Properties

Label 560.2.q.l.401.1
Level $560$
Weight $2$
Character 560.401
Analytic conductor $4.472$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.11337408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 401.1
Root \(-2.78499i\) of defining polynomial
Character \(\chi\) \(=\) 560.401
Dual form 560.2.q.l.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64497 - 2.84918i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(-2.64497 - 0.0641892i) q^{7} +(-3.91187 + 6.77556i) q^{9} +(2.91187 + 5.04351i) q^{11} +2.75615 q^{13} +3.28995 q^{15} +(-1.00000 - 1.73205i) q^{17} +(-0.378076 + 0.654846i) q^{19} +(4.16802 + 7.64158i) q^{21} +(-0.266897 + 0.462279i) q^{23} +(-0.500000 - 0.866025i) q^{25} +15.8698 q^{27} -0.823739 q^{29} +(-1.28995 - 2.23425i) q^{31} +(9.57989 - 16.5929i) q^{33} +(1.37808 - 2.25852i) q^{35} +(-2.37808 + 4.11895i) q^{37} +(-4.53379 - 7.85276i) q^{39} +6.06759 q^{41} -0.710055 q^{43} +(-3.91187 - 6.77556i) q^{45} +(-6.44566 + 11.1642i) q^{47} +(6.99176 + 0.339557i) q^{49} +(-3.28995 + 5.69835i) q^{51} +(4.20181 + 7.27776i) q^{53} -5.82374 q^{55} +2.48770 q^{57} +(4.00000 + 6.92820i) q^{59} +(-4.70181 + 8.14378i) q^{61} +(10.7817 - 17.6701i) q^{63} +(-1.37808 + 2.38690i) q^{65} +(5.93492 + 10.2796i) q^{67} +1.75615 q^{69} +(-1.75615 - 3.04174i) q^{73} +(-1.64497 + 2.84918i) q^{75} +(-7.37808 - 13.5268i) q^{77} +(-4.75615 + 8.23790i) q^{79} +(-14.3698 - 24.8893i) q^{81} +6.71005 q^{83} +2.00000 q^{85} +(1.35503 + 2.34698i) q^{87} +(-0.878076 + 1.52087i) q^{89} +(-7.28995 - 0.176915i) q^{91} +(-4.24385 + 7.35056i) q^{93} +(-0.378076 - 0.654846i) q^{95} -2.00000 q^{97} -45.5634 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 6 q^{7} - 9 q^{9} + 3 q^{11} + 6 q^{13} - 6 q^{17} + 3 q^{19} + 3 q^{23} - 3 q^{25} + 36 q^{27} + 24 q^{29} + 12 q^{31} + 18 q^{33} + 3 q^{35} - 9 q^{37} - 18 q^{39} + 18 q^{41} - 24 q^{43}+ \cdots - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.64497 2.84918i −0.949725 1.64497i −0.746002 0.665944i \(-0.768029\pi\)
−0.203724 0.979028i \(-0.565304\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −2.64497 0.0641892i −0.999706 0.0242612i
\(8\) 0 0
\(9\) −3.91187 + 6.77556i −1.30396 + 2.25852i
\(10\) 0 0
\(11\) 2.91187 + 5.04351i 0.877962 + 1.52067i 0.853574 + 0.520972i \(0.174430\pi\)
0.0243876 + 0.999703i \(0.492236\pi\)
\(12\) 0 0
\(13\) 2.75615 0.764419 0.382209 0.924076i \(-0.375163\pi\)
0.382209 + 0.924076i \(0.375163\pi\)
\(14\) 0 0
\(15\) 3.28995 0.849460
\(16\) 0 0
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) −0.378076 + 0.654846i −0.0867365 + 0.150232i −0.906130 0.423000i \(-0.860977\pi\)
0.819393 + 0.573232i \(0.194310\pi\)
\(20\) 0 0
\(21\) 4.16802 + 7.64158i 0.909537 + 1.66753i
\(22\) 0 0
\(23\) −0.266897 + 0.462279i −0.0556518 + 0.0963918i −0.892509 0.451029i \(-0.851057\pi\)
0.836857 + 0.547421i \(0.184390\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 15.8698 3.05415
\(28\) 0 0
\(29\) −0.823739 −0.152964 −0.0764822 0.997071i \(-0.524369\pi\)
−0.0764822 + 0.997071i \(0.524369\pi\)
\(30\) 0 0
\(31\) −1.28995 2.23425i −0.231681 0.401283i 0.726622 0.687038i \(-0.241089\pi\)
−0.958303 + 0.285754i \(0.907756\pi\)
\(32\) 0 0
\(33\) 9.57989 16.5929i 1.66764 2.88845i
\(34\) 0 0
\(35\) 1.37808 2.25852i 0.232937 0.381759i
\(36\) 0 0
\(37\) −2.37808 + 4.11895i −0.390953 + 0.677151i −0.992576 0.121630i \(-0.961188\pi\)
0.601622 + 0.798781i \(0.294521\pi\)
\(38\) 0 0
\(39\) −4.53379 7.85276i −0.725988 1.25745i
\(40\) 0 0
\(41\) 6.06759 0.947598 0.473799 0.880633i \(-0.342882\pi\)
0.473799 + 0.880633i \(0.342882\pi\)
\(42\) 0 0
\(43\) −0.710055 −0.108282 −0.0541412 0.998533i \(-0.517242\pi\)
−0.0541412 + 0.998533i \(0.517242\pi\)
\(44\) 0 0
\(45\) −3.91187 6.77556i −0.583147 1.01004i
\(46\) 0 0
\(47\) −6.44566 + 11.1642i −0.940197 + 1.62847i −0.175102 + 0.984550i \(0.556026\pi\)
−0.765095 + 0.643918i \(0.777308\pi\)
\(48\) 0 0
\(49\) 6.99176 + 0.339557i 0.998823 + 0.0485082i
\(50\) 0 0
\(51\) −3.28995 + 5.69835i −0.460684 + 0.797929i
\(52\) 0 0
\(53\) 4.20181 + 7.27776i 0.577164 + 0.999677i 0.995803 + 0.0915241i \(0.0291738\pi\)
−0.418639 + 0.908153i \(0.637493\pi\)
\(54\) 0 0
\(55\) −5.82374 −0.785273
\(56\) 0 0
\(57\) 2.48770 0.329504
\(58\) 0 0
\(59\) 4.00000 + 6.92820i 0.520756 + 0.901975i 0.999709 + 0.0241347i \(0.00768307\pi\)
−0.478953 + 0.877841i \(0.658984\pi\)
\(60\) 0 0
\(61\) −4.70181 + 8.14378i −0.602006 + 1.04270i 0.390511 + 0.920598i \(0.372298\pi\)
−0.992517 + 0.122106i \(0.961035\pi\)
\(62\) 0 0
\(63\) 10.7817 17.6701i 1.35837 2.22622i
\(64\) 0 0
\(65\) −1.37808 + 2.38690i −0.170929 + 0.296058i
\(66\) 0 0
\(67\) 5.93492 + 10.2796i 0.725066 + 1.25585i 0.958947 + 0.283585i \(0.0915239\pi\)
−0.233881 + 0.972265i \(0.575143\pi\)
\(68\) 0 0
\(69\) 1.75615 0.211416
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.75615 3.04174i −0.205542 0.356009i 0.744763 0.667329i \(-0.232562\pi\)
−0.950305 + 0.311320i \(0.899229\pi\)
\(74\) 0 0
\(75\) −1.64497 + 2.84918i −0.189945 + 0.328995i
\(76\) 0 0
\(77\) −7.37808 13.5268i −0.840810 1.54153i
\(78\) 0 0
\(79\) −4.75615 + 8.23790i −0.535109 + 0.926836i 0.464049 + 0.885809i \(0.346396\pi\)
−0.999158 + 0.0410263i \(0.986937\pi\)
\(80\) 0 0
\(81\) −14.3698 24.8893i −1.59665 2.76548i
\(82\) 0 0
\(83\) 6.71005 0.736524 0.368262 0.929722i \(-0.379953\pi\)
0.368262 + 0.929722i \(0.379953\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 1.35503 + 2.34698i 0.145274 + 0.251622i
\(88\) 0 0
\(89\) −0.878076 + 1.52087i −0.0930758 + 0.161212i −0.908804 0.417223i \(-0.863003\pi\)
0.815728 + 0.578436i \(0.196337\pi\)
\(90\) 0 0
\(91\) −7.28995 0.176915i −0.764194 0.0185458i
\(92\) 0 0
\(93\) −4.24385 + 7.35056i −0.440067 + 0.762218i
\(94\) 0 0
\(95\) −0.378076 0.654846i −0.0387898 0.0671858i
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −45.5634 −4.57929
\(100\) 0 0
\(101\) −1.16802 2.02307i −0.116222 0.201303i 0.802045 0.597263i \(-0.203745\pi\)
−0.918268 + 0.395960i \(0.870412\pi\)
\(102\) 0 0
\(103\) −1.11118 + 1.92462i −0.109488 + 0.189638i −0.915563 0.402175i \(-0.868254\pi\)
0.806075 + 0.591813i \(0.201588\pi\)
\(104\) 0 0
\(105\) −8.70181 0.211179i −0.849210 0.0206090i
\(106\) 0 0
\(107\) 7.93492 13.7437i 0.767097 1.32865i −0.172033 0.985091i \(-0.555034\pi\)
0.939131 0.343561i \(-0.111633\pi\)
\(108\) 0 0
\(109\) 1.63423 + 2.83056i 0.156531 + 0.271119i 0.933615 0.358277i \(-0.116636\pi\)
−0.777085 + 0.629396i \(0.783302\pi\)
\(110\) 0 0
\(111\) 15.6475 1.48519
\(112\) 0 0
\(113\) −13.1598 −1.23797 −0.618984 0.785404i \(-0.712455\pi\)
−0.618984 + 0.785404i \(0.712455\pi\)
\(114\) 0 0
\(115\) −0.266897 0.462279i −0.0248883 0.0431077i
\(116\) 0 0
\(117\) −10.7817 + 18.6745i −0.996769 + 1.72645i
\(118\) 0 0
\(119\) 2.53379 + 4.64542i 0.232272 + 0.425845i
\(120\) 0 0
\(121\) −11.4580 + 19.8458i −1.04163 + 1.80416i
\(122\) 0 0
\(123\) −9.98101 17.2876i −0.899958 1.55877i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.9159 −1.05737 −0.528684 0.848819i \(-0.677314\pi\)
−0.528684 + 0.848819i \(0.677314\pi\)
\(128\) 0 0
\(129\) 1.16802 + 2.02307i 0.102839 + 0.178122i
\(130\) 0 0
\(131\) 10.7817 18.6745i 0.942002 1.63160i 0.180356 0.983601i \(-0.442275\pi\)
0.761646 0.647994i \(-0.224392\pi\)
\(132\) 0 0
\(133\) 1.04203 1.70778i 0.0903558 0.148084i
\(134\) 0 0
\(135\) −7.93492 + 13.7437i −0.682929 + 1.18287i
\(136\) 0 0
\(137\) −2.00000 3.46410i −0.170872 0.295958i 0.767853 0.640626i \(-0.221325\pi\)
−0.938725 + 0.344668i \(0.887992\pi\)
\(138\) 0 0
\(139\) −6.57989 −0.558099 −0.279049 0.960277i \(-0.590019\pi\)
−0.279049 + 0.960277i \(0.590019\pi\)
\(140\) 0 0
\(141\) 42.4118 3.57171
\(142\) 0 0
\(143\) 8.02555 + 13.9007i 0.671130 + 1.16243i
\(144\) 0 0
\(145\) 0.411869 0.713379i 0.0342039 0.0592429i
\(146\) 0 0
\(147\) −10.5338 20.4793i −0.868813 1.68911i
\(148\) 0 0
\(149\) −0.0543371 + 0.0941146i −0.00445147 + 0.00771017i −0.868243 0.496140i \(-0.834750\pi\)
0.863791 + 0.503850i \(0.168084\pi\)
\(150\) 0 0
\(151\) −6.53379 11.3169i −0.531713 0.920953i −0.999315 0.0370142i \(-0.988215\pi\)
0.467602 0.883939i \(-0.345118\pi\)
\(152\) 0 0
\(153\) 15.6475 1.26502
\(154\) 0 0
\(155\) 2.57989 0.207222
\(156\) 0 0
\(157\) −4.44566 7.70011i −0.354803 0.614536i 0.632282 0.774739i \(-0.282119\pi\)
−0.987084 + 0.160203i \(0.948785\pi\)
\(158\) 0 0
\(159\) 13.8237 23.9434i 1.09629 1.89884i
\(160\) 0 0
\(161\) 0.735608 1.20558i 0.0579740 0.0950132i
\(162\) 0 0
\(163\) −5.75615 + 9.96995i −0.450857 + 0.780907i −0.998439 0.0558449i \(-0.982215\pi\)
0.547583 + 0.836751i \(0.315548\pi\)
\(164\) 0 0
\(165\) 9.57989 + 16.5929i 0.745793 + 1.29175i
\(166\) 0 0
\(167\) −1.46621 −0.113458 −0.0567292 0.998390i \(-0.518067\pi\)
−0.0567292 + 0.998390i \(0.518067\pi\)
\(168\) 0 0
\(169\) −5.40363 −0.415664
\(170\) 0 0
\(171\) −2.95797 5.12335i −0.226201 0.391792i
\(172\) 0 0
\(173\) 5.62192 9.73746i 0.427427 0.740325i −0.569217 0.822188i \(-0.692753\pi\)
0.996644 + 0.0818623i \(0.0260868\pi\)
\(174\) 0 0
\(175\) 1.26690 + 2.32271i 0.0957684 + 0.175580i
\(176\) 0 0
\(177\) 13.1598 22.7934i 0.989150 1.71326i
\(178\) 0 0
\(179\) 3.66802 + 6.35320i 0.274161 + 0.474860i 0.969923 0.243412i \(-0.0782666\pi\)
−0.695762 + 0.718272i \(0.744933\pi\)
\(180\) 0 0
\(181\) −18.4712 −1.37295 −0.686477 0.727151i \(-0.740844\pi\)
−0.686477 + 0.727151i \(0.740844\pi\)
\(182\) 0 0
\(183\) 30.9374 2.28696
\(184\) 0 0
\(185\) −2.37808 4.11895i −0.174840 0.302831i
\(186\) 0 0
\(187\) 5.82374 10.0870i 0.425874 0.737635i
\(188\) 0 0
\(189\) −41.9753 1.01867i −3.05325 0.0740975i
\(190\) 0 0
\(191\) 7.28995 12.6266i 0.527482 0.913625i −0.472005 0.881596i \(-0.656470\pi\)
0.999487 0.0320296i \(-0.0101971\pi\)
\(192\) 0 0
\(193\) 9.40363 + 16.2876i 0.676888 + 1.17240i 0.975913 + 0.218159i \(0.0700052\pi\)
−0.299025 + 0.954245i \(0.596661\pi\)
\(194\) 0 0
\(195\) 9.06759 0.649343
\(196\) 0 0
\(197\) 2.75615 0.196368 0.0981838 0.995168i \(-0.468697\pi\)
0.0981838 + 0.995168i \(0.468697\pi\)
\(198\) 0 0
\(199\) 7.51230 + 13.0117i 0.532533 + 0.922374i 0.999278 + 0.0379825i \(0.0120931\pi\)
−0.466745 + 0.884392i \(0.654574\pi\)
\(200\) 0 0
\(201\) 19.5256 33.8192i 1.37723 2.38543i
\(202\) 0 0
\(203\) 2.17877 + 0.0528751i 0.152919 + 0.00371111i
\(204\) 0 0
\(205\) −3.03379 + 5.25468i −0.211889 + 0.367003i
\(206\) 0 0
\(207\) −2.08813 3.61675i −0.145135 0.251381i
\(208\) 0 0
\(209\) −4.40363 −0.304605
\(210\) 0 0
\(211\) 21.9159 1.50875 0.754377 0.656441i \(-0.227939\pi\)
0.754377 + 0.656441i \(0.227939\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.355027 0.614926i 0.0242127 0.0419376i
\(216\) 0 0
\(217\) 3.26845 + 5.99233i 0.221877 + 0.406786i
\(218\) 0 0
\(219\) −5.77764 + 10.0072i −0.390417 + 0.676222i
\(220\) 0 0
\(221\) −2.75615 4.77379i −0.185399 0.321120i
\(222\) 0 0
\(223\) −18.8073 −1.25943 −0.629714 0.776827i \(-0.716828\pi\)
−0.629714 + 0.776827i \(0.716828\pi\)
\(224\) 0 0
\(225\) 7.82374 0.521583
\(226\) 0 0
\(227\) 8.33604 + 14.4384i 0.553283 + 0.958313i 0.998035 + 0.0626599i \(0.0199583\pi\)
−0.444752 + 0.895654i \(0.646708\pi\)
\(228\) 0 0
\(229\) −9.75615 + 16.8982i −0.644705 + 1.11666i 0.339665 + 0.940546i \(0.389686\pi\)
−0.984370 + 0.176115i \(0.943647\pi\)
\(230\) 0 0
\(231\) −26.4036 + 43.2727i −1.73723 + 2.84714i
\(232\) 0 0
\(233\) −9.00000 + 15.5885i −0.589610 + 1.02123i 0.404674 + 0.914461i \(0.367385\pi\)
−0.994283 + 0.106773i \(0.965948\pi\)
\(234\) 0 0
\(235\) −6.44566 11.1642i −0.420469 0.728273i
\(236\) 0 0
\(237\) 31.2950 2.03283
\(238\) 0 0
\(239\) 16.0922 1.04092 0.520459 0.853887i \(-0.325761\pi\)
0.520459 + 0.853887i \(0.325761\pi\)
\(240\) 0 0
\(241\) −0.445663 0.771911i −0.0287077 0.0497231i 0.851315 0.524655i \(-0.175806\pi\)
−0.880022 + 0.474932i \(0.842473\pi\)
\(242\) 0 0
\(243\) −23.4712 + 40.6533i −1.50568 + 2.60791i
\(244\) 0 0
\(245\) −3.78995 + 5.88526i −0.242131 + 0.375996i
\(246\) 0 0
\(247\) −1.04203 + 1.80486i −0.0663030 + 0.114840i
\(248\) 0 0
\(249\) −11.0379 19.1181i −0.699496 1.21156i
\(250\) 0 0
\(251\) −17.4712 −1.10277 −0.551387 0.834250i \(-0.685901\pi\)
−0.551387 + 0.834250i \(0.685901\pi\)
\(252\) 0 0
\(253\) −3.10867 −0.195441
\(254\) 0 0
\(255\) −3.28995 5.69835i −0.206024 0.356845i
\(256\) 0 0
\(257\) 3.51230 6.08349i 0.219091 0.379478i −0.735439 0.677591i \(-0.763024\pi\)
0.954530 + 0.298113i \(0.0963574\pi\)
\(258\) 0 0
\(259\) 6.55434 10.7419i 0.407267 0.667467i
\(260\) 0 0
\(261\) 3.22236 5.58129i 0.199459 0.345473i
\(262\) 0 0
\(263\) 8.88882 + 15.3959i 0.548108 + 0.949351i 0.998404 + 0.0564719i \(0.0179851\pi\)
−0.450296 + 0.892879i \(0.648682\pi\)
\(264\) 0 0
\(265\) −8.40363 −0.516231
\(266\) 0 0
\(267\) 5.77764 0.353586
\(268\) 0 0
\(269\) 4.70181 + 8.14378i 0.286675 + 0.496535i 0.973014 0.230746i \(-0.0741168\pi\)
−0.686339 + 0.727282i \(0.740783\pi\)
\(270\) 0 0
\(271\) 3.51230 6.08349i 0.213357 0.369546i −0.739406 0.673260i \(-0.764894\pi\)
0.952763 + 0.303714i \(0.0982269\pi\)
\(272\) 0 0
\(273\) 11.4877 + 21.0614i 0.695267 + 1.27469i
\(274\) 0 0
\(275\) 2.91187 5.04351i 0.175592 0.304135i
\(276\) 0 0
\(277\) −13.5799 23.5211i −0.815937 1.41324i −0.908653 0.417551i \(-0.862889\pi\)
0.0927170 0.995693i \(-0.470445\pi\)
\(278\) 0 0
\(279\) 20.1844 1.20841
\(280\) 0 0
\(281\) −0.620977 −0.0370444 −0.0185222 0.999828i \(-0.505896\pi\)
−0.0185222 + 0.999828i \(0.505896\pi\)
\(282\) 0 0
\(283\) 1.57989 + 2.73645i 0.0939147 + 0.162665i 0.909155 0.416458i \(-0.136729\pi\)
−0.815240 + 0.579123i \(0.803395\pi\)
\(284\) 0 0
\(285\) −1.24385 + 2.15441i −0.0736792 + 0.127616i
\(286\) 0 0
\(287\) −16.0486 0.389474i −0.947319 0.0229899i
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 3.28995 + 5.69835i 0.192860 + 0.334043i
\(292\) 0 0
\(293\) 11.2438 0.656873 0.328436 0.944526i \(-0.393478\pi\)
0.328436 + 0.944526i \(0.393478\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 46.2109 + 80.0396i 2.68143 + 4.64437i
\(298\) 0 0
\(299\) −0.735608 + 1.27411i −0.0425413 + 0.0736837i
\(300\) 0 0
\(301\) 1.87808 + 0.0455779i 0.108250 + 0.00262706i
\(302\) 0 0
\(303\) −3.84272 + 6.65579i −0.220759 + 0.382365i
\(304\) 0 0
\(305\) −4.70181 8.14378i −0.269225 0.466312i
\(306\) 0 0
\(307\) −23.5173 −1.34220 −0.671102 0.741365i \(-0.734179\pi\)
−0.671102 + 0.741365i \(0.734179\pi\)
\(308\) 0 0
\(309\) 7.31144 0.415933
\(310\) 0 0
\(311\) −14.5799 25.2531i −0.826750 1.43197i −0.900575 0.434701i \(-0.856854\pi\)
0.0738250 0.997271i \(-0.476479\pi\)
\(312\) 0 0
\(313\) 12.0922 20.9443i 0.683491 1.18384i −0.290417 0.956900i \(-0.593794\pi\)
0.973908 0.226941i \(-0.0728726\pi\)
\(314\) 0 0
\(315\) 9.91187 + 18.1723i 0.558471 + 1.02389i
\(316\) 0 0
\(317\) −6.06759 + 10.5094i −0.340790 + 0.590265i −0.984580 0.174937i \(-0.944028\pi\)
0.643790 + 0.765202i \(0.277361\pi\)
\(318\) 0 0
\(319\) −2.39862 4.15453i −0.134297 0.232609i
\(320\) 0 0
\(321\) −52.2109 −2.91413
\(322\) 0 0
\(323\) 1.51230 0.0841468
\(324\) 0 0
\(325\) −1.37808 2.38690i −0.0764419 0.132401i
\(326\) 0 0
\(327\) 5.37652 9.31240i 0.297322 0.514977i
\(328\) 0 0
\(329\) 17.7652 29.1153i 0.979428 1.60518i
\(330\) 0 0
\(331\) −0.911869 + 1.57940i −0.0501209 + 0.0868119i −0.889997 0.455966i \(-0.849294\pi\)
0.839877 + 0.542778i \(0.182627\pi\)
\(332\) 0 0
\(333\) −18.6054 32.2256i −1.01957 1.76595i
\(334\) 0 0
\(335\) −11.8698 −0.648518
\(336\) 0 0
\(337\) −17.7827 −0.968683 −0.484341 0.874879i \(-0.660941\pi\)
−0.484341 + 0.874879i \(0.660941\pi\)
\(338\) 0 0
\(339\) 21.6475 + 37.4945i 1.17573 + 2.03642i
\(340\) 0 0
\(341\) 7.51230 13.0117i 0.406814 0.704623i
\(342\) 0 0
\(343\) −18.4712 1.34692i −0.997352 0.0727266i
\(344\) 0 0
\(345\) −0.878076 + 1.52087i −0.0472740 + 0.0818810i
\(346\) 0 0
\(347\) −0.644973 1.11713i −0.0346239 0.0599704i 0.848194 0.529685i \(-0.177690\pi\)
−0.882818 + 0.469715i \(0.844357\pi\)
\(348\) 0 0
\(349\) 1.31144 0.0701995 0.0350998 0.999384i \(-0.488825\pi\)
0.0350998 + 0.999384i \(0.488825\pi\)
\(350\) 0 0
\(351\) 43.7397 2.33465
\(352\) 0 0
\(353\) 5.51230 + 9.54759i 0.293390 + 0.508167i 0.974609 0.223913i \(-0.0718831\pi\)
−0.681219 + 0.732080i \(0.738550\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 9.06759 14.8608i 0.479908 0.786517i
\(358\) 0 0
\(359\) 5.11368 8.85716i 0.269890 0.467463i −0.698943 0.715177i \(-0.746346\pi\)
0.968833 + 0.247714i \(0.0796794\pi\)
\(360\) 0 0
\(361\) 9.21412 + 15.9593i 0.484954 + 0.839964i
\(362\) 0 0
\(363\) 75.3922 3.95706
\(364\) 0 0
\(365\) 3.51230 0.183842
\(366\) 0 0
\(367\) 8.67053 + 15.0178i 0.452598 + 0.783922i 0.998547 0.0538962i \(-0.0171640\pi\)
−0.545949 + 0.837819i \(0.683831\pi\)
\(368\) 0 0
\(369\) −23.7356 + 41.1113i −1.23563 + 2.14017i
\(370\) 0 0
\(371\) −10.6465 19.5192i −0.552740 1.01339i
\(372\) 0 0
\(373\) 8.89133 15.4002i 0.460375 0.797394i −0.538604 0.842559i \(-0.681048\pi\)
0.998980 + 0.0451654i \(0.0143815\pi\)
\(374\) 0 0
\(375\) −1.64497 2.84918i −0.0849460 0.147131i
\(376\) 0 0
\(377\) −2.27035 −0.116929
\(378\) 0 0
\(379\) 33.2109 1.70593 0.852964 0.521969i \(-0.174802\pi\)
0.852964 + 0.521969i \(0.174802\pi\)
\(380\) 0 0
\(381\) 19.6014 + 33.9506i 1.00421 + 1.73934i
\(382\) 0 0
\(383\) 7.38058 12.7835i 0.377130 0.653208i −0.613513 0.789684i \(-0.710244\pi\)
0.990643 + 0.136476i \(0.0435776\pi\)
\(384\) 0 0
\(385\) 15.4036 + 0.373821i 0.785042 + 0.0190517i
\(386\) 0 0
\(387\) 2.77764 4.81102i 0.141195 0.244558i
\(388\) 0 0
\(389\) 11.4036 + 19.7517i 0.578187 + 1.00145i 0.995687 + 0.0927724i \(0.0295729\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(390\) 0 0
\(391\) 1.06759 0.0539902
\(392\) 0 0
\(393\) −70.9424 −3.57857
\(394\) 0 0
\(395\) −4.75615 8.23790i −0.239308 0.414494i
\(396\) 0 0
\(397\) 7.13517 12.3585i 0.358104 0.620255i −0.629540 0.776968i \(-0.716757\pi\)
0.987644 + 0.156714i \(0.0500899\pi\)
\(398\) 0 0
\(399\) −6.57989 0.159683i −0.329407 0.00799416i
\(400\) 0 0
\(401\) 5.74385 9.94864i 0.286834 0.496811i −0.686218 0.727396i \(-0.740730\pi\)
0.973052 + 0.230585i \(0.0740638\pi\)
\(402\) 0 0
\(403\) −3.55528 6.15793i −0.177101 0.306748i
\(404\) 0 0
\(405\) 28.7397 1.42809
\(406\) 0 0
\(407\) −27.6986 −1.37297
\(408\) 0 0
\(409\) −0.899566 1.55809i −0.0444807 0.0770428i 0.842928 0.538027i \(-0.180830\pi\)
−0.887409 + 0.460984i \(0.847497\pi\)
\(410\) 0 0
\(411\) −6.57989 + 11.3967i −0.324562 + 0.562158i
\(412\) 0 0
\(413\) −10.1352 18.5817i −0.498719 0.914344i
\(414\) 0 0
\(415\) −3.35503 + 5.81108i −0.164692 + 0.285255i
\(416\) 0 0
\(417\) 10.8237 + 18.7473i 0.530041 + 0.918058i
\(418\) 0 0
\(419\) −27.4282 −1.33996 −0.669978 0.742381i \(-0.733697\pi\)
−0.669978 + 0.742381i \(0.733697\pi\)
\(420\) 0 0
\(421\) 2.91593 0.142114 0.0710569 0.997472i \(-0.477363\pi\)
0.0710569 + 0.997472i \(0.477363\pi\)
\(422\) 0 0
\(423\) −50.4292 87.3459i −2.45195 4.24690i
\(424\) 0 0
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 12.9589 21.2383i 0.627126 1.02779i
\(428\) 0 0
\(429\) 26.4036 45.7324i 1.27478 2.20798i
\(430\) 0 0
\(431\) 7.28995 + 12.6266i 0.351144 + 0.608200i 0.986450 0.164061i \(-0.0524593\pi\)
−0.635306 + 0.772261i \(0.719126\pi\)
\(432\) 0 0
\(433\) 21.1598 1.01687 0.508437 0.861099i \(-0.330223\pi\)
0.508437 + 0.861099i \(0.330223\pi\)
\(434\) 0 0
\(435\) −2.71005 −0.129937
\(436\) 0 0
\(437\) −0.201814 0.349553i −0.00965409 0.0167214i
\(438\) 0 0
\(439\) −15.4712 + 26.7969i −0.738401 + 1.27895i 0.214814 + 0.976655i \(0.431085\pi\)
−0.953215 + 0.302293i \(0.902248\pi\)
\(440\) 0 0
\(441\) −29.6515 + 46.0448i −1.41198 + 2.19261i
\(442\) 0 0
\(443\) 18.7587 32.4909i 0.891251 1.54369i 0.0528732 0.998601i \(-0.483162\pi\)
0.838377 0.545090i \(-0.183505\pi\)
\(444\) 0 0
\(445\) −0.878076 1.52087i −0.0416248 0.0720962i
\(446\) 0 0
\(447\) 0.357532 0.0169107
\(448\) 0 0
\(449\) 31.0922 1.46733 0.733666 0.679511i \(-0.237808\pi\)
0.733666 + 0.679511i \(0.237808\pi\)
\(450\) 0 0
\(451\) 17.6680 + 30.6019i 0.831955 + 1.44099i
\(452\) 0 0
\(453\) −21.4958 + 37.2319i −1.00996 + 1.74931i
\(454\) 0 0
\(455\) 3.79819 6.22482i 0.178062 0.291824i
\(456\) 0 0
\(457\) 2.17626 3.76940i 0.101801 0.176325i −0.810626 0.585565i \(-0.800873\pi\)
0.912427 + 0.409240i \(0.134206\pi\)
\(458\) 0 0
\(459\) −15.8698 27.4874i −0.740740 1.28300i
\(460\) 0 0
\(461\) 37.2950 1.73700 0.868500 0.495690i \(-0.165085\pi\)
0.868500 + 0.495690i \(0.165085\pi\)
\(462\) 0 0
\(463\) 9.81873 0.456315 0.228158 0.973624i \(-0.426730\pi\)
0.228158 + 0.973624i \(0.426730\pi\)
\(464\) 0 0
\(465\) −4.24385 7.35056i −0.196804 0.340874i
\(466\) 0 0
\(467\) −11.4011 + 19.7473i −0.527581 + 0.913797i 0.471902 + 0.881651i \(0.343568\pi\)
−0.999483 + 0.0321463i \(0.989766\pi\)
\(468\) 0 0
\(469\) −15.0379 27.5702i −0.694384 1.27307i
\(470\) 0 0
\(471\) −14.6260 + 25.3330i −0.673930 + 1.16728i
\(472\) 0 0
\(473\) −2.06759 3.58117i −0.0950678 0.164662i
\(474\) 0 0
\(475\) 0.756152 0.0346946
\(476\) 0 0
\(477\) −65.7478 −3.01038
\(478\) 0 0
\(479\) −10.2224 17.7056i −0.467071 0.808991i 0.532221 0.846606i \(-0.321358\pi\)
−0.999292 + 0.0376140i \(0.988024\pi\)
\(480\) 0 0
\(481\) −6.55434 + 11.3524i −0.298852 + 0.517627i
\(482\) 0 0
\(483\) −4.64497 0.112726i −0.211354 0.00512921i
\(484\) 0 0
\(485\) 1.00000 1.73205i 0.0454077 0.0786484i
\(486\) 0 0
\(487\) −21.4036 37.0722i −0.969891 1.67990i −0.695857 0.718181i \(-0.744975\pi\)
−0.274034 0.961720i \(-0.588358\pi\)
\(488\) 0 0
\(489\) 37.8748 1.71276
\(490\) 0 0
\(491\) 18.8502 0.850699 0.425350 0.905029i \(-0.360151\pi\)
0.425350 + 0.905029i \(0.360151\pi\)
\(492\) 0 0
\(493\) 0.823739 + 1.42676i 0.0370993 + 0.0642579i
\(494\) 0 0
\(495\) 22.7817 39.4591i 1.02396 1.77355i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8698 24.0233i 0.620899 1.07543i −0.368420 0.929660i \(-0.620101\pi\)
0.989319 0.145769i \(-0.0465657\pi\)
\(500\) 0 0
\(501\) 2.41187 + 4.17748i 0.107754 + 0.186636i
\(502\) 0 0
\(503\) −14.7101 −0.655889 −0.327944 0.944697i \(-0.606356\pi\)
−0.327944 + 0.944697i \(0.606356\pi\)
\(504\) 0 0
\(505\) 2.33604 0.103952
\(506\) 0 0
\(507\) 8.88882 + 15.3959i 0.394766 + 0.683755i
\(508\) 0 0
\(509\) 6.99176 12.1101i 0.309904 0.536770i −0.668437 0.743769i \(-0.733036\pi\)
0.978341 + 0.206999i \(0.0663697\pi\)
\(510\) 0 0
\(511\) 4.44973 + 8.15805i 0.196844 + 0.360891i
\(512\) 0 0
\(513\) −6.00000 + 10.3923i −0.264906 + 0.458831i
\(514\) 0 0
\(515\) −1.11118 1.92462i −0.0489644 0.0848088i
\(516\) 0 0
\(517\) −75.0757 −3.30183
\(518\) 0 0
\(519\) −36.9916 −1.62375
\(520\) 0 0
\(521\) −10.3616 17.9468i −0.453950 0.786264i 0.544677 0.838646i \(-0.316652\pi\)
−0.998627 + 0.0523817i \(0.983319\pi\)
\(522\) 0 0
\(523\) −11.1763 + 19.3579i −0.488704 + 0.846460i −0.999916 0.0129950i \(-0.995863\pi\)
0.511212 + 0.859455i \(0.329197\pi\)
\(524\) 0 0
\(525\) 4.53379 7.43040i 0.197871 0.324289i
\(526\) 0 0
\(527\) −2.57989 + 4.46850i −0.112382 + 0.194651i
\(528\) 0 0
\(529\) 11.3575 + 19.6718i 0.493806 + 0.855297i
\(530\) 0 0
\(531\) −62.5899 −2.71617
\(532\) 0 0
\(533\) 16.7232 0.724362
\(534\) 0 0
\(535\) 7.93492 + 13.7437i 0.343056 + 0.594191i
\(536\) 0 0
\(537\) 12.0676 20.9017i 0.520755 0.901974i
\(538\) 0 0
\(539\) 18.6465 + 36.2517i 0.803163 + 1.56147i
\(540\) 0 0
\(541\) −16.3278 + 28.2806i −0.701987 + 1.21588i 0.265781 + 0.964033i \(0.414370\pi\)
−0.967768 + 0.251844i \(0.918963\pi\)
\(542\) 0 0
\(543\) 30.3846 + 52.6277i 1.30393 + 2.25847i
\(544\) 0 0
\(545\) −3.26845 −0.140005
\(546\) 0 0
\(547\) −31.1648 −1.33251 −0.666255 0.745724i \(-0.732104\pi\)
−0.666255 + 0.745724i \(0.732104\pi\)
\(548\) 0 0
\(549\) −36.7858 63.7148i −1.56998 2.71928i
\(550\) 0 0
\(551\) 0.311436 0.539422i 0.0132676 0.0229802i
\(552\) 0 0
\(553\) 13.1087 21.4837i 0.557438 0.913581i
\(554\) 0 0
\(555\) −7.82374 + 13.5511i −0.332099 + 0.575213i
\(556\) 0 0
\(557\) 22.3616 + 38.7314i 0.947491 + 1.64110i 0.750685 + 0.660660i \(0.229724\pi\)
0.196806 + 0.980442i \(0.436943\pi\)
\(558\) 0 0
\(559\) −1.95702 −0.0827731
\(560\) 0 0
\(561\) −38.3196 −1.61785
\(562\) 0 0
\(563\) −16.2464 28.1395i −0.684702 1.18594i −0.973530 0.228558i \(-0.926599\pi\)
0.288828 0.957381i \(-0.406734\pi\)
\(564\) 0 0
\(565\) 6.57989 11.3967i 0.276818 0.479463i
\(566\) 0 0
\(567\) 36.4102 + 66.7539i 1.52908 + 2.80340i
\(568\) 0 0
\(569\) −17.3370 + 30.0285i −0.726804 + 1.25886i 0.231423 + 0.972853i \(0.425662\pi\)
−0.958227 + 0.286009i \(0.907671\pi\)
\(570\) 0 0
\(571\) 1.55528 + 2.69383i 0.0650866 + 0.112733i 0.896732 0.442573i \(-0.145934\pi\)
−0.831646 + 0.555306i \(0.812601\pi\)
\(572\) 0 0
\(573\) −47.9670 −2.00385
\(574\) 0 0
\(575\) 0.533794 0.0222607
\(576\) 0 0
\(577\) −0.336042 0.582041i −0.0139896 0.0242307i 0.858946 0.512066i \(-0.171120\pi\)
−0.872935 + 0.487836i \(0.837787\pi\)
\(578\) 0 0
\(579\) 30.9374 53.5852i 1.28572 2.22692i
\(580\) 0 0
\(581\) −17.7479 0.430713i −0.736307 0.0178690i
\(582\) 0 0
\(583\) −24.4703 + 42.3837i −1.01345 + 1.75536i
\(584\) 0 0
\(585\) −10.7817 18.6745i −0.445769 0.772094i
\(586\) 0 0
\(587\) 4.67208 0.192838 0.0964188 0.995341i \(-0.469261\pi\)
0.0964188 + 0.995341i \(0.469261\pi\)
\(588\) 0 0
\(589\) 1.95079 0.0803808
\(590\) 0 0
\(591\) −4.53379 7.85276i −0.186495 0.323019i
\(592\) 0 0
\(593\) −10.0922 + 17.4802i −0.414437 + 0.717825i −0.995369 0.0961264i \(-0.969355\pi\)
0.580932 + 0.813952i \(0.302688\pi\)
\(594\) 0 0
\(595\) −5.28995 0.128378i −0.216867 0.00526300i
\(596\) 0 0
\(597\) 24.7151 42.8077i 1.01152 1.75200i
\(598\) 0 0
\(599\) 10.7562 + 18.6302i 0.439484 + 0.761209i 0.997650 0.0685204i \(-0.0218278\pi\)
−0.558165 + 0.829730i \(0.688494\pi\)
\(600\) 0 0
\(601\) 5.29495 0.215986 0.107993 0.994152i \(-0.465558\pi\)
0.107993 + 0.994152i \(0.465558\pi\)
\(602\) 0 0
\(603\) −92.8665 −3.78182
\(604\) 0 0
\(605\) −11.4580 19.8458i −0.465833 0.806846i
\(606\) 0 0
\(607\) 18.3591 31.7989i 0.745172 1.29068i −0.204942 0.978774i \(-0.565700\pi\)
0.950114 0.311902i \(-0.100966\pi\)
\(608\) 0 0
\(609\) −3.43336 6.29467i −0.139127 0.255073i
\(610\) 0 0
\(611\) −17.7652 + 30.7703i −0.718704 + 1.24483i
\(612\) 0 0
\(613\) −20.3616 35.2673i −0.822397 1.42443i −0.903892 0.427760i \(-0.859303\pi\)
0.0814954 0.996674i \(-0.474030\pi\)
\(614\) 0 0
\(615\) 19.9620 0.804947
\(616\) 0 0
\(617\) 16.8073 0.676635 0.338317 0.941032i \(-0.390142\pi\)
0.338317 + 0.941032i \(0.390142\pi\)
\(618\) 0 0
\(619\) −17.8954 30.9957i −0.719276 1.24582i −0.961287 0.275550i \(-0.911140\pi\)
0.242010 0.970274i \(-0.422193\pi\)
\(620\) 0 0
\(621\) −4.23561 + 7.33629i −0.169969 + 0.294395i
\(622\) 0 0
\(623\) 2.42011 3.96630i 0.0969597 0.158907i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 7.24385 + 12.5467i 0.289291 + 0.501067i
\(628\) 0 0
\(629\) 9.51230 0.379280
\(630\) 0 0
\(631\) 32.4447 1.29160 0.645802 0.763505i \(-0.276523\pi\)
0.645802 + 0.763505i \(0.276523\pi\)
\(632\) 0 0
\(633\) −36.0511 62.4423i −1.43290 2.48186i
\(634\) 0 0
\(635\) 5.95797 10.3195i 0.236435 0.409517i
\(636\) 0 0
\(637\) 19.2703 + 0.935872i 0.763519 + 0.0370806i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.45390 14.6426i −0.333909 0.578348i 0.649366 0.760476i \(-0.275035\pi\)
−0.983275 + 0.182129i \(0.941701\pi\)
\(642\) 0 0
\(643\) −0.135174 −0.00533075 −0.00266538 0.999996i \(-0.500848\pi\)
−0.00266538 + 0.999996i \(0.500848\pi\)
\(644\) 0 0
\(645\) −2.33604 −0.0919816
\(646\) 0 0
\(647\) −2.04454 3.54125i −0.0803791 0.139221i 0.823034 0.567993i \(-0.192280\pi\)
−0.903413 + 0.428772i \(0.858946\pi\)
\(648\) 0 0
\(649\) −23.2950 + 40.3480i −0.914407 + 1.58380i
\(650\) 0 0
\(651\) 11.6967 19.1696i 0.458429 0.751317i
\(652\) 0 0
\(653\) −15.9580 + 27.6400i −0.624483 + 1.08164i 0.364157 + 0.931338i \(0.381357\pi\)
−0.988641 + 0.150300i \(0.951976\pi\)
\(654\) 0 0
\(655\) 10.7817 + 18.6745i 0.421276 + 0.729672i
\(656\) 0 0
\(657\) 27.4793 1.07207
\(658\) 0 0
\(659\) −4.70505 −0.183283 −0.0916413 0.995792i \(-0.529211\pi\)
−0.0916413 + 0.995792i \(0.529211\pi\)
\(660\) 0 0
\(661\) −2.25710 3.90941i −0.0877910 0.152058i 0.818786 0.574099i \(-0.194647\pi\)
−0.906577 + 0.422040i \(0.861314\pi\)
\(662\) 0 0
\(663\) −9.06759 + 15.7055i −0.352156 + 0.609952i
\(664\) 0 0
\(665\) 0.957966 + 1.75632i 0.0371483 + 0.0681071i
\(666\) 0 0
\(667\) 0.219853 0.380797i 0.00851275 0.0147445i
\(668\) 0 0
\(669\) 30.9374 + 53.5852i 1.19611 + 2.07172i
\(670\) 0 0
\(671\) −54.7643 −2.11415
\(672\) 0 0
\(673\) 46.9424 1.80950 0.904749 0.425945i \(-0.140058\pi\)
0.904749 + 0.425945i \(0.140058\pi\)
\(674\) 0 0
\(675\) −7.93492 13.7437i −0.305415 0.528995i
\(676\) 0 0
\(677\) 5.20181 9.00981i 0.199922 0.346275i −0.748581 0.663043i \(-0.769264\pi\)
0.948503 + 0.316768i \(0.102598\pi\)
\(678\) 0 0
\(679\) 5.28995 + 0.128378i 0.203009 + 0.00492671i
\(680\) 0 0
\(681\) 27.4251 47.5017i 1.05093 1.82027i
\(682\) 0 0
\(683\) 2.53129 + 4.38432i 0.0968571 + 0.167761i 0.910382 0.413768i \(-0.135788\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) 64.1944 2.44917
\(688\) 0 0
\(689\) 11.5808 + 20.0586i 0.441195 + 0.764172i
\(690\) 0 0
\(691\) −2.22236 + 3.84924i −0.0845425 + 0.146432i −0.905196 0.424994i \(-0.860276\pi\)
0.820654 + 0.571426i \(0.193610\pi\)
\(692\) 0 0
\(693\) 120.514 + 2.92468i 4.57795 + 0.111099i
\(694\) 0 0
\(695\) 3.28995 5.69835i 0.124795 0.216151i
\(696\) 0 0
\(697\) −6.06759 10.5094i −0.229826 0.398071i
\(698\) 0 0
\(699\) 59.2190 2.23987
\(700\) 0 0
\(701\) 21.7562 0.821719 0.410859 0.911699i \(-0.365229\pi\)
0.410859 + 0.911699i \(0.365229\pi\)
\(702\) 0 0
\(703\) −1.79819 3.11455i −0.0678199 0.117467i
\(704\) 0 0
\(705\) −21.2059 + 36.7297i −0.798660 + 1.38332i
\(706\) 0 0
\(707\) 2.95952 + 5.42594i 0.111304 + 0.204064i
\(708\) 0 0
\(709\) 20.5041 35.5141i 0.770046 1.33376i −0.167491 0.985874i \(-0.553566\pi\)
0.937537 0.347886i \(-0.113100\pi\)
\(710\) 0 0
\(711\) −37.2109 64.4511i −1.39552 2.41711i
\(712\) 0 0
\(713\) 1.37713 0.0515739
\(714\) 0 0
\(715\) −16.0511 −0.600277
\(716\) 0 0
\(717\) −26.4712 45.8495i −0.988586 1.71228i
\(718\) 0 0
\(719\) 11.8698 20.5592i 0.442670 0.766727i −0.555216 0.831706i \(-0.687365\pi\)
0.997887 + 0.0649787i \(0.0206979\pi\)
\(720\) 0 0
\(721\) 3.06258 5.01924i 0.114056 0.186926i
\(722\) 0 0
\(723\) −1.46621 + 2.53954i −0.0545288 + 0.0944467i
\(724\) 0 0
\(725\) 0.411869 + 0.713379i 0.0152964 + 0.0264942i
\(726\) 0 0
\(727\) 28.8534 1.07011 0.535056 0.844817i \(-0.320291\pi\)
0.535056 + 0.844817i \(0.320291\pi\)
\(728\) 0 0
\(729\) 68.2190 2.52663
\(730\) 0 0
\(731\) 0.710055 + 1.22985i 0.0262623 + 0.0454877i
\(732\) 0 0
\(733\) −23.4292 + 40.5805i −0.865377 + 1.49888i 0.00129620 + 0.999999i \(0.499587\pi\)
−0.866673 + 0.498877i \(0.833746\pi\)
\(734\) 0 0
\(735\) 23.0025 + 1.11713i 0.848460 + 0.0412058i
\(736\) 0 0
\(737\) −34.5634 + 59.8656i −1.27316 + 2.20518i
\(738\) 0 0
\(739\) 8.07165 + 13.9805i 0.296920 + 0.514281i 0.975430 0.220310i \(-0.0707071\pi\)
−0.678509 + 0.734592i \(0.737374\pi\)
\(740\) 0 0
\(741\) 6.85647 0.251879
\(742\) 0 0
\(743\) 16.2243 0.595210 0.297605 0.954689i \(-0.403812\pi\)
0.297605 + 0.954689i \(0.403812\pi\)
\(744\) 0 0
\(745\) −0.0543371 0.0941146i −0.00199076 0.00344809i
\(746\) 0 0
\(747\) −26.2489 + 45.4644i −0.960395 + 1.66345i
\(748\) 0 0
\(749\) −21.8698 + 35.8423i −0.799106 + 1.30965i
\(750\) 0 0
\(751\) 10.7562 18.6302i 0.392498 0.679826i −0.600281 0.799789i \(-0.704944\pi\)
0.992778 + 0.119964i \(0.0382778\pi\)
\(752\) 0 0
\(753\) 28.7397 + 49.7786i 1.04733 + 1.81403i
\(754\) 0 0
\(755\) 13.0676 0.475578
\(756\) 0 0
\(757\) 0.840220 0.0305383 0.0152692 0.999883i \(-0.495139\pi\)
0.0152692 + 0.999883i \(0.495139\pi\)
\(758\) 0 0
\(759\) 5.11368 + 8.85716i 0.185615 + 0.321495i
\(760\) 0 0
\(761\) 14.4457 25.0206i 0.523655 0.906997i −0.475966 0.879464i \(-0.657901\pi\)
0.999621 0.0275332i \(-0.00876519\pi\)
\(762\) 0 0
\(763\) −4.14079 7.59167i −0.149907 0.274837i
\(764\) 0 0
\(765\) −7.82374 + 13.5511i −0.282868 + 0.489942i
\(766\) 0 0
\(767\) 11.0246 + 19.0952i 0.398075 + 0.689487i
\(768\) 0 0
\(769\) −27.3790 −0.987313 −0.493656 0.869657i \(-0.664340\pi\)
−0.493656 + 0.869657i \(0.664340\pi\)
\(770\) 0 0
\(771\) −23.1106 −0.832307
\(772\) 0 0
\(773\) 19.1177 + 33.1129i 0.687618 + 1.19099i 0.972607 + 0.232458i \(0.0746767\pi\)
−0.284989 + 0.958531i \(0.591990\pi\)
\(774\) 0 0
\(775\) −1.28995 + 2.23425i −0.0463362 + 0.0802566i
\(776\) 0 0
\(777\) −41.3871 1.00440i −1.48476 0.0360326i
\(778\) 0 0
\(779\) −2.29401 + 3.97334i −0.0821914 + 0.142360i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −13.0726 −0.467176
\(784\) 0 0
\(785\) 8.89133 0.317345
\(786\) 0 0
\(787\) 3.66646 + 6.35050i 0.130695 + 0.226371i 0.923945 0.382526i \(-0.124946\pi\)
−0.793249 + 0.608897i \(0.791612\pi\)
\(788\) 0 0
\(789\) 29.2437 50.6516i 1.04110 1.80325i
\(790\) 0 0
\(791\) 34.8073 + 0.844716i 1.23760 + 0.0300346i
\(792\) 0 0
\(793\) −12.9589 + 22.4455i −0.460184 + 0.797063i
\(794\) 0 0
\(795\) 13.8237 + 23.9434i 0.490277 + 0.849186i
\(796\) 0 0
\(797\) 14.4877 0.513181 0.256590 0.966520i \(-0.417401\pi\)
0.256590 + 0.966520i \(0.417401\pi\)
\(798\) 0 0
\(799\) 25.7827 0.912125
\(800\) 0 0
\(801\) −6.86984 11.8989i −0.242734 0.420427i
\(802\) 0 0
\(803\) 10.2274 17.7143i 0.360916 0.625125i
\(804\) 0 0
\(805\) 0.676261 + 1.23985i 0.0238351 + 0.0436989i
\(806\) 0 0
\(807\) 15.4687 26.7926i 0.544524 0.943144i
\(808\) 0 0
\(809\) 5.67626 + 9.83157i 0.199567 + 0.345660i 0.948388 0.317112i \(-0.102713\pi\)
−0.748821 + 0.662772i \(0.769380\pi\)
\(810\) 0 0
\(811\) 28.7662 1.01012 0.505058 0.863085i \(-0.331471\pi\)
0.505058 + 0.863085i \(0.331471\pi\)
\(812\) 0 0
\(813\) −23.1106 −0.810523
\(814\) 0 0
\(815\) −5.75615 9.96995i −0.201629 0.349232i
\(816\) 0 0
\(817\) 0.268455 0.464977i 0.00939204 0.0162675i
\(818\) 0 0
\(819\) 29.7160 48.7014i 1.03836 1.70176i
\(820\) 0 0
\(821\) 8.02461 13.8990i 0.280061 0.485079i −0.691339 0.722531i \(-0.742979\pi\)
0.971399 + 0.237451i \(0.0763121\pi\)
\(822\) 0 0
\(823\) 7.00250 + 12.1287i 0.244092 + 0.422780i 0.961876 0.273486i \(-0.0881768\pi\)
−0.717784 + 0.696266i \(0.754843\pi\)
\(824\) 0 0
\(825\) −19.1598 −0.667058
\(826\) 0 0
\(827\) −15.2899 −0.531683 −0.265842 0.964017i \(-0.585650\pi\)
−0.265842 + 0.964017i \(0.585650\pi\)
\(828\) 0 0
\(829\) 10.6475 + 18.4420i 0.369802 + 0.640516i 0.989534 0.144297i \(-0.0460921\pi\)
−0.619732 + 0.784813i \(0.712759\pi\)
\(830\) 0 0
\(831\) −44.6771 + 77.3830i −1.54983 + 2.68439i
\(832\) 0 0
\(833\) −6.40363 12.4496i −0.221873 0.431354i
\(834\) 0 0
\(835\) 0.733103 1.26977i 0.0253701 0.0439423i
\(836\) 0 0
\(837\) −20.4712 35.4572i −0.707589 1.22558i
\(838\) 0 0
\(839\) −42.2274 −1.45785 −0.728925 0.684593i \(-0.759980\pi\)
−0.728925 + 0.684593i \(0.759980\pi\)
\(840\) 0 0
\(841\) −28.3215 −0.976602
\(842\) 0 0
\(843\) 1.02149 + 1.76927i 0.0351820 + 0.0609370i
\(844\) 0 0
\(845\) 2.70181 4.67968i 0.0929452 0.160986i
\(846\) 0 0
\(847\) 31.5799 51.7561i 1.08510 1.77836i
\(848\) 0 0
\(849\) 5.19775 9.00277i 0.178386 0.308974i
\(850\) 0 0
\(851\) −1.26940 2.19867i −0.0435145 0.0753694i
\(852\) 0 0
\(853\) −13.2931 −0.455146 −0.227573 0.973761i \(-0.573079\pi\)
−0.227573 + 0.973761i \(0.573079\pi\)
\(854\) 0 0
\(855\) 5.91593 0.202321
\(856\) 0 0
\(857\) −19.2274 33.3028i −0.656794 1.13760i −0.981441 0.191766i \(-0.938579\pi\)
0.324646 0.945835i \(-0.394755\pi\)
\(858\) 0 0
\(859\) 4.00000 6.92820i 0.136478 0.236387i −0.789683 0.613515i \(-0.789755\pi\)
0.926161 + 0.377128i \(0.123088\pi\)
\(860\) 0 0
\(861\) 25.2898 + 46.3660i 0.861875 + 1.58015i
\(862\) 0 0
\(863\) −23.5404 + 40.7731i −0.801323 + 1.38793i 0.117422 + 0.993082i \(0.462537\pi\)
−0.918745 + 0.394850i \(0.870796\pi\)
\(864\) 0 0
\(865\) 5.62192 + 9.73746i 0.191151 + 0.331084i
\(866\) 0 0
\(867\) −42.7693 −1.45252
\(868\) 0 0
\(869\) −55.3972 −1.87922
\(870\) 0 0
\(871\) 16.3575 + 28.3321i 0.554254 + 0.959996i
\(872\) 0 0
\(873\) 7.82374 13.5511i 0.264793 0.458636i
\(874\) 0 0
\(875\) −2.64497 0.0641892i −0.0894164 0.00216999i
\(876\) 0 0
\(877\) 2.28588 3.95926i 0.0771888 0.133695i −0.824847 0.565356i \(-0.808739\pi\)
0.902036 + 0.431661i \(0.142072\pi\)
\(878\) 0 0
\(879\) −18.4958 32.0357i −0.623849 1.08054i
\(880\) 0 0
\(881\) −14.2849 −0.481272 −0.240636 0.970615i \(-0.577356\pi\)
−0.240636 + 0.970615i \(0.577356\pi\)
\(882\) 0 0
\(883\) 15.9670 0.537334 0.268667 0.963233i \(-0.413417\pi\)
0.268667 + 0.963233i \(0.413417\pi\)
\(884\) 0 0
\(885\) 13.1598 + 22.7934i 0.442361 + 0.766192i
\(886\) 0 0
\(887\) −3.58239 + 6.20489i −0.120285 + 0.208340i −0.919880 0.392200i \(-0.871714\pi\)
0.799595 + 0.600540i \(0.205048\pi\)
\(888\) 0 0
\(889\) 31.5173 + 0.764874i 1.05706 + 0.0256531i
\(890\) 0 0
\(891\) 83.6862 144.949i 2.80359 4.85596i
\(892\) 0 0
\(893\) −4.87390 8.44184i −0.163099 0.282495i
\(894\) 0 0
\(895\) −7.33604 −0.245217
\(896\) 0 0
\(897\) 4.84022 0.161610
\(898\) 0 0
\(899\) 1.06258 + 1.84044i 0.0354389 + 0.0613821i
\(900\) 0 0
\(901\) 8.40363 14.5555i 0.279965 0.484914i
\(902\) 0 0
\(903\) −2.95952 5.42594i −0.0984868 0.180564i
\(904\) 0 0
\(905\) 9.23561 15.9965i 0.307002 0.531743i
\(906\) 0 0
\(907\) 4.13267 + 7.15799i 0.137223 + 0.237677i 0.926444 0.376431i \(-0.122849\pi\)
−0.789221 + 0.614109i \(0.789516\pi\)
\(908\) 0 0
\(909\) 18.2766 0.606196
\(910\) 0 0
\(911\) −26.2274 −0.868951 −0.434476 0.900684i \(-0.643066\pi\)
−0.434476 + 0.900684i \(0.643066\pi\)
\(912\) 0 0
\(913\) 19.5388 + 33.8422i 0.646640 + 1.12001i
\(914\) 0 0
\(915\) −15.4687 + 26.7926i −0.511380 + 0.885736i
\(916\) 0 0
\(917\) −29.7160 + 48.7014i −0.981309 + 1.60826i
\(918\) 0 0
\(919\) −9.37902 + 16.2449i −0.309385 + 0.535871i −0.978228 0.207533i \(-0.933457\pi\)
0.668843 + 0.743404i \(0.266790\pi\)
\(920\) 0 0
\(921\) 38.6853 + 67.0050i 1.27473 + 2.20789i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.75615 0.156381
\(926\) 0 0
\(927\) −8.69357 15.0577i −0.285534 0.494560i
\(928\) 0 0
\(929\) 6.45390 11.1785i 0.211746 0.366754i −0.740515 0.672040i \(-0.765418\pi\)
0.952261 + 0.305285i \(0.0987518\pi\)
\(930\) 0 0
\(931\) −2.86577 + 4.45015i −0.0939219 + 0.145848i
\(932\) 0 0
\(933\) −47.9670 + 83.0813i −1.57037 + 2.71996i
\(934\) 0 0
\(935\) 5.82374 + 10.0870i 0.190457 + 0.329881i
\(936\) 0 0
\(937\) 1.78265 0.0582367 0.0291183 0.999576i \(-0.490730\pi\)
0.0291183 + 0.999576i \(0.490730\pi\)
\(938\) 0 0
\(939\) −79.5653 −2.59652
\(940\) 0 0
\(941\) 22.5634 + 39.0810i 0.735546 + 1.27400i 0.954483 + 0.298264i \(0.0964077\pi\)
−0.218937 + 0.975739i \(0.570259\pi\)
\(942\) 0 0
\(943\) −1.61942 + 2.80492i −0.0527356 + 0.0913407i
\(944\) 0 0
\(945\) 21.8698 35.8423i 0.711426 1.16595i
\(946\) 0 0
\(947\) 11.0436 19.1281i 0.358869 0.621579i −0.628904 0.777483i \(-0.716496\pi\)
0.987772 + 0.155905i \(0.0498293\pi\)
\(948\) 0 0
\(949\) −4.84022 8.38351i −0.157120 0.272140i
\(950\) 0 0
\(951\) 39.9241 1.29463
\(952\) 0 0
\(953\) −45.3442 −1.46884 −0.734421 0.678694i \(-0.762546\pi\)
−0.734421 + 0.678694i \(0.762546\pi\)
\(954\) 0 0
\(955\) 7.28995 + 12.6266i 0.235897 + 0.408586i
\(956\) 0 0
\(957\) −7.89133 + 13.6682i −0.255090 + 0.441829i
\(958\) 0 0
\(959\) 5.06759 + 9.29083i 0.163641 + 0.300017i
\(960\) 0 0
\(961\) 12.1721 21.0827i 0.392648 0.680086i
\(962\) 0 0
\(963\) 62.0807 + 107.527i 2.00052 + 3.46501i
\(964\) 0 0
\(965\) −18.8073 −0.605427
\(966\) 0 0
\(967\) 17.0296 0.547636 0.273818 0.961782i \(-0.411713\pi\)
0.273818 + 0.961782i \(0.411713\pi\)
\(968\) 0 0
\(969\) −2.48770 4.30882i −0.0799163 0.138419i
\(970\) 0 0
\(971\) −14.6054 + 25.2974i −0.468711 + 0.811831i −0.999360 0.0357602i \(-0.988615\pi\)
0.530649 + 0.847591i \(0.321948\pi\)
\(972\) 0 0
\(973\) 17.4036 + 0.422358i 0.557935 + 0.0135402i
\(974\) 0 0
\(975\) −4.53379 + 7.85276i −0.145198 + 0.251490i
\(976\) 0 0
\(977\) −0.420110 0.727652i −0.0134405 0.0232796i 0.859227 0.511595i \(-0.170945\pi\)
−0.872667 + 0.488315i \(0.837612\pi\)
\(978\) 0 0
\(979\) −10.2274 −0.326868
\(980\) 0 0
\(981\) −25.5715 −0.816436
\(982\) 0 0
\(983\) 4.15822 + 7.20225i 0.132627 + 0.229716i 0.924688 0.380725i \(-0.124326\pi\)
−0.792062 + 0.610441i \(0.790992\pi\)
\(984\) 0 0
\(985\) −1.37808 + 2.38690i −0.0439091 + 0.0760529i
\(986\) 0 0
\(987\) −112.178 2.72238i −3.57066 0.0866542i
\(988\) 0 0
\(989\) 0.189511 0.328243i 0.00602611 0.0104375i
\(990\) 0 0
\(991\) −10.1302 17.5460i −0.321795 0.557366i 0.659063 0.752088i \(-0.270953\pi\)
−0.980859 + 0.194722i \(0.937620\pi\)
\(992\) 0 0
\(993\) 6.00000 0.190404
\(994\) 0 0
\(995\) −15.0246 −0.476312
\(996\) 0 0
\(997\) 26.5388 + 45.9666i 0.840492 + 1.45578i 0.889479 + 0.456976i \(0.151067\pi\)
−0.0489867 + 0.998799i \(0.515599\pi\)
\(998\) 0 0
\(999\) −37.7397 + 65.3670i −1.19403 + 2.06812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.q.l.401.1 6
4.3 odd 2 280.2.q.e.121.3 yes 6
7.2 even 3 3920.2.a.cc.1.3 3
7.4 even 3 inner 560.2.q.l.81.1 6
7.5 odd 6 3920.2.a.cb.1.1 3
12.11 even 2 2520.2.bi.q.1801.3 6
20.3 even 4 1400.2.bh.i.849.1 12
20.7 even 4 1400.2.bh.i.849.6 12
20.19 odd 2 1400.2.q.j.401.1 6
28.3 even 6 1960.2.q.w.361.1 6
28.11 odd 6 280.2.q.e.81.3 6
28.19 even 6 1960.2.a.v.1.3 3
28.23 odd 6 1960.2.a.w.1.1 3
28.27 even 2 1960.2.q.w.961.1 6
84.11 even 6 2520.2.bi.q.361.3 6
140.19 even 6 9800.2.a.cf.1.1 3
140.39 odd 6 1400.2.q.j.1201.1 6
140.67 even 12 1400.2.bh.i.249.1 12
140.79 odd 6 9800.2.a.ce.1.3 3
140.123 even 12 1400.2.bh.i.249.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.q.e.81.3 6 28.11 odd 6
280.2.q.e.121.3 yes 6 4.3 odd 2
560.2.q.l.81.1 6 7.4 even 3 inner
560.2.q.l.401.1 6 1.1 even 1 trivial
1400.2.q.j.401.1 6 20.19 odd 2
1400.2.q.j.1201.1 6 140.39 odd 6
1400.2.bh.i.249.1 12 140.67 even 12
1400.2.bh.i.249.6 12 140.123 even 12
1400.2.bh.i.849.1 12 20.3 even 4
1400.2.bh.i.849.6 12 20.7 even 4
1960.2.a.v.1.3 3 28.19 even 6
1960.2.a.w.1.1 3 28.23 odd 6
1960.2.q.w.361.1 6 28.3 even 6
1960.2.q.w.961.1 6 28.27 even 2
2520.2.bi.q.361.3 6 84.11 even 6
2520.2.bi.q.1801.3 6 12.11 even 2
3920.2.a.cb.1.1 3 7.5 odd 6
3920.2.a.cc.1.3 3 7.2 even 3
9800.2.a.ce.1.3 3 140.79 odd 6
9800.2.a.cf.1.1 3 140.19 even 6