Properties

Label 350.4.c.b
Level $350$
Weight $4$
Character orbit 350.c
Analytic conductor $20.651$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} + 8 i q^{3} - 4 q^{4} - 16 q^{6} + 7 i q^{7} - 8 i q^{8} - 37 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 i q^{2} + 8 i q^{3} - 4 q^{4} - 16 q^{6} + 7 i q^{7} - 8 i q^{8} - 37 q^{9} - 28 q^{11} - 32 i q^{12} + 18 i q^{13} - 14 q^{14} + 16 q^{16} - 74 i q^{17} - 74 i q^{18} - 80 q^{19} - 56 q^{21} - 56 i q^{22} - 112 i q^{23} + 64 q^{24} - 36 q^{26} - 80 i q^{27} - 28 i q^{28} - 190 q^{29} + 72 q^{31} + 32 i q^{32} - 224 i q^{33} + 148 q^{34} + 148 q^{36} + 346 i q^{37} - 160 i q^{38} - 144 q^{39} + 162 q^{41} - 112 i q^{42} - 412 i q^{43} + 112 q^{44} + 224 q^{46} - 24 i q^{47} + 128 i q^{48} - 49 q^{49} + 592 q^{51} - 72 i q^{52} + 318 i q^{53} + 160 q^{54} + 56 q^{56} - 640 i q^{57} - 380 i q^{58} + 200 q^{59} - 198 q^{61} + 144 i q^{62} - 259 i q^{63} - 64 q^{64} + 448 q^{66} + 716 i q^{67} + 296 i q^{68} + 896 q^{69} + 392 q^{71} + 296 i q^{72} + 538 i q^{73} - 692 q^{74} + 320 q^{76} - 196 i q^{77} - 288 i q^{78} - 240 q^{79} - 359 q^{81} + 324 i q^{82} - 1072 i q^{83} + 224 q^{84} + 824 q^{86} - 1520 i q^{87} + 224 i q^{88} - 810 q^{89} - 126 q^{91} + 448 i q^{92} + 576 i q^{93} + 48 q^{94} - 256 q^{96} - 1354 i q^{97} - 98 i q^{98} + 1036 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 32 q^{6} - 74 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 32 q^{6} - 74 q^{9} - 56 q^{11} - 28 q^{14} + 32 q^{16} - 160 q^{19} - 112 q^{21} + 128 q^{24} - 72 q^{26} - 380 q^{29} + 144 q^{31} + 296 q^{34} + 296 q^{36} - 288 q^{39} + 324 q^{41} + 224 q^{44} + 448 q^{46} - 98 q^{49} + 1184 q^{51} + 320 q^{54} + 112 q^{56} + 400 q^{59} - 396 q^{61} - 128 q^{64} + 896 q^{66} + 1792 q^{69} + 784 q^{71} - 1384 q^{74} + 640 q^{76} - 480 q^{79} - 718 q^{81} + 448 q^{84} + 1648 q^{86} - 1620 q^{89} - 252 q^{91} + 96 q^{94} - 512 q^{96} + 2072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
2.00000i 8.00000i −4.00000 0 −16.0000 7.00000i 8.00000i −37.0000 0
99.2 2.00000i 8.00000i −4.00000 0 −16.0000 7.00000i 8.00000i −37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.c.b 2
5.b even 2 1 inner 350.4.c.b 2
5.c odd 4 1 14.4.a.a 1
5.c odd 4 1 350.4.a.l 1
15.e even 4 1 126.4.a.h 1
20.e even 4 1 112.4.a.a 1
35.f even 4 1 98.4.a.a 1
35.f even 4 1 2450.4.a.bo 1
35.k even 12 2 98.4.c.f 2
35.l odd 12 2 98.4.c.d 2
40.i odd 4 1 448.4.a.b 1
40.k even 4 1 448.4.a.o 1
55.e even 4 1 1694.4.a.g 1
60.l odd 4 1 1008.4.a.s 1
65.h odd 4 1 2366.4.a.h 1
105.k odd 4 1 882.4.a.i 1
105.w odd 12 2 882.4.g.k 2
105.x even 12 2 882.4.g.b 2
140.j odd 4 1 784.4.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.a 1 5.c odd 4 1
98.4.a.a 1 35.f even 4 1
98.4.c.d 2 35.l odd 12 2
98.4.c.f 2 35.k even 12 2
112.4.a.a 1 20.e even 4 1
126.4.a.h 1 15.e even 4 1
350.4.a.l 1 5.c odd 4 1
350.4.c.b 2 1.a even 1 1 trivial
350.4.c.b 2 5.b even 2 1 inner
448.4.a.b 1 40.i odd 4 1
448.4.a.o 1 40.k even 4 1
784.4.a.s 1 140.j odd 4 1
882.4.a.i 1 105.k odd 4 1
882.4.g.b 2 105.x even 12 2
882.4.g.k 2 105.w odd 12 2
1008.4.a.s 1 60.l odd 4 1
1694.4.a.g 1 55.e even 4 1
2366.4.a.h 1 65.h odd 4 1
2450.4.a.bo 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{2} + 64 \) Copy content Toggle raw display
\( T_{11} + 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 64 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T + 28)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 324 \) Copy content Toggle raw display
$17$ \( T^{2} + 5476 \) Copy content Toggle raw display
$19$ \( (T + 80)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 12544 \) Copy content Toggle raw display
$29$ \( (T + 190)^{2} \) Copy content Toggle raw display
$31$ \( (T - 72)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 119716 \) Copy content Toggle raw display
$41$ \( (T - 162)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 169744 \) Copy content Toggle raw display
$47$ \( T^{2} + 576 \) Copy content Toggle raw display
$53$ \( T^{2} + 101124 \) Copy content Toggle raw display
$59$ \( (T - 200)^{2} \) Copy content Toggle raw display
$61$ \( (T + 198)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 512656 \) Copy content Toggle raw display
$71$ \( (T - 392)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 289444 \) Copy content Toggle raw display
$79$ \( (T + 240)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1149184 \) Copy content Toggle raw display
$89$ \( (T + 810)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1833316 \) Copy content Toggle raw display
show more
show less