Properties

Label 14.4.a.a
Level $14$
Weight $4$
Character orbit 14.a
Self dual yes
Analytic conductor $0.826$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [14,4,Mod(1,14)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(14, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("14.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.826026740080\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 8 q^{3} + 4 q^{4} - 14 q^{5} - 16 q^{6} - 7 q^{7} - 8 q^{8} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 8 q^{3} + 4 q^{4} - 14 q^{5} - 16 q^{6} - 7 q^{7} - 8 q^{8} + 37 q^{9} + 28 q^{10} - 28 q^{11} + 32 q^{12} + 18 q^{13} + 14 q^{14} - 112 q^{15} + 16 q^{16} + 74 q^{17} - 74 q^{18} + 80 q^{19} - 56 q^{20} - 56 q^{21} + 56 q^{22} - 112 q^{23} - 64 q^{24} + 71 q^{25} - 36 q^{26} + 80 q^{27} - 28 q^{28} + 190 q^{29} + 224 q^{30} + 72 q^{31} - 32 q^{32} - 224 q^{33} - 148 q^{34} + 98 q^{35} + 148 q^{36} - 346 q^{37} - 160 q^{38} + 144 q^{39} + 112 q^{40} + 162 q^{41} + 112 q^{42} - 412 q^{43} - 112 q^{44} - 518 q^{45} + 224 q^{46} + 24 q^{47} + 128 q^{48} + 49 q^{49} - 142 q^{50} + 592 q^{51} + 72 q^{52} + 318 q^{53} - 160 q^{54} + 392 q^{55} + 56 q^{56} + 640 q^{57} - 380 q^{58} - 200 q^{59} - 448 q^{60} - 198 q^{61} - 144 q^{62} - 259 q^{63} + 64 q^{64} - 252 q^{65} + 448 q^{66} - 716 q^{67} + 296 q^{68} - 896 q^{69} - 196 q^{70} + 392 q^{71} - 296 q^{72} + 538 q^{73} + 692 q^{74} + 568 q^{75} + 320 q^{76} + 196 q^{77} - 288 q^{78} + 240 q^{79} - 224 q^{80} - 359 q^{81} - 324 q^{82} - 1072 q^{83} - 224 q^{84} - 1036 q^{85} + 824 q^{86} + 1520 q^{87} + 224 q^{88} + 810 q^{89} + 1036 q^{90} - 126 q^{91} - 448 q^{92} + 576 q^{93} - 48 q^{94} - 1120 q^{95} - 256 q^{96} + 1354 q^{97} - 98 q^{98} - 1036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 8.00000 4.00000 −14.0000 −16.0000 −7.00000 −8.00000 37.0000 28.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.4.a.a 1
3.b odd 2 1 126.4.a.h 1
4.b odd 2 1 112.4.a.a 1
5.b even 2 1 350.4.a.l 1
5.c odd 4 2 350.4.c.b 2
7.b odd 2 1 98.4.a.a 1
7.c even 3 2 98.4.c.d 2
7.d odd 6 2 98.4.c.f 2
8.b even 2 1 448.4.a.b 1
8.d odd 2 1 448.4.a.o 1
11.b odd 2 1 1694.4.a.g 1
12.b even 2 1 1008.4.a.s 1
13.b even 2 1 2366.4.a.h 1
21.c even 2 1 882.4.a.i 1
21.g even 6 2 882.4.g.k 2
21.h odd 6 2 882.4.g.b 2
28.d even 2 1 784.4.a.s 1
35.c odd 2 1 2450.4.a.bo 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.a 1 1.a even 1 1 trivial
98.4.a.a 1 7.b odd 2 1
98.4.c.d 2 7.c even 3 2
98.4.c.f 2 7.d odd 6 2
112.4.a.a 1 4.b odd 2 1
126.4.a.h 1 3.b odd 2 1
350.4.a.l 1 5.b even 2 1
350.4.c.b 2 5.c odd 4 2
448.4.a.b 1 8.b even 2 1
448.4.a.o 1 8.d odd 2 1
784.4.a.s 1 28.d even 2 1
882.4.a.i 1 21.c even 2 1
882.4.g.b 2 21.h odd 6 2
882.4.g.k 2 21.g even 6 2
1008.4.a.s 1 12.b even 2 1
1694.4.a.g 1 11.b odd 2 1
2366.4.a.h 1 13.b even 2 1
2450.4.a.bo 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T + 14 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 28 \) Copy content Toggle raw display
$13$ \( T - 18 \) Copy content Toggle raw display
$17$ \( T - 74 \) Copy content Toggle raw display
$19$ \( T - 80 \) Copy content Toggle raw display
$23$ \( T + 112 \) Copy content Toggle raw display
$29$ \( T - 190 \) Copy content Toggle raw display
$31$ \( T - 72 \) Copy content Toggle raw display
$37$ \( T + 346 \) Copy content Toggle raw display
$41$ \( T - 162 \) Copy content Toggle raw display
$43$ \( T + 412 \) Copy content Toggle raw display
$47$ \( T - 24 \) Copy content Toggle raw display
$53$ \( T - 318 \) Copy content Toggle raw display
$59$ \( T + 200 \) Copy content Toggle raw display
$61$ \( T + 198 \) Copy content Toggle raw display
$67$ \( T + 716 \) Copy content Toggle raw display
$71$ \( T - 392 \) Copy content Toggle raw display
$73$ \( T - 538 \) Copy content Toggle raw display
$79$ \( T - 240 \) Copy content Toggle raw display
$83$ \( T + 1072 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T - 1354 \) Copy content Toggle raw display
show more
show less