gp: [N,k,chi] = [1395,2,Mod(1,1395)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1395, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1395.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,-3,0,5,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
31 31 3 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 1395 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(1395)) S 2 n e w ( Γ 0 ( 1 3 9 5 ) ) :
T 2 3 + 3 T 2 2 − T 2 − 5 T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 T 2 3 + 3 T 2 2 − T 2 − 5
T2^3 + 3*T2^2 - T2 - 5
T 7 3 − 2 T 7 2 − 12 T 7 − 10 T_{7}^{3} - 2T_{7}^{2} - 12T_{7} - 10 T 7 3 − 2 T 7 2 − 1 2 T 7 − 1 0
T7^3 - 2*T7^2 - 12*T7 - 10
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 + 3 T 2 − T − 5 T^{3} + 3T^{2} - T - 5 T 3 + 3 T 2 − T − 5
T^3 + 3*T^2 - T - 5
3 3 3
T 3 T^{3} T 3
T^3
5 5 5
( T − 1 ) 3 (T - 1)^{3} ( T − 1 ) 3
(T - 1)^3
7 7 7
T 3 − 2 T 2 + ⋯ − 10 T^{3} - 2 T^{2} + \cdots - 10 T 3 − 2 T 2 + ⋯ − 1 0
T^3 - 2*T^2 - 12*T - 10
11 11 1 1
T 3 + 2 T 2 + ⋯ − 8 T^{3} + 2 T^{2} + \cdots - 8 T 3 + 2 T 2 + ⋯ − 8
T^3 + 2*T^2 - 12*T - 8
13 13 1 3
T 3 + 6 T 2 + ⋯ − 2 T^{3} + 6 T^{2} + \cdots - 2 T 3 + 6 T 2 + ⋯ − 2
T^3 + 6*T^2 + 8*T - 2
17 17 1 7
T 3 + 4 T 2 + ⋯ − 20 T^{3} + 4 T^{2} + \cdots - 20 T 3 + 4 T 2 + ⋯ − 2 0
T^3 + 4*T^2 - 4*T - 20
19 19 1 9
T 3 + 8 T 2 − 32 T^{3} + 8T^{2} - 32 T 3 + 8 T 2 − 3 2
T^3 + 8*T^2 - 32
23 23 2 3
T 3 + 14 T 2 + ⋯ + 76 T^{3} + 14 T^{2} + \cdots + 76 T 3 + 1 4 T 2 + ⋯ + 7 6
T^3 + 14*T^2 + 60*T + 76
29 29 2 9
T 3 + 16 T 2 + ⋯ + 10 T^{3} + 16 T^{2} + \cdots + 10 T 3 + 1 6 T 2 + ⋯ + 1 0
T^3 + 16*T^2 + 62*T + 10
31 31 3 1
( T + 1 ) 3 (T + 1)^{3} ( T + 1 ) 3
(T + 1)^3
37 37 3 7
T 3 + 8 T 2 − 74 T^{3} + 8T^{2} - 74 T 3 + 8 T 2 − 7 4
T^3 + 8*T^2 - 74
41 41 4 1
T 3 + 4 T 2 + ⋯ + 16 T^{3} + 4 T^{2} + \cdots + 16 T 3 + 4 T 2 + ⋯ + 1 6
T^3 + 4*T^2 - 88*T + 16
43 43 4 3
T 3 + 2 T 2 + ⋯ − 200 T^{3} + 2 T^{2} + \cdots - 200 T 3 + 2 T 2 + ⋯ − 2 0 0
T^3 + 2*T^2 - 60*T - 200
47 47 4 7
T 3 + 14 T 2 + ⋯ − 1388 T^{3} + 14 T^{2} + \cdots - 1388 T 3 + 1 4 T 2 + ⋯ − 1 3 8 8
T^3 + 14*T^2 - 92*T - 1388
53 53 5 3
T 3 + 8 T 2 + ⋯ + 100 T^{3} + 8 T^{2} + \cdots + 100 T 3 + 8 T 2 + ⋯ + 1 0 0
T^3 + 8*T^2 - 72*T + 100
59 59 5 9
T 3 − 26 T 2 + ⋯ − 466 T^{3} - 26 T^{2} + \cdots - 466 T 3 − 2 6 T 2 + ⋯ − 4 6 6
T^3 - 26*T^2 + 202*T - 466
61 61 6 1
T 3 + 18 T 2 + ⋯ − 296 T^{3} + 18 T^{2} + \cdots - 296 T 3 + 1 8 T 2 + ⋯ − 2 9 6
T^3 + 18*T^2 + 44*T - 296
67 67 6 7
T 3 − 136 T − 274 T^{3} - 136T - 274 T 3 − 1 3 6 T − 2 7 4
T^3 - 136*T - 274
71 71 7 1
T 3 + 4 T 2 + ⋯ − 2 T^{3} + 4 T^{2} + \cdots - 2 T 3 + 4 T 2 + ⋯ − 2
T^3 + 4*T^2 + 2*T - 2
73 73 7 3
T 3 + 12 T 2 + ⋯ − 134 T^{3} + 12 T^{2} + \cdots - 134 T 3 + 1 2 T 2 + ⋯ − 1 3 4
T^3 + 12*T^2 - 64*T - 134
79 79 7 9
T 3 − 4 T 2 + ⋯ − 500 T^{3} - 4 T^{2} + \cdots - 500 T 3 − 4 T 2 + ⋯ − 5 0 0
T^3 - 4*T^2 - 144*T - 500
83 83 8 3
T 3 − 10 T 2 + ⋯ + 388 T^{3} - 10 T^{2} + \cdots + 388 T 3 − 1 0 T 2 + ⋯ + 3 8 8
T^3 - 10*T^2 - 44*T + 388
89 89 8 9
T 3 − 6 T 2 + ⋯ + 50 T^{3} - 6 T^{2} + \cdots + 50 T 3 − 6 T 2 + ⋯ + 5 0
T^3 - 6*T^2 - 18*T + 50
97 97 9 7
T 3 − 8 T 2 + ⋯ + 1712 T^{3} - 8 T^{2} + \cdots + 1712 T 3 − 8 T 2 + ⋯ + 1 7 1 2
T^3 - 8*T^2 - 240*T + 1712
show more
show less