Properties

Label 140.6.a.d.1.2
Level $140$
Weight $6$
Character 140.1
Self dual yes
Analytic conductor $22.454$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,6,Mod(1,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4537347738\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 499x - 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.420991\) of defining polynomial
Character \(\chi\) \(=\) 140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.57901 q^{3} +25.0000 q^{5} +49.0000 q^{7} -240.507 q^{9} +322.771 q^{11} +657.331 q^{13} +39.4752 q^{15} +665.753 q^{17} -2215.14 q^{19} +77.3714 q^{21} +1586.87 q^{23} +625.000 q^{25} -763.461 q^{27} +6386.70 q^{29} +7712.24 q^{31} +509.658 q^{33} +1225.00 q^{35} +3433.65 q^{37} +1037.93 q^{39} -6537.24 q^{41} +16611.0 q^{43} -6012.67 q^{45} +12516.9 q^{47} +2401.00 q^{49} +1051.23 q^{51} +4240.34 q^{53} +8069.27 q^{55} -3497.73 q^{57} +26156.3 q^{59} +32683.8 q^{61} -11784.8 q^{63} +16433.3 q^{65} -6153.18 q^{67} +2505.68 q^{69} -33827.2 q^{71} -82194.4 q^{73} +986.880 q^{75} +15815.8 q^{77} -35205.3 q^{79} +57237.6 q^{81} +17529.6 q^{83} +16643.8 q^{85} +10084.7 q^{87} -72867.8 q^{89} +32209.2 q^{91} +12177.7 q^{93} -55378.5 q^{95} -166047. q^{97} -77628.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{3} + 75 q^{5} + 147 q^{7} + 281 q^{9} - 14 q^{11} - 4 q^{13} + 150 q^{15} + 44 q^{17} + 2328 q^{19} + 294 q^{21} + 3676 q^{23} + 1875 q^{25} + 3726 q^{27} + 4092 q^{29} + 5888 q^{31} + 11318 q^{33}+ \cdots - 114368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.57901 0.101293 0.0506467 0.998717i \(-0.483872\pi\)
0.0506467 + 0.998717i \(0.483872\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −240.507 −0.989740
\(10\) 0 0
\(11\) 322.771 0.804290 0.402145 0.915576i \(-0.368265\pi\)
0.402145 + 0.915576i \(0.368265\pi\)
\(12\) 0 0
\(13\) 657.331 1.07876 0.539381 0.842062i \(-0.318658\pi\)
0.539381 + 0.842062i \(0.318658\pi\)
\(14\) 0 0
\(15\) 39.4752 0.0452998
\(16\) 0 0
\(17\) 665.753 0.558715 0.279358 0.960187i \(-0.409878\pi\)
0.279358 + 0.960187i \(0.409878\pi\)
\(18\) 0 0
\(19\) −2215.14 −1.40772 −0.703862 0.710337i \(-0.748543\pi\)
−0.703862 + 0.710337i \(0.748543\pi\)
\(20\) 0 0
\(21\) 77.3714 0.0382853
\(22\) 0 0
\(23\) 1586.87 0.625492 0.312746 0.949837i \(-0.398751\pi\)
0.312746 + 0.949837i \(0.398751\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −763.461 −0.201548
\(28\) 0 0
\(29\) 6386.70 1.41020 0.705102 0.709106i \(-0.250901\pi\)
0.705102 + 0.709106i \(0.250901\pi\)
\(30\) 0 0
\(31\) 7712.24 1.44137 0.720686 0.693262i \(-0.243827\pi\)
0.720686 + 0.693262i \(0.243827\pi\)
\(32\) 0 0
\(33\) 509.658 0.0814693
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) 3433.65 0.412337 0.206169 0.978517i \(-0.433900\pi\)
0.206169 + 0.978517i \(0.433900\pi\)
\(38\) 0 0
\(39\) 1037.93 0.109272
\(40\) 0 0
\(41\) −6537.24 −0.607344 −0.303672 0.952777i \(-0.598213\pi\)
−0.303672 + 0.952777i \(0.598213\pi\)
\(42\) 0 0
\(43\) 16611.0 1.37001 0.685007 0.728536i \(-0.259799\pi\)
0.685007 + 0.728536i \(0.259799\pi\)
\(44\) 0 0
\(45\) −6012.67 −0.442625
\(46\) 0 0
\(47\) 12516.9 0.826515 0.413257 0.910614i \(-0.364391\pi\)
0.413257 + 0.910614i \(0.364391\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 1051.23 0.0565942
\(52\) 0 0
\(53\) 4240.34 0.207353 0.103677 0.994611i \(-0.466939\pi\)
0.103677 + 0.994611i \(0.466939\pi\)
\(54\) 0 0
\(55\) 8069.27 0.359689
\(56\) 0 0
\(57\) −3497.73 −0.142593
\(58\) 0 0
\(59\) 26156.3 0.978243 0.489122 0.872216i \(-0.337317\pi\)
0.489122 + 0.872216i \(0.337317\pi\)
\(60\) 0 0
\(61\) 32683.8 1.12463 0.562313 0.826924i \(-0.309911\pi\)
0.562313 + 0.826924i \(0.309911\pi\)
\(62\) 0 0
\(63\) −11784.8 −0.374086
\(64\) 0 0
\(65\) 16433.3 0.482437
\(66\) 0 0
\(67\) −6153.18 −0.167461 −0.0837303 0.996488i \(-0.526683\pi\)
−0.0837303 + 0.996488i \(0.526683\pi\)
\(68\) 0 0
\(69\) 2505.68 0.0633583
\(70\) 0 0
\(71\) −33827.2 −0.796379 −0.398190 0.917303i \(-0.630361\pi\)
−0.398190 + 0.917303i \(0.630361\pi\)
\(72\) 0 0
\(73\) −82194.4 −1.80524 −0.902621 0.430437i \(-0.858360\pi\)
−0.902621 + 0.430437i \(0.858360\pi\)
\(74\) 0 0
\(75\) 986.880 0.0202587
\(76\) 0 0
\(77\) 15815.8 0.303993
\(78\) 0 0
\(79\) −35205.3 −0.634659 −0.317329 0.948315i \(-0.602786\pi\)
−0.317329 + 0.948315i \(0.602786\pi\)
\(80\) 0 0
\(81\) 57237.6 0.969324
\(82\) 0 0
\(83\) 17529.6 0.279304 0.139652 0.990201i \(-0.455402\pi\)
0.139652 + 0.990201i \(0.455402\pi\)
\(84\) 0 0
\(85\) 16643.8 0.249865
\(86\) 0 0
\(87\) 10084.7 0.142844
\(88\) 0 0
\(89\) −72867.8 −0.975126 −0.487563 0.873088i \(-0.662114\pi\)
−0.487563 + 0.873088i \(0.662114\pi\)
\(90\) 0 0
\(91\) 32209.2 0.407734
\(92\) 0 0
\(93\) 12177.7 0.146002
\(94\) 0 0
\(95\) −55378.5 −0.629553
\(96\) 0 0
\(97\) −166047. −1.79185 −0.895927 0.444202i \(-0.853487\pi\)
−0.895927 + 0.444202i \(0.853487\pi\)
\(98\) 0 0
\(99\) −77628.6 −0.796038
\(100\) 0 0
\(101\) 19577.2 0.190963 0.0954813 0.995431i \(-0.469561\pi\)
0.0954813 + 0.995431i \(0.469561\pi\)
\(102\) 0 0
\(103\) 83864.5 0.778906 0.389453 0.921046i \(-0.372664\pi\)
0.389453 + 0.921046i \(0.372664\pi\)
\(104\) 0 0
\(105\) 1934.29 0.0171217
\(106\) 0 0
\(107\) −105704. −0.892547 −0.446273 0.894897i \(-0.647249\pi\)
−0.446273 + 0.894897i \(0.647249\pi\)
\(108\) 0 0
\(109\) −114386. −0.922160 −0.461080 0.887359i \(-0.652538\pi\)
−0.461080 + 0.887359i \(0.652538\pi\)
\(110\) 0 0
\(111\) 5421.77 0.0417670
\(112\) 0 0
\(113\) −95123.1 −0.700793 −0.350396 0.936601i \(-0.613953\pi\)
−0.350396 + 0.936601i \(0.613953\pi\)
\(114\) 0 0
\(115\) 39671.8 0.279729
\(116\) 0 0
\(117\) −158092. −1.06769
\(118\) 0 0
\(119\) 32621.9 0.211175
\(120\) 0 0
\(121\) −56870.0 −0.353118
\(122\) 0 0
\(123\) −10322.4 −0.0615199
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 97854.5 0.538358 0.269179 0.963090i \(-0.413248\pi\)
0.269179 + 0.963090i \(0.413248\pi\)
\(128\) 0 0
\(129\) 26228.9 0.138773
\(130\) 0 0
\(131\) −31926.2 −0.162543 −0.0812715 0.996692i \(-0.525898\pi\)
−0.0812715 + 0.996692i \(0.525898\pi\)
\(132\) 0 0
\(133\) −108542. −0.532070
\(134\) 0 0
\(135\) −19086.5 −0.0901348
\(136\) 0 0
\(137\) 22595.8 0.102855 0.0514276 0.998677i \(-0.483623\pi\)
0.0514276 + 0.998677i \(0.483623\pi\)
\(138\) 0 0
\(139\) 287232. 1.26094 0.630472 0.776212i \(-0.282861\pi\)
0.630472 + 0.776212i \(0.282861\pi\)
\(140\) 0 0
\(141\) 19764.2 0.0837205
\(142\) 0 0
\(143\) 212167. 0.867637
\(144\) 0 0
\(145\) 159668. 0.630662
\(146\) 0 0
\(147\) 3791.20 0.0144705
\(148\) 0 0
\(149\) −437546. −1.61458 −0.807288 0.590158i \(-0.799065\pi\)
−0.807288 + 0.590158i \(0.799065\pi\)
\(150\) 0 0
\(151\) 505868. 1.80549 0.902744 0.430179i \(-0.141550\pi\)
0.902744 + 0.430179i \(0.141550\pi\)
\(152\) 0 0
\(153\) −160118. −0.552983
\(154\) 0 0
\(155\) 192806. 0.644601
\(156\) 0 0
\(157\) −214333. −0.693967 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(158\) 0 0
\(159\) 6695.54 0.0210035
\(160\) 0 0
\(161\) 77756.7 0.236414
\(162\) 0 0
\(163\) −587081. −1.73073 −0.865364 0.501143i \(-0.832913\pi\)
−0.865364 + 0.501143i \(0.832913\pi\)
\(164\) 0 0
\(165\) 12741.5 0.0364342
\(166\) 0 0
\(167\) −387234. −1.07444 −0.537220 0.843442i \(-0.680525\pi\)
−0.537220 + 0.843442i \(0.680525\pi\)
\(168\) 0 0
\(169\) 60790.6 0.163727
\(170\) 0 0
\(171\) 532757. 1.39328
\(172\) 0 0
\(173\) 610438. 1.55069 0.775347 0.631535i \(-0.217575\pi\)
0.775347 + 0.631535i \(0.217575\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 0 0
\(177\) 41301.1 0.0990897
\(178\) 0 0
\(179\) 169505. 0.395412 0.197706 0.980261i \(-0.436651\pi\)
0.197706 + 0.980261i \(0.436651\pi\)
\(180\) 0 0
\(181\) 305167. 0.692374 0.346187 0.938166i \(-0.387476\pi\)
0.346187 + 0.938166i \(0.387476\pi\)
\(182\) 0 0
\(183\) 51608.1 0.113917
\(184\) 0 0
\(185\) 85841.4 0.184403
\(186\) 0 0
\(187\) 214886. 0.449369
\(188\) 0 0
\(189\) −37409.6 −0.0761778
\(190\) 0 0
\(191\) 941471. 1.86734 0.933670 0.358134i \(-0.116587\pi\)
0.933670 + 0.358134i \(0.116587\pi\)
\(192\) 0 0
\(193\) 385057. 0.744101 0.372051 0.928212i \(-0.378655\pi\)
0.372051 + 0.928212i \(0.378655\pi\)
\(194\) 0 0
\(195\) 25948.3 0.0488677
\(196\) 0 0
\(197\) −1.03718e6 −1.90410 −0.952048 0.305948i \(-0.901026\pi\)
−0.952048 + 0.305948i \(0.901026\pi\)
\(198\) 0 0
\(199\) 410855. 0.735455 0.367727 0.929934i \(-0.380136\pi\)
0.367727 + 0.929934i \(0.380136\pi\)
\(200\) 0 0
\(201\) −9715.93 −0.0169627
\(202\) 0 0
\(203\) 312949. 0.533007
\(204\) 0 0
\(205\) −163431. −0.271612
\(206\) 0 0
\(207\) −381653. −0.619075
\(208\) 0 0
\(209\) −714983. −1.13222
\(210\) 0 0
\(211\) 442714. 0.684568 0.342284 0.939597i \(-0.388799\pi\)
0.342284 + 0.939597i \(0.388799\pi\)
\(212\) 0 0
\(213\) −53413.4 −0.0806680
\(214\) 0 0
\(215\) 415275. 0.612689
\(216\) 0 0
\(217\) 377900. 0.544787
\(218\) 0 0
\(219\) −129786. −0.182859
\(220\) 0 0
\(221\) 437620. 0.602721
\(222\) 0 0
\(223\) 93933.5 0.126491 0.0632453 0.997998i \(-0.479855\pi\)
0.0632453 + 0.997998i \(0.479855\pi\)
\(224\) 0 0
\(225\) −150317. −0.197948
\(226\) 0 0
\(227\) 234538. 0.302099 0.151049 0.988526i \(-0.451735\pi\)
0.151049 + 0.988526i \(0.451735\pi\)
\(228\) 0 0
\(229\) 239032. 0.301208 0.150604 0.988594i \(-0.451878\pi\)
0.150604 + 0.988594i \(0.451878\pi\)
\(230\) 0 0
\(231\) 24973.2 0.0307925
\(232\) 0 0
\(233\) −1.47330e6 −1.77788 −0.888939 0.458025i \(-0.848557\pi\)
−0.888939 + 0.458025i \(0.848557\pi\)
\(234\) 0 0
\(235\) 312921. 0.369629
\(236\) 0 0
\(237\) −55589.5 −0.0642868
\(238\) 0 0
\(239\) −1.31478e6 −1.48887 −0.744436 0.667694i \(-0.767282\pi\)
−0.744436 + 0.667694i \(0.767282\pi\)
\(240\) 0 0
\(241\) 1.20810e6 1.33986 0.669932 0.742423i \(-0.266323\pi\)
0.669932 + 0.742423i \(0.266323\pi\)
\(242\) 0 0
\(243\) 275900. 0.299734
\(244\) 0 0
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) −1.45608e6 −1.51860
\(248\) 0 0
\(249\) 27679.4 0.0282916
\(250\) 0 0
\(251\) −518940. −0.519916 −0.259958 0.965620i \(-0.583709\pi\)
−0.259958 + 0.965620i \(0.583709\pi\)
\(252\) 0 0
\(253\) 512196. 0.503077
\(254\) 0 0
\(255\) 26280.7 0.0253097
\(256\) 0 0
\(257\) −566825. −0.535324 −0.267662 0.963513i \(-0.586251\pi\)
−0.267662 + 0.963513i \(0.586251\pi\)
\(258\) 0 0
\(259\) 168249. 0.155849
\(260\) 0 0
\(261\) −1.53605e6 −1.39573
\(262\) 0 0
\(263\) −1.27389e6 −1.13564 −0.567822 0.823151i \(-0.692214\pi\)
−0.567822 + 0.823151i \(0.692214\pi\)
\(264\) 0 0
\(265\) 106009. 0.0927313
\(266\) 0 0
\(267\) −115059. −0.0987738
\(268\) 0 0
\(269\) −445770. −0.375604 −0.187802 0.982207i \(-0.560136\pi\)
−0.187802 + 0.982207i \(0.560136\pi\)
\(270\) 0 0
\(271\) 1.26776e6 1.04861 0.524306 0.851530i \(-0.324325\pi\)
0.524306 + 0.851530i \(0.324325\pi\)
\(272\) 0 0
\(273\) 50858.6 0.0413007
\(274\) 0 0
\(275\) 201732. 0.160858
\(276\) 0 0
\(277\) −309948. −0.242711 −0.121355 0.992609i \(-0.538724\pi\)
−0.121355 + 0.992609i \(0.538724\pi\)
\(278\) 0 0
\(279\) −1.85484e6 −1.42658
\(280\) 0 0
\(281\) 291247. 0.220037 0.110018 0.993930i \(-0.464909\pi\)
0.110018 + 0.993930i \(0.464909\pi\)
\(282\) 0 0
\(283\) 723026. 0.536646 0.268323 0.963329i \(-0.413531\pi\)
0.268323 + 0.963329i \(0.413531\pi\)
\(284\) 0 0
\(285\) −87443.2 −0.0637696
\(286\) 0 0
\(287\) −320325. −0.229554
\(288\) 0 0
\(289\) −976630. −0.687837
\(290\) 0 0
\(291\) −262190. −0.181503
\(292\) 0 0
\(293\) −1.19632e6 −0.814098 −0.407049 0.913406i \(-0.633442\pi\)
−0.407049 + 0.913406i \(0.633442\pi\)
\(294\) 0 0
\(295\) 653908. 0.437484
\(296\) 0 0
\(297\) −246423. −0.162103
\(298\) 0 0
\(299\) 1.04310e6 0.674757
\(300\) 0 0
\(301\) 813940. 0.517817
\(302\) 0 0
\(303\) 30912.6 0.0193433
\(304\) 0 0
\(305\) 817096. 0.502948
\(306\) 0 0
\(307\) −1.95349e6 −1.18295 −0.591475 0.806324i \(-0.701454\pi\)
−0.591475 + 0.806324i \(0.701454\pi\)
\(308\) 0 0
\(309\) 132423. 0.0788981
\(310\) 0 0
\(311\) 794401. 0.465735 0.232868 0.972508i \(-0.425189\pi\)
0.232868 + 0.972508i \(0.425189\pi\)
\(312\) 0 0
\(313\) −118598. −0.0684255 −0.0342127 0.999415i \(-0.510892\pi\)
−0.0342127 + 0.999415i \(0.510892\pi\)
\(314\) 0 0
\(315\) −294621. −0.167297
\(316\) 0 0
\(317\) −2.78228e6 −1.55508 −0.777540 0.628833i \(-0.783533\pi\)
−0.777540 + 0.628833i \(0.783533\pi\)
\(318\) 0 0
\(319\) 2.06144e6 1.13421
\(320\) 0 0
\(321\) −166907. −0.0904092
\(322\) 0 0
\(323\) −1.47474e6 −0.786517
\(324\) 0 0
\(325\) 410832. 0.215752
\(326\) 0 0
\(327\) −180616. −0.0934088
\(328\) 0 0
\(329\) 613326. 0.312393
\(330\) 0 0
\(331\) −2.38160e6 −1.19481 −0.597404 0.801940i \(-0.703801\pi\)
−0.597404 + 0.801940i \(0.703801\pi\)
\(332\) 0 0
\(333\) −825817. −0.408106
\(334\) 0 0
\(335\) −153830. −0.0748907
\(336\) 0 0
\(337\) 270123. 0.129565 0.0647823 0.997899i \(-0.479365\pi\)
0.0647823 + 0.997899i \(0.479365\pi\)
\(338\) 0 0
\(339\) −150200. −0.0709857
\(340\) 0 0
\(341\) 2.48929e6 1.15928
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 62642.1 0.0283347
\(346\) 0 0
\(347\) 3.58739e6 1.59939 0.799696 0.600405i \(-0.204994\pi\)
0.799696 + 0.600405i \(0.204994\pi\)
\(348\) 0 0
\(349\) −1.13696e6 −0.499666 −0.249833 0.968289i \(-0.580376\pi\)
−0.249833 + 0.968289i \(0.580376\pi\)
\(350\) 0 0
\(351\) −501847. −0.217422
\(352\) 0 0
\(353\) 3.49344e6 1.49216 0.746081 0.665855i \(-0.231933\pi\)
0.746081 + 0.665855i \(0.231933\pi\)
\(354\) 0 0
\(355\) −845680. −0.356152
\(356\) 0 0
\(357\) 51510.2 0.0213906
\(358\) 0 0
\(359\) −986571. −0.404010 −0.202005 0.979384i \(-0.564746\pi\)
−0.202005 + 0.979384i \(0.564746\pi\)
\(360\) 0 0
\(361\) 2.43075e6 0.981687
\(362\) 0 0
\(363\) −89798.2 −0.0357685
\(364\) 0 0
\(365\) −2.05486e6 −0.807329
\(366\) 0 0
\(367\) 3.28626e6 1.27361 0.636805 0.771025i \(-0.280255\pi\)
0.636805 + 0.771025i \(0.280255\pi\)
\(368\) 0 0
\(369\) 1.57225e6 0.601112
\(370\) 0 0
\(371\) 207777. 0.0783722
\(372\) 0 0
\(373\) 3.67518e6 1.36775 0.683874 0.729600i \(-0.260294\pi\)
0.683874 + 0.729600i \(0.260294\pi\)
\(374\) 0 0
\(375\) 24672.0 0.00905996
\(376\) 0 0
\(377\) 4.19818e6 1.52127
\(378\) 0 0
\(379\) −1.18583e6 −0.424059 −0.212029 0.977263i \(-0.568007\pi\)
−0.212029 + 0.977263i \(0.568007\pi\)
\(380\) 0 0
\(381\) 154513. 0.0545322
\(382\) 0 0
\(383\) −2.67224e6 −0.930846 −0.465423 0.885088i \(-0.654098\pi\)
−0.465423 + 0.885088i \(0.654098\pi\)
\(384\) 0 0
\(385\) 395394. 0.135950
\(386\) 0 0
\(387\) −3.99506e6 −1.35596
\(388\) 0 0
\(389\) −2.60515e6 −0.872890 −0.436445 0.899731i \(-0.643763\pi\)
−0.436445 + 0.899731i \(0.643763\pi\)
\(390\) 0 0
\(391\) 1.05646e6 0.349472
\(392\) 0 0
\(393\) −50411.7 −0.0164646
\(394\) 0 0
\(395\) −880133. −0.283828
\(396\) 0 0
\(397\) 4.59840e6 1.46430 0.732151 0.681142i \(-0.238517\pi\)
0.732151 + 0.681142i \(0.238517\pi\)
\(398\) 0 0
\(399\) −171389. −0.0538952
\(400\) 0 0
\(401\) −2.14418e6 −0.665887 −0.332943 0.942947i \(-0.608042\pi\)
−0.332943 + 0.942947i \(0.608042\pi\)
\(402\) 0 0
\(403\) 5.06949e6 1.55490
\(404\) 0 0
\(405\) 1.43094e6 0.433495
\(406\) 0 0
\(407\) 1.10828e6 0.331639
\(408\) 0 0
\(409\) 4.01508e6 1.18682 0.593411 0.804900i \(-0.297781\pi\)
0.593411 + 0.804900i \(0.297781\pi\)
\(410\) 0 0
\(411\) 35679.0 0.0104186
\(412\) 0 0
\(413\) 1.28166e6 0.369741
\(414\) 0 0
\(415\) 438240. 0.124908
\(416\) 0 0
\(417\) 453542. 0.127725
\(418\) 0 0
\(419\) 2.05677e6 0.572335 0.286168 0.958180i \(-0.407619\pi\)
0.286168 + 0.958180i \(0.407619\pi\)
\(420\) 0 0
\(421\) −536575. −0.147545 −0.0737726 0.997275i \(-0.523504\pi\)
−0.0737726 + 0.997275i \(0.523504\pi\)
\(422\) 0 0
\(423\) −3.01039e6 −0.818034
\(424\) 0 0
\(425\) 416096. 0.111743
\(426\) 0 0
\(427\) 1.60151e6 0.425069
\(428\) 0 0
\(429\) 335014. 0.0878860
\(430\) 0 0
\(431\) −5.57365e6 −1.44526 −0.722631 0.691234i \(-0.757067\pi\)
−0.722631 + 0.691234i \(0.757067\pi\)
\(432\) 0 0
\(433\) −600292. −0.153866 −0.0769331 0.997036i \(-0.524513\pi\)
−0.0769331 + 0.997036i \(0.524513\pi\)
\(434\) 0 0
\(435\) 252117. 0.0638820
\(436\) 0 0
\(437\) −3.51514e6 −0.880521
\(438\) 0 0
\(439\) 4.08074e6 1.01060 0.505298 0.862945i \(-0.331383\pi\)
0.505298 + 0.862945i \(0.331383\pi\)
\(440\) 0 0
\(441\) −577457. −0.141391
\(442\) 0 0
\(443\) −6.45140e6 −1.56187 −0.780935 0.624612i \(-0.785257\pi\)
−0.780935 + 0.624612i \(0.785257\pi\)
\(444\) 0 0
\(445\) −1.82169e6 −0.436089
\(446\) 0 0
\(447\) −690889. −0.163546
\(448\) 0 0
\(449\) 3.62778e6 0.849230 0.424615 0.905374i \(-0.360409\pi\)
0.424615 + 0.905374i \(0.360409\pi\)
\(450\) 0 0
\(451\) −2.11003e6 −0.488480
\(452\) 0 0
\(453\) 798769. 0.182884
\(454\) 0 0
\(455\) 805230. 0.182344
\(456\) 0 0
\(457\) 5.12392e6 1.14766 0.573828 0.818976i \(-0.305458\pi\)
0.573828 + 0.818976i \(0.305458\pi\)
\(458\) 0 0
\(459\) −508277. −0.112608
\(460\) 0 0
\(461\) −3.96610e6 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(462\) 0 0
\(463\) 310011. 0.0672085 0.0336043 0.999435i \(-0.489301\pi\)
0.0336043 + 0.999435i \(0.489301\pi\)
\(464\) 0 0
\(465\) 304442. 0.0652939
\(466\) 0 0
\(467\) −1.07130e6 −0.227311 −0.113655 0.993520i \(-0.536256\pi\)
−0.113655 + 0.993520i \(0.536256\pi\)
\(468\) 0 0
\(469\) −301506. −0.0632942
\(470\) 0 0
\(471\) −338433. −0.0702943
\(472\) 0 0
\(473\) 5.36155e6 1.10189
\(474\) 0 0
\(475\) −1.38446e6 −0.281545
\(476\) 0 0
\(477\) −1.01983e6 −0.205226
\(478\) 0 0
\(479\) 5.62151e6 1.11947 0.559737 0.828670i \(-0.310902\pi\)
0.559737 + 0.828670i \(0.310902\pi\)
\(480\) 0 0
\(481\) 2.25705e6 0.444813
\(482\) 0 0
\(483\) 122778. 0.0239472
\(484\) 0 0
\(485\) −4.15118e6 −0.801341
\(486\) 0 0
\(487\) −4.04558e6 −0.772962 −0.386481 0.922297i \(-0.626309\pi\)
−0.386481 + 0.922297i \(0.626309\pi\)
\(488\) 0 0
\(489\) −927006. −0.175312
\(490\) 0 0
\(491\) −4.15461e6 −0.777727 −0.388863 0.921295i \(-0.627132\pi\)
−0.388863 + 0.921295i \(0.627132\pi\)
\(492\) 0 0
\(493\) 4.25197e6 0.787903
\(494\) 0 0
\(495\) −1.94071e6 −0.355999
\(496\) 0 0
\(497\) −1.65753e6 −0.301003
\(498\) 0 0
\(499\) −2.79365e6 −0.502251 −0.251125 0.967955i \(-0.580801\pi\)
−0.251125 + 0.967955i \(0.580801\pi\)
\(500\) 0 0
\(501\) −611445. −0.108834
\(502\) 0 0
\(503\) −6.95171e6 −1.22510 −0.612551 0.790431i \(-0.709856\pi\)
−0.612551 + 0.790431i \(0.709856\pi\)
\(504\) 0 0
\(505\) 489431. 0.0854010
\(506\) 0 0
\(507\) 95988.9 0.0165845
\(508\) 0 0
\(509\) −7.84503e6 −1.34215 −0.671073 0.741391i \(-0.734166\pi\)
−0.671073 + 0.741391i \(0.734166\pi\)
\(510\) 0 0
\(511\) −4.02753e6 −0.682317
\(512\) 0 0
\(513\) 1.69118e6 0.283723
\(514\) 0 0
\(515\) 2.09661e6 0.348337
\(516\) 0 0
\(517\) 4.04008e6 0.664758
\(518\) 0 0
\(519\) 963887. 0.157075
\(520\) 0 0
\(521\) −6.03460e6 −0.973989 −0.486995 0.873405i \(-0.661907\pi\)
−0.486995 + 0.873405i \(0.661907\pi\)
\(522\) 0 0
\(523\) −1.59256e6 −0.254590 −0.127295 0.991865i \(-0.540629\pi\)
−0.127295 + 0.991865i \(0.540629\pi\)
\(524\) 0 0
\(525\) 48357.1 0.00765707
\(526\) 0 0
\(527\) 5.13444e6 0.805317
\(528\) 0 0
\(529\) −3.91818e6 −0.608759
\(530\) 0 0
\(531\) −6.29078e6 −0.968206
\(532\) 0 0
\(533\) −4.29713e6 −0.655179
\(534\) 0 0
\(535\) −2.64259e6 −0.399159
\(536\) 0 0
\(537\) 267650. 0.0400526
\(538\) 0 0
\(539\) 774973. 0.114899
\(540\) 0 0
\(541\) −1.73741e6 −0.255217 −0.127608 0.991825i \(-0.540730\pi\)
−0.127608 + 0.991825i \(0.540730\pi\)
\(542\) 0 0
\(543\) 481861. 0.0701330
\(544\) 0 0
\(545\) −2.85965e6 −0.412402
\(546\) 0 0
\(547\) 1.14309e7 1.63348 0.816738 0.577009i \(-0.195780\pi\)
0.816738 + 0.577009i \(0.195780\pi\)
\(548\) 0 0
\(549\) −7.86068e6 −1.11309
\(550\) 0 0
\(551\) −1.41475e7 −1.98518
\(552\) 0 0
\(553\) −1.72506e6 −0.239879
\(554\) 0 0
\(555\) 135544. 0.0186788
\(556\) 0 0
\(557\) 1.08461e7 1.48127 0.740635 0.671908i \(-0.234525\pi\)
0.740635 + 0.671908i \(0.234525\pi\)
\(558\) 0 0
\(559\) 1.09189e7 1.47792
\(560\) 0 0
\(561\) 339306. 0.0455182
\(562\) 0 0
\(563\) 203287. 0.0270295 0.0135148 0.999909i \(-0.495698\pi\)
0.0135148 + 0.999909i \(0.495698\pi\)
\(564\) 0 0
\(565\) −2.37808e6 −0.313404
\(566\) 0 0
\(567\) 2.80464e6 0.366370
\(568\) 0 0
\(569\) 1.04184e7 1.34903 0.674514 0.738262i \(-0.264353\pi\)
0.674514 + 0.738262i \(0.264353\pi\)
\(570\) 0 0
\(571\) −4.44964e6 −0.571129 −0.285565 0.958359i \(-0.592181\pi\)
−0.285565 + 0.958359i \(0.592181\pi\)
\(572\) 0 0
\(573\) 1.48659e6 0.189149
\(574\) 0 0
\(575\) 991794. 0.125098
\(576\) 0 0
\(577\) −4.10826e6 −0.513711 −0.256855 0.966450i \(-0.582686\pi\)
−0.256855 + 0.966450i \(0.582686\pi\)
\(578\) 0 0
\(579\) 608009. 0.0753726
\(580\) 0 0
\(581\) 858950. 0.105567
\(582\) 0 0
\(583\) 1.36866e6 0.166772
\(584\) 0 0
\(585\) −3.95231e6 −0.477487
\(586\) 0 0
\(587\) −1.10539e7 −1.32409 −0.662047 0.749463i \(-0.730312\pi\)
−0.662047 + 0.749463i \(0.730312\pi\)
\(588\) 0 0
\(589\) −1.70837e7 −2.02905
\(590\) 0 0
\(591\) −1.63772e6 −0.192872
\(592\) 0 0
\(593\) 1.01113e7 1.18078 0.590390 0.807118i \(-0.298974\pi\)
0.590390 + 0.807118i \(0.298974\pi\)
\(594\) 0 0
\(595\) 815547. 0.0944402
\(596\) 0 0
\(597\) 648744. 0.0744968
\(598\) 0 0
\(599\) −1.10092e6 −0.125369 −0.0626845 0.998033i \(-0.519966\pi\)
−0.0626845 + 0.998033i \(0.519966\pi\)
\(600\) 0 0
\(601\) 2.03055e6 0.229312 0.114656 0.993405i \(-0.463423\pi\)
0.114656 + 0.993405i \(0.463423\pi\)
\(602\) 0 0
\(603\) 1.47988e6 0.165742
\(604\) 0 0
\(605\) −1.42175e6 −0.157919
\(606\) 0 0
\(607\) 4.20572e6 0.463307 0.231654 0.972798i \(-0.425586\pi\)
0.231654 + 0.972798i \(0.425586\pi\)
\(608\) 0 0
\(609\) 494148. 0.0539901
\(610\) 0 0
\(611\) 8.22771e6 0.891612
\(612\) 0 0
\(613\) −1.34913e7 −1.45012 −0.725060 0.688686i \(-0.758188\pi\)
−0.725060 + 0.688686i \(0.758188\pi\)
\(614\) 0 0
\(615\) −258059. −0.0275126
\(616\) 0 0
\(617\) 9.26037e6 0.979299 0.489650 0.871919i \(-0.337125\pi\)
0.489650 + 0.871919i \(0.337125\pi\)
\(618\) 0 0
\(619\) 1.11560e7 1.17026 0.585131 0.810939i \(-0.301043\pi\)
0.585131 + 0.810939i \(0.301043\pi\)
\(620\) 0 0
\(621\) −1.21151e6 −0.126067
\(622\) 0 0
\(623\) −3.57052e6 −0.368563
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −1.12896e6 −0.114686
\(628\) 0 0
\(629\) 2.28597e6 0.230379
\(630\) 0 0
\(631\) 8.72868e6 0.872721 0.436360 0.899772i \(-0.356267\pi\)
0.436360 + 0.899772i \(0.356267\pi\)
\(632\) 0 0
\(633\) 699049. 0.0693423
\(634\) 0 0
\(635\) 2.44636e6 0.240761
\(636\) 0 0
\(637\) 1.57825e6 0.154109
\(638\) 0 0
\(639\) 8.13566e6 0.788208
\(640\) 0 0
\(641\) 646402. 0.0621380 0.0310690 0.999517i \(-0.490109\pi\)
0.0310690 + 0.999517i \(0.490109\pi\)
\(642\) 0 0
\(643\) 1.36895e7 1.30575 0.652873 0.757468i \(-0.273564\pi\)
0.652873 + 0.757468i \(0.273564\pi\)
\(644\) 0 0
\(645\) 655723. 0.0620614
\(646\) 0 0
\(647\) −1.12743e7 −1.05884 −0.529418 0.848361i \(-0.677590\pi\)
−0.529418 + 0.848361i \(0.677590\pi\)
\(648\) 0 0
\(649\) 8.44250e6 0.786791
\(650\) 0 0
\(651\) 596707. 0.0551834
\(652\) 0 0
\(653\) 1.23867e7 1.13677 0.568384 0.822763i \(-0.307569\pi\)
0.568384 + 0.822763i \(0.307569\pi\)
\(654\) 0 0
\(655\) −798154. −0.0726915
\(656\) 0 0
\(657\) 1.97683e7 1.78672
\(658\) 0 0
\(659\) 9.93495e6 0.891153 0.445576 0.895244i \(-0.352999\pi\)
0.445576 + 0.895244i \(0.352999\pi\)
\(660\) 0 0
\(661\) −4.30434e6 −0.383181 −0.191590 0.981475i \(-0.561364\pi\)
−0.191590 + 0.981475i \(0.561364\pi\)
\(662\) 0 0
\(663\) 691005. 0.0610517
\(664\) 0 0
\(665\) −2.71355e6 −0.237949
\(666\) 0 0
\(667\) 1.01349e7 0.882072
\(668\) 0 0
\(669\) 148322. 0.0128127
\(670\) 0 0
\(671\) 1.05494e7 0.904526
\(672\) 0 0
\(673\) −252232. −0.0214665 −0.0107333 0.999942i \(-0.503417\pi\)
−0.0107333 + 0.999942i \(0.503417\pi\)
\(674\) 0 0
\(675\) −477163. −0.0403095
\(676\) 0 0
\(677\) −1.06012e7 −0.888960 −0.444480 0.895789i \(-0.646612\pi\)
−0.444480 + 0.895789i \(0.646612\pi\)
\(678\) 0 0
\(679\) −8.13632e6 −0.677257
\(680\) 0 0
\(681\) 370338. 0.0306006
\(682\) 0 0
\(683\) −1.30105e7 −1.06719 −0.533594 0.845741i \(-0.679159\pi\)
−0.533594 + 0.845741i \(0.679159\pi\)
\(684\) 0 0
\(685\) 564895. 0.0459983
\(686\) 0 0
\(687\) 377433. 0.0305104
\(688\) 0 0
\(689\) 2.78731e6 0.223685
\(690\) 0 0
\(691\) −9.67711e6 −0.770993 −0.385496 0.922709i \(-0.625970\pi\)
−0.385496 + 0.922709i \(0.625970\pi\)
\(692\) 0 0
\(693\) −3.80380e6 −0.300874
\(694\) 0 0
\(695\) 7.18080e6 0.563911
\(696\) 0 0
\(697\) −4.35218e6 −0.339332
\(698\) 0 0
\(699\) −2.32636e6 −0.180087
\(700\) 0 0
\(701\) −1.63711e7 −1.25829 −0.629147 0.777286i \(-0.716596\pi\)
−0.629147 + 0.777286i \(0.716596\pi\)
\(702\) 0 0
\(703\) −7.60603e6 −0.580457
\(704\) 0 0
\(705\) 494106. 0.0374410
\(706\) 0 0
\(707\) 959285. 0.0721771
\(708\) 0 0
\(709\) 7.10343e6 0.530704 0.265352 0.964152i \(-0.414512\pi\)
0.265352 + 0.964152i \(0.414512\pi\)
\(710\) 0 0
\(711\) 8.46711e6 0.628147
\(712\) 0 0
\(713\) 1.22383e7 0.901567
\(714\) 0 0
\(715\) 5.30418e6 0.388019
\(716\) 0 0
\(717\) −2.07604e6 −0.150813
\(718\) 0 0
\(719\) −6.87623e6 −0.496053 −0.248027 0.968753i \(-0.579782\pi\)
−0.248027 + 0.968753i \(0.579782\pi\)
\(720\) 0 0
\(721\) 4.10936e6 0.294399
\(722\) 0 0
\(723\) 1.90760e6 0.135719
\(724\) 0 0
\(725\) 3.99169e6 0.282041
\(726\) 0 0
\(727\) 9.71330e6 0.681602 0.340801 0.940136i \(-0.389302\pi\)
0.340801 + 0.940136i \(0.389302\pi\)
\(728\) 0 0
\(729\) −1.34731e7 −0.938963
\(730\) 0 0
\(731\) 1.10588e7 0.765448
\(732\) 0 0
\(733\) −1.14783e7 −0.789070 −0.394535 0.918881i \(-0.629094\pi\)
−0.394535 + 0.918881i \(0.629094\pi\)
\(734\) 0 0
\(735\) 94780.0 0.00647140
\(736\) 0 0
\(737\) −1.98607e6 −0.134687
\(738\) 0 0
\(739\) 1.55073e7 1.04454 0.522270 0.852780i \(-0.325085\pi\)
0.522270 + 0.852780i \(0.325085\pi\)
\(740\) 0 0
\(741\) −2.29916e6 −0.153824
\(742\) 0 0
\(743\) 2.49648e7 1.65904 0.829520 0.558477i \(-0.188614\pi\)
0.829520 + 0.558477i \(0.188614\pi\)
\(744\) 0 0
\(745\) −1.09387e7 −0.722060
\(746\) 0 0
\(747\) −4.21599e6 −0.276438
\(748\) 0 0
\(749\) −5.17949e6 −0.337351
\(750\) 0 0
\(751\) 1.59690e6 0.103319 0.0516593 0.998665i \(-0.483549\pi\)
0.0516593 + 0.998665i \(0.483549\pi\)
\(752\) 0 0
\(753\) −819411. −0.0526641
\(754\) 0 0
\(755\) 1.26467e7 0.807438
\(756\) 0 0
\(757\) −8.30133e6 −0.526512 −0.263256 0.964726i \(-0.584796\pi\)
−0.263256 + 0.964726i \(0.584796\pi\)
\(758\) 0 0
\(759\) 808762. 0.0509584
\(760\) 0 0
\(761\) 911464. 0.0570529 0.0285265 0.999593i \(-0.490919\pi\)
0.0285265 + 0.999593i \(0.490919\pi\)
\(762\) 0 0
\(763\) −5.60491e6 −0.348544
\(764\) 0 0
\(765\) −4.00295e6 −0.247301
\(766\) 0 0
\(767\) 1.71934e7 1.05529
\(768\) 0 0
\(769\) −2.51616e7 −1.53434 −0.767171 0.641442i \(-0.778336\pi\)
−0.767171 + 0.641442i \(0.778336\pi\)
\(770\) 0 0
\(771\) −895022. −0.0542248
\(772\) 0 0
\(773\) −4.10309e6 −0.246980 −0.123490 0.992346i \(-0.539409\pi\)
−0.123490 + 0.992346i \(0.539409\pi\)
\(774\) 0 0
\(775\) 4.82015e6 0.288274
\(776\) 0 0
\(777\) 265667. 0.0157865
\(778\) 0 0
\(779\) 1.44809e7 0.854972
\(780\) 0 0
\(781\) −1.09184e7 −0.640520
\(782\) 0 0
\(783\) −4.87600e6 −0.284223
\(784\) 0 0
\(785\) −5.35831e6 −0.310352
\(786\) 0 0
\(787\) −2.32406e7 −1.33755 −0.668777 0.743463i \(-0.733182\pi\)
−0.668777 + 0.743463i \(0.733182\pi\)
\(788\) 0 0
\(789\) −2.01148e6 −0.115033
\(790\) 0 0
\(791\) −4.66103e6 −0.264875
\(792\) 0 0
\(793\) 2.14841e7 1.21320
\(794\) 0 0
\(795\) 167388. 0.00939307
\(796\) 0 0
\(797\) −9.23259e6 −0.514846 −0.257423 0.966299i \(-0.582873\pi\)
−0.257423 + 0.966299i \(0.582873\pi\)
\(798\) 0 0
\(799\) 8.33313e6 0.461787
\(800\) 0 0
\(801\) 1.75252e7 0.965120
\(802\) 0 0
\(803\) −2.65300e7 −1.45194
\(804\) 0 0
\(805\) 1.94392e6 0.105728
\(806\) 0 0
\(807\) −703874. −0.0380462
\(808\) 0 0
\(809\) −3.27151e7 −1.75743 −0.878714 0.477349i \(-0.841598\pi\)
−0.878714 + 0.477349i \(0.841598\pi\)
\(810\) 0 0
\(811\) −1.01835e7 −0.543681 −0.271840 0.962342i \(-0.587632\pi\)
−0.271840 + 0.962342i \(0.587632\pi\)
\(812\) 0 0
\(813\) 2.00181e6 0.106218
\(814\) 0 0
\(815\) −1.46770e7 −0.774005
\(816\) 0 0
\(817\) −3.67958e7 −1.92860
\(818\) 0 0
\(819\) −7.74653e6 −0.403550
\(820\) 0 0
\(821\) 3.37256e7 1.74623 0.873116 0.487512i \(-0.162096\pi\)
0.873116 + 0.487512i \(0.162096\pi\)
\(822\) 0 0
\(823\) −1.33753e7 −0.688343 −0.344171 0.938907i \(-0.611840\pi\)
−0.344171 + 0.938907i \(0.611840\pi\)
\(824\) 0 0
\(825\) 318536. 0.0162939
\(826\) 0 0
\(827\) 1.05590e7 0.536856 0.268428 0.963300i \(-0.413496\pi\)
0.268428 + 0.963300i \(0.413496\pi\)
\(828\) 0 0
\(829\) −3.01166e7 −1.52202 −0.761009 0.648741i \(-0.775296\pi\)
−0.761009 + 0.648741i \(0.775296\pi\)
\(830\) 0 0
\(831\) −489410. −0.0245850
\(832\) 0 0
\(833\) 1.59847e6 0.0798165
\(834\) 0 0
\(835\) −9.68084e6 −0.480504
\(836\) 0 0
\(837\) −5.88799e6 −0.290505
\(838\) 0 0
\(839\) 2.47935e6 0.121600 0.0607998 0.998150i \(-0.480635\pi\)
0.0607998 + 0.998150i \(0.480635\pi\)
\(840\) 0 0
\(841\) 2.02788e7 0.988674
\(842\) 0 0
\(843\) 459881. 0.0222883
\(844\) 0 0
\(845\) 1.51977e6 0.0732208
\(846\) 0 0
\(847\) −2.78663e6 −0.133466
\(848\) 0 0
\(849\) 1.14166e6 0.0543587
\(850\) 0 0
\(851\) 5.44877e6 0.257914
\(852\) 0 0
\(853\) −1.23084e6 −0.0579199 −0.0289600 0.999581i \(-0.509220\pi\)
−0.0289600 + 0.999581i \(0.509220\pi\)
\(854\) 0 0
\(855\) 1.33189e7 0.623094
\(856\) 0 0
\(857\) −2.75099e7 −1.27949 −0.639746 0.768586i \(-0.720961\pi\)
−0.639746 + 0.768586i \(0.720961\pi\)
\(858\) 0 0
\(859\) −1.28833e7 −0.595722 −0.297861 0.954609i \(-0.596273\pi\)
−0.297861 + 0.954609i \(0.596273\pi\)
\(860\) 0 0
\(861\) −505795. −0.0232524
\(862\) 0 0
\(863\) −1.57981e7 −0.722067 −0.361033 0.932553i \(-0.617576\pi\)
−0.361033 + 0.932553i \(0.617576\pi\)
\(864\) 0 0
\(865\) 1.52610e7 0.693492
\(866\) 0 0
\(867\) −1.54211e6 −0.0696734
\(868\) 0 0
\(869\) −1.13632e7 −0.510450
\(870\) 0 0
\(871\) −4.04468e6 −0.180650
\(872\) 0 0
\(873\) 3.99355e7 1.77347
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) −3.99471e7 −1.75383 −0.876913 0.480649i \(-0.840401\pi\)
−0.876913 + 0.480649i \(0.840401\pi\)
\(878\) 0 0
\(879\) −1.88899e6 −0.0824628
\(880\) 0 0
\(881\) 4.20714e7 1.82620 0.913098 0.407740i \(-0.133683\pi\)
0.913098 + 0.407740i \(0.133683\pi\)
\(882\) 0 0
\(883\) −2.82226e7 −1.21813 −0.609067 0.793118i \(-0.708456\pi\)
−0.609067 + 0.793118i \(0.708456\pi\)
\(884\) 0 0
\(885\) 1.03253e6 0.0443142
\(886\) 0 0
\(887\) −1.26687e7 −0.540658 −0.270329 0.962768i \(-0.587132\pi\)
−0.270329 + 0.962768i \(0.587132\pi\)
\(888\) 0 0
\(889\) 4.79487e6 0.203480
\(890\) 0 0
\(891\) 1.84746e7 0.779618
\(892\) 0 0
\(893\) −2.77266e7 −1.16350
\(894\) 0 0
\(895\) 4.23762e6 0.176833
\(896\) 0 0
\(897\) 1.64706e6 0.0683485
\(898\) 0 0
\(899\) 4.92558e7 2.03263
\(900\) 0 0
\(901\) 2.82302e6 0.115852
\(902\) 0 0
\(903\) 1.28522e6 0.0524514
\(904\) 0 0
\(905\) 7.62917e6 0.309639
\(906\) 0 0
\(907\) −1.50368e7 −0.606928 −0.303464 0.952843i \(-0.598143\pi\)
−0.303464 + 0.952843i \(0.598143\pi\)
\(908\) 0 0
\(909\) −4.70846e6 −0.189003
\(910\) 0 0
\(911\) −1.13882e7 −0.454630 −0.227315 0.973821i \(-0.572995\pi\)
−0.227315 + 0.973821i \(0.572995\pi\)
\(912\) 0 0
\(913\) 5.65804e6 0.224641
\(914\) 0 0
\(915\) 1.29020e6 0.0509454
\(916\) 0 0
\(917\) −1.56438e6 −0.0614355
\(918\) 0 0
\(919\) 1.66749e7 0.651292 0.325646 0.945492i \(-0.394418\pi\)
0.325646 + 0.945492i \(0.394418\pi\)
\(920\) 0 0
\(921\) −3.08458e6 −0.119825
\(922\) 0 0
\(923\) −2.22356e7 −0.859103
\(924\) 0 0
\(925\) 2.14603e6 0.0824674
\(926\) 0 0
\(927\) −2.01700e7 −0.770914
\(928\) 0 0
\(929\) 3.13311e7 1.19107 0.595534 0.803330i \(-0.296941\pi\)
0.595534 + 0.803330i \(0.296941\pi\)
\(930\) 0 0
\(931\) −5.31856e6 −0.201103
\(932\) 0 0
\(933\) 1.25437e6 0.0471759
\(934\) 0 0
\(935\) 5.37214e6 0.200964
\(936\) 0 0
\(937\) 4.22607e7 1.57249 0.786245 0.617914i \(-0.212022\pi\)
0.786245 + 0.617914i \(0.212022\pi\)
\(938\) 0 0
\(939\) −187268. −0.00693105
\(940\) 0 0
\(941\) −2.46633e7 −0.907980 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(942\) 0 0
\(943\) −1.03738e7 −0.379889
\(944\) 0 0
\(945\) −935240. −0.0340678
\(946\) 0 0
\(947\) −1.33679e7 −0.484383 −0.242191 0.970229i \(-0.577866\pi\)
−0.242191 + 0.970229i \(0.577866\pi\)
\(948\) 0 0
\(949\) −5.40289e7 −1.94743
\(950\) 0 0
\(951\) −4.39325e6 −0.157519
\(952\) 0 0
\(953\) −2.17678e7 −0.776395 −0.388198 0.921576i \(-0.626902\pi\)
−0.388198 + 0.921576i \(0.626902\pi\)
\(954\) 0 0
\(955\) 2.35368e7 0.835100
\(956\) 0 0
\(957\) 3.25504e6 0.114888
\(958\) 0 0
\(959\) 1.10719e6 0.0388756
\(960\) 0 0
\(961\) 3.08494e7 1.07755
\(962\) 0 0
\(963\) 2.54225e7 0.883389
\(964\) 0 0
\(965\) 9.62643e6 0.332772
\(966\) 0 0
\(967\) 2.58647e7 0.889491 0.444746 0.895657i \(-0.353294\pi\)
0.444746 + 0.895657i \(0.353294\pi\)
\(968\) 0 0
\(969\) −2.32862e6 −0.0796691
\(970\) 0 0
\(971\) 3.76225e7 1.28056 0.640280 0.768142i \(-0.278819\pi\)
0.640280 + 0.768142i \(0.278819\pi\)
\(972\) 0 0
\(973\) 1.40744e7 0.476592
\(974\) 0 0
\(975\) 648707. 0.0218543
\(976\) 0 0
\(977\) 4.22400e7 1.41575 0.707876 0.706336i \(-0.249653\pi\)
0.707876 + 0.706336i \(0.249653\pi\)
\(978\) 0 0
\(979\) −2.35196e7 −0.784284
\(980\) 0 0
\(981\) 2.75106e7 0.912698
\(982\) 0 0
\(983\) 2.18464e7 0.721100 0.360550 0.932740i \(-0.382589\pi\)
0.360550 + 0.932740i \(0.382589\pi\)
\(984\) 0 0
\(985\) −2.59295e7 −0.851538
\(986\) 0 0
\(987\) 968447. 0.0316434
\(988\) 0 0
\(989\) 2.63595e7 0.856933
\(990\) 0 0
\(991\) 4.62904e6 0.149729 0.0748646 0.997194i \(-0.476148\pi\)
0.0748646 + 0.997194i \(0.476148\pi\)
\(992\) 0 0
\(993\) −3.76056e6 −0.121026
\(994\) 0 0
\(995\) 1.02714e7 0.328905
\(996\) 0 0
\(997\) −4.99110e7 −1.59023 −0.795113 0.606462i \(-0.792588\pi\)
−0.795113 + 0.606462i \(0.792588\pi\)
\(998\) 0 0
\(999\) −2.62146e6 −0.0831055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.6.a.d.1.2 3
4.3 odd 2 560.6.a.t.1.2 3
5.2 odd 4 700.6.e.g.449.3 6
5.3 odd 4 700.6.e.g.449.4 6
5.4 even 2 700.6.a.i.1.2 3
7.6 odd 2 980.6.a.h.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.6.a.d.1.2 3 1.1 even 1 trivial
560.6.a.t.1.2 3 4.3 odd 2
700.6.a.i.1.2 3 5.4 even 2
700.6.e.g.449.3 6 5.2 odd 4
700.6.e.g.449.4 6 5.3 odd 4
980.6.a.h.1.2 3 7.6 odd 2