Properties

Label 14.12.a.d
Level $14$
Weight $12$
Character orbit 14.a
Self dual yes
Analytic conductor $10.757$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [14,12,Mod(1,14)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(14, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("14.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.7568045278\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{352969}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 88242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{352969}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 q^{2} + ( - \beta - 175) q^{3} + 1024 q^{4} + ( - 3 \beta + 1869) q^{5} + ( - 32 \beta - 5600) q^{6} + 16807 q^{7} + 32768 q^{8} + (350 \beta + 206447) q^{9} + ( - 96 \beta + 59808) q^{10} + (714 \beta + 476850) q^{11}+ \cdots + (314300658 \beta + 186651205050) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} - 350 q^{3} + 2048 q^{4} + 3738 q^{5} - 11200 q^{6} + 33614 q^{7} + 65536 q^{8} + 412894 q^{9} + 119616 q^{10} + 953700 q^{11} - 358400 q^{12} - 225722 q^{13} + 1075648 q^{14} + 1463664 q^{15}+ \cdots + 373302410100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
297.556
−296.556
32.0000 −769.112 1024.00 86.6642 −24611.6 16807.0 32768.0 414386. 2773.25
1.2 32.0000 419.112 1024.00 3651.34 13411.6 16807.0 32768.0 −1492.18 116843.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.12.a.d 2
3.b odd 2 1 126.12.a.i 2
4.b odd 2 1 112.12.a.e 2
7.b odd 2 1 98.12.a.g 2
7.c even 3 2 98.12.c.h 4
7.d odd 6 2 98.12.c.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.12.a.d 2 1.a even 1 1 trivial
98.12.a.g 2 7.b odd 2 1
98.12.c.e 4 7.d odd 6 2
98.12.c.h 4 7.c even 3 2
112.12.a.e 2 4.b odd 2 1
126.12.a.i 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 350T_{3} - 322344 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 32)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 350T - 322344 \) Copy content Toggle raw display
$5$ \( T^{2} - 3738 T + 316440 \) Copy content Toggle raw display
$7$ \( (T - 16807)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 47443738176 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 728356460048 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 6345514731996 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 46336502358760 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 48509257302720 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 26\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 60\!\cdots\!08 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 28\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 12\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 45\!\cdots\!92 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 10\!\cdots\!88 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 17\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 74\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 12\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10\!\cdots\!88 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 12\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 43\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 85\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 15\!\cdots\!60 \) Copy content Toggle raw display
show more
show less