Properties

Label 1386.2.e.b.307.7
Level $1386$
Weight $2$
Character 1386.307
Analytic conductor $11.067$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(307,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0672657201\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 307.7
Root \(0.323042 - 0.323042i\) of defining polynomial
Character \(\chi\) \(=\) 1386.307
Dual form 1386.2.e.b.307.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +0.646084i q^{5} +(2.44949 + 1.00000i) q^{7} -1.00000i q^{8} -0.646084 q^{10} +(-2.79129 - 1.79129i) q^{11} -3.09557 q^{13} +(-1.00000 + 2.44949i) q^{14} +1.00000 q^{16} -3.74166 q^{17} -5.54506 q^{19} -0.646084i q^{20} +(1.79129 - 2.79129i) q^{22} -4.00000 q^{23} +4.58258 q^{25} -3.09557i q^{26} +(-2.44949 - 1.00000i) q^{28} +7.58258i q^{29} -1.15732i q^{31} +1.00000i q^{32} -3.74166i q^{34} +(-0.646084 + 1.58258i) q^{35} -5.58258 q^{37} -5.54506i q^{38} +0.646084 q^{40} -5.03383 q^{41} +11.1652i q^{43} +(2.79129 + 1.79129i) q^{44} -4.00000i q^{46} -5.03383i q^{47} +(5.00000 + 4.89898i) q^{49} +4.58258i q^{50} +3.09557 q^{52} +2.41742 q^{53} +(1.15732 - 1.80341i) q^{55} +(1.00000 - 2.44949i) q^{56} -7.58258 q^{58} -3.09557i q^{59} -9.28672 q^{61} +1.15732 q^{62} -1.00000 q^{64} -2.00000i q^{65} +1.58258 q^{67} +3.74166 q^{68} +(-1.58258 - 0.646084i) q^{70} -2.00000 q^{71} -6.32599 q^{73} -5.58258i q^{74} +5.54506 q^{76} +(-5.04594 - 7.17903i) q^{77} -4.00000i q^{79} +0.646084i q^{80} -5.03383i q^{82} -9.15188 q^{83} -2.41742i q^{85} -11.1652 q^{86} +(-1.79129 + 2.79129i) q^{88} -9.79796i q^{89} +(-7.58258 - 3.09557i) q^{91} +4.00000 q^{92} +5.03383 q^{94} -3.58258i q^{95} -15.9891i q^{97} +(-4.89898 + 5.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 4 q^{11} - 8 q^{14} + 8 q^{16} - 4 q^{22} - 32 q^{23} - 8 q^{37} + 4 q^{44} + 40 q^{49} + 56 q^{53} + 8 q^{56} - 24 q^{58} - 8 q^{64} - 24 q^{67} + 24 q^{70} - 16 q^{71} - 4 q^{77} - 16 q^{86}+ \cdots + 32 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(1135\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.646084i 0.288937i 0.989509 + 0.144469i \(0.0461473\pi\)
−0.989509 + 0.144469i \(0.953853\pi\)
\(6\) 0 0
\(7\) 2.44949 + 1.00000i 0.925820 + 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.646084 −0.204310
\(11\) −2.79129 1.79129i −0.841605 0.540094i
\(12\) 0 0
\(13\) −3.09557 −0.858558 −0.429279 0.903172i \(-0.641232\pi\)
−0.429279 + 0.903172i \(0.641232\pi\)
\(14\) −1.00000 + 2.44949i −0.267261 + 0.654654i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.74166 −0.907485 −0.453743 0.891133i \(-0.649911\pi\)
−0.453743 + 0.891133i \(0.649911\pi\)
\(18\) 0 0
\(19\) −5.54506 −1.27212 −0.636062 0.771638i \(-0.719438\pi\)
−0.636062 + 0.771638i \(0.719438\pi\)
\(20\) 0.646084i 0.144469i
\(21\) 0 0
\(22\) 1.79129 2.79129i 0.381904 0.595105i
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 4.58258 0.916515
\(26\) 3.09557i 0.607092i
\(27\) 0 0
\(28\) −2.44949 1.00000i −0.462910 0.188982i
\(29\) 7.58258i 1.40805i 0.710176 + 0.704024i \(0.248615\pi\)
−0.710176 + 0.704024i \(0.751385\pi\)
\(30\) 0 0
\(31\) 1.15732i 0.207861i −0.994585 0.103931i \(-0.966858\pi\)
0.994585 0.103931i \(-0.0331420\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.74166i 0.641689i
\(35\) −0.646084 + 1.58258i −0.109208 + 0.267504i
\(36\) 0 0
\(37\) −5.58258 −0.917770 −0.458885 0.888496i \(-0.651751\pi\)
−0.458885 + 0.888496i \(0.651751\pi\)
\(38\) 5.54506i 0.899528i
\(39\) 0 0
\(40\) 0.646084 0.102155
\(41\) −5.03383 −0.786151 −0.393076 0.919506i \(-0.628589\pi\)
−0.393076 + 0.919506i \(0.628589\pi\)
\(42\) 0 0
\(43\) 11.1652i 1.70267i 0.524623 + 0.851335i \(0.324206\pi\)
−0.524623 + 0.851335i \(0.675794\pi\)
\(44\) 2.79129 + 1.79129i 0.420802 + 0.270047i
\(45\) 0 0
\(46\) 4.00000i 0.589768i
\(47\) 5.03383i 0.734259i −0.930170 0.367129i \(-0.880341\pi\)
0.930170 0.367129i \(-0.119659\pi\)
\(48\) 0 0
\(49\) 5.00000 + 4.89898i 0.714286 + 0.699854i
\(50\) 4.58258i 0.648074i
\(51\) 0 0
\(52\) 3.09557 0.429279
\(53\) 2.41742 0.332059 0.166029 0.986121i \(-0.446905\pi\)
0.166029 + 0.986121i \(0.446905\pi\)
\(54\) 0 0
\(55\) 1.15732 1.80341i 0.156053 0.243171i
\(56\) 1.00000 2.44949i 0.133631 0.327327i
\(57\) 0 0
\(58\) −7.58258 −0.995641
\(59\) 3.09557i 0.403009i −0.979488 0.201505i \(-0.935417\pi\)
0.979488 0.201505i \(-0.0645831\pi\)
\(60\) 0 0
\(61\) −9.28672 −1.18904 −0.594521 0.804080i \(-0.702658\pi\)
−0.594521 + 0.804080i \(0.702658\pi\)
\(62\) 1.15732 0.146980
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 2.00000i 0.248069i
\(66\) 0 0
\(67\) 1.58258 0.193342 0.0966712 0.995316i \(-0.469180\pi\)
0.0966712 + 0.995316i \(0.469180\pi\)
\(68\) 3.74166 0.453743
\(69\) 0 0
\(70\) −1.58258 0.646084i −0.189154 0.0772218i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −6.32599 −0.740401 −0.370201 0.928952i \(-0.620711\pi\)
−0.370201 + 0.928952i \(0.620711\pi\)
\(74\) 5.58258i 0.648961i
\(75\) 0 0
\(76\) 5.54506 0.636062
\(77\) −5.04594 7.17903i −0.575039 0.818126i
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0.646084i 0.0722344i
\(81\) 0 0
\(82\) 5.03383i 0.555893i
\(83\) −9.15188 −1.00455 −0.502274 0.864708i \(-0.667503\pi\)
−0.502274 + 0.864708i \(0.667503\pi\)
\(84\) 0 0
\(85\) 2.41742i 0.262206i
\(86\) −11.1652 −1.20397
\(87\) 0 0
\(88\) −1.79129 + 2.79129i −0.190952 + 0.297552i
\(89\) 9.79796i 1.03858i −0.854598 0.519291i \(-0.826196\pi\)
0.854598 0.519291i \(-0.173804\pi\)
\(90\) 0 0
\(91\) −7.58258 3.09557i −0.794870 0.324504i
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 5.03383 0.519199
\(95\) 3.58258i 0.367565i
\(96\) 0 0
\(97\) 15.9891i 1.62345i −0.584041 0.811724i \(-0.698529\pi\)
0.584041 0.811724i \(-0.301471\pi\)
\(98\) −4.89898 + 5.00000i −0.494872 + 0.505076i
\(99\) 0 0
\(100\) −4.58258 −0.458258
\(101\) 0.511238 0.0508701 0.0254351 0.999676i \(-0.491903\pi\)
0.0254351 + 0.999676i \(0.491903\pi\)
\(102\) 0 0
\(103\) 13.5396i 1.33410i 0.745014 + 0.667049i \(0.232443\pi\)
−0.745014 + 0.667049i \(0.767557\pi\)
\(104\) 3.09557i 0.303546i
\(105\) 0 0
\(106\) 2.41742i 0.234801i
\(107\) 8.41742i 0.813743i −0.913485 0.406872i \(-0.866620\pi\)
0.913485 0.406872i \(-0.133380\pi\)
\(108\) 0 0
\(109\) 1.16515i 0.111601i −0.998442 0.0558006i \(-0.982229\pi\)
0.998442 0.0558006i \(-0.0177711\pi\)
\(110\) 1.80341 + 1.15732i 0.171948 + 0.110346i
\(111\) 0 0
\(112\) 2.44949 + 1.00000i 0.231455 + 0.0944911i
\(113\) 16.7477 1.57549 0.787747 0.615999i \(-0.211248\pi\)
0.787747 + 0.615999i \(0.211248\pi\)
\(114\) 0 0
\(115\) 2.58434i 0.240991i
\(116\) 7.58258i 0.704024i
\(117\) 0 0
\(118\) 3.09557 0.284971
\(119\) −9.16515 3.74166i −0.840168 0.342997i
\(120\) 0 0
\(121\) 4.58258 + 10.0000i 0.416598 + 0.909091i
\(122\) 9.28672i 0.840780i
\(123\) 0 0
\(124\) 1.15732i 0.103931i
\(125\) 6.19115i 0.553753i
\(126\) 0 0
\(127\) 5.58258i 0.495373i 0.968840 + 0.247687i \(0.0796704\pi\)
−0.968840 + 0.247687i \(0.920330\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) −9.42157 −0.823166 −0.411583 0.911372i \(-0.635024\pi\)
−0.411583 + 0.911372i \(0.635024\pi\)
\(132\) 0 0
\(133\) −13.5826 5.54506i −1.17776 0.480818i
\(134\) 1.58258i 0.136714i
\(135\) 0 0
\(136\) 3.74166i 0.320844i
\(137\) −15.1652 −1.29565 −0.647823 0.761791i \(-0.724320\pi\)
−0.647823 + 0.761791i \(0.724320\pi\)
\(138\) 0 0
\(139\) 3.23042 0.274001 0.137000 0.990571i \(-0.456254\pi\)
0.137000 + 0.990571i \(0.456254\pi\)
\(140\) 0.646084 1.58258i 0.0546040 0.133752i
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) 8.64064 + 5.54506i 0.722566 + 0.463701i
\(144\) 0 0
\(145\) −4.89898 −0.406838
\(146\) 6.32599i 0.523543i
\(147\) 0 0
\(148\) 5.58258 0.458885
\(149\) 14.0000i 1.14692i 0.819232 + 0.573462i \(0.194400\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 3.58258i 0.291546i −0.989318 0.145773i \(-0.953433\pi\)
0.989318 0.145773i \(-0.0465669\pi\)
\(152\) 5.54506i 0.449764i
\(153\) 0 0
\(154\) 7.17903 5.04594i 0.578503 0.406614i
\(155\) 0.747727 0.0600589
\(156\) 0 0
\(157\) 20.5117i 1.63701i 0.574498 + 0.818506i \(0.305197\pi\)
−0.574498 + 0.818506i \(0.694803\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −0.646084 −0.0510774
\(161\) −9.79796 4.00000i −0.772187 0.315244i
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 5.03383 0.393076
\(165\) 0 0
\(166\) 9.15188i 0.710323i
\(167\) 6.19115 0.479085 0.239543 0.970886i \(-0.423002\pi\)
0.239543 + 0.970886i \(0.423002\pi\)
\(168\) 0 0
\(169\) −3.41742 −0.262879
\(170\) 2.41742 0.185408
\(171\) 0 0
\(172\) 11.1652i 0.851335i
\(173\) 22.9612 1.74571 0.872853 0.487983i \(-0.162267\pi\)
0.872853 + 0.487983i \(0.162267\pi\)
\(174\) 0 0
\(175\) 11.2250 + 4.58258i 0.848528 + 0.346410i
\(176\) −2.79129 1.79129i −0.210401 0.135023i
\(177\) 0 0
\(178\) 9.79796 0.734388
\(179\) 7.16515 0.535549 0.267774 0.963482i \(-0.413712\pi\)
0.267774 + 0.963482i \(0.413712\pi\)
\(180\) 0 0
\(181\) 16.6352i 1.23648i 0.785988 + 0.618242i \(0.212155\pi\)
−0.785988 + 0.618242i \(0.787845\pi\)
\(182\) 3.09557 7.58258i 0.229459 0.562058i
\(183\) 0 0
\(184\) 4.00000i 0.294884i
\(185\) 3.60681i 0.265178i
\(186\) 0 0
\(187\) 10.4440 + 6.70239i 0.763744 + 0.490127i
\(188\) 5.03383i 0.367129i
\(189\) 0 0
\(190\) 3.58258 0.259907
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 20.3303i 1.46341i −0.681623 0.731704i \(-0.738726\pi\)
0.681623 0.731704i \(-0.261274\pi\)
\(194\) 15.9891 1.14795
\(195\) 0 0
\(196\) −5.00000 4.89898i −0.357143 0.349927i
\(197\) 18.7477i 1.33572i 0.744287 + 0.667860i \(0.232790\pi\)
−0.744287 + 0.667860i \(0.767210\pi\)
\(198\) 0 0
\(199\) 24.6297i 1.74596i −0.487759 0.872978i \(-0.662186\pi\)
0.487759 0.872978i \(-0.337814\pi\)
\(200\) 4.58258i 0.324037i
\(201\) 0 0
\(202\) 0.511238i 0.0359706i
\(203\) −7.58258 + 18.5734i −0.532192 + 1.30360i
\(204\) 0 0
\(205\) 3.25227i 0.227149i
\(206\) −13.5396 −0.943350
\(207\) 0 0
\(208\) −3.09557 −0.214639
\(209\) 15.4779 + 9.93280i 1.07063 + 0.687066i
\(210\) 0 0
\(211\) 10.7477i 0.739904i −0.929051 0.369952i \(-0.879374\pi\)
0.929051 0.369952i \(-0.120626\pi\)
\(212\) −2.41742 −0.166029
\(213\) 0 0
\(214\) 8.41742 0.575403
\(215\) −7.21362 −0.491965
\(216\) 0 0
\(217\) 1.15732 2.83485i 0.0785641 0.192442i
\(218\) 1.16515 0.0789140
\(219\) 0 0
\(220\) −1.15732 + 1.80341i −0.0780266 + 0.121586i
\(221\) 11.5826 0.779128
\(222\) 0 0
\(223\) 6.32599i 0.423620i −0.977311 0.211810i \(-0.932064\pi\)
0.977311 0.211810i \(-0.0679358\pi\)
\(224\) −1.00000 + 2.44949i −0.0668153 + 0.163663i
\(225\) 0 0
\(226\) 16.7477i 1.11404i
\(227\) 11.7362 0.778960 0.389480 0.921035i \(-0.372655\pi\)
0.389480 + 0.921035i \(0.372655\pi\)
\(228\) 0 0
\(229\) 13.0284i 0.860939i 0.902605 + 0.430470i \(0.141652\pi\)
−0.902605 + 0.430470i \(0.858348\pi\)
\(230\) 2.58434 0.170406
\(231\) 0 0
\(232\) 7.58258 0.497820
\(233\) 8.83485i 0.578790i 0.957210 + 0.289395i \(0.0934541\pi\)
−0.957210 + 0.289395i \(0.906546\pi\)
\(234\) 0 0
\(235\) 3.25227 0.212155
\(236\) 3.09557i 0.201505i
\(237\) 0 0
\(238\) 3.74166 9.16515i 0.242536 0.594089i
\(239\) 17.5826i 1.13732i 0.822572 + 0.568661i \(0.192538\pi\)
−0.822572 + 0.568661i \(0.807462\pi\)
\(240\) 0 0
\(241\) −25.9219 −1.66978 −0.834889 0.550419i \(-0.814468\pi\)
−0.834889 + 0.550419i \(0.814468\pi\)
\(242\) −10.0000 + 4.58258i −0.642824 + 0.294579i
\(243\) 0 0
\(244\) 9.28672 0.594521
\(245\) −3.16515 + 3.23042i −0.202214 + 0.206384i
\(246\) 0 0
\(247\) 17.1652 1.09219
\(248\) −1.15732 −0.0734900
\(249\) 0 0
\(250\) −6.19115 −0.391563
\(251\) 2.07310i 0.130853i 0.997857 + 0.0654264i \(0.0208407\pi\)
−0.997857 + 0.0654264i \(0.979159\pi\)
\(252\) 0 0
\(253\) 11.1652 + 7.16515i 0.701947 + 0.450469i
\(254\) −5.58258 −0.350282
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 4.89898i 0.305590i 0.988258 + 0.152795i \(0.0488274\pi\)
−0.988258 + 0.152795i \(0.951173\pi\)
\(258\) 0 0
\(259\) −13.6745 5.58258i −0.849690 0.346884i
\(260\) 2.00000i 0.124035i
\(261\) 0 0
\(262\) 9.42157i 0.582066i
\(263\) 28.3303i 1.74692i −0.486895 0.873461i \(-0.661870\pi\)
0.486895 0.873461i \(-0.338130\pi\)
\(264\) 0 0
\(265\) 1.56186i 0.0959442i
\(266\) 5.54506 13.5826i 0.339990 0.832801i
\(267\) 0 0
\(268\) −1.58258 −0.0966712
\(269\) 20.2420i 1.23418i 0.786894 + 0.617088i \(0.211688\pi\)
−0.786894 + 0.617088i \(0.788312\pi\)
\(270\) 0 0
\(271\) −4.89898 −0.297592 −0.148796 0.988868i \(-0.547540\pi\)
−0.148796 + 0.988868i \(0.547540\pi\)
\(272\) −3.74166 −0.226871
\(273\) 0 0
\(274\) 15.1652i 0.916160i
\(275\) −12.7913 8.20871i −0.771344 0.495004i
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 3.23042i 0.193748i
\(279\) 0 0
\(280\) 1.58258 + 0.646084i 0.0945770 + 0.0386109i
\(281\) 7.16515i 0.427437i 0.976895 + 0.213719i \(0.0685575\pi\)
−0.976895 + 0.213719i \(0.931442\pi\)
\(282\) 0 0
\(283\) 15.6127 0.928079 0.464040 0.885814i \(-0.346399\pi\)
0.464040 + 0.885814i \(0.346399\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −5.54506 + 8.64064i −0.327886 + 0.510932i
\(287\) −12.3303 5.03383i −0.727835 0.297137i
\(288\) 0 0
\(289\) −3.00000 −0.176471
\(290\) 4.89898i 0.287678i
\(291\) 0 0
\(292\) 6.32599 0.370201
\(293\) −21.3993 −1.25016 −0.625081 0.780560i \(-0.714934\pi\)
−0.625081 + 0.780560i \(0.714934\pi\)
\(294\) 0 0
\(295\) 2.00000 0.116445
\(296\) 5.58258i 0.324481i
\(297\) 0 0
\(298\) −14.0000 −0.810998
\(299\) 12.3823 0.716087
\(300\) 0 0
\(301\) −11.1652 + 27.3489i −0.643549 + 1.57637i
\(302\) 3.58258 0.206154
\(303\) 0 0
\(304\) −5.54506 −0.318031
\(305\) 6.00000i 0.343559i
\(306\) 0 0
\(307\) 8.12940 0.463969 0.231985 0.972719i \(-0.425478\pi\)
0.231985 + 0.972719i \(0.425478\pi\)
\(308\) 5.04594 + 7.17903i 0.287519 + 0.409063i
\(309\) 0 0
\(310\) 0.747727i 0.0424680i
\(311\) 9.93280i 0.563238i 0.959526 + 0.281619i \(0.0908714\pi\)
−0.959526 + 0.281619i \(0.909129\pi\)
\(312\) 0 0
\(313\) 1.02248i 0.0577938i −0.999582 0.0288969i \(-0.990801\pi\)
0.999582 0.0288969i \(-0.00919945\pi\)
\(314\) −20.5117 −1.15754
\(315\) 0 0
\(316\) 4.00000i 0.225018i
\(317\) 9.16515 0.514766 0.257383 0.966309i \(-0.417140\pi\)
0.257383 + 0.966309i \(0.417140\pi\)
\(318\) 0 0
\(319\) 13.5826 21.1652i 0.760478 1.18502i
\(320\) 0.646084i 0.0361172i
\(321\) 0 0
\(322\) 4.00000 9.79796i 0.222911 0.546019i
\(323\) 20.7477 1.15443
\(324\) 0 0
\(325\) −14.1857 −0.786881
\(326\) 4.00000i 0.221540i
\(327\) 0 0
\(328\) 5.03383i 0.277946i
\(329\) 5.03383 12.3303i 0.277524 0.679792i
\(330\) 0 0
\(331\) −14.4174 −0.792453 −0.396227 0.918153i \(-0.629681\pi\)
−0.396227 + 0.918153i \(0.629681\pi\)
\(332\) 9.15188 0.502274
\(333\) 0 0
\(334\) 6.19115i 0.338764i
\(335\) 1.02248i 0.0558639i
\(336\) 0 0
\(337\) 29.1652i 1.58873i 0.607443 + 0.794364i \(0.292195\pi\)
−0.607443 + 0.794364i \(0.707805\pi\)
\(338\) 3.41742i 0.185883i
\(339\) 0 0
\(340\) 2.41742i 0.131103i
\(341\) −2.07310 + 3.23042i −0.112264 + 0.174937i
\(342\) 0 0
\(343\) 7.34847 + 17.0000i 0.396780 + 0.917914i
\(344\) 11.1652 0.601985
\(345\) 0 0
\(346\) 22.9612i 1.23440i
\(347\) 0.834849i 0.0448170i 0.999749 + 0.0224085i \(0.00713345\pi\)
−0.999749 + 0.0224085i \(0.992867\pi\)
\(348\) 0 0
\(349\) −2.07310 −0.110970 −0.0554852 0.998460i \(-0.517671\pi\)
−0.0554852 + 0.998460i \(0.517671\pi\)
\(350\) −4.58258 + 11.2250i −0.244949 + 0.600000i
\(351\) 0 0
\(352\) 1.79129 2.79129i 0.0954760 0.148776i
\(353\) 7.48331i 0.398297i 0.979969 + 0.199148i \(0.0638176\pi\)
−0.979969 + 0.199148i \(0.936182\pi\)
\(354\) 0 0
\(355\) 1.29217i 0.0685811i
\(356\) 9.79796i 0.519291i
\(357\) 0 0
\(358\) 7.16515i 0.378690i
\(359\) 0.417424i 0.0220308i 0.999939 + 0.0110154i \(0.00350638\pi\)
−0.999939 + 0.0110154i \(0.996494\pi\)
\(360\) 0 0
\(361\) 11.7477 0.618301
\(362\) −16.6352 −0.874326
\(363\) 0 0
\(364\) 7.58258 + 3.09557i 0.397435 + 0.162252i
\(365\) 4.08712i 0.213930i
\(366\) 0 0
\(367\) 1.42701i 0.0744895i −0.999306 0.0372447i \(-0.988142\pi\)
0.999306 0.0372447i \(-0.0118581\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 3.60681 0.187509
\(371\) 5.92146 + 2.41742i 0.307427 + 0.125506i
\(372\) 0 0
\(373\) 0.417424i 0.0216134i 0.999942 + 0.0108067i \(0.00343995\pi\)
−0.999942 + 0.0108067i \(0.996560\pi\)
\(374\) −6.70239 + 10.4440i −0.346572 + 0.540049i
\(375\) 0 0
\(376\) −5.03383 −0.259600
\(377\) 23.4724i 1.20889i
\(378\) 0 0
\(379\) 14.3303 0.736098 0.368049 0.929806i \(-0.380026\pi\)
0.368049 + 0.929806i \(0.380026\pi\)
\(380\) 3.58258i 0.183782i
\(381\) 0 0
\(382\) 18.0000i 0.920960i
\(383\) 4.76413i 0.243436i −0.992565 0.121718i \(-0.961160\pi\)
0.992565 0.121718i \(-0.0388403\pi\)
\(384\) 0 0
\(385\) 4.63825 3.26010i 0.236387 0.166150i
\(386\) 20.3303 1.03479
\(387\) 0 0
\(388\) 15.9891i 0.811724i
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 14.9666 0.756895
\(392\) 4.89898 5.00000i 0.247436 0.252538i
\(393\) 0 0
\(394\) −18.7477 −0.944497
\(395\) 2.58434 0.130032
\(396\) 0 0
\(397\) 23.8488i 1.19694i −0.801146 0.598469i \(-0.795776\pi\)
0.801146 0.598469i \(-0.204224\pi\)
\(398\) 24.6297 1.23458
\(399\) 0 0
\(400\) 4.58258 0.229129
\(401\) 1.58258 0.0790301 0.0395150 0.999219i \(-0.487419\pi\)
0.0395150 + 0.999219i \(0.487419\pi\)
\(402\) 0 0
\(403\) 3.58258i 0.178461i
\(404\) −0.511238 −0.0254351
\(405\) 0 0
\(406\) −18.5734 7.58258i −0.921784 0.376317i
\(407\) 15.5826 + 10.0000i 0.772400 + 0.495682i
\(408\) 0 0
\(409\) 9.93280 0.491146 0.245573 0.969378i \(-0.421024\pi\)
0.245573 + 0.969378i \(0.421024\pi\)
\(410\) 3.25227 0.160618
\(411\) 0 0
\(412\) 13.5396i 0.667049i
\(413\) 3.09557 7.58258i 0.152323 0.373114i
\(414\) 0 0
\(415\) 5.91288i 0.290252i
\(416\) 3.09557i 0.151773i
\(417\) 0 0
\(418\) −9.93280 + 15.4779i −0.485829 + 0.757047i
\(419\) 5.67991i 0.277482i 0.990329 + 0.138741i \(0.0443055\pi\)
−0.990329 + 0.138741i \(0.955694\pi\)
\(420\) 0 0
\(421\) −1.58258 −0.0771300 −0.0385650 0.999256i \(-0.512279\pi\)
−0.0385650 + 0.999256i \(0.512279\pi\)
\(422\) 10.7477 0.523191
\(423\) 0 0
\(424\) 2.41742i 0.117401i
\(425\) −17.1464 −0.831724
\(426\) 0 0
\(427\) −22.7477 9.28672i −1.10084 0.449416i
\(428\) 8.41742i 0.406872i
\(429\) 0 0
\(430\) 7.21362i 0.347872i
\(431\) 17.9129i 0.862833i −0.902153 0.431416i \(-0.858014\pi\)
0.902153 0.431416i \(-0.141986\pi\)
\(432\) 0 0
\(433\) 28.1017i 1.35048i 0.737597 + 0.675241i \(0.235960\pi\)
−0.737597 + 0.675241i \(0.764040\pi\)
\(434\) 2.83485 + 1.15732i 0.136077 + 0.0555532i
\(435\) 0 0
\(436\) 1.16515i 0.0558006i
\(437\) 22.1803 1.06103
\(438\) 0 0
\(439\) 2.31464 0.110472 0.0552360 0.998473i \(-0.482409\pi\)
0.0552360 + 0.998473i \(0.482409\pi\)
\(440\) −1.80341 1.15732i −0.0859740 0.0551732i
\(441\) 0 0
\(442\) 11.5826i 0.550927i
\(443\) 3.16515 0.150381 0.0751904 0.997169i \(-0.476044\pi\)
0.0751904 + 0.997169i \(0.476044\pi\)
\(444\) 0 0
\(445\) 6.33030 0.300085
\(446\) 6.32599 0.299544
\(447\) 0 0
\(448\) −2.44949 1.00000i −0.115728 0.0472456i
\(449\) −12.8348 −0.605714 −0.302857 0.953036i \(-0.597940\pi\)
−0.302857 + 0.953036i \(0.597940\pi\)
\(450\) 0 0
\(451\) 14.0509 + 9.01703i 0.661629 + 0.424595i
\(452\) −16.7477 −0.787747
\(453\) 0 0
\(454\) 11.7362i 0.550808i
\(455\) 2.00000 4.89898i 0.0937614 0.229668i
\(456\) 0 0
\(457\) 14.8348i 0.693945i 0.937875 + 0.346972i \(0.112790\pi\)
−0.937875 + 0.346972i \(0.887210\pi\)
\(458\) −13.0284 −0.608776
\(459\) 0 0
\(460\) 2.58434i 0.120495i
\(461\) −26.2983 −1.22483 −0.612417 0.790535i \(-0.709803\pi\)
−0.612417 + 0.790535i \(0.709803\pi\)
\(462\) 0 0
\(463\) −13.1652 −0.611836 −0.305918 0.952058i \(-0.598963\pi\)
−0.305918 + 0.952058i \(0.598963\pi\)
\(464\) 7.58258i 0.352012i
\(465\) 0 0
\(466\) −8.83485 −0.409266
\(467\) 0.511238i 0.0236573i 0.999930 + 0.0118286i \(0.00376526\pi\)
−0.999930 + 0.0118286i \(0.996235\pi\)
\(468\) 0 0
\(469\) 3.87650 + 1.58258i 0.179000 + 0.0730766i
\(470\) 3.25227i 0.150016i
\(471\) 0 0
\(472\) −3.09557 −0.142485
\(473\) 20.0000 31.1652i 0.919601 1.43298i
\(474\) 0 0
\(475\) −25.4107 −1.16592
\(476\) 9.16515 + 3.74166i 0.420084 + 0.171499i
\(477\) 0 0
\(478\) −17.5826 −0.804208
\(479\) 6.46084 0.295203 0.147602 0.989047i \(-0.452845\pi\)
0.147602 + 0.989047i \(0.452845\pi\)
\(480\) 0 0
\(481\) 17.2813 0.787958
\(482\) 25.9219i 1.18071i
\(483\) 0 0
\(484\) −4.58258 10.0000i −0.208299 0.454545i
\(485\) 10.3303 0.469075
\(486\) 0 0
\(487\) −33.4955 −1.51782 −0.758912 0.651193i \(-0.774269\pi\)
−0.758912 + 0.651193i \(0.774269\pi\)
\(488\) 9.28672i 0.420390i
\(489\) 0 0
\(490\) −3.23042 3.16515i −0.145935 0.142987i
\(491\) 21.4955i 0.970076i 0.874493 + 0.485038i \(0.161194\pi\)
−0.874493 + 0.485038i \(0.838806\pi\)
\(492\) 0 0
\(493\) 28.3714i 1.27778i
\(494\) 17.1652i 0.772297i
\(495\) 0 0
\(496\) 1.15732i 0.0519653i
\(497\) −4.89898 2.00000i −0.219749 0.0897123i
\(498\) 0 0
\(499\) 27.9129 1.24955 0.624776 0.780804i \(-0.285190\pi\)
0.624776 + 0.780804i \(0.285190\pi\)
\(500\) 6.19115i 0.276877i
\(501\) 0 0
\(502\) −2.07310 −0.0925268
\(503\) 31.9782 1.42584 0.712919 0.701246i \(-0.247373\pi\)
0.712919 + 0.701246i \(0.247373\pi\)
\(504\) 0 0
\(505\) 0.330303i 0.0146983i
\(506\) −7.16515 + 11.1652i −0.318530 + 0.496352i
\(507\) 0 0
\(508\) 5.58258i 0.247687i
\(509\) 17.9274i 0.794616i 0.917685 + 0.397308i \(0.130056\pi\)
−0.917685 + 0.397308i \(0.869944\pi\)
\(510\) 0 0
\(511\) −15.4955 6.32599i −0.685479 0.279845i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −4.89898 −0.216085
\(515\) −8.74773 −0.385471
\(516\) 0 0
\(517\) −9.01703 + 14.0509i −0.396569 + 0.617956i
\(518\) 5.58258 13.6745i 0.245284 0.600821i
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) 35.5850i 1.55901i 0.626397 + 0.779504i \(0.284529\pi\)
−0.626397 + 0.779504i \(0.715471\pi\)
\(522\) 0 0
\(523\) 26.7028 1.16763 0.583817 0.811885i \(-0.301559\pi\)
0.583817 + 0.811885i \(0.301559\pi\)
\(524\) 9.42157 0.411583
\(525\) 0 0
\(526\) 28.3303 1.23526
\(527\) 4.33030i 0.188631i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −1.56186 −0.0678428
\(531\) 0 0
\(532\) 13.5826 + 5.54506i 0.588879 + 0.240409i
\(533\) 15.5826 0.674956
\(534\) 0 0
\(535\) 5.43836 0.235121
\(536\) 1.58258i 0.0683569i
\(537\) 0 0
\(538\) −20.2420 −0.872695
\(539\) −5.18096 22.6309i −0.223160 0.974782i
\(540\) 0 0
\(541\) 9.25227i 0.397786i −0.980021 0.198893i \(-0.936265\pi\)
0.980021 0.198893i \(-0.0637347\pi\)
\(542\) 4.89898i 0.210429i
\(543\) 0 0
\(544\) 3.74166i 0.160422i
\(545\) 0.752785 0.0322458
\(546\) 0 0
\(547\) 2.74773i 0.117484i 0.998273 + 0.0587422i \(0.0187090\pi\)
−0.998273 + 0.0587422i \(0.981291\pi\)
\(548\) 15.1652 0.647823
\(549\) 0 0
\(550\) 8.20871 12.7913i 0.350021 0.545422i
\(551\) 42.0459i 1.79121i
\(552\) 0 0
\(553\) 4.00000 9.79796i 0.170097 0.416652i
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −3.23042 −0.137000
\(557\) 9.91288i 0.420022i −0.977699 0.210011i \(-0.932650\pi\)
0.977699 0.210011i \(-0.0673500\pi\)
\(558\) 0 0
\(559\) 34.5625i 1.46184i
\(560\) −0.646084 + 1.58258i −0.0273020 + 0.0668760i
\(561\) 0 0
\(562\) −7.16515 −0.302244
\(563\) −42.4223 −1.78788 −0.893942 0.448182i \(-0.852072\pi\)
−0.893942 + 0.448182i \(0.852072\pi\)
\(564\) 0 0
\(565\) 10.8204i 0.455219i
\(566\) 15.6127i 0.656251i
\(567\) 0 0
\(568\) 2.00000i 0.0839181i
\(569\) 15.4955i 0.649603i 0.945782 + 0.324802i \(0.105298\pi\)
−0.945782 + 0.324802i \(0.894702\pi\)
\(570\) 0 0
\(571\) 3.58258i 0.149926i 0.997186 + 0.0749631i \(0.0238839\pi\)
−0.997186 + 0.0749631i \(0.976116\pi\)
\(572\) −8.64064 5.54506i −0.361283 0.231851i
\(573\) 0 0
\(574\) 5.03383 12.3303i 0.210108 0.514657i
\(575\) −18.3303 −0.764426
\(576\) 0 0
\(577\) 0.269691i 0.0112274i −0.999984 0.00561369i \(-0.998213\pi\)
0.999984 0.00561369i \(-0.00178690\pi\)
\(578\) 3.00000i 0.124784i
\(579\) 0 0
\(580\) 4.89898 0.203419
\(581\) −22.4174 9.15188i −0.930031 0.379684i
\(582\) 0 0
\(583\) −6.74773 4.33030i −0.279462 0.179343i
\(584\) 6.32599i 0.261771i
\(585\) 0 0
\(586\) 21.3993i 0.883998i
\(587\) 17.0397i 0.703305i −0.936131 0.351652i \(-0.885620\pi\)
0.936131 0.351652i \(-0.114380\pi\)
\(588\) 0 0
\(589\) 6.41742i 0.264425i
\(590\) 2.00000i 0.0823387i
\(591\) 0 0
\(592\) −5.58258 −0.229442
\(593\) −0.134846 −0.00553744 −0.00276872 0.999996i \(-0.500881\pi\)
−0.00276872 + 0.999996i \(0.500881\pi\)
\(594\) 0 0
\(595\) 2.41742 5.92146i 0.0991047 0.242756i
\(596\) 14.0000i 0.573462i
\(597\) 0 0
\(598\) 12.3823i 0.506350i
\(599\) 2.83485 0.115829 0.0579144 0.998322i \(-0.481555\pi\)
0.0579144 + 0.998322i \(0.481555\pi\)
\(600\) 0 0
\(601\) −1.42701 −0.0582091 −0.0291045 0.999576i \(-0.509266\pi\)
−0.0291045 + 0.999576i \(0.509266\pi\)
\(602\) −27.3489 11.1652i −1.11466 0.455058i
\(603\) 0 0
\(604\) 3.58258i 0.145773i
\(605\) −6.46084 + 2.96073i −0.262670 + 0.120371i
\(606\) 0 0
\(607\) 46.9448 1.90543 0.952716 0.303862i \(-0.0982761\pi\)
0.952716 + 0.303862i \(0.0982761\pi\)
\(608\) 5.54506i 0.224882i
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) 15.5826i 0.630404i
\(612\) 0 0
\(613\) 13.9129i 0.561936i −0.959717 0.280968i \(-0.909345\pi\)
0.959717 0.280968i \(-0.0906555\pi\)
\(614\) 8.12940i 0.328076i
\(615\) 0 0
\(616\) −7.17903 + 5.04594i −0.289251 + 0.203307i
\(617\) −25.9129 −1.04321 −0.521607 0.853186i \(-0.674667\pi\)
−0.521607 + 0.853186i \(0.674667\pi\)
\(618\) 0 0
\(619\) 0.780929i 0.0313882i 0.999877 + 0.0156941i \(0.00499579\pi\)
−0.999877 + 0.0156941i \(0.995004\pi\)
\(620\) −0.747727 −0.0300294
\(621\) 0 0
\(622\) −9.93280 −0.398269
\(623\) 9.79796 24.0000i 0.392547 0.961540i
\(624\) 0 0
\(625\) 18.9129 0.756515
\(626\) 1.02248 0.0408664
\(627\) 0 0
\(628\) 20.5117i 0.818506i
\(629\) 20.8881 0.832863
\(630\) 0 0
\(631\) −5.16515 −0.205621 −0.102811 0.994701i \(-0.532784\pi\)
−0.102811 + 0.994701i \(0.532784\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) 9.16515i 0.363995i
\(635\) −3.60681 −0.143132
\(636\) 0 0
\(637\) −15.4779 15.1652i −0.613255 0.600865i
\(638\) 21.1652 + 13.5826i 0.837936 + 0.537739i
\(639\) 0 0
\(640\) 0.646084 0.0255387
\(641\) −29.9129 −1.18149 −0.590744 0.806859i \(-0.701166\pi\)
−0.590744 + 0.806859i \(0.701166\pi\)
\(642\) 0 0
\(643\) 16.7700i 0.661346i 0.943745 + 0.330673i \(0.107276\pi\)
−0.943745 + 0.330673i \(0.892724\pi\)
\(644\) 9.79796 + 4.00000i 0.386094 + 0.157622i
\(645\) 0 0
\(646\) 20.7477i 0.816308i
\(647\) 44.7650i 1.75990i −0.475071 0.879948i \(-0.657577\pi\)
0.475071 0.879948i \(-0.342423\pi\)
\(648\) 0 0
\(649\) −5.54506 + 8.64064i −0.217663 + 0.339175i
\(650\) 14.1857i 0.556409i
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 6.08712i 0.237844i
\(656\) −5.03383 −0.196538
\(657\) 0 0
\(658\) 12.3303 + 5.03383i 0.480685 + 0.196239i
\(659\) 30.3303i 1.18150i −0.806854 0.590750i \(-0.798832\pi\)
0.806854 0.590750i \(-0.201168\pi\)
\(660\) 0 0
\(661\) 25.4107i 0.988361i −0.869359 0.494180i \(-0.835468\pi\)
0.869359 0.494180i \(-0.164532\pi\)
\(662\) 14.4174i 0.560349i
\(663\) 0 0
\(664\) 9.15188i 0.355162i
\(665\) 3.58258 8.77548i 0.138926 0.340299i
\(666\) 0 0
\(667\) 30.3303i 1.17439i
\(668\) −6.19115 −0.239543
\(669\) 0 0
\(670\) −1.02248 −0.0395017
\(671\) 25.9219 + 16.6352i 1.00070 + 0.642194i
\(672\) 0 0
\(673\) 18.3303i 0.706581i 0.935514 + 0.353291i \(0.114937\pi\)
−0.935514 + 0.353291i \(0.885063\pi\)
\(674\) −29.1652 −1.12340
\(675\) 0 0
\(676\) 3.41742 0.131439
\(677\) −31.4670 −1.20937 −0.604687 0.796463i \(-0.706702\pi\)
−0.604687 + 0.796463i \(0.706702\pi\)
\(678\) 0 0
\(679\) 15.9891 39.1652i 0.613606 1.50302i
\(680\) −2.41742 −0.0927040
\(681\) 0 0
\(682\) −3.23042 2.07310i −0.123699 0.0793830i
\(683\) −45.4955 −1.74084 −0.870418 0.492314i \(-0.836151\pi\)
−0.870418 + 0.492314i \(0.836151\pi\)
\(684\) 0 0
\(685\) 9.79796i 0.374361i
\(686\) −17.0000 + 7.34847i −0.649063 + 0.280566i
\(687\) 0 0
\(688\) 11.1652i 0.425667i
\(689\) −7.48331 −0.285092
\(690\) 0 0
\(691\) 37.6581i 1.43258i −0.697801 0.716291i \(-0.745838\pi\)
0.697801 0.716291i \(-0.254162\pi\)
\(692\) −22.9612 −0.872853
\(693\) 0 0
\(694\) −0.834849 −0.0316904
\(695\) 2.08712i 0.0791690i
\(696\) 0 0
\(697\) 18.8348 0.713421
\(698\) 2.07310i 0.0784679i
\(699\) 0 0
\(700\) −11.2250 4.58258i −0.424264 0.173205i
\(701\) 24.3303i 0.918943i 0.888193 + 0.459471i \(0.151961\pi\)
−0.888193 + 0.459471i \(0.848039\pi\)
\(702\) 0 0
\(703\) 30.9557 1.16752
\(704\) 2.79129 + 1.79129i 0.105201 + 0.0675117i
\(705\) 0 0
\(706\) −7.48331 −0.281638
\(707\) 1.25227 + 0.511238i 0.0470966 + 0.0192271i
\(708\) 0 0
\(709\) 15.6697 0.588488 0.294244 0.955730i \(-0.404932\pi\)
0.294244 + 0.955730i \(0.404932\pi\)
\(710\) 1.29217 0.0484942
\(711\) 0 0
\(712\) −9.79796 −0.367194
\(713\) 4.62929i 0.173368i
\(714\) 0 0
\(715\) −3.58258 + 5.58258i −0.133981 + 0.208776i
\(716\) −7.16515 −0.267774
\(717\) 0 0
\(718\) −0.417424 −0.0155781
\(719\) 15.8543i 0.591264i 0.955302 + 0.295632i \(0.0955302\pi\)
−0.955302 + 0.295632i \(0.904470\pi\)
\(720\) 0 0
\(721\) −13.5396 + 33.1652i −0.504242 + 1.23513i
\(722\) 11.7477i 0.437205i
\(723\) 0 0
\(724\) 16.6352i 0.618242i
\(725\) 34.7477i 1.29050i
\(726\) 0 0
\(727\) 52.2484i 1.93778i −0.247483 0.968892i \(-0.579604\pi\)
0.247483 0.968892i \(-0.420396\pi\)
\(728\) −3.09557 + 7.58258i −0.114730 + 0.281029i
\(729\) 0 0
\(730\) 4.08712 0.151271
\(731\) 41.7762i 1.54515i
\(732\) 0 0
\(733\) −22.9612 −0.848091 −0.424045 0.905641i \(-0.639390\pi\)
−0.424045 + 0.905641i \(0.639390\pi\)
\(734\) 1.42701 0.0526720
\(735\) 0 0
\(736\) 4.00000i 0.147442i
\(737\) −4.41742 2.83485i −0.162718 0.104423i
\(738\) 0 0
\(739\) 7.58258i 0.278930i −0.990227 0.139465i \(-0.955462\pi\)
0.990227 0.139465i \(-0.0445382\pi\)
\(740\) 3.60681i 0.132589i
\(741\) 0 0
\(742\) −2.41742 + 5.92146i −0.0887464 + 0.217383i
\(743\) 43.9129i 1.61101i 0.592591 + 0.805504i \(0.298105\pi\)
−0.592591 + 0.805504i \(0.701895\pi\)
\(744\) 0 0
\(745\) −9.04517 −0.331390
\(746\) −0.417424 −0.0152830
\(747\) 0 0
\(748\) −10.4440 6.70239i −0.381872 0.245063i
\(749\) 8.41742 20.6184i 0.307566 0.753380i
\(750\) 0 0
\(751\) 13.4955 0.492456 0.246228 0.969212i \(-0.420809\pi\)
0.246228 + 0.969212i \(0.420809\pi\)
\(752\) 5.03383i 0.183565i
\(753\) 0 0
\(754\) 23.4724 0.854815
\(755\) 2.31464 0.0842385
\(756\) 0 0
\(757\) −49.1652 −1.78694 −0.893469 0.449125i \(-0.851736\pi\)
−0.893469 + 0.449125i \(0.851736\pi\)
\(758\) 14.3303i 0.520500i
\(759\) 0 0
\(760\) −3.58258 −0.129954
\(761\) −20.7532 −0.752304 −0.376152 0.926558i \(-0.622753\pi\)
−0.376152 + 0.926558i \(0.622753\pi\)
\(762\) 0 0
\(763\) 1.16515 2.85403i 0.0421813 0.103323i
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 4.76413 0.172135
\(767\) 9.58258i 0.346007i
\(768\) 0 0
\(769\) 29.7984 1.07456 0.537279 0.843404i \(-0.319452\pi\)
0.537279 + 0.843404i \(0.319452\pi\)
\(770\) 3.26010 + 4.63825i 0.117486 + 0.167151i
\(771\) 0 0
\(772\) 20.3303i 0.731704i
\(773\) 51.1977i 1.84145i −0.390207 0.920727i \(-0.627596\pi\)
0.390207 0.920727i \(-0.372404\pi\)
\(774\) 0 0
\(775\) 5.30352i 0.190508i
\(776\) −15.9891 −0.573975
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) 27.9129 1.00008
\(780\) 0 0
\(781\) 5.58258 + 3.58258i 0.199760 + 0.128195i
\(782\) 14.9666i 0.535206i
\(783\) 0 0
\(784\) 5.00000 + 4.89898i 0.178571 + 0.174964i
\(785\) −13.2523 −0.472994
\(786\) 0 0
\(787\) −40.3773 −1.43930 −0.719648 0.694339i \(-0.755697\pi\)
−0.719648 + 0.694339i \(0.755697\pi\)
\(788\) 18.7477i 0.667860i
\(789\) 0 0
\(790\) 2.58434i 0.0919465i
\(791\) 41.0234 + 16.7477i 1.45862 + 0.595481i
\(792\) 0 0
\(793\) 28.7477 1.02086
\(794\) 23.8488 0.846363
\(795\) 0 0
\(796\) 24.6297i 0.872978i
\(797\) 36.2311i 1.28337i −0.766968 0.641686i \(-0.778235\pi\)
0.766968 0.641686i \(-0.221765\pi\)
\(798\) 0 0
\(799\) 18.8348i 0.666329i
\(800\) 4.58258i 0.162019i
\(801\) 0 0
\(802\) 1.58258i 0.0558827i
\(803\) 17.6577 + 11.3317i 0.623126 + 0.399886i
\(804\) 0 0
\(805\) 2.58434 6.33030i 0.0910859 0.223114i
\(806\) −3.58258 −0.126191
\(807\) 0 0
\(808\) 0.511238i 0.0179853i
\(809\) 33.1652i 1.16602i −0.812463 0.583012i \(-0.801874\pi\)
0.812463 0.583012i \(-0.198126\pi\)
\(810\) 0 0
\(811\) −30.3097 −1.06432 −0.532158 0.846645i \(-0.678619\pi\)
−0.532158 + 0.846645i \(0.678619\pi\)
\(812\) 7.58258 18.5734i 0.266096 0.651800i
\(813\) 0 0
\(814\) −10.0000 + 15.5826i −0.350500 + 0.546169i
\(815\) 2.58434i 0.0905253i
\(816\) 0 0
\(817\) 61.9115i 2.16601i
\(818\) 9.93280i 0.347292i
\(819\) 0 0
\(820\) 3.25227i 0.113574i
\(821\) 11.4955i 0.401194i −0.979674 0.200597i \(-0.935712\pi\)
0.979674 0.200597i \(-0.0642882\pi\)
\(822\) 0 0
\(823\) −40.3303 −1.40583 −0.702913 0.711276i \(-0.748118\pi\)
−0.702913 + 0.711276i \(0.748118\pi\)
\(824\) 13.5396 0.471675
\(825\) 0 0
\(826\) 7.58258 + 3.09557i 0.263832 + 0.107709i
\(827\) 15.1652i 0.527344i 0.964612 + 0.263672i \(0.0849337\pi\)
−0.964612 + 0.263672i \(0.915066\pi\)
\(828\) 0 0
\(829\) 4.25290i 0.147709i 0.997269 + 0.0738546i \(0.0235301\pi\)
−0.997269 + 0.0738546i \(0.976470\pi\)
\(830\) 5.91288 0.205239
\(831\) 0 0
\(832\) 3.09557 0.107320
\(833\) −18.7083 18.3303i −0.648204 0.635107i
\(834\) 0 0
\(835\) 4.00000i 0.138426i
\(836\) −15.4779 9.93280i −0.535313 0.343533i
\(837\) 0 0
\(838\) −5.67991 −0.196209
\(839\) 24.6297i 0.850313i 0.905120 + 0.425157i \(0.139781\pi\)
−0.905120 + 0.425157i \(0.860219\pi\)
\(840\) 0 0
\(841\) −28.4955 −0.982602
\(842\) 1.58258i 0.0545392i
\(843\) 0 0
\(844\) 10.7477i 0.369952i
\(845\) 2.20794i 0.0759555i
\(846\) 0 0
\(847\) 1.22497 + 29.0775i 0.0420905 + 0.999114i
\(848\) 2.41742 0.0830147
\(849\) 0 0
\(850\) 17.1464i 0.588118i
\(851\) 22.3303 0.765473
\(852\) 0 0
\(853\) 30.1748 1.03317 0.516583 0.856237i \(-0.327204\pi\)
0.516583 + 0.856237i \(0.327204\pi\)
\(854\) 9.28672 22.7477i 0.317785 0.778411i
\(855\) 0 0
\(856\) −8.41742 −0.287702
\(857\) −21.2926 −0.727342 −0.363671 0.931527i \(-0.618477\pi\)
−0.363671 + 0.931527i \(0.618477\pi\)
\(858\) 0 0
\(859\) 31.7367i 1.08284i 0.840752 + 0.541421i \(0.182113\pi\)
−0.840752 + 0.541421i \(0.817887\pi\)
\(860\) 7.21362 0.245983
\(861\) 0 0
\(862\) 17.9129 0.610115
\(863\) 33.1652 1.12895 0.564477 0.825448i \(-0.309078\pi\)
0.564477 + 0.825448i \(0.309078\pi\)
\(864\) 0 0
\(865\) 14.8348i 0.504400i
\(866\) −28.1017 −0.954935
\(867\) 0 0
\(868\) −1.15732 + 2.83485i −0.0392821 + 0.0962210i
\(869\) −7.16515 + 11.1652i −0.243061 + 0.378752i
\(870\) 0 0
\(871\) −4.89898 −0.165996
\(872\) −1.16515 −0.0394570
\(873\) 0 0
\(874\) 22.1803i 0.750258i
\(875\) −6.19115 + 15.1652i −0.209299 + 0.512676i
\(876\) 0 0
\(877\) 25.1652i 0.849767i −0.905248 0.424883i \(-0.860315\pi\)
0.905248 0.424883i \(-0.139685\pi\)
\(878\) 2.31464i 0.0781155i
\(879\) 0 0
\(880\) 1.15732 1.80341i 0.0390133 0.0607928i
\(881\) 22.1803i 0.747272i −0.927575 0.373636i \(-0.878111\pi\)
0.927575 0.373636i \(-0.121889\pi\)
\(882\) 0 0
\(883\) 31.1652 1.04879 0.524395 0.851475i \(-0.324291\pi\)
0.524395 + 0.851475i \(0.324291\pi\)
\(884\) −11.5826 −0.389564
\(885\) 0 0
\(886\) 3.16515i 0.106335i
\(887\) −28.9108 −0.970729 −0.485365 0.874312i \(-0.661313\pi\)
−0.485365 + 0.874312i \(0.661313\pi\)
\(888\) 0 0
\(889\) −5.58258 + 13.6745i −0.187234 + 0.458627i
\(890\) 6.33030i 0.212192i
\(891\) 0 0
\(892\) 6.32599i 0.211810i
\(893\) 27.9129i 0.934069i
\(894\) 0 0
\(895\) 4.62929i 0.154740i
\(896\) 1.00000 2.44949i 0.0334077 0.0818317i
\(897\) 0 0
\(898\) 12.8348i 0.428304i
\(899\) 8.77548 0.292679
\(900\) 0 0
\(901\) −9.04517 −0.301338
\(902\) −9.01703 + 14.0509i −0.300234 + 0.467842i
\(903\) 0 0
\(904\) 16.7477i 0.557021i
\(905\) −10.7477 −0.357267
\(906\) 0 0
\(907\) −39.9129 −1.32529 −0.662643 0.748936i \(-0.730565\pi\)
−0.662643 + 0.748936i \(0.730565\pi\)
\(908\) −11.7362 −0.389480
\(909\) 0 0
\(910\) 4.89898 + 2.00000i 0.162400 + 0.0662994i
\(911\) 15.1652 0.502444 0.251222 0.967930i \(-0.419168\pi\)
0.251222 + 0.967930i \(0.419168\pi\)
\(912\) 0 0
\(913\) 25.5455 + 16.3936i 0.845433 + 0.542550i
\(914\) −14.8348 −0.490693
\(915\) 0 0
\(916\) 13.0284i 0.430470i
\(917\) −23.0780 9.42157i −0.762104 0.311128i
\(918\) 0 0
\(919\) 35.4955i 1.17089i −0.810713 0.585443i \(-0.800920\pi\)
0.810713 0.585443i \(-0.199080\pi\)
\(920\) −2.58434 −0.0852030
\(921\) 0 0
\(922\) 26.2983i 0.866088i
\(923\) 6.19115 0.203784
\(924\) 0 0
\(925\) −25.5826 −0.841150
\(926\) 13.1652i 0.432634i
\(927\) 0 0
\(928\) −7.58258 −0.248910
\(929\) 38.7087i 1.26999i 0.772515 + 0.634996i \(0.218998\pi\)
−0.772515 + 0.634996i \(0.781002\pi\)
\(930\) 0 0
\(931\) −27.7253 27.1652i −0.908661 0.890302i
\(932\) 8.83485i 0.289395i
\(933\) 0 0
\(934\) −0.511238 −0.0167282
\(935\) −4.33030 + 6.74773i −0.141616 + 0.220674i
\(936\) 0 0
\(937\) −44.7650 −1.46241 −0.731205 0.682158i \(-0.761042\pi\)
−0.731205 + 0.682158i \(0.761042\pi\)
\(938\) −1.58258 + 3.87650i −0.0516729 + 0.126572i
\(939\) 0 0
\(940\) −3.25227 −0.106077
\(941\) 31.4670 1.02579 0.512897 0.858450i \(-0.328572\pi\)
0.512897 + 0.858450i \(0.328572\pi\)
\(942\) 0 0
\(943\) 20.1353 0.655696
\(944\) 3.09557i 0.100752i
\(945\) 0 0
\(946\) 31.1652 + 20.0000i 1.01327 + 0.650256i
\(947\) 5.58258 0.181409 0.0907047 0.995878i \(-0.471088\pi\)
0.0907047 + 0.995878i \(0.471088\pi\)
\(948\) 0 0
\(949\) 19.5826 0.635677
\(950\) 25.4107i 0.824431i
\(951\) 0 0
\(952\) −3.74166 + 9.16515i −0.121268 + 0.297044i
\(953\) 18.3303i 0.593777i −0.954912 0.296888i \(-0.904051\pi\)
0.954912 0.296888i \(-0.0959489\pi\)
\(954\) 0 0
\(955\) 11.6295i 0.376322i
\(956\) 17.5826i 0.568661i
\(957\) 0 0
\(958\) 6.46084i 0.208740i
\(959\) −37.1469 15.1652i −1.19954 0.489708i
\(960\) 0 0
\(961\) 29.6606 0.956794
\(962\) 17.2813i 0.557171i
\(963\) 0 0
\(964\) 25.9219 0.834889
\(965\) 13.1351 0.422833
\(966\) 0 0
\(967\) 31.5826i 1.01563i −0.861467 0.507814i \(-0.830454\pi\)
0.861467 0.507814i \(-0.169546\pi\)
\(968\) 10.0000 4.58258i 0.321412 0.147290i
\(969\) 0 0
\(970\) 10.3303i 0.331686i
\(971\) 17.7925i 0.570989i −0.958380 0.285494i \(-0.907842\pi\)
0.958380 0.285494i \(-0.0921578\pi\)
\(972\) 0 0
\(973\) 7.91288 + 3.23042i 0.253675 + 0.103562i
\(974\) 33.4955i 1.07326i
\(975\) 0 0
\(976\) −9.28672 −0.297261
\(977\) 9.16515 0.293219 0.146610 0.989194i \(-0.453164\pi\)
0.146610 + 0.989194i \(0.453164\pi\)
\(978\) 0 0
\(979\) −17.5510 + 27.3489i −0.560931 + 0.874075i
\(980\) 3.16515 3.23042i 0.101107 0.103192i
\(981\) 0 0
\(982\) −21.4955 −0.685948
\(983\) 1.69670i 0.0541165i 0.999634 + 0.0270582i \(0.00861395\pi\)
−0.999634 + 0.0270582i \(0.991386\pi\)
\(984\) 0 0
\(985\) −12.1126 −0.385940
\(986\) 28.3714 0.903529
\(987\) 0 0
\(988\) −17.1652 −0.546096
\(989\) 44.6606i 1.42012i
\(990\) 0 0
\(991\) −26.6606 −0.846902 −0.423451 0.905919i \(-0.639181\pi\)
−0.423451 + 0.905919i \(0.639181\pi\)
\(992\) 1.15732 0.0367450
\(993\) 0 0
\(994\) 2.00000 4.89898i 0.0634361 0.155386i
\(995\) 15.9129 0.504472
\(996\) 0 0
\(997\) 33.7816 1.06987 0.534937 0.844892i \(-0.320335\pi\)
0.534937 + 0.844892i \(0.320335\pi\)
\(998\) 27.9129i 0.883567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1386.2.e.b.307.7 8
3.2 odd 2 154.2.c.a.153.1 8
7.6 odd 2 inner 1386.2.e.b.307.6 8
11.10 odd 2 inner 1386.2.e.b.307.3 8
12.11 even 2 1232.2.e.e.769.7 8
21.2 odd 6 1078.2.i.b.1011.4 16
21.5 even 6 1078.2.i.b.1011.1 16
21.11 odd 6 1078.2.i.b.901.5 16
21.17 even 6 1078.2.i.b.901.8 16
21.20 even 2 154.2.c.a.153.4 yes 8
33.32 even 2 154.2.c.a.153.5 yes 8
77.76 even 2 inner 1386.2.e.b.307.2 8
84.83 odd 2 1232.2.e.e.769.2 8
132.131 odd 2 1232.2.e.e.769.8 8
231.32 even 6 1078.2.i.b.901.1 16
231.65 even 6 1078.2.i.b.1011.8 16
231.131 odd 6 1078.2.i.b.1011.5 16
231.164 odd 6 1078.2.i.b.901.4 16
231.230 odd 2 154.2.c.a.153.8 yes 8
924.923 even 2 1232.2.e.e.769.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.c.a.153.1 8 3.2 odd 2
154.2.c.a.153.4 yes 8 21.20 even 2
154.2.c.a.153.5 yes 8 33.32 even 2
154.2.c.a.153.8 yes 8 231.230 odd 2
1078.2.i.b.901.1 16 231.32 even 6
1078.2.i.b.901.4 16 231.164 odd 6
1078.2.i.b.901.5 16 21.11 odd 6
1078.2.i.b.901.8 16 21.17 even 6
1078.2.i.b.1011.1 16 21.5 even 6
1078.2.i.b.1011.4 16 21.2 odd 6
1078.2.i.b.1011.5 16 231.131 odd 6
1078.2.i.b.1011.8 16 231.65 even 6
1232.2.e.e.769.1 8 924.923 even 2
1232.2.e.e.769.2 8 84.83 odd 2
1232.2.e.e.769.7 8 12.11 even 2
1232.2.e.e.769.8 8 132.131 odd 2
1386.2.e.b.307.2 8 77.76 even 2 inner
1386.2.e.b.307.3 8 11.10 odd 2 inner
1386.2.e.b.307.6 8 7.6 odd 2 inner
1386.2.e.b.307.7 8 1.1 even 1 trivial