Properties

Label 1395.2.a.h
Level $1395$
Weight $2$
Character orbit 1395.a
Self dual yes
Analytic conductor $11.139$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1395,2,Mod(1,1395)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1395, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1395.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1395 = 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1395.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1391310820\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_{2} - \beta_1 + 2) q^{4} + q^{5} + (\beta_{2} + 2 \beta_1) q^{7} + (3 \beta_1 - 4) q^{8} + ( - \beta_{2} - 1) q^{10} - 2 \beta_1 q^{11} + ( - \beta_{2} - 2) q^{13}+ \cdots + ( - 11 \beta_1 - 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 5 q^{4} + 3 q^{5} + 2 q^{7} - 9 q^{8} - 3 q^{10} - 2 q^{11} - 6 q^{13} - 6 q^{14} + 5 q^{16} - 4 q^{17} - 8 q^{19} + 5 q^{20} - 2 q^{22} - 14 q^{23} + 3 q^{25} + 14 q^{26} - 4 q^{28} - 16 q^{29}+ \cdots - 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
−2.67513 0 5.15633 1.00000 0 −1.28726 −8.44358 0 −2.67513
1.2 −1.53919 0 0.369102 1.00000 0 4.87936 2.51026 0 −1.53919
1.3 1.21432 0 −0.525428 1.00000 0 −1.59210 −3.06668 0 1.21432
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1395.2.a.h 3
3.b odd 2 1 465.2.a.g 3
5.b even 2 1 6975.2.a.bi 3
12.b even 2 1 7440.2.a.bm 3
15.d odd 2 1 2325.2.a.p 3
15.e even 4 2 2325.2.c.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.a.g 3 3.b odd 2 1
1395.2.a.h 3 1.a even 1 1 trivial
2325.2.a.p 3 15.d odd 2 1
2325.2.c.l 6 15.e even 4 2
6975.2.a.bi 3 5.b even 2 1
7440.2.a.bm 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1395))\):

\( T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{3} - 2T_{7}^{2} - 12T_{7} - 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3T^{2} - T - 5 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$19$ \( T^{3} + 8T^{2} - 32 \) Copy content Toggle raw display
$23$ \( T^{3} + 14 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$29$ \( T^{3} + 16 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$31$ \( (T + 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 8T^{2} - 74 \) Copy content Toggle raw display
$41$ \( T^{3} + 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$47$ \( T^{3} + 14 T^{2} + \cdots - 1388 \) Copy content Toggle raw display
$53$ \( T^{3} + 8 T^{2} + \cdots + 100 \) Copy content Toggle raw display
$59$ \( T^{3} - 26 T^{2} + \cdots - 466 \) Copy content Toggle raw display
$61$ \( T^{3} + 18 T^{2} + \cdots - 296 \) Copy content Toggle raw display
$67$ \( T^{3} - 136T - 274 \) Copy content Toggle raw display
$71$ \( T^{3} + 4 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$73$ \( T^{3} + 12 T^{2} + \cdots - 134 \) Copy content Toggle raw display
$79$ \( T^{3} - 4 T^{2} + \cdots - 500 \) Copy content Toggle raw display
$83$ \( T^{3} - 10 T^{2} + \cdots + 388 \) Copy content Toggle raw display
$89$ \( T^{3} - 6 T^{2} + \cdots + 50 \) Copy content Toggle raw display
$97$ \( T^{3} - 8 T^{2} + \cdots + 1712 \) Copy content Toggle raw display
show more
show less