Properties

Label 1395.2.a.h
Level 13951395
Weight 22
Character orbit 1395.a
Self dual yes
Analytic conductor 11.13911.139
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1395,2,Mod(1,1395)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1395, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1395.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1395=32531 1395 = 3^{2} \cdot 5 \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1395.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,5,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.139131082011.1391310820
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 465)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q2+(β2β1+2)q4+q5+(β2+2β1)q7+(3β14)q8+(β21)q102β1q11+(β22)q13++(11β12)q98+O(q100) q + ( - \beta_{2} - 1) q^{2} + (\beta_{2} - \beta_1 + 2) q^{4} + q^{5} + (\beta_{2} + 2 \beta_1) q^{7} + (3 \beta_1 - 4) q^{8} + ( - \beta_{2} - 1) q^{10} - 2 \beta_1 q^{11} + ( - \beta_{2} - 2) q^{13}+ \cdots + ( - 11 \beta_1 - 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q2+5q4+3q5+2q79q83q102q116q136q14+5q164q178q19+5q202q2214q23+3q25+14q264q2816q29+17q98+O(q100) 3 q - 3 q^{2} + 5 q^{4} + 3 q^{5} + 2 q^{7} - 9 q^{8} - 3 q^{10} - 2 q^{11} - 6 q^{13} - 6 q^{14} + 5 q^{16} - 4 q^{17} - 8 q^{19} + 5 q^{20} - 2 q^{22} - 14 q^{23} + 3 q^{25} + 14 q^{26} - 4 q^{28} - 16 q^{29}+ \cdots - 17 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x23x+1 x^{3} - x^{2} - 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν2 \nu^{2} - \nu - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+2 \beta_{2} + \beta _1 + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.48119
2.17009
0.311108
−2.67513 0 5.15633 1.00000 0 −1.28726 −8.44358 0 −2.67513
1.2 −1.53919 0 0.369102 1.00000 0 4.87936 2.51026 0 −1.53919
1.3 1.21432 0 −0.525428 1.00000 0 −1.59210 −3.06668 0 1.21432
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
3131 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1395.2.a.h 3
3.b odd 2 1 465.2.a.g 3
5.b even 2 1 6975.2.a.bi 3
12.b even 2 1 7440.2.a.bm 3
15.d odd 2 1 2325.2.a.p 3
15.e even 4 2 2325.2.c.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.a.g 3 3.b odd 2 1
1395.2.a.h 3 1.a even 1 1 trivial
2325.2.a.p 3 15.d odd 2 1
2325.2.c.l 6 15.e even 4 2
6975.2.a.bi 3 5.b even 2 1
7440.2.a.bm 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1395))S_{2}^{\mathrm{new}}(\Gamma_0(1395)):

T23+3T22T25 T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 Copy content Toggle raw display
T732T7212T710 T_{7}^{3} - 2T_{7}^{2} - 12T_{7} - 10 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+3T2T5 T^{3} + 3T^{2} - T - 5 Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 (T1)3 (T - 1)^{3} Copy content Toggle raw display
77 T32T2+10 T^{3} - 2 T^{2} + \cdots - 10 Copy content Toggle raw display
1111 T3+2T2+8 T^{3} + 2 T^{2} + \cdots - 8 Copy content Toggle raw display
1313 T3+6T2+2 T^{3} + 6 T^{2} + \cdots - 2 Copy content Toggle raw display
1717 T3+4T2+20 T^{3} + 4 T^{2} + \cdots - 20 Copy content Toggle raw display
1919 T3+8T232 T^{3} + 8T^{2} - 32 Copy content Toggle raw display
2323 T3+14T2++76 T^{3} + 14 T^{2} + \cdots + 76 Copy content Toggle raw display
2929 T3+16T2++10 T^{3} + 16 T^{2} + \cdots + 10 Copy content Toggle raw display
3131 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
3737 T3+8T274 T^{3} + 8T^{2} - 74 Copy content Toggle raw display
4141 T3+4T2++16 T^{3} + 4 T^{2} + \cdots + 16 Copy content Toggle raw display
4343 T3+2T2+200 T^{3} + 2 T^{2} + \cdots - 200 Copy content Toggle raw display
4747 T3+14T2+1388 T^{3} + 14 T^{2} + \cdots - 1388 Copy content Toggle raw display
5353 T3+8T2++100 T^{3} + 8 T^{2} + \cdots + 100 Copy content Toggle raw display
5959 T326T2+466 T^{3} - 26 T^{2} + \cdots - 466 Copy content Toggle raw display
6161 T3+18T2+296 T^{3} + 18 T^{2} + \cdots - 296 Copy content Toggle raw display
6767 T3136T274 T^{3} - 136T - 274 Copy content Toggle raw display
7171 T3+4T2+2 T^{3} + 4 T^{2} + \cdots - 2 Copy content Toggle raw display
7373 T3+12T2+134 T^{3} + 12 T^{2} + \cdots - 134 Copy content Toggle raw display
7979 T34T2+500 T^{3} - 4 T^{2} + \cdots - 500 Copy content Toggle raw display
8383 T310T2++388 T^{3} - 10 T^{2} + \cdots + 388 Copy content Toggle raw display
8989 T36T2++50 T^{3} - 6 T^{2} + \cdots + 50 Copy content Toggle raw display
9797 T38T2++1712 T^{3} - 8 T^{2} + \cdots + 1712 Copy content Toggle raw display
show more
show less