Properties

Label 140.6.a.a.1.2
Level $140$
Weight $6$
Character 140.1
Self dual yes
Analytic conductor $22.454$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,6,Mod(1,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4537347738\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1009}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-15.3824\) of defining polynomial
Character \(\chi\) \(=\) 140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.38238 q^{3} -25.0000 q^{5} +49.0000 q^{7} -223.795 q^{9} +579.441 q^{11} -426.030 q^{13} -109.560 q^{15} -2010.09 q^{17} -402.294 q^{19} +214.737 q^{21} +1516.77 q^{23} +625.000 q^{25} -2045.67 q^{27} -7789.51 q^{29} -4700.59 q^{31} +2539.33 q^{33} -1225.00 q^{35} +1773.42 q^{37} -1867.03 q^{39} -7354.41 q^{41} -8562.31 q^{43} +5594.87 q^{45} +3748.17 q^{47} +2401.00 q^{49} -8808.98 q^{51} -33514.8 q^{53} -14486.0 q^{55} -1763.01 q^{57} -11302.6 q^{59} -24964.2 q^{61} -10965.9 q^{63} +10650.7 q^{65} -35315.7 q^{67} +6647.06 q^{69} +70973.7 q^{71} +17070.3 q^{73} +2738.99 q^{75} +28392.6 q^{77} +10103.6 q^{79} +45417.2 q^{81} +46105.8 q^{83} +50252.2 q^{85} -34136.6 q^{87} -21494.0 q^{89} -20875.5 q^{91} -20599.8 q^{93} +10057.4 q^{95} -65031.4 q^{97} -129676. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 23 q^{3} - 50 q^{5} + 98 q^{7} + 283 q^{9} + 873 q^{11} - 185 q^{13} + 575 q^{15} - 2019 q^{17} - 614 q^{19} - 1127 q^{21} - 1350 q^{23} + 1250 q^{25} - 9269 q^{27} - 999 q^{29} - 9020 q^{31} - 5499 q^{33}+ \cdots + 19098 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.38238 0.281130 0.140565 0.990071i \(-0.455108\pi\)
0.140565 + 0.990071i \(0.455108\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −223.795 −0.920966
\(10\) 0 0
\(11\) 579.441 1.44387 0.721935 0.691961i \(-0.243253\pi\)
0.721935 + 0.691961i \(0.243253\pi\)
\(12\) 0 0
\(13\) −426.030 −0.699168 −0.349584 0.936905i \(-0.613677\pi\)
−0.349584 + 0.936905i \(0.613677\pi\)
\(14\) 0 0
\(15\) −109.560 −0.125725
\(16\) 0 0
\(17\) −2010.09 −1.68691 −0.843457 0.537196i \(-0.819484\pi\)
−0.843457 + 0.537196i \(0.819484\pi\)
\(18\) 0 0
\(19\) −402.294 −0.255658 −0.127829 0.991796i \(-0.540801\pi\)
−0.127829 + 0.991796i \(0.540801\pi\)
\(20\) 0 0
\(21\) 214.737 0.106257
\(22\) 0 0
\(23\) 1516.77 0.597860 0.298930 0.954275i \(-0.403370\pi\)
0.298930 + 0.954275i \(0.403370\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −2045.67 −0.540041
\(28\) 0 0
\(29\) −7789.51 −1.71995 −0.859974 0.510338i \(-0.829520\pi\)
−0.859974 + 0.510338i \(0.829520\pi\)
\(30\) 0 0
\(31\) −4700.59 −0.878513 −0.439256 0.898362i \(-0.644758\pi\)
−0.439256 + 0.898362i \(0.644758\pi\)
\(32\) 0 0
\(33\) 2539.33 0.405915
\(34\) 0 0
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) 1773.42 0.212965 0.106482 0.994315i \(-0.466041\pi\)
0.106482 + 0.994315i \(0.466041\pi\)
\(38\) 0 0
\(39\) −1867.03 −0.196557
\(40\) 0 0
\(41\) −7354.41 −0.683263 −0.341632 0.939834i \(-0.610980\pi\)
−0.341632 + 0.939834i \(0.610980\pi\)
\(42\) 0 0
\(43\) −8562.31 −0.706187 −0.353093 0.935588i \(-0.614870\pi\)
−0.353093 + 0.935588i \(0.614870\pi\)
\(44\) 0 0
\(45\) 5594.87 0.411869
\(46\) 0 0
\(47\) 3748.17 0.247500 0.123750 0.992313i \(-0.460508\pi\)
0.123750 + 0.992313i \(0.460508\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −8808.98 −0.474242
\(52\) 0 0
\(53\) −33514.8 −1.63888 −0.819440 0.573165i \(-0.805716\pi\)
−0.819440 + 0.573165i \(0.805716\pi\)
\(54\) 0 0
\(55\) −14486.0 −0.645718
\(56\) 0 0
\(57\) −1763.01 −0.0718732
\(58\) 0 0
\(59\) −11302.6 −0.422715 −0.211358 0.977409i \(-0.567788\pi\)
−0.211358 + 0.977409i \(0.567788\pi\)
\(60\) 0 0
\(61\) −24964.2 −0.859001 −0.429500 0.903067i \(-0.641310\pi\)
−0.429500 + 0.903067i \(0.641310\pi\)
\(62\) 0 0
\(63\) −10965.9 −0.348092
\(64\) 0 0
\(65\) 10650.7 0.312678
\(66\) 0 0
\(67\) −35315.7 −0.961128 −0.480564 0.876960i \(-0.659568\pi\)
−0.480564 + 0.876960i \(0.659568\pi\)
\(68\) 0 0
\(69\) 6647.06 0.168076
\(70\) 0 0
\(71\) 70973.7 1.67090 0.835452 0.549563i \(-0.185206\pi\)
0.835452 + 0.549563i \(0.185206\pi\)
\(72\) 0 0
\(73\) 17070.3 0.374916 0.187458 0.982273i \(-0.439975\pi\)
0.187458 + 0.982273i \(0.439975\pi\)
\(74\) 0 0
\(75\) 2738.99 0.0562260
\(76\) 0 0
\(77\) 28392.6 0.545731
\(78\) 0 0
\(79\) 10103.6 0.182142 0.0910710 0.995844i \(-0.470971\pi\)
0.0910710 + 0.995844i \(0.470971\pi\)
\(80\) 0 0
\(81\) 45417.2 0.769144
\(82\) 0 0
\(83\) 46105.8 0.734616 0.367308 0.930099i \(-0.380280\pi\)
0.367308 + 0.930099i \(0.380280\pi\)
\(84\) 0 0
\(85\) 50252.2 0.754411
\(86\) 0 0
\(87\) −34136.6 −0.483529
\(88\) 0 0
\(89\) −21494.0 −0.287635 −0.143818 0.989604i \(-0.545938\pi\)
−0.143818 + 0.989604i \(0.545938\pi\)
\(90\) 0 0
\(91\) −20875.5 −0.264261
\(92\) 0 0
\(93\) −20599.8 −0.246976
\(94\) 0 0
\(95\) 10057.4 0.114334
\(96\) 0 0
\(97\) −65031.4 −0.701769 −0.350884 0.936419i \(-0.614119\pi\)
−0.350884 + 0.936419i \(0.614119\pi\)
\(98\) 0 0
\(99\) −129676. −1.32975
\(100\) 0 0
\(101\) 200097. 1.95181 0.975903 0.218205i \(-0.0700201\pi\)
0.975903 + 0.218205i \(0.0700201\pi\)
\(102\) 0 0
\(103\) 38990.8 0.362134 0.181067 0.983471i \(-0.442045\pi\)
0.181067 + 0.983471i \(0.442045\pi\)
\(104\) 0 0
\(105\) −5368.42 −0.0475196
\(106\) 0 0
\(107\) 208797. 1.76305 0.881526 0.472135i \(-0.156516\pi\)
0.881526 + 0.472135i \(0.156516\pi\)
\(108\) 0 0
\(109\) 152328. 1.22804 0.614020 0.789291i \(-0.289551\pi\)
0.614020 + 0.789291i \(0.289551\pi\)
\(110\) 0 0
\(111\) 7771.81 0.0598708
\(112\) 0 0
\(113\) 107692. 0.793389 0.396694 0.917951i \(-0.370157\pi\)
0.396694 + 0.917951i \(0.370157\pi\)
\(114\) 0 0
\(115\) −37919.2 −0.267371
\(116\) 0 0
\(117\) 95343.3 0.643910
\(118\) 0 0
\(119\) −98494.4 −0.637594
\(120\) 0 0
\(121\) 174701. 1.08476
\(122\) 0 0
\(123\) −32229.8 −0.192086
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −199498. −1.09756 −0.548781 0.835966i \(-0.684908\pi\)
−0.548781 + 0.835966i \(0.684908\pi\)
\(128\) 0 0
\(129\) −37523.3 −0.198530
\(130\) 0 0
\(131\) −137776. −0.701448 −0.350724 0.936479i \(-0.614064\pi\)
−0.350724 + 0.936479i \(0.614064\pi\)
\(132\) 0 0
\(133\) −19712.4 −0.0966297
\(134\) 0 0
\(135\) 51141.8 0.241514
\(136\) 0 0
\(137\) −236889. −1.07831 −0.539154 0.842207i \(-0.681256\pi\)
−0.539154 + 0.842207i \(0.681256\pi\)
\(138\) 0 0
\(139\) 297901. 1.30778 0.653891 0.756588i \(-0.273135\pi\)
0.653891 + 0.756588i \(0.273135\pi\)
\(140\) 0 0
\(141\) 16425.9 0.0695796
\(142\) 0 0
\(143\) −246859. −1.00951
\(144\) 0 0
\(145\) 194738. 0.769184
\(146\) 0 0
\(147\) 10522.1 0.0401614
\(148\) 0 0
\(149\) −48444.4 −0.178763 −0.0893816 0.995997i \(-0.528489\pi\)
−0.0893816 + 0.995997i \(0.528489\pi\)
\(150\) 0 0
\(151\) 57169.5 0.204043 0.102022 0.994782i \(-0.467469\pi\)
0.102022 + 0.994782i \(0.467469\pi\)
\(152\) 0 0
\(153\) 449848. 1.55359
\(154\) 0 0
\(155\) 117515. 0.392883
\(156\) 0 0
\(157\) −370032. −1.19809 −0.599046 0.800715i \(-0.704453\pi\)
−0.599046 + 0.800715i \(0.704453\pi\)
\(158\) 0 0
\(159\) −146875. −0.460738
\(160\) 0 0
\(161\) 74321.7 0.225970
\(162\) 0 0
\(163\) −264040. −0.778397 −0.389198 0.921154i \(-0.627248\pi\)
−0.389198 + 0.921154i \(0.627248\pi\)
\(164\) 0 0
\(165\) −63483.3 −0.181531
\(166\) 0 0
\(167\) −676427. −1.87685 −0.938426 0.345480i \(-0.887716\pi\)
−0.938426 + 0.345480i \(0.887716\pi\)
\(168\) 0 0
\(169\) −189791. −0.511164
\(170\) 0 0
\(171\) 90031.3 0.235453
\(172\) 0 0
\(173\) −198499. −0.504246 −0.252123 0.967695i \(-0.581129\pi\)
−0.252123 + 0.967695i \(0.581129\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 0 0
\(177\) −49532.2 −0.118838
\(178\) 0 0
\(179\) −389818. −0.909346 −0.454673 0.890659i \(-0.650244\pi\)
−0.454673 + 0.890659i \(0.650244\pi\)
\(180\) 0 0
\(181\) 803751. 1.82358 0.911790 0.410656i \(-0.134700\pi\)
0.911790 + 0.410656i \(0.134700\pi\)
\(182\) 0 0
\(183\) −109403. −0.241491
\(184\) 0 0
\(185\) −44335.6 −0.0952408
\(186\) 0 0
\(187\) −1.16473e6 −2.43568
\(188\) 0 0
\(189\) −100238. −0.204116
\(190\) 0 0
\(191\) 931541. 1.84765 0.923823 0.382820i \(-0.125047\pi\)
0.923823 + 0.382820i \(0.125047\pi\)
\(192\) 0 0
\(193\) −592332. −1.14465 −0.572324 0.820028i \(-0.693958\pi\)
−0.572324 + 0.820028i \(0.693958\pi\)
\(194\) 0 0
\(195\) 46675.6 0.0879030
\(196\) 0 0
\(197\) 782068. 1.43575 0.717875 0.696172i \(-0.245115\pi\)
0.717875 + 0.696172i \(0.245115\pi\)
\(198\) 0 0
\(199\) −383375. −0.686264 −0.343132 0.939287i \(-0.611488\pi\)
−0.343132 + 0.939287i \(0.611488\pi\)
\(200\) 0 0
\(201\) −154767. −0.270202
\(202\) 0 0
\(203\) −381686. −0.650079
\(204\) 0 0
\(205\) 183860. 0.305565
\(206\) 0 0
\(207\) −339445. −0.550609
\(208\) 0 0
\(209\) −233106. −0.369137
\(210\) 0 0
\(211\) −145997. −0.225756 −0.112878 0.993609i \(-0.536007\pi\)
−0.112878 + 0.993609i \(0.536007\pi\)
\(212\) 0 0
\(213\) 311034. 0.469741
\(214\) 0 0
\(215\) 214058. 0.315816
\(216\) 0 0
\(217\) −230329. −0.332047
\(218\) 0 0
\(219\) 74808.5 0.105400
\(220\) 0 0
\(221\) 856359. 1.17944
\(222\) 0 0
\(223\) −634335. −0.854194 −0.427097 0.904206i \(-0.640464\pi\)
−0.427097 + 0.904206i \(0.640464\pi\)
\(224\) 0 0
\(225\) −139872. −0.184193
\(226\) 0 0
\(227\) −439350. −0.565909 −0.282954 0.959133i \(-0.591314\pi\)
−0.282954 + 0.959133i \(0.591314\pi\)
\(228\) 0 0
\(229\) −858587. −1.08192 −0.540961 0.841048i \(-0.681939\pi\)
−0.540961 + 0.841048i \(0.681939\pi\)
\(230\) 0 0
\(231\) 124427. 0.153421
\(232\) 0 0
\(233\) 1.13183e6 1.36581 0.682904 0.730508i \(-0.260717\pi\)
0.682904 + 0.730508i \(0.260717\pi\)
\(234\) 0 0
\(235\) −93704.3 −0.110685
\(236\) 0 0
\(237\) 44278.0 0.0512056
\(238\) 0 0
\(239\) 502366. 0.568887 0.284443 0.958693i \(-0.408191\pi\)
0.284443 + 0.958693i \(0.408191\pi\)
\(240\) 0 0
\(241\) −1.36123e6 −1.50969 −0.754846 0.655902i \(-0.772289\pi\)
−0.754846 + 0.655902i \(0.772289\pi\)
\(242\) 0 0
\(243\) 696134. 0.756270
\(244\) 0 0
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) 171389. 0.178748
\(248\) 0 0
\(249\) 202053. 0.206522
\(250\) 0 0
\(251\) 378383. 0.379095 0.189547 0.981872i \(-0.439298\pi\)
0.189547 + 0.981872i \(0.439298\pi\)
\(252\) 0 0
\(253\) 878878. 0.863232
\(254\) 0 0
\(255\) 220224. 0.212088
\(256\) 0 0
\(257\) −909210. −0.858680 −0.429340 0.903143i \(-0.641254\pi\)
−0.429340 + 0.903143i \(0.641254\pi\)
\(258\) 0 0
\(259\) 86897.7 0.0804931
\(260\) 0 0
\(261\) 1.74325e6 1.58401
\(262\) 0 0
\(263\) 333491. 0.297300 0.148650 0.988890i \(-0.452507\pi\)
0.148650 + 0.988890i \(0.452507\pi\)
\(264\) 0 0
\(265\) 837871. 0.732930
\(266\) 0 0
\(267\) −94194.9 −0.0808629
\(268\) 0 0
\(269\) −830167. −0.699495 −0.349747 0.936844i \(-0.613733\pi\)
−0.349747 + 0.936844i \(0.613733\pi\)
\(270\) 0 0
\(271\) 1.58079e6 1.30752 0.653762 0.756700i \(-0.273190\pi\)
0.653762 + 0.756700i \(0.273190\pi\)
\(272\) 0 0
\(273\) −91484.2 −0.0742916
\(274\) 0 0
\(275\) 362151. 0.288774
\(276\) 0 0
\(277\) 60252.2 0.0471817 0.0235908 0.999722i \(-0.492490\pi\)
0.0235908 + 0.999722i \(0.492490\pi\)
\(278\) 0 0
\(279\) 1.05197e6 0.809080
\(280\) 0 0
\(281\) 1.53242e6 1.15774 0.578872 0.815418i \(-0.303493\pi\)
0.578872 + 0.815418i \(0.303493\pi\)
\(282\) 0 0
\(283\) −2.39082e6 −1.77452 −0.887259 0.461272i \(-0.847393\pi\)
−0.887259 + 0.461272i \(0.847393\pi\)
\(284\) 0 0
\(285\) 44075.2 0.0321427
\(286\) 0 0
\(287\) −360366. −0.258249
\(288\) 0 0
\(289\) 2.62060e6 1.84568
\(290\) 0 0
\(291\) −284992. −0.197288
\(292\) 0 0
\(293\) 274332. 0.186684 0.0933419 0.995634i \(-0.470245\pi\)
0.0933419 + 0.995634i \(0.470245\pi\)
\(294\) 0 0
\(295\) 282565. 0.189044
\(296\) 0 0
\(297\) −1.18535e6 −0.779748
\(298\) 0 0
\(299\) −646189. −0.418005
\(300\) 0 0
\(301\) −419553. −0.266914
\(302\) 0 0
\(303\) 876900. 0.548711
\(304\) 0 0
\(305\) 624106. 0.384157
\(306\) 0 0
\(307\) 2.79580e6 1.69301 0.846507 0.532378i \(-0.178702\pi\)
0.846507 + 0.532378i \(0.178702\pi\)
\(308\) 0 0
\(309\) 170873. 0.101807
\(310\) 0 0
\(311\) 2.05010e6 1.20192 0.600959 0.799280i \(-0.294785\pi\)
0.600959 + 0.799280i \(0.294785\pi\)
\(312\) 0 0
\(313\) −1.67383e6 −0.965717 −0.482858 0.875698i \(-0.660401\pi\)
−0.482858 + 0.875698i \(0.660401\pi\)
\(314\) 0 0
\(315\) 274149. 0.155672
\(316\) 0 0
\(317\) 198590. 0.110996 0.0554982 0.998459i \(-0.482325\pi\)
0.0554982 + 0.998459i \(0.482325\pi\)
\(318\) 0 0
\(319\) −4.51357e6 −2.48338
\(320\) 0 0
\(321\) 915029. 0.495647
\(322\) 0 0
\(323\) 808648. 0.431274
\(324\) 0 0
\(325\) −266269. −0.139834
\(326\) 0 0
\(327\) 667558. 0.345239
\(328\) 0 0
\(329\) 183660. 0.0935461
\(330\) 0 0
\(331\) 367129. 0.184182 0.0920912 0.995751i \(-0.470645\pi\)
0.0920912 + 0.995751i \(0.470645\pi\)
\(332\) 0 0
\(333\) −396883. −0.196133
\(334\) 0 0
\(335\) 882893. 0.429830
\(336\) 0 0
\(337\) −3.40086e6 −1.63122 −0.815612 0.578599i \(-0.803600\pi\)
−0.815612 + 0.578599i \(0.803600\pi\)
\(338\) 0 0
\(339\) 471946. 0.223045
\(340\) 0 0
\(341\) −2.72372e6 −1.26846
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) −166176. −0.0751660
\(346\) 0 0
\(347\) −130304. −0.0580945 −0.0290472 0.999578i \(-0.509247\pi\)
−0.0290472 + 0.999578i \(0.509247\pi\)
\(348\) 0 0
\(349\) −3.48504e6 −1.53159 −0.765797 0.643082i \(-0.777655\pi\)
−0.765797 + 0.643082i \(0.777655\pi\)
\(350\) 0 0
\(351\) 871518. 0.377579
\(352\) 0 0
\(353\) 501512. 0.214212 0.107106 0.994248i \(-0.465842\pi\)
0.107106 + 0.994248i \(0.465842\pi\)
\(354\) 0 0
\(355\) −1.77434e6 −0.747251
\(356\) 0 0
\(357\) −431640. −0.179247
\(358\) 0 0
\(359\) 2.20994e6 0.904992 0.452496 0.891766i \(-0.350534\pi\)
0.452496 + 0.891766i \(0.350534\pi\)
\(360\) 0 0
\(361\) −2.31426e6 −0.934639
\(362\) 0 0
\(363\) 765608. 0.304958
\(364\) 0 0
\(365\) −426757. −0.167667
\(366\) 0 0
\(367\) −1.20727e6 −0.467885 −0.233943 0.972250i \(-0.575163\pi\)
−0.233943 + 0.972250i \(0.575163\pi\)
\(368\) 0 0
\(369\) 1.64588e6 0.629262
\(370\) 0 0
\(371\) −1.64223e6 −0.619439
\(372\) 0 0
\(373\) 2.21175e6 0.823120 0.411560 0.911383i \(-0.364984\pi\)
0.411560 + 0.911383i \(0.364984\pi\)
\(374\) 0 0
\(375\) −68474.7 −0.0251450
\(376\) 0 0
\(377\) 3.31857e6 1.20253
\(378\) 0 0
\(379\) −725319. −0.259377 −0.129688 0.991555i \(-0.541398\pi\)
−0.129688 + 0.991555i \(0.541398\pi\)
\(380\) 0 0
\(381\) −874276. −0.308557
\(382\) 0 0
\(383\) −4.53778e6 −1.58069 −0.790344 0.612663i \(-0.790098\pi\)
−0.790344 + 0.612663i \(0.790098\pi\)
\(384\) 0 0
\(385\) −709816. −0.244058
\(386\) 0 0
\(387\) 1.91620e6 0.650374
\(388\) 0 0
\(389\) 629591. 0.210952 0.105476 0.994422i \(-0.466363\pi\)
0.105476 + 0.994422i \(0.466363\pi\)
\(390\) 0 0
\(391\) −3.04884e6 −1.00854
\(392\) 0 0
\(393\) −603787. −0.197198
\(394\) 0 0
\(395\) −252591. −0.0814564
\(396\) 0 0
\(397\) −1.66148e6 −0.529076 −0.264538 0.964375i \(-0.585220\pi\)
−0.264538 + 0.964375i \(0.585220\pi\)
\(398\) 0 0
\(399\) −86387.3 −0.0271655
\(400\) 0 0
\(401\) −1.66267e6 −0.516350 −0.258175 0.966098i \(-0.583121\pi\)
−0.258175 + 0.966098i \(0.583121\pi\)
\(402\) 0 0
\(403\) 2.00259e6 0.614228
\(404\) 0 0
\(405\) −1.13543e6 −0.343972
\(406\) 0 0
\(407\) 1.02759e6 0.307493
\(408\) 0 0
\(409\) −5.39697e6 −1.59530 −0.797649 0.603123i \(-0.793923\pi\)
−0.797649 + 0.603123i \(0.793923\pi\)
\(410\) 0 0
\(411\) −1.03814e6 −0.303145
\(412\) 0 0
\(413\) −553827. −0.159771
\(414\) 0 0
\(415\) −1.15264e6 −0.328530
\(416\) 0 0
\(417\) 1.30552e6 0.367657
\(418\) 0 0
\(419\) 5.80750e6 1.61605 0.808024 0.589150i \(-0.200537\pi\)
0.808024 + 0.589150i \(0.200537\pi\)
\(420\) 0 0
\(421\) 4.45344e6 1.22459 0.612295 0.790629i \(-0.290247\pi\)
0.612295 + 0.790629i \(0.290247\pi\)
\(422\) 0 0
\(423\) −838821. −0.227939
\(424\) 0 0
\(425\) −1.25631e6 −0.337383
\(426\) 0 0
\(427\) −1.22325e6 −0.324672
\(428\) 0 0
\(429\) −1.08183e6 −0.283803
\(430\) 0 0
\(431\) −906343. −0.235017 −0.117509 0.993072i \(-0.537491\pi\)
−0.117509 + 0.993072i \(0.537491\pi\)
\(432\) 0 0
\(433\) −5.02034e6 −1.28681 −0.643403 0.765528i \(-0.722478\pi\)
−0.643403 + 0.765528i \(0.722478\pi\)
\(434\) 0 0
\(435\) 853415. 0.216241
\(436\) 0 0
\(437\) −610187. −0.152848
\(438\) 0 0
\(439\) 3.24699e6 0.804118 0.402059 0.915614i \(-0.368295\pi\)
0.402059 + 0.915614i \(0.368295\pi\)
\(440\) 0 0
\(441\) −537331. −0.131567
\(442\) 0 0
\(443\) 4.31230e6 1.04400 0.521999 0.852946i \(-0.325186\pi\)
0.521999 + 0.852946i \(0.325186\pi\)
\(444\) 0 0
\(445\) 537350. 0.128634
\(446\) 0 0
\(447\) −212302. −0.0502556
\(448\) 0 0
\(449\) −3.53475e6 −0.827453 −0.413726 0.910401i \(-0.635773\pi\)
−0.413726 + 0.910401i \(0.635773\pi\)
\(450\) 0 0
\(451\) −4.26145e6 −0.986543
\(452\) 0 0
\(453\) 250538. 0.0573626
\(454\) 0 0
\(455\) 521887. 0.118181
\(456\) 0 0
\(457\) −3.80009e6 −0.851144 −0.425572 0.904925i \(-0.639927\pi\)
−0.425572 + 0.904925i \(0.639927\pi\)
\(458\) 0 0
\(459\) 4.11198e6 0.911003
\(460\) 0 0
\(461\) 219847. 0.0481801 0.0240900 0.999710i \(-0.492331\pi\)
0.0240900 + 0.999710i \(0.492331\pi\)
\(462\) 0 0
\(463\) −2.69126e6 −0.583449 −0.291725 0.956502i \(-0.594229\pi\)
−0.291725 + 0.956502i \(0.594229\pi\)
\(464\) 0 0
\(465\) 514994. 0.110451
\(466\) 0 0
\(467\) 3.68553e6 0.782003 0.391001 0.920390i \(-0.372129\pi\)
0.391001 + 0.920390i \(0.372129\pi\)
\(468\) 0 0
\(469\) −1.73047e6 −0.363272
\(470\) 0 0
\(471\) −1.62162e6 −0.336819
\(472\) 0 0
\(473\) −4.96135e6 −1.01964
\(474\) 0 0
\(475\) −251434. −0.0511317
\(476\) 0 0
\(477\) 7.50044e6 1.50935
\(478\) 0 0
\(479\) 6.44698e6 1.28386 0.641930 0.766763i \(-0.278134\pi\)
0.641930 + 0.766763i \(0.278134\pi\)
\(480\) 0 0
\(481\) −755531. −0.148898
\(482\) 0 0
\(483\) 325706. 0.0635269
\(484\) 0 0
\(485\) 1.62579e6 0.313840
\(486\) 0 0
\(487\) −2.38314e6 −0.455331 −0.227665 0.973739i \(-0.573109\pi\)
−0.227665 + 0.973739i \(0.573109\pi\)
\(488\) 0 0
\(489\) −1.15712e6 −0.218831
\(490\) 0 0
\(491\) −6.68620e6 −1.25163 −0.625815 0.779972i \(-0.715233\pi\)
−0.625815 + 0.779972i \(0.715233\pi\)
\(492\) 0 0
\(493\) 1.56576e7 2.90141
\(494\) 0 0
\(495\) 3.24190e6 0.594684
\(496\) 0 0
\(497\) 3.47771e6 0.631542
\(498\) 0 0
\(499\) 8.76182e6 1.57523 0.787613 0.616170i \(-0.211317\pi\)
0.787613 + 0.616170i \(0.211317\pi\)
\(500\) 0 0
\(501\) −2.96436e6 −0.527639
\(502\) 0 0
\(503\) 5.39464e6 0.950698 0.475349 0.879797i \(-0.342322\pi\)
0.475349 + 0.879797i \(0.342322\pi\)
\(504\) 0 0
\(505\) −5.00242e6 −0.872874
\(506\) 0 0
\(507\) −831738. −0.143703
\(508\) 0 0
\(509\) 2.97015e6 0.508141 0.254070 0.967186i \(-0.418231\pi\)
0.254070 + 0.967186i \(0.418231\pi\)
\(510\) 0 0
\(511\) 836444. 0.141705
\(512\) 0 0
\(513\) 822962. 0.138066
\(514\) 0 0
\(515\) −974771. −0.161951
\(516\) 0 0
\(517\) 2.17185e6 0.357357
\(518\) 0 0
\(519\) −869897. −0.141759
\(520\) 0 0
\(521\) −4.08245e6 −0.658910 −0.329455 0.944171i \(-0.606865\pi\)
−0.329455 + 0.944171i \(0.606865\pi\)
\(522\) 0 0
\(523\) −1.01220e6 −0.161812 −0.0809061 0.996722i \(-0.525781\pi\)
−0.0809061 + 0.996722i \(0.525781\pi\)
\(524\) 0 0
\(525\) 134210. 0.0212514
\(526\) 0 0
\(527\) 9.44861e6 1.48198
\(528\) 0 0
\(529\) −4.13576e6 −0.642563
\(530\) 0 0
\(531\) 2.52946e6 0.389306
\(532\) 0 0
\(533\) 3.13320e6 0.477716
\(534\) 0 0
\(535\) −5.21993e6 −0.788461
\(536\) 0 0
\(537\) −1.70833e6 −0.255644
\(538\) 0 0
\(539\) 1.39124e6 0.206267
\(540\) 0 0
\(541\) −3.59552e6 −0.528164 −0.264082 0.964500i \(-0.585069\pi\)
−0.264082 + 0.964500i \(0.585069\pi\)
\(542\) 0 0
\(543\) 3.52234e6 0.512663
\(544\) 0 0
\(545\) −3.80819e6 −0.549196
\(546\) 0 0
\(547\) 1.08289e7 1.54745 0.773726 0.633520i \(-0.218391\pi\)
0.773726 + 0.633520i \(0.218391\pi\)
\(548\) 0 0
\(549\) 5.58686e6 0.791111
\(550\) 0 0
\(551\) 3.13368e6 0.439719
\(552\) 0 0
\(553\) 495079. 0.0688432
\(554\) 0 0
\(555\) −194295. −0.0267750
\(556\) 0 0
\(557\) 9.30164e6 1.27034 0.635172 0.772371i \(-0.280929\pi\)
0.635172 + 0.772371i \(0.280929\pi\)
\(558\) 0 0
\(559\) 3.64780e6 0.493743
\(560\) 0 0
\(561\) −5.10429e6 −0.684744
\(562\) 0 0
\(563\) −7.94494e6 −1.05638 −0.528189 0.849127i \(-0.677129\pi\)
−0.528189 + 0.849127i \(0.677129\pi\)
\(564\) 0 0
\(565\) −2.69229e6 −0.354814
\(566\) 0 0
\(567\) 2.22544e6 0.290709
\(568\) 0 0
\(569\) −5.70178e6 −0.738295 −0.369148 0.929371i \(-0.620350\pi\)
−0.369148 + 0.929371i \(0.620350\pi\)
\(570\) 0 0
\(571\) −4.62136e6 −0.593171 −0.296585 0.955006i \(-0.595848\pi\)
−0.296585 + 0.955006i \(0.595848\pi\)
\(572\) 0 0
\(573\) 4.08237e6 0.519428
\(574\) 0 0
\(575\) 947980. 0.119572
\(576\) 0 0
\(577\) 6.35670e6 0.794863 0.397431 0.917632i \(-0.369902\pi\)
0.397431 + 0.917632i \(0.369902\pi\)
\(578\) 0 0
\(579\) −2.59582e6 −0.321795
\(580\) 0 0
\(581\) 2.25918e6 0.277659
\(582\) 0 0
\(583\) −1.94199e7 −2.36633
\(584\) 0 0
\(585\) −2.38358e6 −0.287965
\(586\) 0 0
\(587\) −1.35002e7 −1.61713 −0.808565 0.588407i \(-0.799755\pi\)
−0.808565 + 0.588407i \(0.799755\pi\)
\(588\) 0 0
\(589\) 1.89102e6 0.224599
\(590\) 0 0
\(591\) 3.42732e6 0.403632
\(592\) 0 0
\(593\) 4.01400e6 0.468750 0.234375 0.972146i \(-0.424696\pi\)
0.234375 + 0.972146i \(0.424696\pi\)
\(594\) 0 0
\(595\) 2.46236e6 0.285141
\(596\) 0 0
\(597\) −1.68010e6 −0.192929
\(598\) 0 0
\(599\) 1.18393e7 1.34821 0.674104 0.738636i \(-0.264530\pi\)
0.674104 + 0.738636i \(0.264530\pi\)
\(600\) 0 0
\(601\) −5.06735e6 −0.572262 −0.286131 0.958190i \(-0.592369\pi\)
−0.286131 + 0.958190i \(0.592369\pi\)
\(602\) 0 0
\(603\) 7.90348e6 0.885166
\(604\) 0 0
\(605\) −4.36753e6 −0.485119
\(606\) 0 0
\(607\) 1.03970e7 1.14534 0.572671 0.819786i \(-0.305907\pi\)
0.572671 + 0.819786i \(0.305907\pi\)
\(608\) 0 0
\(609\) −1.67269e6 −0.182757
\(610\) 0 0
\(611\) −1.59683e6 −0.173044
\(612\) 0 0
\(613\) 6.54981e6 0.704008 0.352004 0.935998i \(-0.385500\pi\)
0.352004 + 0.935998i \(0.385500\pi\)
\(614\) 0 0
\(615\) 805745. 0.0859033
\(616\) 0 0
\(617\) 5.70921e6 0.603758 0.301879 0.953346i \(-0.402386\pi\)
0.301879 + 0.953346i \(0.402386\pi\)
\(618\) 0 0
\(619\) 4.25418e6 0.446261 0.223131 0.974789i \(-0.428372\pi\)
0.223131 + 0.974789i \(0.428372\pi\)
\(620\) 0 0
\(621\) −3.10281e6 −0.322869
\(622\) 0 0
\(623\) −1.05321e6 −0.108716
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −1.02156e6 −0.103775
\(628\) 0 0
\(629\) −3.56474e6 −0.359254
\(630\) 0 0
\(631\) −1.60836e7 −1.60809 −0.804043 0.594570i \(-0.797322\pi\)
−0.804043 + 0.594570i \(0.797322\pi\)
\(632\) 0 0
\(633\) −639816. −0.0634666
\(634\) 0 0
\(635\) 4.98745e6 0.490845
\(636\) 0 0
\(637\) −1.02290e6 −0.0998812
\(638\) 0 0
\(639\) −1.58835e7 −1.53885
\(640\) 0 0
\(641\) 4.17421e6 0.401263 0.200631 0.979667i \(-0.435701\pi\)
0.200631 + 0.979667i \(0.435701\pi\)
\(642\) 0 0
\(643\) −1.12908e7 −1.07695 −0.538477 0.842640i \(-0.681000\pi\)
−0.538477 + 0.842640i \(0.681000\pi\)
\(644\) 0 0
\(645\) 938082. 0.0887854
\(646\) 0 0
\(647\) −1.08901e7 −1.02275 −0.511377 0.859357i \(-0.670864\pi\)
−0.511377 + 0.859357i \(0.670864\pi\)
\(648\) 0 0
\(649\) −6.54918e6 −0.610345
\(650\) 0 0
\(651\) −1.00939e6 −0.0933482
\(652\) 0 0
\(653\) −2.96997e6 −0.272565 −0.136282 0.990670i \(-0.543515\pi\)
−0.136282 + 0.990670i \(0.543515\pi\)
\(654\) 0 0
\(655\) 3.44440e6 0.313697
\(656\) 0 0
\(657\) −3.82024e6 −0.345285
\(658\) 0 0
\(659\) −1.77817e7 −1.59500 −0.797500 0.603319i \(-0.793845\pi\)
−0.797500 + 0.603319i \(0.793845\pi\)
\(660\) 0 0
\(661\) 4.10248e6 0.365210 0.182605 0.983186i \(-0.441547\pi\)
0.182605 + 0.983186i \(0.441547\pi\)
\(662\) 0 0
\(663\) 3.75289e6 0.331575
\(664\) 0 0
\(665\) 492810. 0.0432141
\(666\) 0 0
\(667\) −1.18149e7 −1.02829
\(668\) 0 0
\(669\) −2.77990e6 −0.240139
\(670\) 0 0
\(671\) −1.44653e7 −1.24028
\(672\) 0 0
\(673\) −1.92507e6 −0.163836 −0.0819181 0.996639i \(-0.526105\pi\)
−0.0819181 + 0.996639i \(0.526105\pi\)
\(674\) 0 0
\(675\) −1.27855e6 −0.108008
\(676\) 0 0
\(677\) −3.54800e6 −0.297517 −0.148759 0.988874i \(-0.547528\pi\)
−0.148759 + 0.988874i \(0.547528\pi\)
\(678\) 0 0
\(679\) −3.18654e6 −0.265244
\(680\) 0 0
\(681\) −1.92540e6 −0.159094
\(682\) 0 0
\(683\) −8.58361e6 −0.704074 −0.352037 0.935986i \(-0.614511\pi\)
−0.352037 + 0.935986i \(0.614511\pi\)
\(684\) 0 0
\(685\) 5.92222e6 0.482234
\(686\) 0 0
\(687\) −3.76266e6 −0.304160
\(688\) 0 0
\(689\) 1.42783e7 1.14585
\(690\) 0 0
\(691\) −1.70540e6 −0.135872 −0.0679361 0.997690i \(-0.521641\pi\)
−0.0679361 + 0.997690i \(0.521641\pi\)
\(692\) 0 0
\(693\) −6.35412e6 −0.502600
\(694\) 0 0
\(695\) −7.44754e6 −0.584858
\(696\) 0 0
\(697\) 1.47830e7 1.15261
\(698\) 0 0
\(699\) 4.96009e6 0.383969
\(700\) 0 0
\(701\) 1.10522e7 0.849481 0.424741 0.905315i \(-0.360365\pi\)
0.424741 + 0.905315i \(0.360365\pi\)
\(702\) 0 0
\(703\) −713438. −0.0544462
\(704\) 0 0
\(705\) −410648. −0.0311169
\(706\) 0 0
\(707\) 9.80474e6 0.737713
\(708\) 0 0
\(709\) 3.28816e6 0.245662 0.122831 0.992428i \(-0.460803\pi\)
0.122831 + 0.992428i \(0.460803\pi\)
\(710\) 0 0
\(711\) −2.26114e6 −0.167747
\(712\) 0 0
\(713\) −7.12970e6 −0.525228
\(714\) 0 0
\(715\) 6.17149e6 0.451466
\(716\) 0 0
\(717\) 2.20156e6 0.159931
\(718\) 0 0
\(719\) 2.07563e7 1.49736 0.748681 0.662930i \(-0.230687\pi\)
0.748681 + 0.662930i \(0.230687\pi\)
\(720\) 0 0
\(721\) 1.91055e6 0.136874
\(722\) 0 0
\(723\) −5.96542e6 −0.424420
\(724\) 0 0
\(725\) −4.86845e6 −0.343990
\(726\) 0 0
\(727\) 2.10774e6 0.147904 0.0739522 0.997262i \(-0.476439\pi\)
0.0739522 + 0.997262i \(0.476439\pi\)
\(728\) 0 0
\(729\) −7.98566e6 −0.556534
\(730\) 0 0
\(731\) 1.72110e7 1.19128
\(732\) 0 0
\(733\) 1.68040e7 1.15519 0.577595 0.816323i \(-0.303991\pi\)
0.577595 + 0.816323i \(0.303991\pi\)
\(734\) 0 0
\(735\) −263052. −0.0179607
\(736\) 0 0
\(737\) −2.04634e7 −1.38774
\(738\) 0 0
\(739\) −7.40020e6 −0.498462 −0.249231 0.968444i \(-0.580178\pi\)
−0.249231 + 0.968444i \(0.580178\pi\)
\(740\) 0 0
\(741\) 751094. 0.0502514
\(742\) 0 0
\(743\) −1.80394e7 −1.19881 −0.599405 0.800446i \(-0.704596\pi\)
−0.599405 + 0.800446i \(0.704596\pi\)
\(744\) 0 0
\(745\) 1.21111e6 0.0799453
\(746\) 0 0
\(747\) −1.03182e7 −0.676556
\(748\) 0 0
\(749\) 1.02311e7 0.666371
\(750\) 0 0
\(751\) −2.49611e7 −1.61497 −0.807484 0.589889i \(-0.799171\pi\)
−0.807484 + 0.589889i \(0.799171\pi\)
\(752\) 0 0
\(753\) 1.65822e6 0.106575
\(754\) 0 0
\(755\) −1.42924e6 −0.0912508
\(756\) 0 0
\(757\) 6.25759e6 0.396887 0.198444 0.980112i \(-0.436411\pi\)
0.198444 + 0.980112i \(0.436411\pi\)
\(758\) 0 0
\(759\) 3.85158e6 0.242680
\(760\) 0 0
\(761\) −1.04767e7 −0.655785 −0.327893 0.944715i \(-0.606338\pi\)
−0.327893 + 0.944715i \(0.606338\pi\)
\(762\) 0 0
\(763\) 7.46405e6 0.464155
\(764\) 0 0
\(765\) −1.12462e7 −0.694787
\(766\) 0 0
\(767\) 4.81524e6 0.295549
\(768\) 0 0
\(769\) −1.15960e7 −0.707117 −0.353558 0.935412i \(-0.615028\pi\)
−0.353558 + 0.935412i \(0.615028\pi\)
\(770\) 0 0
\(771\) −3.98450e6 −0.241401
\(772\) 0 0
\(773\) 2.20438e7 1.32690 0.663451 0.748220i \(-0.269091\pi\)
0.663451 + 0.748220i \(0.269091\pi\)
\(774\) 0 0
\(775\) −2.93787e6 −0.175703
\(776\) 0 0
\(777\) 380819. 0.0226290
\(778\) 0 0
\(779\) 2.95864e6 0.174682
\(780\) 0 0
\(781\) 4.11251e7 2.41257
\(782\) 0 0
\(783\) 1.59348e7 0.928842
\(784\) 0 0
\(785\) 9.25079e6 0.535803
\(786\) 0 0
\(787\) −1.32085e7 −0.760179 −0.380090 0.924950i \(-0.624107\pi\)
−0.380090 + 0.924950i \(0.624107\pi\)
\(788\) 0 0
\(789\) 1.46149e6 0.0835800
\(790\) 0 0
\(791\) 5.27689e6 0.299873
\(792\) 0 0
\(793\) 1.06355e7 0.600586
\(794\) 0 0
\(795\) 3.67187e6 0.206048
\(796\) 0 0
\(797\) 2.64400e7 1.47440 0.737200 0.675675i \(-0.236148\pi\)
0.737200 + 0.675675i \(0.236148\pi\)
\(798\) 0 0
\(799\) −7.53416e6 −0.417511
\(800\) 0 0
\(801\) 4.81025e6 0.264902
\(802\) 0 0
\(803\) 9.89124e6 0.541330
\(804\) 0 0
\(805\) −1.85804e6 −0.101057
\(806\) 0 0
\(807\) −3.63811e6 −0.196649
\(808\) 0 0
\(809\) −3.50288e7 −1.88171 −0.940856 0.338805i \(-0.889977\pi\)
−0.940856 + 0.338805i \(0.889977\pi\)
\(810\) 0 0
\(811\) 1.36252e7 0.727432 0.363716 0.931510i \(-0.381508\pi\)
0.363716 + 0.931510i \(0.381508\pi\)
\(812\) 0 0
\(813\) 6.92760e6 0.367584
\(814\) 0 0
\(815\) 6.60101e6 0.348110
\(816\) 0 0
\(817\) 3.44457e6 0.180542
\(818\) 0 0
\(819\) 4.67182e6 0.243375
\(820\) 0 0
\(821\) 1.13414e7 0.587229 0.293615 0.955924i \(-0.405142\pi\)
0.293615 + 0.955924i \(0.405142\pi\)
\(822\) 0 0
\(823\) 1.11368e6 0.0573138 0.0286569 0.999589i \(-0.490877\pi\)
0.0286569 + 0.999589i \(0.490877\pi\)
\(824\) 0 0
\(825\) 1.58708e6 0.0811829
\(826\) 0 0
\(827\) −3.71049e7 −1.88655 −0.943273 0.332017i \(-0.892271\pi\)
−0.943273 + 0.332017i \(0.892271\pi\)
\(828\) 0 0
\(829\) 9.73384e6 0.491924 0.245962 0.969279i \(-0.420896\pi\)
0.245962 + 0.969279i \(0.420896\pi\)
\(830\) 0 0
\(831\) 264048. 0.0132642
\(832\) 0 0
\(833\) −4.82623e6 −0.240988
\(834\) 0 0
\(835\) 1.69107e7 0.839354
\(836\) 0 0
\(837\) 9.61586e6 0.474433
\(838\) 0 0
\(839\) −7.76027e6 −0.380603 −0.190301 0.981726i \(-0.560946\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(840\) 0 0
\(841\) 4.01654e7 1.95822
\(842\) 0 0
\(843\) 6.71566e6 0.325477
\(844\) 0 0
\(845\) 4.74479e6 0.228599
\(846\) 0 0
\(847\) 8.56037e6 0.410000
\(848\) 0 0
\(849\) −1.04775e7 −0.498870
\(850\) 0 0
\(851\) 2.68987e6 0.127323
\(852\) 0 0
\(853\) −3.05251e7 −1.43643 −0.718215 0.695821i \(-0.755041\pi\)
−0.718215 + 0.695821i \(0.755041\pi\)
\(854\) 0 0
\(855\) −2.25078e6 −0.105298
\(856\) 0 0
\(857\) −3.01825e7 −1.40379 −0.701896 0.712279i \(-0.747663\pi\)
−0.701896 + 0.712279i \(0.747663\pi\)
\(858\) 0 0
\(859\) 2.85929e7 1.32213 0.661066 0.750328i \(-0.270104\pi\)
0.661066 + 0.750328i \(0.270104\pi\)
\(860\) 0 0
\(861\) −1.57926e6 −0.0726016
\(862\) 0 0
\(863\) −1.44726e7 −0.661484 −0.330742 0.943721i \(-0.607299\pi\)
−0.330742 + 0.943721i \(0.607299\pi\)
\(864\) 0 0
\(865\) 4.96247e6 0.225506
\(866\) 0 0
\(867\) 1.14845e7 0.518876
\(868\) 0 0
\(869\) 5.85447e6 0.262989
\(870\) 0 0
\(871\) 1.50456e7 0.671990
\(872\) 0 0
\(873\) 1.45537e7 0.646305
\(874\) 0 0
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) −3.61028e7 −1.58505 −0.792524 0.609841i \(-0.791233\pi\)
−0.792524 + 0.609841i \(0.791233\pi\)
\(878\) 0 0
\(879\) 1.20223e6 0.0524824
\(880\) 0 0
\(881\) −2.45112e7 −1.06396 −0.531980 0.846757i \(-0.678552\pi\)
−0.531980 + 0.846757i \(0.678552\pi\)
\(882\) 0 0
\(883\) −2.55558e7 −1.10303 −0.551516 0.834164i \(-0.685950\pi\)
−0.551516 + 0.834164i \(0.685950\pi\)
\(884\) 0 0
\(885\) 1.23831e6 0.0531459
\(886\) 0 0
\(887\) −9.89572e6 −0.422317 −0.211158 0.977452i \(-0.567724\pi\)
−0.211158 + 0.977452i \(0.567724\pi\)
\(888\) 0 0
\(889\) −9.77540e6 −0.414840
\(890\) 0 0
\(891\) 2.63166e7 1.11054
\(892\) 0 0
\(893\) −1.50787e6 −0.0632754
\(894\) 0 0
\(895\) 9.74544e6 0.406672
\(896\) 0 0
\(897\) −2.83185e6 −0.117514
\(898\) 0 0
\(899\) 3.66153e7 1.51100
\(900\) 0 0
\(901\) 6.73678e7 2.76465
\(902\) 0 0
\(903\) −1.83864e6 −0.0750373
\(904\) 0 0
\(905\) −2.00938e7 −0.815530
\(906\) 0 0
\(907\) 1.39247e7 0.562040 0.281020 0.959702i \(-0.409327\pi\)
0.281020 + 0.959702i \(0.409327\pi\)
\(908\) 0 0
\(909\) −4.47806e7 −1.79755
\(910\) 0 0
\(911\) 8.43300e6 0.336656 0.168328 0.985731i \(-0.446163\pi\)
0.168328 + 0.985731i \(0.446163\pi\)
\(912\) 0 0
\(913\) 2.67156e7 1.06069
\(914\) 0 0
\(915\) 2.73507e6 0.107998
\(916\) 0 0
\(917\) −6.75102e6 −0.265122
\(918\) 0 0
\(919\) 4.62946e7 1.80818 0.904091 0.427341i \(-0.140550\pi\)
0.904091 + 0.427341i \(0.140550\pi\)
\(920\) 0 0
\(921\) 1.22523e7 0.475956
\(922\) 0 0
\(923\) −3.02369e7 −1.16824
\(924\) 0 0
\(925\) 1.10839e6 0.0425930
\(926\) 0 0
\(927\) −8.72594e6 −0.333513
\(928\) 0 0
\(929\) −1.45748e7 −0.554067 −0.277034 0.960860i \(-0.589351\pi\)
−0.277034 + 0.960860i \(0.589351\pi\)
\(930\) 0 0
\(931\) −965909. −0.0365226
\(932\) 0 0
\(933\) 8.98434e6 0.337895
\(934\) 0 0
\(935\) 2.91182e7 1.08927
\(936\) 0 0
\(937\) −1.25424e7 −0.466693 −0.233346 0.972394i \(-0.574968\pi\)
−0.233346 + 0.972394i \(0.574968\pi\)
\(938\) 0 0
\(939\) −7.33535e6 −0.271492
\(940\) 0 0
\(941\) 2.62772e7 0.967396 0.483698 0.875235i \(-0.339293\pi\)
0.483698 + 0.875235i \(0.339293\pi\)
\(942\) 0 0
\(943\) −1.11549e7 −0.408496
\(944\) 0 0
\(945\) 2.50595e6 0.0912836
\(946\) 0 0
\(947\) −3.31403e7 −1.20083 −0.600415 0.799688i \(-0.704998\pi\)
−0.600415 + 0.799688i \(0.704998\pi\)
\(948\) 0 0
\(949\) −7.27246e6 −0.262129
\(950\) 0 0
\(951\) 870296. 0.0312044
\(952\) 0 0
\(953\) 2.77205e7 0.988709 0.494355 0.869260i \(-0.335404\pi\)
0.494355 + 0.869260i \(0.335404\pi\)
\(954\) 0 0
\(955\) −2.32885e7 −0.826292
\(956\) 0 0
\(957\) −1.97802e7 −0.698152
\(958\) 0 0
\(959\) −1.16075e7 −0.407562
\(960\) 0 0
\(961\) −6.53362e6 −0.228216
\(962\) 0 0
\(963\) −4.67277e7 −1.62371
\(964\) 0 0
\(965\) 1.48083e7 0.511902
\(966\) 0 0
\(967\) 1.77930e7 0.611905 0.305953 0.952047i \(-0.401025\pi\)
0.305953 + 0.952047i \(0.401025\pi\)
\(968\) 0 0
\(969\) 3.54380e6 0.121244
\(970\) 0 0
\(971\) −2.95500e7 −1.00579 −0.502897 0.864346i \(-0.667733\pi\)
−0.502897 + 0.864346i \(0.667733\pi\)
\(972\) 0 0
\(973\) 1.45972e7 0.494295
\(974\) 0 0
\(975\) −1.16689e6 −0.0393114
\(976\) 0 0
\(977\) −5.26510e6 −0.176470 −0.0882349 0.996100i \(-0.528123\pi\)
−0.0882349 + 0.996100i \(0.528123\pi\)
\(978\) 0 0
\(979\) −1.24545e7 −0.415308
\(980\) 0 0
\(981\) −3.40901e7 −1.13098
\(982\) 0 0
\(983\) −2.14800e7 −0.709006 −0.354503 0.935055i \(-0.615350\pi\)
−0.354503 + 0.935055i \(0.615350\pi\)
\(984\) 0 0
\(985\) −1.95517e7 −0.642087
\(986\) 0 0
\(987\) 804870. 0.0262986
\(988\) 0 0
\(989\) −1.29870e7 −0.422201
\(990\) 0 0
\(991\) −4.73852e7 −1.53271 −0.766353 0.642420i \(-0.777930\pi\)
−0.766353 + 0.642420i \(0.777930\pi\)
\(992\) 0 0
\(993\) 1.60890e6 0.0517792
\(994\) 0 0
\(995\) 9.58438e6 0.306907
\(996\) 0 0
\(997\) −4.20284e7 −1.33908 −0.669538 0.742778i \(-0.733508\pi\)
−0.669538 + 0.742778i \(0.733508\pi\)
\(998\) 0 0
\(999\) −3.62784e6 −0.115010
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.6.a.a.1.2 2
4.3 odd 2 560.6.a.p.1.1 2
5.2 odd 4 700.6.e.e.449.2 4
5.3 odd 4 700.6.e.e.449.3 4
5.4 even 2 700.6.a.h.1.1 2
7.6 odd 2 980.6.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.6.a.a.1.2 2 1.1 even 1 trivial
560.6.a.p.1.1 2 4.3 odd 2
700.6.a.h.1.1 2 5.4 even 2
700.6.e.e.449.2 4 5.2 odd 4
700.6.e.e.449.3 4 5.3 odd 4
980.6.a.g.1.1 2 7.6 odd 2