −11.7122 + 23.5770i −0.400785 + 0.806788i
\(855\) 0 0
\(856\) 2.38395 + 4.12912i 0.0814817 + 0.141130i
\(857\) 20.5434 35.5821i 0.701748 1.21546i −0.266105 0.963944i \(-0.585737\pi\)
0.967853 0.251518i \(-0.0809299\pi\)
\(858\) 0 0
\(859\) −23.0028 + 13.2807i −0.784845 + 0.453130i −0.838144 0.545448i \(-0.816359\pi\)
0.0532999 + 0.998579i \(0.483026\pi\)
\(860\) 12.2939 0.419219
\(861\) 0 0
\(862\) −13.6456 −0.464772
\(863\) 4.54395 + 7.87036i 0.154678 + 0.267910i 0.932942 0.360027i \(-0.117233\pi\)
−0.778264 + 0.627938i \(0.783899\pi\)
\(864\) 0 0
\(865\) 32.7467 + 18.9063i 1.11342 + 0.642834i
\(866\) −5.20003 9.00671i −0.176704 0.306061i
\(867\) 0 0
\(868\) −1.87140 2.81846i −0.0635196 0.0956649i
\(869\) −10.3942 + 32.0856i −0.352598 + 1.08843i
\(870\) 0 0
\(871\) 34.6682 60.0471i 1.17469 2.03462i
\(872\) 4.25268 7.36585i 0.144014 0.249439i
\(873\) 0 0
\(874\) 33.0414i 1.11764i
\(875\) −32.1192 + 2.01142i −1.08583 + 0.0679984i
\(876\) 0 0
\(877\) −3.95476 + 2.28328i −0.133543 + 0.0771009i −0.565283 0.824897i \(-0.691233\pi\)
0.431740 + 0.901998i \(0.357900\pi\)
\(878\) −20.1991 11.6619i −0.681686 0.393572i
\(879\) 0 0
\(880\) −5.79825 + 1.23777i −0.195459 + 0.0417251i
\(881\) 35.4288i 1.19363i 0.802380 + 0.596813i \(0.203567\pi\)
−0.802380 + 0.596813i \(0.796433\pi\)
\(882\) 0 0
\(883\) 25.2987 0.851368 0.425684 0.904872i \(-0.360033\pi\)
0.425684 + 0.904872i \(0.360033\pi\)
\(884\) 0.338307 + 0.585964i 0.0113785 + 0.0197081i
\(885\) 0 0
\(886\) 8.51694 + 4.91726i 0.286132 + 0.165198i
\(887\) −22.4831 38.9419i −0.754909 1.30754i −0.945420 0.325855i \(-0.894348\pi\)
0.190511 0.981685i \(-0.438986\pi\)
\(888\) 0 0
\(889\) 8.40817 0.526549i 0.282001 0.0176599i
\(890\) 9.58185i 0.321184i
\(891\) 0 0
\(892\) −8.48820 4.90067i −0.284206 0.164086i
\(893\) −35.5298 20.5131i −1.18896 0.686446i
\(894\) 0 0
\(895\) 25.1816i 0.841727i
\(896\) 1.46350 + 2.20413i 0.0488920 + 0.0736347i
\(897\) 0 0
\(898\) −8.02133 + 4.63112i −0.267675 + 0.154542i
\(899\) −4.89257 + 8.47419i −0.163176 + 0.282630i
\(900\) 0 0
\(901\) 0.0332842 + 0.0576499i 0.00110886 + 0.00192060i
\(902\) −0.0328494 + 0.101403i −0.00109377 + 0.00337633i
\(903\) 0 0
\(904\) 10.3003i 0.342582i
\(905\) 11.1351 + 19.2865i 0.370143 + 0.641106i
\(906\) 0 0
\(907\) 8.63064 14.9487i 0.286576 0.496364i −0.686414 0.727211i \(-0.740816\pi\)
0.972990 + 0.230847i \(0.0741497\pi\)
\(908\) 11.6454 + 20.1704i 0.386465 + 0.669377i
\(909\) 0 0
\(910\) −27.0132 13.4193i −0.895480 0.444844i
\(911\) 18.9606 0.628194 0.314097 0.949391i \(-0.398298\pi\)
0.314097 + 0.949391i \(0.398298\pi\)
\(912\) 0 0
\(913\) 29.7152 26.8029i 0.983431 0.887047i
\(914\) 1.27818 2.21387i 0.0422783 0.0732282i
\(915\) 0 0
\(916\) 6.53063i 0.215778i
\(917\) 2.39412 1.58965i 0.0790608 0.0524948i
\(918\) 0 0
\(919\) −30.9373 + 17.8617i −1.02053 + 0.589203i −0.914257 0.405134i \(-0.867225\pi\)
−0.106272 + 0.994337i \(0.533891\pi\)
\(920\) −7.11356 + 12.3210i −0.234527 + 0.406213i
\(921\) 0 0
\(922\) 25.6168 14.7899i 0.843645 0.487079i
\(923\) −53.7479 −1.76913
\(924\) 0 0
\(925\) 8.15916 0.268272
\(926\) −8.00595 + 4.62224i −0.263092 + 0.151896i
\(927\) 0 0
\(928\) 3.82615 6.62708i 0.125599 0.217545i
\(929\) −35.0844 + 20.2560i −1.15108 + 0.664577i −0.949150 0.314823i \(-0.898055\pi\)
−0.201930 + 0.979400i \(0.564721\pi\)
\(930\) 0 0
\(931\) −17.5570 23.1584i −0.575409 0.758987i
\(932\) 10.8677i 0.355982i
\(933\) 0 0
\(934\) 5.82484 10.0889i 0.190595 0.330119i
\(935\) −0.421310 0.467089i −0.0137783 0.0152754i
\(936\) 0 0
\(937\) −36.2513 −1.18428 −0.592140 0.805835i \(-0.701717\pi\)
−0.592140 + 0.805835i \(0.701717\pi\)
\(938\) 28.7088 1.79785i 0.937376 0.0587018i
\(939\) 0 0
\(940\) −8.83265 15.2986i −0.288089 0.498985i
\(941\) −22.3898 + 38.7803i −0.729887 + 1.26420i 0.227044 + 0.973884i \(0.427094\pi\)
−0.956931 + 0.290316i \(0.906239\pi\)
\(942\) 0 0
\(943\) 0.127889 + 0.221510i 0.00416463 + 0.00721336i
\(944\) 12.4549i 0.405374i
\(945\) 0 0
\(946\) 21.6990 + 7.02941i 0.705495 + 0.228546i
\(947\) −7.35348 12.7366i −0.238956 0.413884i 0.721459 0.692457i \(-0.243472\pi\)
−0.960415 + 0.278573i \(0.910138\pi\)
\(948\) 0 0
\(949\) 0.398615 0.690422i 0.0129396 0.0224120i
\(950\) −6.48752 + 3.74557i −0.210483 + 0.121522i
\(951\) 0 0
\(952\) −0.124883 + 0.251391i −0.00404747 + 0.00814764i
\(953\) 23.4615i 0.759991i −0.924988 0.379996i \(-0.875926\pi\)
0.924988 0.379996i \(-0.124074\pi\)
\(954\) 0 0
\(955\) 42.1546 + 24.3379i 1.36409 + 0.787557i
\(956\) −6.66102 3.84574i −0.215433 0.124380i
\(957\) 0 0
\(958\) 10.0552i 0.324868i
\(959\) 17.9654 + 8.92459i 0.580133 + 0.288190i
\(960\) 0 0
\(961\) −14.6824 25.4307i −0.473627 0.820346i
\(962\) 24.9742 + 14.4188i 0.805200 + 0.464882i
\(963\) 0 0
\(964\) 11.4067 + 19.7571i 0.367387 + 0.636332i
\(965\) −47.6189 −1.53291
\(966\) 0 0
\(967\) 57.3317i 1.84366i 0.387589 + 0.921832i \(0.373308\pi\)
−0.387589 + 0.921832i \(0.626692\pi\)
\(968\) −10.9417 1.13064i −0.351681 0.0363400i
\(969\) 0 0
\(970\) −24.3827 14.0774i −0.782881 0.451997i
\(971\) 42.1712 24.3476i 1.35334 0.781351i 0.364623 0.931155i \(-0.381198\pi\)
0.988716 + 0.149805i \(0.0478644\pi\)
\(972\) 0 0
\(973\) −0.222649 3.55535i −0.00713778 0.113979i
\(974\) 17.3146i 0.554797i
\(975\) 0 0
\(976\) −4.97512 + 8.61716i −0.159250 + 0.275828i
\(977\) 21.1278 36.5945i 0.675939 1.17076i −0.300255 0.953859i \(-0.597072\pi\)
0.976193 0.216902i \(-0.0695950\pi\)
\(978\) 0 0
\(979\) −5.47871 + 16.9121i −0.175100 + 0.540514i
\(980\) −1.56114 12.4156i −0.0498689 0.396603i
\(981\) 0 0
\(982\) −4.22001 7.30927i −0.134666 0.233248i
\(983\) −20.4533 11.8087i −0.652359 0.376639i 0.137001 0.990571i \(-0.456254\pi\)
−0.789359 + 0.613931i \(0.789587\pi\)
\(984\) 0 0
\(985\) −10.5259 18.2313i −0.335382 0.580899i
\(986\) 0.811871 0.0258553
\(987\) 0 0
\(988\) −26.4766 −0.842334
\(989\) 47.4007 27.3668i 1.50725 0.870213i
\(990\) 0 0
\(991\) −13.4870 + 23.3602i −0.428429 + 0.742060i −0.996734 0.0807577i \(-0.974266\pi\)
0.568305 + 0.822818i \(0.307599\pi\)
\(992\) −0.639360 1.10740i −0.0202997 0.0351601i
\(993\) 0 0
\(994\) −12.3341 18.5760i −0.391215 0.589196i
\(995\) −38.2566 −1.21282
\(996\) 0 0
\(997\) 11.1707 19.3483i 0.353781 0.612766i −0.633128 0.774047i \(-0.718229\pi\)
0.986909 + 0.161281i \(0.0515626\pi\)
\(998\) −16.5168 9.53597i −0.522830 0.301856i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1386.2.bk.b.703.6 16
3.2 odd 2 462.2.p.b.241.3 yes 16
7.5 odd 6 1386.2.bk.a.901.2 16
11.10 odd 2 1386.2.bk.a.703.2 16
21.5 even 6 462.2.p.a.439.7 yes 16
21.11 odd 6 3234.2.e.b.2155.6 16
21.17 even 6 3234.2.e.a.2155.3 16
33.32 even 2 462.2.p.a.241.7 16
77.54 even 6 inner 1386.2.bk.b.901.6 16
231.32 even 6 3234.2.e.a.2155.14 16
231.131 odd 6 462.2.p.b.439.3 yes 16
231.164 odd 6 3234.2.e.b.2155.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.p.a.241.7 16 33.32 even 2
462.2.p.a.439.7 yes 16 21.5 even 6
462.2.p.b.241.3 yes 16 3.2 odd 2
462.2.p.b.439.3 yes 16 231.131 odd 6
1386.2.bk.a.703.2 16 11.10 odd 2
1386.2.bk.a.901.2 16 7.5 odd 6
1386.2.bk.b.703.6 16 1.1 even 1 trivial
1386.2.bk.b.901.6 16 77.54 even 6 inner
3234.2.e.a.2155.3 16 21.17 even 6
3234.2.e.a.2155.14 16 231.32 even 6
3234.2.e.b.2155.6 16 21.11 odd 6
3234.2.e.b.2155.11 16 231.164 odd 6