Properties

Label 1400.2.bh.i.849.1
Level $1400$
Weight $2$
Character 1400.849
Analytic conductor $11.179$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1400,2,Mod(249,1400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1400, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1400.249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1790562830\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.32905425960566784.37
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 36x^{10} + 432x^{8} + 2040x^{6} + 3780x^{4} + 2592x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 849.1
Root \(-0.689786i\) of defining polynomial
Character \(\chi\) \(=\) 1400.849
Dual form 1400.2.bh.i.249.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.84918 + 1.64497i) q^{3} +(0.0641892 - 2.64497i) q^{7} +(3.91187 - 6.77556i) q^{9} +(-2.91187 - 5.04351i) q^{11} +2.75615i q^{13} +(-1.73205 + 1.00000i) q^{17} +(-0.378076 + 0.654846i) q^{19} +(4.16802 + 7.64158i) q^{21} +(0.462279 + 0.266897i) q^{23} +15.8698i q^{27} +0.823739 q^{29} +(1.28995 + 2.23425i) q^{31} +(16.5929 + 9.57989i) q^{33} +(4.11895 + 2.37808i) q^{37} +(-4.53379 - 7.85276i) q^{39} +6.06759 q^{41} +0.710055i q^{43} +(-11.1642 - 6.44566i) q^{47} +(-6.99176 - 0.339557i) q^{49} +(3.28995 - 5.69835i) q^{51} +(-7.27776 + 4.20181i) q^{53} -2.48770i q^{57} +(4.00000 + 6.92820i) q^{59} +(-4.70181 + 8.14378i) q^{61} +(-17.6701 - 10.7817i) q^{63} +(-10.2796 + 5.93492i) q^{67} -1.75615 q^{69} +(3.04174 - 1.75615i) q^{73} +(-13.5268 + 7.37808i) q^{77} +(-4.75615 + 8.23790i) q^{79} +(-14.3698 - 24.8893i) q^{81} -6.71005i q^{83} +(-2.34698 + 1.35503i) q^{87} +(0.878076 - 1.52087i) q^{89} +(7.28995 + 0.176915i) q^{91} +(-7.35056 - 4.24385i) q^{93} +2.00000i q^{97} -45.5634 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18 q^{9} - 6 q^{11} + 6 q^{19} - 48 q^{29} - 24 q^{31} - 36 q^{39} + 36 q^{41} + 24 q^{49} + 48 q^{59} + 12 q^{61} - 36 q^{79} - 54 q^{81} + 48 q^{91} - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.84918 + 1.64497i −1.64497 + 0.949725i −0.665944 + 0.746002i \(0.731971\pi\)
−0.979028 + 0.203724i \(0.934696\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.0641892 2.64497i 0.0242612 0.999706i
\(8\) 0 0
\(9\) 3.91187 6.77556i 1.30396 2.25852i
\(10\) 0 0
\(11\) −2.91187 5.04351i −0.877962 1.52067i −0.853574 0.520972i \(-0.825570\pi\)
−0.0243876 0.999703i \(-0.507764\pi\)
\(12\) 0 0
\(13\) 2.75615i 0.764419i 0.924076 + 0.382209i \(0.124837\pi\)
−0.924076 + 0.382209i \(0.875163\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 + 1.00000i −0.420084 + 0.242536i −0.695113 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) 0 0
\(19\) −0.378076 + 0.654846i −0.0867365 + 0.150232i −0.906130 0.423000i \(-0.860977\pi\)
0.819393 + 0.573232i \(0.194310\pi\)
\(20\) 0 0
\(21\) 4.16802 + 7.64158i 0.909537 + 1.66753i
\(22\) 0 0
\(23\) 0.462279 + 0.266897i 0.0963918 + 0.0556518i 0.547421 0.836857i \(-0.315610\pi\)
−0.451029 + 0.892509i \(0.648943\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.8698i 3.05415i
\(28\) 0 0
\(29\) 0.823739 0.152964 0.0764822 0.997071i \(-0.475631\pi\)
0.0764822 + 0.997071i \(0.475631\pi\)
\(30\) 0 0
\(31\) 1.28995 + 2.23425i 0.231681 + 0.401283i 0.958303 0.285754i \(-0.0922441\pi\)
−0.726622 + 0.687038i \(0.758911\pi\)
\(32\) 0 0
\(33\) 16.5929 + 9.57989i 2.88845 + 1.66764i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.11895 + 2.37808i 0.677151 + 0.390953i 0.798781 0.601622i \(-0.205479\pi\)
−0.121630 + 0.992576i \(0.538812\pi\)
\(38\) 0 0
\(39\) −4.53379 7.85276i −0.725988 1.25745i
\(40\) 0 0
\(41\) 6.06759 0.947598 0.473799 0.880633i \(-0.342882\pi\)
0.473799 + 0.880633i \(0.342882\pi\)
\(42\) 0 0
\(43\) 0.710055i 0.108282i 0.998533 + 0.0541412i \(0.0172421\pi\)
−0.998533 + 0.0541412i \(0.982758\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.1642 6.44566i −1.62847 0.940197i −0.984550 0.175102i \(-0.943974\pi\)
−0.643918 0.765095i \(-0.722692\pi\)
\(48\) 0 0
\(49\) −6.99176 0.339557i −0.998823 0.0485082i
\(50\) 0 0
\(51\) 3.28995 5.69835i 0.460684 0.797929i
\(52\) 0 0
\(53\) −7.27776 + 4.20181i −0.999677 + 0.577164i −0.908153 0.418639i \(-0.862507\pi\)
−0.0915241 + 0.995803i \(0.529174\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.48770i 0.329504i
\(58\) 0 0
\(59\) 4.00000 + 6.92820i 0.520756 + 0.901975i 0.999709 + 0.0241347i \(0.00768307\pi\)
−0.478953 + 0.877841i \(0.658984\pi\)
\(60\) 0 0
\(61\) −4.70181 + 8.14378i −0.602006 + 1.04270i 0.390511 + 0.920598i \(0.372298\pi\)
−0.992517 + 0.122106i \(0.961035\pi\)
\(62\) 0 0
\(63\) −17.6701 10.7817i −2.22622 1.35837i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.2796 + 5.93492i −1.25585 + 0.725066i −0.972265 0.233881i \(-0.924857\pi\)
−0.283585 + 0.958947i \(0.591524\pi\)
\(68\) 0 0
\(69\) −1.75615 −0.211416
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.04174 1.75615i 0.356009 0.205542i −0.311320 0.950305i \(-0.600771\pi\)
0.667329 + 0.744763i \(0.267438\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.5268 + 7.37808i −1.54153 + 0.840810i
\(78\) 0 0
\(79\) −4.75615 + 8.23790i −0.535109 + 0.926836i 0.464049 + 0.885809i \(0.346396\pi\)
−0.999158 + 0.0410263i \(0.986937\pi\)
\(80\) 0 0
\(81\) −14.3698 24.8893i −1.59665 2.76548i
\(82\) 0 0
\(83\) 6.71005i 0.736524i −0.929722 0.368262i \(-0.879953\pi\)
0.929722 0.368262i \(-0.120047\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.34698 + 1.35503i −0.251622 + 0.145274i
\(88\) 0 0
\(89\) 0.878076 1.52087i 0.0930758 0.161212i −0.815728 0.578436i \(-0.803663\pi\)
0.908804 + 0.417223i \(0.136997\pi\)
\(90\) 0 0
\(91\) 7.28995 + 0.176915i 0.764194 + 0.0185458i
\(92\) 0 0
\(93\) −7.35056 4.24385i −0.762218 0.440067i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −45.5634 −4.57929
\(100\) 0 0
\(101\) −1.16802 2.02307i −0.116222 0.201303i 0.802045 0.597263i \(-0.203745\pi\)
−0.918268 + 0.395960i \(0.870412\pi\)
\(102\) 0 0
\(103\) 1.92462 + 1.11118i 0.189638 + 0.109488i 0.591813 0.806075i \(-0.298412\pi\)
−0.402175 + 0.915563i \(0.631746\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7437 + 7.93492i 1.32865 + 0.767097i 0.985091 0.172033i \(-0.0550336\pi\)
0.343561 + 0.939131i \(0.388367\pi\)
\(108\) 0 0
\(109\) −1.63423 2.83056i −0.156531 0.271119i 0.777085 0.629396i \(-0.216698\pi\)
−0.933615 + 0.358277i \(0.883364\pi\)
\(110\) 0 0
\(111\) −15.6475 −1.48519
\(112\) 0 0
\(113\) 13.1598i 1.23797i −0.785404 0.618984i \(-0.787545\pi\)
0.785404 0.618984i \(-0.212455\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 18.6745 + 10.7817i 1.72645 + 0.996769i
\(118\) 0 0
\(119\) 2.53379 + 4.64542i 0.232272 + 0.425845i
\(120\) 0 0
\(121\) −11.4580 + 19.8458i −1.04163 + 1.80416i
\(122\) 0 0
\(123\) −17.2876 + 9.98101i −1.55877 + 0.899958i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.9159i 1.05737i −0.848819 0.528684i \(-0.822686\pi\)
0.848819 0.528684i \(-0.177314\pi\)
\(128\) 0 0
\(129\) −1.16802 2.02307i −0.102839 0.178122i
\(130\) 0 0
\(131\) −10.7817 + 18.6745i −0.942002 + 1.63160i −0.180356 + 0.983601i \(0.557725\pi\)
−0.761646 + 0.647994i \(0.775608\pi\)
\(132\) 0 0
\(133\) 1.70778 + 1.04203i 0.148084 + 0.0903558i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.46410 + 2.00000i −0.295958 + 0.170872i −0.640626 0.767853i \(-0.721325\pi\)
0.344668 + 0.938725i \(0.387992\pi\)
\(138\) 0 0
\(139\) −6.57989 −0.558099 −0.279049 0.960277i \(-0.590019\pi\)
−0.279049 + 0.960277i \(0.590019\pi\)
\(140\) 0 0
\(141\) 42.4118 3.57171
\(142\) 0 0
\(143\) 13.9007 8.02555i 1.16243 0.671130i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 20.4793 10.5338i 1.68911 0.868813i
\(148\) 0 0
\(149\) 0.0543371 0.0941146i 0.00445147 0.00771017i −0.863791 0.503850i \(-0.831916\pi\)
0.868243 + 0.496140i \(0.165250\pi\)
\(150\) 0 0
\(151\) 6.53379 + 11.3169i 0.531713 + 0.920953i 0.999315 + 0.0370142i \(0.0117847\pi\)
−0.467602 + 0.883939i \(0.654882\pi\)
\(152\) 0 0
\(153\) 15.6475i 1.26502i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.70011 + 4.44566i −0.614536 + 0.354803i −0.774739 0.632282i \(-0.782119\pi\)
0.160203 + 0.987084i \(0.448785\pi\)
\(158\) 0 0
\(159\) 13.8237 23.9434i 1.09629 1.89884i
\(160\) 0 0
\(161\) 0.735608 1.20558i 0.0579740 0.0950132i
\(162\) 0 0
\(163\) 9.96995 + 5.75615i 0.780907 + 0.450857i 0.836751 0.547583i \(-0.184452\pi\)
−0.0558449 + 0.998439i \(0.517785\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.46621i 0.113458i −0.998390 0.0567292i \(-0.981933\pi\)
0.998390 0.0567292i \(-0.0180672\pi\)
\(168\) 0 0
\(169\) 5.40363 0.415664
\(170\) 0 0
\(171\) 2.95797 + 5.12335i 0.226201 + 0.391792i
\(172\) 0 0
\(173\) 9.73746 + 5.62192i 0.740325 + 0.427427i 0.822188 0.569217i \(-0.192753\pi\)
−0.0818623 + 0.996644i \(0.526087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −22.7934 13.1598i −1.71326 0.989150i
\(178\) 0 0
\(179\) 3.66802 + 6.35320i 0.274161 + 0.474860i 0.969923 0.243412i \(-0.0782666\pi\)
−0.695762 + 0.718272i \(0.744933\pi\)
\(180\) 0 0
\(181\) −18.4712 −1.37295 −0.686477 0.727151i \(-0.740844\pi\)
−0.686477 + 0.727151i \(0.740844\pi\)
\(182\) 0 0
\(183\) 30.9374i 2.28696i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.0870 + 5.82374i 0.737635 + 0.425874i
\(188\) 0 0
\(189\) 41.9753 + 1.01867i 3.05325 + 0.0740975i
\(190\) 0 0
\(191\) −7.28995 + 12.6266i −0.527482 + 0.913625i 0.472005 + 0.881596i \(0.343530\pi\)
−0.999487 + 0.0320296i \(0.989803\pi\)
\(192\) 0 0
\(193\) −16.2876 + 9.40363i −1.17240 + 0.676888i −0.954245 0.299025i \(-0.903339\pi\)
−0.218159 + 0.975913i \(0.570005\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.75615i 0.196368i −0.995168 0.0981838i \(-0.968697\pi\)
0.995168 0.0981838i \(-0.0313033\pi\)
\(198\) 0 0
\(199\) 7.51230 + 13.0117i 0.532533 + 0.922374i 0.999278 + 0.0379825i \(0.0120931\pi\)
−0.466745 + 0.884392i \(0.654574\pi\)
\(200\) 0 0
\(201\) 19.5256 33.8192i 1.37723 2.38543i
\(202\) 0 0
\(203\) 0.0528751 2.17877i 0.00371111 0.152919i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.61675 2.08813i 0.251381 0.145135i
\(208\) 0 0
\(209\) 4.40363 0.304605
\(210\) 0 0
\(211\) −21.9159 −1.50875 −0.754377 0.656441i \(-0.772061\pi\)
−0.754377 + 0.656441i \(0.772061\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5.99233 3.26845i 0.406786 0.221877i
\(218\) 0 0
\(219\) −5.77764 + 10.0072i −0.390417 + 0.676222i
\(220\) 0 0
\(221\) −2.75615 4.77379i −0.185399 0.321120i
\(222\) 0 0
\(223\) 18.8073i 1.25943i 0.776827 + 0.629714i \(0.216828\pi\)
−0.776827 + 0.629714i \(0.783172\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.4384 + 8.33604i −0.958313 + 0.553283i −0.895654 0.444752i \(-0.853292\pi\)
−0.0626599 + 0.998035i \(0.519958\pi\)
\(228\) 0 0
\(229\) 9.75615 16.8982i 0.644705 1.11666i −0.339665 0.940546i \(-0.610314\pi\)
0.984370 0.176115i \(-0.0563530\pi\)
\(230\) 0 0
\(231\) 26.4036 43.2727i 1.73723 2.84714i
\(232\) 0 0
\(233\) −15.5885 9.00000i −1.02123 0.589610i −0.106773 0.994283i \(-0.534052\pi\)
−0.914461 + 0.404674i \(0.867385\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 31.2950i 2.03283i
\(238\) 0 0
\(239\) 16.0922 1.04092 0.520459 0.853887i \(-0.325761\pi\)
0.520459 + 0.853887i \(0.325761\pi\)
\(240\) 0 0
\(241\) −0.445663 0.771911i −0.0287077 0.0497231i 0.851315 0.524655i \(-0.175806\pi\)
−0.880022 + 0.474932i \(0.842473\pi\)
\(242\) 0 0
\(243\) 40.6533 + 23.4712i 2.60791 + 1.50568i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.80486 1.04203i −0.114840 0.0663030i
\(248\) 0 0
\(249\) 11.0379 + 19.1181i 0.699496 + 1.21156i
\(250\) 0 0
\(251\) 17.4712 1.10277 0.551387 0.834250i \(-0.314099\pi\)
0.551387 + 0.834250i \(0.314099\pi\)
\(252\) 0 0
\(253\) 3.10867i 0.195441i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.08349 3.51230i −0.379478 0.219091i 0.298113 0.954530i \(-0.403643\pi\)
−0.677591 + 0.735439i \(0.736976\pi\)
\(258\) 0 0
\(259\) 6.55434 10.7419i 0.407267 0.667467i
\(260\) 0 0
\(261\) 3.22236 5.58129i 0.199459 0.345473i
\(262\) 0 0
\(263\) 15.3959 8.88882i 0.949351 0.548108i 0.0564719 0.998404i \(-0.482015\pi\)
0.892879 + 0.450296i \(0.148682\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.77764i 0.353586i
\(268\) 0 0
\(269\) −4.70181 8.14378i −0.286675 0.496535i 0.686339 0.727282i \(-0.259217\pi\)
−0.973014 + 0.230746i \(0.925883\pi\)
\(270\) 0 0
\(271\) −3.51230 + 6.08349i −0.213357 + 0.369546i −0.952763 0.303714i \(-0.901773\pi\)
0.739406 + 0.673260i \(0.235106\pi\)
\(272\) 0 0
\(273\) −21.0614 + 11.4877i −1.27469 + 0.695267i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −23.5211 + 13.5799i −1.41324 + 0.815937i −0.995693 0.0927170i \(-0.970445\pi\)
−0.417551 + 0.908653i \(0.637111\pi\)
\(278\) 0 0
\(279\) 20.1844 1.20841
\(280\) 0 0
\(281\) −0.620977 −0.0370444 −0.0185222 0.999828i \(-0.505896\pi\)
−0.0185222 + 0.999828i \(0.505896\pi\)
\(282\) 0 0
\(283\) 2.73645 1.57989i 0.162665 0.0939147i −0.416458 0.909155i \(-0.636729\pi\)
0.579123 + 0.815240i \(0.303395\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.389474 16.0486i 0.0229899 0.947319i
\(288\) 0 0
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) 0 0
\(291\) −3.28995 5.69835i −0.192860 0.334043i
\(292\) 0 0
\(293\) 11.2438i 0.656873i 0.944526 + 0.328436i \(0.106522\pi\)
−0.944526 + 0.328436i \(0.893478\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 80.0396 46.2109i 4.64437 2.68143i
\(298\) 0 0
\(299\) −0.735608 + 1.27411i −0.0425413 + 0.0736837i
\(300\) 0 0
\(301\) 1.87808 + 0.0455779i 0.108250 + 0.00262706i
\(302\) 0 0
\(303\) 6.65579 + 3.84272i 0.382365 + 0.220759i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.5173i 1.34220i −0.741365 0.671102i \(-0.765821\pi\)
0.741365 0.671102i \(-0.234179\pi\)
\(308\) 0 0
\(309\) −7.31144 −0.415933
\(310\) 0 0
\(311\) 14.5799 + 25.2531i 0.826750 + 1.43197i 0.900575 + 0.434701i \(0.143146\pi\)
−0.0738250 + 0.997271i \(0.523521\pi\)
\(312\) 0 0
\(313\) 20.9443 + 12.0922i 1.18384 + 0.683491i 0.956900 0.290417i \(-0.0937941\pi\)
0.226941 + 0.973908i \(0.427127\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.5094 + 6.06759i 0.590265 + 0.340790i 0.765202 0.643790i \(-0.222639\pi\)
−0.174937 + 0.984580i \(0.555972\pi\)
\(318\) 0 0
\(319\) −2.39862 4.15453i −0.134297 0.232609i
\(320\) 0 0
\(321\) −52.2109 −2.91413
\(322\) 0 0
\(323\) 1.51230i 0.0841468i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.31240 + 5.37652i 0.514977 + 0.297322i
\(328\) 0 0
\(329\) −17.7652 + 29.1153i −0.979428 + 1.60518i
\(330\) 0 0
\(331\) 0.911869 1.57940i 0.0501209 0.0868119i −0.839877 0.542778i \(-0.817373\pi\)
0.889997 + 0.455966i \(0.150706\pi\)
\(332\) 0 0
\(333\) 32.2256 18.6054i 1.76595 1.01957i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.7827i 0.968683i 0.874879 + 0.484341i \(0.160941\pi\)
−0.874879 + 0.484341i \(0.839059\pi\)
\(338\) 0 0
\(339\) 21.6475 + 37.4945i 1.17573 + 2.03642i
\(340\) 0 0
\(341\) 7.51230 13.0117i 0.406814 0.704623i
\(342\) 0 0
\(343\) −1.34692 + 18.4712i −0.0727266 + 0.997352i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.11713 0.644973i 0.0599704 0.0346239i −0.469715 0.882818i \(-0.655643\pi\)
0.529685 + 0.848194i \(0.322310\pi\)
\(348\) 0 0
\(349\) −1.31144 −0.0701995 −0.0350998 0.999384i \(-0.511175\pi\)
−0.0350998 + 0.999384i \(0.511175\pi\)
\(350\) 0 0
\(351\) −43.7397 −2.33465
\(352\) 0 0
\(353\) −9.54759 + 5.51230i −0.508167 + 0.293390i −0.732080 0.681219i \(-0.761450\pi\)
0.223913 + 0.974609i \(0.428117\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −14.8608 9.06759i −0.786517 0.479908i
\(358\) 0 0
\(359\) 5.11368 8.85716i 0.269890 0.467463i −0.698943 0.715177i \(-0.746346\pi\)
0.968833 + 0.247714i \(0.0796794\pi\)
\(360\) 0 0
\(361\) 9.21412 + 15.9593i 0.484954 + 0.839964i
\(362\) 0 0
\(363\) 75.3922i 3.95706i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −15.0178 + 8.67053i −0.783922 + 0.452598i −0.837819 0.545949i \(-0.816169\pi\)
0.0538962 + 0.998547i \(0.482836\pi\)
\(368\) 0 0
\(369\) 23.7356 41.1113i 1.23563 2.14017i
\(370\) 0 0
\(371\) 10.6465 + 19.5192i 0.552740 + 1.01339i
\(372\) 0 0
\(373\) 15.4002 + 8.89133i 0.797394 + 0.460375i 0.842559 0.538604i \(-0.181048\pi\)
−0.0451654 + 0.998980i \(0.514381\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.27035i 0.116929i
\(378\) 0 0
\(379\) 33.2109 1.70593 0.852964 0.521969i \(-0.174802\pi\)
0.852964 + 0.521969i \(0.174802\pi\)
\(380\) 0 0
\(381\) 19.6014 + 33.9506i 1.00421 + 1.73934i
\(382\) 0 0
\(383\) −12.7835 7.38058i −0.653208 0.377130i 0.136476 0.990643i \(-0.456422\pi\)
−0.789684 + 0.613513i \(0.789756\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.81102 + 2.77764i 0.244558 + 0.141195i
\(388\) 0 0
\(389\) −11.4036 19.7517i −0.578187 1.00145i −0.995687 0.0927724i \(-0.970427\pi\)
0.417500 0.908677i \(-0.362906\pi\)
\(390\) 0 0
\(391\) −1.06759 −0.0539902
\(392\) 0 0
\(393\) 70.9424i 3.57857i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.3585 7.13517i −0.620255 0.358104i 0.156714 0.987644i \(-0.449910\pi\)
−0.776968 + 0.629540i \(0.783243\pi\)
\(398\) 0 0
\(399\) −6.57989 0.159683i −0.329407 0.00799416i
\(400\) 0 0
\(401\) 5.74385 9.94864i 0.286834 0.496811i −0.686218 0.727396i \(-0.740730\pi\)
0.973052 + 0.230585i \(0.0740638\pi\)
\(402\) 0 0
\(403\) −6.15793 + 3.55528i −0.306748 + 0.177101i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.6986i 1.37297i
\(408\) 0 0
\(409\) 0.899566 + 1.55809i 0.0444807 + 0.0770428i 0.887409 0.460984i \(-0.152503\pi\)
−0.842928 + 0.538027i \(0.819170\pi\)
\(410\) 0 0
\(411\) 6.57989 11.3967i 0.324562 0.562158i
\(412\) 0 0
\(413\) 18.5817 10.1352i 0.914344 0.498719i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.7473 10.8237i 0.918058 0.530041i
\(418\) 0 0
\(419\) −27.4282 −1.33996 −0.669978 0.742381i \(-0.733697\pi\)
−0.669978 + 0.742381i \(0.733697\pi\)
\(420\) 0 0
\(421\) 2.91593 0.142114 0.0710569 0.997472i \(-0.477363\pi\)
0.0710569 + 0.997472i \(0.477363\pi\)
\(422\) 0 0
\(423\) −87.3459 + 50.4292i −4.24690 + 2.45195i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 21.2383 + 12.9589i 1.02779 + 0.627126i
\(428\) 0 0
\(429\) −26.4036 + 45.7324i −1.27478 + 2.20798i
\(430\) 0 0
\(431\) −7.28995 12.6266i −0.351144 0.608200i 0.635306 0.772261i \(-0.280874\pi\)
−0.986450 + 0.164061i \(0.947541\pi\)
\(432\) 0 0
\(433\) 21.1598i 1.01687i 0.861099 + 0.508437i \(0.169777\pi\)
−0.861099 + 0.508437i \(0.830223\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.349553 + 0.201814i −0.0167214 + 0.00965409i
\(438\) 0 0
\(439\) −15.4712 + 26.7969i −0.738401 + 1.27895i 0.214814 + 0.976655i \(0.431085\pi\)
−0.953215 + 0.302293i \(0.902248\pi\)
\(440\) 0 0
\(441\) −29.6515 + 46.0448i −1.41198 + 2.19261i
\(442\) 0 0
\(443\) −32.4909 18.7587i −1.54369 0.891251i −0.998601 0.0528732i \(-0.983162\pi\)
−0.545090 0.838377i \(-0.683505\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.357532i 0.0169107i
\(448\) 0 0
\(449\) −31.0922 −1.46733 −0.733666 0.679511i \(-0.762192\pi\)
−0.733666 + 0.679511i \(0.762192\pi\)
\(450\) 0 0
\(451\) −17.6680 30.6019i −0.831955 1.44099i
\(452\) 0 0
\(453\) −37.2319 21.4958i −1.74931 1.00996i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.76940 2.17626i −0.176325 0.101801i 0.409240 0.912427i \(-0.365794\pi\)
−0.585565 + 0.810626i \(0.699127\pi\)
\(458\) 0 0
\(459\) −15.8698 27.4874i −0.740740 1.28300i
\(460\) 0 0
\(461\) 37.2950 1.73700 0.868500 0.495690i \(-0.165085\pi\)
0.868500 + 0.495690i \(0.165085\pi\)
\(462\) 0 0
\(463\) 9.81873i 0.456315i −0.973624 0.228158i \(-0.926730\pi\)
0.973624 0.228158i \(-0.0732701\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.7473 11.4011i −0.913797 0.527581i −0.0321463 0.999483i \(-0.510234\pi\)
−0.881651 + 0.471902i \(0.843568\pi\)
\(468\) 0 0
\(469\) 15.0379 + 27.5702i 0.694384 + 1.27307i
\(470\) 0 0
\(471\) 14.6260 25.3330i 0.673930 1.16728i
\(472\) 0 0
\(473\) 3.58117 2.06759i 0.164662 0.0950678i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 65.7478i 3.01038i
\(478\) 0 0
\(479\) −10.2224 17.7056i −0.467071 0.808991i 0.532221 0.846606i \(-0.321358\pi\)
−0.999292 + 0.0376140i \(0.988024\pi\)
\(480\) 0 0
\(481\) −6.55434 + 11.3524i −0.298852 + 0.517627i
\(482\) 0 0
\(483\) −0.112726 + 4.64497i −0.00512921 + 0.211354i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 37.0722 21.4036i 1.67990 0.969891i 0.718181 0.695857i \(-0.244975\pi\)
0.961720 0.274034i \(-0.0883581\pi\)
\(488\) 0 0
\(489\) −37.8748 −1.71276
\(490\) 0 0
\(491\) −18.8502 −0.850699 −0.425350 0.905029i \(-0.639849\pi\)
−0.425350 + 0.905029i \(0.639849\pi\)
\(492\) 0 0
\(493\) −1.42676 + 0.823739i −0.0642579 + 0.0370993i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8698 24.0233i 0.620899 1.07543i −0.368420 0.929660i \(-0.620101\pi\)
0.989319 0.145769i \(-0.0465657\pi\)
\(500\) 0 0
\(501\) 2.41187 + 4.17748i 0.107754 + 0.186636i
\(502\) 0 0
\(503\) 14.7101i 0.655889i 0.944697 + 0.327944i \(0.106356\pi\)
−0.944697 + 0.327944i \(0.893644\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.3959 + 8.88882i −0.683755 + 0.394766i
\(508\) 0 0
\(509\) −6.99176 + 12.1101i −0.309904 + 0.536770i −0.978341 0.206999i \(-0.933630\pi\)
0.668437 + 0.743769i \(0.266964\pi\)
\(510\) 0 0
\(511\) −4.44973 8.15805i −0.196844 0.360891i
\(512\) 0 0
\(513\) −10.3923 6.00000i −0.458831 0.264906i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 75.0757i 3.30183i
\(518\) 0 0
\(519\) −36.9916 −1.62375
\(520\) 0 0
\(521\) −10.3616 17.9468i −0.453950 0.786264i 0.544677 0.838646i \(-0.316652\pi\)
−0.998627 + 0.0523817i \(0.983319\pi\)
\(522\) 0 0
\(523\) 19.3579 + 11.1763i 0.846460 + 0.488704i 0.859455 0.511212i \(-0.170803\pi\)
−0.0129950 + 0.999916i \(0.504137\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.46850 2.57989i −0.194651 0.112382i
\(528\) 0 0
\(529\) −11.3575 19.6718i −0.493806 0.855297i
\(530\) 0 0
\(531\) 62.5899 2.71617
\(532\) 0 0
\(533\) 16.7232i 0.724362i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −20.9017 12.0676i −0.901974 0.520755i
\(538\) 0 0
\(539\) 18.6465 + 36.2517i 0.803163 + 1.56147i
\(540\) 0 0
\(541\) −16.3278 + 28.2806i −0.701987 + 1.21588i 0.265781 + 0.964033i \(0.414370\pi\)
−0.967768 + 0.251844i \(0.918963\pi\)
\(542\) 0 0
\(543\) 52.6277 30.3846i 2.25847 1.30393i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 31.1648i 1.33251i −0.745724 0.666255i \(-0.767896\pi\)
0.745724 0.666255i \(-0.232104\pi\)
\(548\) 0 0
\(549\) 36.7858 + 63.7148i 1.56998 + 2.71928i
\(550\) 0 0
\(551\) −0.311436 + 0.539422i −0.0132676 + 0.0229802i
\(552\) 0 0
\(553\) 21.4837 + 13.1087i 0.913581 + 0.557438i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.7314 22.3616i 1.64110 0.947491i 0.660660 0.750685i \(-0.270276\pi\)
0.980442 0.196806i \(-0.0630570\pi\)
\(558\) 0 0
\(559\) −1.95702 −0.0827731
\(560\) 0 0
\(561\) −38.3196 −1.61785
\(562\) 0 0
\(563\) −28.1395 + 16.2464i −1.18594 + 0.684702i −0.957381 0.288828i \(-0.906734\pi\)
−0.228558 + 0.973530i \(0.573401\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −66.7539 + 36.4102i −2.80340 + 1.52908i
\(568\) 0 0
\(569\) 17.3370 30.0285i 0.726804 1.25886i −0.231423 0.972853i \(-0.574338\pi\)
0.958227 0.286009i \(-0.0923287\pi\)
\(570\) 0 0
\(571\) −1.55528 2.69383i −0.0650866 0.112733i 0.831646 0.555306i \(-0.187399\pi\)
−0.896732 + 0.442573i \(0.854066\pi\)
\(572\) 0 0
\(573\) 47.9670i 2.00385i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −0.582041 + 0.336042i −0.0242307 + 0.0139896i −0.512066 0.858946i \(-0.671120\pi\)
0.487836 + 0.872935i \(0.337787\pi\)
\(578\) 0 0
\(579\) 30.9374 53.5852i 1.28572 2.22692i
\(580\) 0 0
\(581\) −17.7479 0.430713i −0.736307 0.0178690i
\(582\) 0 0
\(583\) 42.3837 + 24.4703i 1.75536 + 1.01345i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.67208i 0.192838i 0.995341 + 0.0964188i \(0.0307388\pi\)
−0.995341 + 0.0964188i \(0.969261\pi\)
\(588\) 0 0
\(589\) −1.95079 −0.0803808
\(590\) 0 0
\(591\) 4.53379 + 7.85276i 0.186495 + 0.323019i
\(592\) 0 0
\(593\) −17.4802 10.0922i −0.717825 0.414437i 0.0961264 0.995369i \(-0.469355\pi\)
−0.813952 + 0.580932i \(0.802688\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −42.8077 24.7151i −1.75200 1.01152i
\(598\) 0 0
\(599\) 10.7562 + 18.6302i 0.439484 + 0.761209i 0.997650 0.0685204i \(-0.0218278\pi\)
−0.558165 + 0.829730i \(0.688494\pi\)
\(600\) 0 0
\(601\) 5.29495 0.215986 0.107993 0.994152i \(-0.465558\pi\)
0.107993 + 0.994152i \(0.465558\pi\)
\(602\) 0 0
\(603\) 92.8665i 3.78182i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 31.7989 + 18.3591i 1.29068 + 0.745172i 0.978774 0.204942i \(-0.0657005\pi\)
0.311902 + 0.950114i \(0.399034\pi\)
\(608\) 0 0
\(609\) 3.43336 + 6.29467i 0.139127 + 0.255073i
\(610\) 0 0
\(611\) 17.7652 30.7703i 0.718704 1.24483i
\(612\) 0 0
\(613\) 35.2673 20.3616i 1.42443 0.822397i 0.427760 0.903892i \(-0.359303\pi\)
0.996674 + 0.0814954i \(0.0259696\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.8073i 0.676635i −0.941032 0.338317i \(-0.890142\pi\)
0.941032 0.338317i \(-0.109858\pi\)
\(618\) 0 0
\(619\) −17.8954 30.9957i −0.719276 1.24582i −0.961287 0.275550i \(-0.911140\pi\)
0.242010 0.970274i \(-0.422193\pi\)
\(620\) 0 0
\(621\) −4.23561 + 7.33629i −0.169969 + 0.294395i
\(622\) 0 0
\(623\) −3.96630 2.42011i −0.158907 0.0969597i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −12.5467 + 7.24385i −0.501067 + 0.289291i
\(628\) 0 0
\(629\) −9.51230 −0.379280
\(630\) 0 0
\(631\) −32.4447 −1.29160 −0.645802 0.763505i \(-0.723477\pi\)
−0.645802 + 0.763505i \(0.723477\pi\)
\(632\) 0 0
\(633\) 62.4423 36.0511i 2.48186 1.43290i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.935872 19.2703i 0.0370806 0.763519i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.45390 14.6426i −0.333909 0.578348i 0.649366 0.760476i \(-0.275035\pi\)
−0.983275 + 0.182129i \(0.941701\pi\)
\(642\) 0 0
\(643\) 0.135174i 0.00533075i 0.999996 + 0.00266538i \(0.000848417\pi\)
−0.999996 + 0.00266538i \(0.999152\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.54125 2.04454i 0.139221 0.0803791i −0.428772 0.903413i \(-0.641054\pi\)
0.567993 + 0.823034i \(0.307720\pi\)
\(648\) 0 0
\(649\) 23.2950 40.3480i 0.914407 1.58380i
\(650\) 0 0
\(651\) −11.6967 + 19.1696i −0.458429 + 0.751317i
\(652\) 0 0
\(653\) −27.6400 15.9580i −1.08164 0.624483i −0.150300 0.988641i \(-0.548024\pi\)
−0.931338 + 0.364157i \(0.881357\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 27.4793i 1.07207i
\(658\) 0 0
\(659\) −4.70505 −0.183283 −0.0916413 0.995792i \(-0.529211\pi\)
−0.0916413 + 0.995792i \(0.529211\pi\)
\(660\) 0 0
\(661\) −2.25710 3.90941i −0.0877910 0.152058i 0.818786 0.574099i \(-0.194647\pi\)
−0.906577 + 0.422040i \(0.861314\pi\)
\(662\) 0 0
\(663\) 15.7055 + 9.06759i 0.609952 + 0.352156i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.380797 + 0.219853i 0.0147445 + 0.00851275i
\(668\) 0 0
\(669\) −30.9374 53.5852i −1.19611 2.07172i
\(670\) 0 0
\(671\) 54.7643 2.11415
\(672\) 0 0
\(673\) 46.9424i 1.80950i 0.425945 + 0.904749i \(0.359942\pi\)
−0.425945 + 0.904749i \(0.640058\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.00981 5.20181i −0.346275 0.199922i 0.316768 0.948503i \(-0.397402\pi\)
−0.663043 + 0.748581i \(0.730736\pi\)
\(678\) 0 0
\(679\) 5.28995 + 0.128378i 0.203009 + 0.00492671i
\(680\) 0 0
\(681\) 27.4251 47.5017i 1.05093 1.82027i
\(682\) 0 0
\(683\) 4.38432 2.53129i 0.167761 0.0968571i −0.413768 0.910382i \(-0.635788\pi\)
0.581530 + 0.813525i \(0.302454\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 64.1944i 2.44917i
\(688\) 0 0
\(689\) −11.5808 20.0586i −0.441195 0.764172i
\(690\) 0 0
\(691\) 2.22236 3.84924i 0.0845425 0.146432i −0.820654 0.571426i \(-0.806390\pi\)
0.905196 + 0.424994i \(0.139724\pi\)
\(692\) 0 0
\(693\) −2.92468 + 120.514i −0.111099 + 4.57795i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.5094 + 6.06759i −0.398071 + 0.229826i
\(698\) 0 0
\(699\) 59.2190 2.23987
\(700\) 0 0
\(701\) 21.7562 0.821719 0.410859 0.911699i \(-0.365229\pi\)
0.410859 + 0.911699i \(0.365229\pi\)
\(702\) 0 0
\(703\) −3.11455 + 1.79819i −0.117467 + 0.0678199i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.42594 + 2.95952i −0.204064 + 0.111304i
\(708\) 0 0
\(709\) −20.5041 + 35.5141i −0.770046 + 1.33376i 0.167491 + 0.985874i \(0.446434\pi\)
−0.937537 + 0.347886i \(0.886900\pi\)
\(710\) 0 0
\(711\) 37.2109 + 64.4511i 1.39552 + 2.41711i
\(712\) 0 0
\(713\) 1.37713i 0.0515739i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −45.8495 + 26.4712i −1.71228 + 0.988586i
\(718\) 0 0
\(719\) 11.8698 20.5592i 0.442670 0.766727i −0.555216 0.831706i \(-0.687365\pi\)
0.997887 + 0.0649787i \(0.0206979\pi\)
\(720\) 0 0
\(721\) 3.06258 5.01924i 0.114056 0.186926i
\(722\) 0 0
\(723\) 2.53954 + 1.46621i 0.0944467 + 0.0545288i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.8534i 1.07011i 0.844817 + 0.535056i \(0.179709\pi\)
−0.844817 + 0.535056i \(0.820291\pi\)
\(728\) 0 0
\(729\) −68.2190 −2.52663
\(730\) 0 0
\(731\) −0.710055 1.22985i −0.0262623 0.0454877i
\(732\) 0 0
\(733\) −40.5805 23.4292i −1.49888 0.865377i −0.498877 0.866673i \(-0.666254\pi\)
−0.999999 + 0.00129620i \(0.999587\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 59.8656 + 34.5634i 2.20518 + 1.27316i
\(738\) 0 0
\(739\) 8.07165 + 13.9805i 0.296920 + 0.514281i 0.975430 0.220310i \(-0.0707071\pi\)
−0.678509 + 0.734592i \(0.737374\pi\)
\(740\) 0 0
\(741\) 6.85647 0.251879
\(742\) 0 0
\(743\) 16.2243i 0.595210i −0.954689 0.297605i \(-0.903812\pi\)
0.954689 0.297605i \(-0.0961878\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −45.4644 26.2489i −1.66345 0.960395i
\(748\) 0 0
\(749\) 21.8698 35.8423i 0.799106 1.30965i
\(750\) 0 0
\(751\) −10.7562 + 18.6302i −0.392498 + 0.679826i −0.992778 0.119964i \(-0.961722\pi\)
0.600281 + 0.799789i \(0.295056\pi\)
\(752\) 0 0
\(753\) −49.7786 + 28.7397i −1.81403 + 1.04733i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.840220i 0.0305383i −0.999883 0.0152692i \(-0.995139\pi\)
0.999883 0.0152692i \(-0.00486051\pi\)
\(758\) 0 0
\(759\) 5.11368 + 8.85716i 0.185615 + 0.321495i
\(760\) 0 0
\(761\) 14.4457 25.0206i 0.523655 0.906997i −0.475966 0.879464i \(-0.657901\pi\)
0.999621 0.0275332i \(-0.00876519\pi\)
\(762\) 0 0
\(763\) −7.59167 + 4.14079i −0.274837 + 0.149907i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.0952 + 11.0246i −0.689487 + 0.398075i
\(768\) 0 0
\(769\) 27.3790 0.987313 0.493656 0.869657i \(-0.335660\pi\)
0.493656 + 0.869657i \(0.335660\pi\)
\(770\) 0 0
\(771\) 23.1106 0.832307
\(772\) 0 0
\(773\) −33.1129 + 19.1177i −1.19099 + 0.687618i −0.958531 0.284989i \(-0.908010\pi\)
−0.232458 + 0.972607i \(0.574677\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.00440 + 41.3871i −0.0360326 + 1.48476i
\(778\) 0 0
\(779\) −2.29401 + 3.97334i −0.0821914 + 0.142360i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 13.0726i 0.467176i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6.35050 + 3.66646i −0.226371 + 0.130695i −0.608897 0.793249i \(-0.708388\pi\)
0.382526 + 0.923945i \(0.375054\pi\)
\(788\) 0 0
\(789\) −29.2437 + 50.6516i −1.04110 + 1.80325i
\(790\) 0 0
\(791\) −34.8073 0.844716i −1.23760 0.0300346i
\(792\) 0 0
\(793\) −22.4455 12.9589i −0.797063 0.460184i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.4877i 0.513181i −0.966520 0.256590i \(-0.917401\pi\)
0.966520 0.256590i \(-0.0825991\pi\)
\(798\) 0 0
\(799\) 25.7827 0.912125
\(800\) 0 0
\(801\) −6.86984 11.8989i −0.242734 0.420427i
\(802\) 0 0
\(803\) −17.7143 10.2274i −0.625125 0.360916i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.7926 + 15.4687i 0.943144 + 0.544524i
\(808\) 0 0
\(809\) −5.67626 9.83157i −0.199567 0.345660i 0.748821 0.662772i \(-0.230620\pi\)
−0.948388 + 0.317112i \(0.897287\pi\)
\(810\) 0 0
\(811\) −28.7662 −1.01012 −0.505058 0.863085i \(-0.668529\pi\)
−0.505058 + 0.863085i \(0.668529\pi\)
\(812\) 0 0
\(813\) 23.1106i 0.810523i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.464977 0.268455i −0.0162675 0.00939204i
\(818\) 0 0
\(819\) 29.7160 48.7014i 1.03836 1.70176i
\(820\) 0 0
\(821\) 8.02461 13.8990i 0.280061 0.485079i −0.691339 0.722531i \(-0.742979\pi\)
0.971399 + 0.237451i \(0.0763121\pi\)
\(822\) 0 0
\(823\) 12.1287 7.00250i 0.422780 0.244092i −0.273486 0.961876i \(-0.588177\pi\)
0.696266 + 0.717784i \(0.254843\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.2899i 0.531683i −0.964017 0.265842i \(-0.914350\pi\)
0.964017 0.265842i \(-0.0856499\pi\)
\(828\) 0 0
\(829\) −10.6475 18.4420i −0.369802 0.640516i 0.619732 0.784813i \(-0.287241\pi\)
−0.989534 + 0.144297i \(0.953908\pi\)
\(830\) 0 0
\(831\) 44.6771 77.3830i 1.54983 2.68439i
\(832\) 0 0
\(833\) 12.4496 6.40363i 0.431354 0.221873i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −35.4572 + 20.4712i −1.22558 + 0.707589i
\(838\) 0 0
\(839\) −42.2274 −1.45785 −0.728925 0.684593i \(-0.759980\pi\)
−0.728925 + 0.684593i \(0.759980\pi\)
\(840\) 0 0
\(841\) −28.3215 −0.976602
\(842\) 0 0
\(843\) 1.76927 1.02149i 0.0609370 0.0351820i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 51.7561 + 31.5799i 1.77836 + 1.08510i
\(848\) 0 0
\(849\) −5.19775 + 9.00277i −0.178386 + 0.308974i
\(850\) 0 0
\(851\) 1.26940 + 2.19867i 0.0435145 + 0.0753694i
\(852\) 0 0
\(853\) 13.2931i 0.455146i −0.973761 0.227573i \(-0.926921\pi\)
0.973761 0.227573i \(-0.0730790\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −33.3028 + 19.2274i −1.13760 + 0.656794i −0.945835 0.324646i \(-0.894755\pi\)
−0.191766 + 0.981441i \(0.561421\pi\)
\(858\) 0 0
\(859\) 4.00000 6.92820i 0.136478 0.236387i −0.789683 0.613515i \(-0.789755\pi\)
0.926161 + 0.377128i \(0.123088\pi\)
\(860\) 0 0
\(861\) 25.2898 + 46.3660i 0.861875 + 1.58015i
\(862\) 0 0
\(863\) 40.7731 + 23.5404i 1.38793 + 0.801323i 0.993082 0.117422i \(-0.0374631\pi\)
0.394850 + 0.918745i \(0.370796\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 42.7693i 1.45252i
\(868\) 0 0
\(869\) 55.3972 1.87922
\(870\) 0 0
\(871\) −16.3575 28.3321i −0.554254 0.959996i
\(872\) 0 0
\(873\) 13.5511 + 7.82374i 0.458636 + 0.264793i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.95926 2.28588i −0.133695 0.0771888i 0.431661 0.902036i \(-0.357928\pi\)
−0.565356 + 0.824847i \(0.691261\pi\)
\(878\) 0 0
\(879\) −18.4958 32.0357i −0.623849 1.08054i
\(880\) 0 0
\(881\) −14.2849 −0.481272 −0.240636 0.970615i \(-0.577356\pi\)
−0.240636 + 0.970615i \(0.577356\pi\)
\(882\) 0 0
\(883\) 15.9670i 0.537334i −0.963233 0.268667i \(-0.913417\pi\)
0.963233 0.268667i \(-0.0865831\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.20489 3.58239i −0.208340 0.120285i 0.392200 0.919880i \(-0.371714\pi\)
−0.600540 + 0.799595i \(0.705048\pi\)
\(888\) 0 0
\(889\) −31.5173 0.764874i −1.05706 0.0256531i
\(890\) 0 0
\(891\) −83.6862 + 144.949i −2.80359 + 4.85596i
\(892\) 0 0
\(893\) 8.44184 4.87390i 0.282495 0.163099i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.84022i 0.161610i
\(898\) 0 0
\(899\) 1.06258 + 1.84044i 0.0354389 + 0.0613821i
\(900\) 0 0
\(901\) 8.40363 14.5555i 0.279965 0.484914i
\(902\) 0 0
\(903\) −5.42594 + 2.95952i −0.180564 + 0.0984868i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7.15799 + 4.13267i −0.237677 + 0.137223i −0.614109 0.789221i \(-0.710484\pi\)
0.376431 + 0.926444i \(0.377151\pi\)
\(908\) 0 0
\(909\) −18.2766 −0.606196
\(910\) 0 0
\(911\) 26.2274 0.868951 0.434476 0.900684i \(-0.356934\pi\)
0.434476 + 0.900684i \(0.356934\pi\)
\(912\) 0 0
\(913\) −33.8422 + 19.5388i −1.12001 + 0.646640i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 48.7014 + 29.7160i 1.60826 + 0.981309i
\(918\) 0 0
\(919\) −9.37902 + 16.2449i −0.309385 + 0.535871i −0.978228 0.207533i \(-0.933457\pi\)
0.668843 + 0.743404i \(0.266790\pi\)
\(920\) 0 0
\(921\) 38.6853 + 67.0050i 1.27473 + 2.20789i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 15.0577 8.69357i 0.494560 0.285534i
\(928\) 0 0
\(929\) −6.45390 + 11.1785i −0.211746 + 0.366754i −0.952261 0.305285i \(-0.901248\pi\)
0.740515 + 0.672040i \(0.234582\pi\)
\(930\) 0 0
\(931\) 2.86577 4.45015i 0.0939219 0.145848i
\(932\) 0 0
\(933\) −83.0813 47.9670i −2.71996 1.57037i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.78265i 0.0582367i −0.999576 0.0291183i \(-0.990730\pi\)
0.999576 0.0291183i \(-0.00926997\pi\)
\(938\) 0 0
\(939\) −79.5653 −2.59652
\(940\) 0 0
\(941\) 22.5634 + 39.0810i 0.735546 + 1.27400i 0.954483 + 0.298264i \(0.0964077\pi\)
−0.218937 + 0.975739i \(0.570259\pi\)
\(942\) 0 0
\(943\) 2.80492 + 1.61942i 0.0913407 + 0.0527356i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.1281 + 11.0436i 0.621579 + 0.358869i 0.777483 0.628904i \(-0.216496\pi\)
−0.155905 + 0.987772i \(0.549829\pi\)
\(948\) 0 0
\(949\) 4.84022 + 8.38351i 0.157120 + 0.272140i
\(950\) 0 0
\(951\) −39.9241 −1.29463
\(952\) 0 0
\(953\) 45.3442i 1.46884i −0.678694 0.734421i \(-0.737454\pi\)
0.678694 0.734421i \(-0.262546\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 13.6682 + 7.89133i 0.441829 + 0.255090i
\(958\) 0 0
\(959\) 5.06759 + 9.29083i 0.163641 + 0.300017i
\(960\) 0 0
\(961\) 12.1721 21.0827i 0.392648 0.680086i
\(962\) 0 0
\(963\) 107.527 62.0807i 3.46501 2.00052i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17.0296i 0.547636i 0.961782 + 0.273818i \(0.0882865\pi\)
−0.961782 + 0.273818i \(0.911713\pi\)
\(968\) 0 0
\(969\) 2.48770 + 4.30882i 0.0799163 + 0.138419i
\(970\) 0 0
\(971\) 14.6054 25.2974i 0.468711 0.811831i −0.530649 0.847591i \(-0.678052\pi\)
0.999360 + 0.0357602i \(0.0113852\pi\)
\(972\) 0 0
\(973\) −0.422358 + 17.4036i −0.0135402 + 0.557935i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.727652 + 0.420110i −0.0232796 + 0.0134405i −0.511595 0.859227i \(-0.670945\pi\)
0.488315 + 0.872667i \(0.337612\pi\)
\(978\) 0 0
\(979\) −10.2274 −0.326868
\(980\) 0 0
\(981\) −25.5715 −0.816436
\(982\) 0 0
\(983\) 7.20225 4.15822i 0.229716 0.132627i −0.380725 0.924688i \(-0.624326\pi\)
0.610441 + 0.792062i \(0.290992\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.72238 112.178i 0.0866542 3.57066i
\(988\) 0 0
\(989\) −0.189511 + 0.328243i −0.00602611 + 0.0104375i
\(990\) 0 0
\(991\) 10.1302 + 17.5460i 0.321795 + 0.557366i 0.980859 0.194722i \(-0.0623804\pi\)
−0.659063 + 0.752088i \(0.729047\pi\)
\(992\) 0 0
\(993\) 6.00000i 0.190404i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 45.9666 26.5388i 1.45578 0.840492i 0.456976 0.889479i \(-0.348933\pi\)
0.998799 + 0.0489867i \(0.0155992\pi\)
\(998\) 0 0
\(999\) −37.7397 + 65.3670i −1.19403 + 2.06812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.2.bh.i.849.1 12
5.2 odd 4 280.2.q.e.121.3 yes 6
5.3 odd 4 1400.2.q.j.401.1 6
5.4 even 2 inner 1400.2.bh.i.849.6 12
7.4 even 3 inner 1400.2.bh.i.249.6 12
15.2 even 4 2520.2.bi.q.1801.3 6
20.7 even 4 560.2.q.l.401.1 6
35.2 odd 12 1960.2.a.w.1.1 3
35.4 even 6 inner 1400.2.bh.i.249.1 12
35.12 even 12 1960.2.a.v.1.3 3
35.17 even 12 1960.2.q.w.361.1 6
35.18 odd 12 1400.2.q.j.1201.1 6
35.23 odd 12 9800.2.a.ce.1.3 3
35.27 even 4 1960.2.q.w.961.1 6
35.32 odd 12 280.2.q.e.81.3 6
35.33 even 12 9800.2.a.cf.1.1 3
105.32 even 12 2520.2.bi.q.361.3 6
140.47 odd 12 3920.2.a.cb.1.1 3
140.67 even 12 560.2.q.l.81.1 6
140.107 even 12 3920.2.a.cc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.q.e.81.3 6 35.32 odd 12
280.2.q.e.121.3 yes 6 5.2 odd 4
560.2.q.l.81.1 6 140.67 even 12
560.2.q.l.401.1 6 20.7 even 4
1400.2.q.j.401.1 6 5.3 odd 4
1400.2.q.j.1201.1 6 35.18 odd 12
1400.2.bh.i.249.1 12 35.4 even 6 inner
1400.2.bh.i.249.6 12 7.4 even 3 inner
1400.2.bh.i.849.1 12 1.1 even 1 trivial
1400.2.bh.i.849.6 12 5.4 even 2 inner
1960.2.a.v.1.3 3 35.12 even 12
1960.2.a.w.1.1 3 35.2 odd 12
1960.2.q.w.361.1 6 35.17 even 12
1960.2.q.w.961.1 6 35.27 even 4
2520.2.bi.q.361.3 6 105.32 even 12
2520.2.bi.q.1801.3 6 15.2 even 4
3920.2.a.cb.1.1 3 140.47 odd 12
3920.2.a.cc.1.3 3 140.107 even 12
9800.2.a.ce.1.3 3 35.23 odd 12
9800.2.a.cf.1.1 3 35.33 even 12