Properties

Label 1404.2.k.a.1225.1
Level $1404$
Weight $2$
Character 1404.1225
Analytic conductor $11.211$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1404,2,Mod(1153,1404)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1404, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1404.1153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1225.1
Character \(\chi\) \(=\) 1404.1225
Dual form 1404.2.k.a.1153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03195 + 3.51944i) q^{5} -1.23400 q^{7} +O(q^{10})\) \(q+(-2.03195 + 3.51944i) q^{5} -1.23400 q^{7} +(-3.15860 + 5.47085i) q^{11} +(0.199477 + 3.60003i) q^{13} +(2.45192 - 4.24685i) q^{17} +(0.346591 - 0.600313i) q^{19} -1.41399 q^{23} +(-5.75764 - 9.97252i) q^{25} +(3.35150 - 5.80497i) q^{29} +(1.88555 - 3.26586i) q^{31} +(2.50742 - 4.34298i) q^{35} +(-1.48705 - 2.57565i) q^{37} -7.12257 q^{41} -1.13355 q^{43} +(3.76496 + 6.52111i) q^{47} -5.47725 q^{49} -13.1961 q^{53} +(-12.8362 - 22.2330i) q^{55} +(5.22399 + 9.04821i) q^{59} +5.76307 q^{61} +(-13.0754 - 6.61303i) q^{65} +7.40886 q^{67} +(1.36182 - 2.35874i) q^{71} -1.45266 q^{73} +(3.89770 - 6.75102i) q^{77} +(3.73863 + 6.47550i) q^{79} +(-4.02165 - 6.96570i) q^{83} +(9.96436 + 17.2588i) q^{85} +(-6.75612 - 11.7020i) q^{89} +(-0.246154 - 4.44243i) q^{91} +(1.40851 + 2.43961i) q^{95} +3.06393 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 4 q^{7} + 4 q^{11} + q^{13} + 8 q^{17} - q^{19} - 8 q^{23} - 14 q^{25} + 13 q^{29} + 2 q^{31} - 3 q^{35} - q^{37} + 8 q^{41} - 4 q^{43} - 11 q^{47} + 24 q^{49} - 52 q^{53} + 8 q^{59} + 14 q^{61} - 38 q^{65} + 14 q^{67} + 12 q^{71} + 14 q^{73} + 28 q^{77} + 5 q^{79} - 9 q^{83} + 18 q^{85} + 11 q^{89} - q^{91} - 28 q^{95} + 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.03195 + 3.51944i −0.908716 + 1.57394i −0.0928649 + 0.995679i \(0.529602\pi\)
−0.815851 + 0.578263i \(0.803731\pi\)
\(6\) 0 0
\(7\) −1.23400 −0.466408 −0.233204 0.972428i \(-0.574921\pi\)
−0.233204 + 0.972428i \(0.574921\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.15860 + 5.47085i −0.952353 + 1.64952i −0.212039 + 0.977261i \(0.568010\pi\)
−0.740314 + 0.672262i \(0.765323\pi\)
\(12\) 0 0
\(13\) 0.199477 + 3.60003i 0.0553249 + 0.998468i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.45192 4.24685i 0.594678 1.03001i −0.398914 0.916988i \(-0.630613\pi\)
0.993592 0.113025i \(-0.0360540\pi\)
\(18\) 0 0
\(19\) 0.346591 0.600313i 0.0795134 0.137721i −0.823527 0.567277i \(-0.807997\pi\)
0.903040 + 0.429556i \(0.141330\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.41399 −0.294837 −0.147419 0.989074i \(-0.547096\pi\)
−0.147419 + 0.989074i \(0.547096\pi\)
\(24\) 0 0
\(25\) −5.75764 9.97252i −1.15153 1.99450i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.35150 5.80497i 0.622358 1.07796i −0.366687 0.930344i \(-0.619508\pi\)
0.989045 0.147612i \(-0.0471586\pi\)
\(30\) 0 0
\(31\) 1.88555 3.26586i 0.338654 0.586566i −0.645526 0.763738i \(-0.723362\pi\)
0.984180 + 0.177173i \(0.0566951\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50742 4.34298i 0.423832 0.734098i
\(36\) 0 0
\(37\) −1.48705 2.57565i −0.244470 0.423434i 0.717513 0.696545i \(-0.245280\pi\)
−0.961982 + 0.273112i \(0.911947\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.12257 −1.11236 −0.556179 0.831062i \(-0.687733\pi\)
−0.556179 + 0.831062i \(0.687733\pi\)
\(42\) 0 0
\(43\) −1.13355 −0.172864 −0.0864320 0.996258i \(-0.527547\pi\)
−0.0864320 + 0.996258i \(0.527547\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.76496 + 6.52111i 0.549176 + 0.951201i 0.998331 + 0.0577473i \(0.0183918\pi\)
−0.449155 + 0.893454i \(0.648275\pi\)
\(48\) 0 0
\(49\) −5.47725 −0.782464
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.1961 −1.81263 −0.906315 0.422603i \(-0.861116\pi\)
−0.906315 + 0.422603i \(0.861116\pi\)
\(54\) 0 0
\(55\) −12.8362 22.2330i −1.73084 2.99789i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.22399 + 9.04821i 0.680105 + 1.17798i 0.974948 + 0.222431i \(0.0713991\pi\)
−0.294844 + 0.955546i \(0.595268\pi\)
\(60\) 0 0
\(61\) 5.76307 0.737886 0.368943 0.929452i \(-0.379720\pi\)
0.368943 + 0.929452i \(0.379720\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.0754 6.61303i −1.62181 0.820246i
\(66\) 0 0
\(67\) 7.40886 0.905136 0.452568 0.891730i \(-0.350508\pi\)
0.452568 + 0.891730i \(0.350508\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.36182 2.35874i 0.161618 0.279930i −0.773831 0.633392i \(-0.781662\pi\)
0.935449 + 0.353461i \(0.114995\pi\)
\(72\) 0 0
\(73\) −1.45266 −0.170021 −0.0850104 0.996380i \(-0.527092\pi\)
−0.0850104 + 0.996380i \(0.527092\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.89770 6.75102i 0.444185 0.769350i
\(78\) 0 0
\(79\) 3.73863 + 6.47550i 0.420629 + 0.728550i 0.996001 0.0893413i \(-0.0284762\pi\)
−0.575372 + 0.817892i \(0.695143\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.02165 6.96570i −0.441433 0.764585i 0.556363 0.830939i \(-0.312196\pi\)
−0.997796 + 0.0663546i \(0.978863\pi\)
\(84\) 0 0
\(85\) 9.96436 + 17.2588i 1.08079 + 1.87198i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.75612 11.7020i −0.716148 1.24040i −0.962515 0.271228i \(-0.912570\pi\)
0.246367 0.969177i \(-0.420763\pi\)
\(90\) 0 0
\(91\) −0.246154 4.44243i −0.0258040 0.465693i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.40851 + 2.43961i 0.144510 + 0.250299i
\(96\) 0 0
\(97\) 3.06393 0.311095 0.155547 0.987828i \(-0.450286\pi\)
0.155547 + 0.987828i \(0.450286\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.05797 + 5.29656i −0.304279 + 0.527027i −0.977101 0.212778i \(-0.931749\pi\)
0.672821 + 0.739805i \(0.265082\pi\)
\(102\) 0 0
\(103\) −2.17185 + 3.76176i −0.213999 + 0.370657i −0.952962 0.303089i \(-0.901982\pi\)
0.738964 + 0.673745i \(0.235316\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.96304 5.13214i −0.286448 0.496143i 0.686511 0.727119i \(-0.259141\pi\)
−0.972959 + 0.230976i \(0.925808\pi\)
\(108\) 0 0
\(109\) −0.553911 −0.0530550 −0.0265275 0.999648i \(-0.508445\pi\)
−0.0265275 + 0.999648i \(0.508445\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.05239 5.28690i −0.287145 0.497350i 0.685982 0.727618i \(-0.259373\pi\)
−0.973127 + 0.230269i \(0.926040\pi\)
\(114\) 0 0
\(115\) 2.87315 4.97645i 0.267923 0.464056i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.02567 + 5.24061i −0.277363 + 0.480406i
\(120\) 0 0
\(121\) −14.4535 25.0341i −1.31395 2.27583i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 26.4774 2.36821
\(126\) 0 0
\(127\) 4.40433 + 7.62852i 0.390821 + 0.676922i 0.992558 0.121773i \(-0.0388579\pi\)
−0.601737 + 0.798694i \(0.705525\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.71507 + 9.89879i −0.499328 + 0.864861i −1.00000 0.000776096i \(-0.999753\pi\)
0.500672 + 0.865637i \(0.333086\pi\)
\(132\) 0 0
\(133\) −0.427692 + 0.740785i −0.0370856 + 0.0642342i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.7040 −0.999939 −0.499969 0.866043i \(-0.666655\pi\)
−0.499969 + 0.866043i \(0.666655\pi\)
\(138\) 0 0
\(139\) −3.49733 6.05755i −0.296639 0.513794i 0.678726 0.734392i \(-0.262533\pi\)
−0.975365 + 0.220598i \(0.929199\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −20.3253 10.2797i −1.69969 0.859634i
\(144\) 0 0
\(145\) 13.6202 + 23.5908i 1.13109 + 1.95911i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.55253 + 7.88521i 0.372957 + 0.645981i 0.990019 0.140934i \(-0.0450104\pi\)
−0.617062 + 0.786915i \(0.711677\pi\)
\(150\) 0 0
\(151\) 0.185604 + 0.321476i 0.0151043 + 0.0261614i 0.873479 0.486862i \(-0.161859\pi\)
−0.858374 + 0.513024i \(0.828525\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.66267 + 13.2721i 0.615480 + 1.06604i
\(156\) 0 0
\(157\) −0.686457 + 1.18898i −0.0547852 + 0.0948908i −0.892117 0.451804i \(-0.850781\pi\)
0.837332 + 0.546694i \(0.184114\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.74486 0.137514
\(162\) 0 0
\(163\) −8.53586 + 14.7845i −0.668580 + 1.15802i 0.309721 + 0.950828i \(0.399764\pi\)
−0.978301 + 0.207188i \(0.933569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.14950 −0.243716 −0.121858 0.992548i \(-0.538885\pi\)
−0.121858 + 0.992548i \(0.538885\pi\)
\(168\) 0 0
\(169\) −12.9204 + 1.43624i −0.993878 + 0.110480i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.80265 −0.669253 −0.334626 0.942351i \(-0.608610\pi\)
−0.334626 + 0.942351i \(0.608610\pi\)
\(174\) 0 0
\(175\) 7.10492 + 12.3061i 0.537081 + 0.930252i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.8390 + 18.7736i 0.810142 + 1.40321i 0.912764 + 0.408487i \(0.133944\pi\)
−0.102622 + 0.994720i \(0.532723\pi\)
\(180\) 0 0
\(181\) 17.3637 1.29063 0.645315 0.763916i \(-0.276726\pi\)
0.645315 + 0.763916i \(0.276726\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0864 0.888613
\(186\) 0 0
\(187\) 15.4893 + 26.8282i 1.13269 + 1.96187i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.23950 −0.162044 −0.0810221 0.996712i \(-0.525818\pi\)
−0.0810221 + 0.996712i \(0.525818\pi\)
\(192\) 0 0
\(193\) −18.9028 −1.36065 −0.680326 0.732909i \(-0.738162\pi\)
−0.680326 + 0.732909i \(0.738162\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.09745 7.09699i −0.291931 0.505640i 0.682335 0.731039i \(-0.260964\pi\)
−0.974266 + 0.225400i \(0.927631\pi\)
\(198\) 0 0
\(199\) −0.765637 + 1.32612i −0.0542745 + 0.0940063i −0.891886 0.452260i \(-0.850618\pi\)
0.837612 + 0.546266i \(0.183951\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.13575 + 7.16333i −0.290273 + 0.502767i
\(204\) 0 0
\(205\) 14.4727 25.0675i 1.01082 1.75079i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.18948 + 3.79229i 0.151449 + 0.262318i
\(210\) 0 0
\(211\) −18.3932 −1.26624 −0.633119 0.774055i \(-0.718225\pi\)
−0.633119 + 0.774055i \(0.718225\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.30331 3.98944i 0.157084 0.272078i
\(216\) 0 0
\(217\) −2.32676 + 4.03007i −0.157951 + 0.273579i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.7779 + 7.97984i 1.06134 + 0.536782i
\(222\) 0 0
\(223\) 10.5975 18.3553i 0.709658 1.22916i −0.255326 0.966855i \(-0.582183\pi\)
0.964984 0.262309i \(-0.0844840\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.0279 −1.26293 −0.631464 0.775405i \(-0.717546\pi\)
−0.631464 + 0.775405i \(0.717546\pi\)
\(228\) 0 0
\(229\) 7.57460 13.1196i 0.500544 0.866967i −0.499456 0.866339i \(-0.666467\pi\)
1.00000 0.000627856i \(-0.000199853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1509 1.32013 0.660064 0.751209i \(-0.270529\pi\)
0.660064 + 0.751209i \(0.270529\pi\)
\(234\) 0 0
\(235\) −30.6009 −1.99618
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.15357 1.99805i 0.0746186 0.129243i −0.826302 0.563228i \(-0.809559\pi\)
0.900920 + 0.433985i \(0.142893\pi\)
\(240\) 0 0
\(241\) −11.7563 −0.757288 −0.378644 0.925542i \(-0.623610\pi\)
−0.378644 + 0.925542i \(0.623610\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.1295 19.2768i 0.711037 1.23155i
\(246\) 0 0
\(247\) 2.23028 + 1.12799i 0.141909 + 0.0717722i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.40736 16.2940i 0.593787 1.02847i −0.399929 0.916546i \(-0.630965\pi\)
0.993717 0.111924i \(-0.0357013\pi\)
\(252\) 0 0
\(253\) 4.46622 7.73572i 0.280789 0.486341i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.59795 0.224434 0.112217 0.993684i \(-0.464205\pi\)
0.112217 + 0.993684i \(0.464205\pi\)
\(258\) 0 0
\(259\) 1.83502 + 3.17834i 0.114022 + 0.197493i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.18175 5.51095i 0.196195 0.339819i −0.751097 0.660192i \(-0.770475\pi\)
0.947292 + 0.320373i \(0.103808\pi\)
\(264\) 0 0
\(265\) 26.8139 46.4430i 1.64716 2.85297i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.24582 7.35398i 0.258872 0.448380i −0.707068 0.707146i \(-0.749982\pi\)
0.965940 + 0.258766i \(0.0833157\pi\)
\(270\) 0 0
\(271\) 15.8863 + 27.5159i 0.965023 + 1.67147i 0.709553 + 0.704652i \(0.248897\pi\)
0.255470 + 0.966817i \(0.417770\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 72.7442 4.38664
\(276\) 0 0
\(277\) 15.0872 0.906503 0.453252 0.891383i \(-0.350264\pi\)
0.453252 + 0.891383i \(0.350264\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.06790 + 15.7061i 0.540945 + 0.936945i 0.998850 + 0.0479435i \(0.0152668\pi\)
−0.457905 + 0.889001i \(0.651400\pi\)
\(282\) 0 0
\(283\) −9.52842 −0.566406 −0.283203 0.959060i \(-0.591397\pi\)
−0.283203 + 0.959060i \(0.591397\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.78924 0.518813
\(288\) 0 0
\(289\) −3.52384 6.10348i −0.207285 0.359028i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.154098 0.266906i −0.00900252 0.0155928i 0.861489 0.507776i \(-0.169532\pi\)
−0.870492 + 0.492183i \(0.836199\pi\)
\(294\) 0 0
\(295\) −42.4595 −2.47209
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.282058 5.09040i −0.0163118 0.294386i
\(300\) 0 0
\(301\) 1.39879 0.0806251
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.7103 + 20.2828i −0.670528 + 1.16139i
\(306\) 0 0
\(307\) −30.6770 −1.75083 −0.875415 0.483372i \(-0.839412\pi\)
−0.875415 + 0.483372i \(0.839412\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.6222 + 20.1302i −0.659033 + 1.14148i 0.321833 + 0.946796i \(0.395701\pi\)
−0.980866 + 0.194682i \(0.937632\pi\)
\(312\) 0 0
\(313\) 3.47080 + 6.01160i 0.196181 + 0.339796i 0.947287 0.320386i \(-0.103813\pi\)
−0.751106 + 0.660182i \(0.770479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.08590 10.5411i −0.341818 0.592046i 0.642952 0.765906i \(-0.277709\pi\)
−0.984770 + 0.173860i \(0.944376\pi\)
\(318\) 0 0
\(319\) 21.1721 + 36.6711i 1.18541 + 2.05319i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.69963 2.94384i −0.0945698 0.163800i
\(324\) 0 0
\(325\) 34.7529 22.7170i 1.92774 1.26011i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.64596 8.04704i −0.256140 0.443648i
\(330\) 0 0
\(331\) −18.6570 −1.02548 −0.512741 0.858543i \(-0.671370\pi\)
−0.512741 + 0.858543i \(0.671370\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.0544 + 26.0750i −0.822511 + 1.42463i
\(336\) 0 0
\(337\) −10.0206 + 17.3562i −0.545858 + 0.945454i 0.452694 + 0.891666i \(0.350463\pi\)
−0.998552 + 0.0537879i \(0.982871\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.9114 + 20.6311i 0.645036 + 1.11723i
\(342\) 0 0
\(343\) 15.3969 0.831355
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.1229 17.5333i −0.543424 0.941239i −0.998704 0.0508902i \(-0.983794\pi\)
0.455280 0.890348i \(-0.349539\pi\)
\(348\) 0 0
\(349\) −17.9009 + 31.0052i −0.958212 + 1.65967i −0.231372 + 0.972865i \(0.574322\pi\)
−0.726840 + 0.686807i \(0.759012\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.2650 22.9756i 0.706022 1.22287i −0.260299 0.965528i \(-0.583821\pi\)
0.966321 0.257339i \(-0.0828456\pi\)
\(354\) 0 0
\(355\) 5.53429 + 9.58566i 0.293729 + 0.508754i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.94247 0.313632 0.156816 0.987628i \(-0.449877\pi\)
0.156816 + 0.987628i \(0.449877\pi\)
\(360\) 0 0
\(361\) 9.25975 + 16.0384i 0.487355 + 0.844124i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.95173 5.11255i 0.154501 0.267603i
\(366\) 0 0
\(367\) −10.0026 + 17.3250i −0.522130 + 0.904356i 0.477538 + 0.878611i \(0.341529\pi\)
−0.999669 + 0.0257451i \(0.991804\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.2840 0.845424
\(372\) 0 0
\(373\) 9.86899 + 17.0936i 0.510997 + 0.885073i 0.999919 + 0.0127450i \(0.00405696\pi\)
−0.488922 + 0.872328i \(0.662610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.5666 + 10.9075i 1.11074 + 0.561767i
\(378\) 0 0
\(379\) −1.58794 2.75040i −0.0815672 0.141278i 0.822356 0.568973i \(-0.192659\pi\)
−0.903923 + 0.427695i \(0.859326\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.75166 + 3.03397i 0.0895058 + 0.155029i 0.907302 0.420479i \(-0.138138\pi\)
−0.817797 + 0.575507i \(0.804805\pi\)
\(384\) 0 0
\(385\) 15.8399 + 27.4355i 0.807275 + 1.39824i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.61988 13.1980i −0.386343 0.669166i 0.605612 0.795760i \(-0.292929\pi\)
−0.991955 + 0.126595i \(0.959595\pi\)
\(390\) 0 0
\(391\) −3.46699 + 6.00501i −0.175333 + 0.303686i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −30.3868 −1.52893
\(396\) 0 0
\(397\) −6.12766 + 10.6134i −0.307538 + 0.532672i −0.977823 0.209432i \(-0.932839\pi\)
0.670285 + 0.742104i \(0.266172\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.1903 −0.708632 −0.354316 0.935126i \(-0.615286\pi\)
−0.354316 + 0.935126i \(0.615286\pi\)
\(402\) 0 0
\(403\) 12.1333 + 6.13655i 0.604403 + 0.305684i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.7880 0.931285
\(408\) 0 0
\(409\) −7.54929 13.0758i −0.373289 0.646555i 0.616781 0.787135i \(-0.288437\pi\)
−0.990069 + 0.140580i \(0.955103\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.44639 11.1655i −0.317206 0.549417i
\(414\) 0 0
\(415\) 32.6872 1.60455
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.9144 −0.728617 −0.364309 0.931278i \(-0.618695\pi\)
−0.364309 + 0.931278i \(0.618695\pi\)
\(420\) 0 0
\(421\) 5.12630 + 8.87902i 0.249841 + 0.432737i 0.963481 0.267775i \(-0.0862884\pi\)
−0.713641 + 0.700512i \(0.752955\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −56.4691 −2.73915
\(426\) 0 0
\(427\) −7.11162 −0.344156
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.95272 8.57837i −0.238564 0.413206i 0.721738 0.692166i \(-0.243343\pi\)
−0.960303 + 0.278961i \(0.910010\pi\)
\(432\) 0 0
\(433\) 4.64659 8.04813i 0.223301 0.386768i −0.732507 0.680759i \(-0.761650\pi\)
0.955808 + 0.293991i \(0.0949834\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.490076 + 0.848836i −0.0234435 + 0.0406053i
\(438\) 0 0
\(439\) −4.44439 + 7.69790i −0.212119 + 0.367401i −0.952377 0.304922i \(-0.901370\pi\)
0.740259 + 0.672322i \(0.234703\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.7207 + 28.9612i 0.794426 + 1.37599i 0.923203 + 0.384313i \(0.125562\pi\)
−0.128777 + 0.991674i \(0.541105\pi\)
\(444\) 0 0
\(445\) 54.9124 2.60310
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.81689 + 11.8072i −0.321709 + 0.557216i −0.980841 0.194811i \(-0.937591\pi\)
0.659132 + 0.752027i \(0.270924\pi\)
\(450\) 0 0
\(451\) 22.4973 38.9665i 1.05936 1.83486i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.1350 + 8.16047i 0.756422 + 0.382569i
\(456\) 0 0
\(457\) −2.40357 + 4.16311i −0.112434 + 0.194742i −0.916751 0.399459i \(-0.869198\pi\)
0.804317 + 0.594201i \(0.202531\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.9065 −1.29973 −0.649867 0.760048i \(-0.725175\pi\)
−0.649867 + 0.760048i \(0.725175\pi\)
\(462\) 0 0
\(463\) 5.16665 8.94891i 0.240115 0.415891i −0.720632 0.693318i \(-0.756148\pi\)
0.960747 + 0.277427i \(0.0894816\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.3158 0.477359 0.238679 0.971098i \(-0.423286\pi\)
0.238679 + 0.971098i \(0.423286\pi\)
\(468\) 0 0
\(469\) −9.14252 −0.422162
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.58041 6.20145i 0.164627 0.285143i
\(474\) 0 0
\(475\) −7.98218 −0.366247
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.2295 + 21.1821i −0.558780 + 0.967836i 0.438818 + 0.898576i \(0.355397\pi\)
−0.997599 + 0.0692603i \(0.977936\pi\)
\(480\) 0 0
\(481\) 8.97577 5.86721i 0.409260 0.267522i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.22575 + 10.7833i −0.282697 + 0.489645i
\(486\) 0 0
\(487\) −2.64195 + 4.57600i −0.119718 + 0.207358i −0.919656 0.392725i \(-0.871532\pi\)
0.799938 + 0.600083i \(0.204866\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0941 0.906834 0.453417 0.891299i \(-0.350205\pi\)
0.453417 + 0.891299i \(0.350205\pi\)
\(492\) 0 0
\(493\) −16.4352 28.4667i −0.740206 1.28207i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.68048 + 2.91068i −0.0753798 + 0.130562i
\(498\) 0 0
\(499\) −13.0843 + 22.6626i −0.585733 + 1.01452i 0.409051 + 0.912512i \(0.365860\pi\)
−0.994784 + 0.102007i \(0.967473\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.6471 18.4414i 0.474732 0.822260i −0.524849 0.851195i \(-0.675878\pi\)
0.999581 + 0.0289349i \(0.00921154\pi\)
\(504\) 0 0
\(505\) −12.4273 21.5247i −0.553006 0.957835i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.6648 −1.00460 −0.502299 0.864694i \(-0.667513\pi\)
−0.502299 + 0.864694i \(0.667513\pi\)
\(510\) 0 0
\(511\) 1.79258 0.0792990
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.82618 15.2874i −0.388928 0.673643i
\(516\) 0 0
\(517\) −47.5680 −2.09204
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.1834 −0.533765 −0.266883 0.963729i \(-0.585994\pi\)
−0.266883 + 0.963729i \(0.585994\pi\)
\(522\) 0 0
\(523\) 17.2158 + 29.8186i 0.752794 + 1.30388i 0.946464 + 0.322810i \(0.104628\pi\)
−0.193670 + 0.981067i \(0.562039\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.24642 16.0153i −0.402780 0.697636i
\(528\) 0 0
\(529\) −21.0006 −0.913071
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.42079 25.6415i −0.0615412 1.11066i
\(534\) 0 0
\(535\) 24.0830 1.04120
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.3004 29.9652i 0.745181 1.29069i
\(540\) 0 0
\(541\) −44.8888 −1.92992 −0.964960 0.262398i \(-0.915487\pi\)
−0.964960 + 0.262398i \(0.915487\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.12552 1.94946i 0.0482119 0.0835055i
\(546\) 0 0
\(547\) 0.758838 + 1.31435i 0.0324456 + 0.0561974i 0.881792 0.471638i \(-0.156337\pi\)
−0.849347 + 0.527835i \(0.823004\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.32320 4.02390i −0.0989716 0.171424i
\(552\) 0 0
\(553\) −4.61346 7.99075i −0.196184 0.339801i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0013 + 19.0548i 0.466139 + 0.807376i 0.999252 0.0386680i \(-0.0123115\pi\)
−0.533114 + 0.846044i \(0.678978\pi\)
\(558\) 0 0
\(559\) −0.226116 4.08080i −0.00956369 0.172599i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.71374 6.43238i −0.156515 0.271093i 0.777094 0.629384i \(-0.216693\pi\)
−0.933610 + 0.358291i \(0.883359\pi\)
\(564\) 0 0
\(565\) 24.8092 1.04373
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.7578 22.0972i 0.534836 0.926362i −0.464336 0.885659i \(-0.653707\pi\)
0.999171 0.0407030i \(-0.0129598\pi\)
\(570\) 0 0
\(571\) −13.2087 + 22.8782i −0.552769 + 0.957423i 0.445305 + 0.895379i \(0.353095\pi\)
−0.998073 + 0.0620443i \(0.980238\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.14124 + 14.1010i 0.339513 + 0.588054i
\(576\) 0 0
\(577\) 8.20970 0.341774 0.170887 0.985291i \(-0.445337\pi\)
0.170887 + 0.985291i \(0.445337\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.96271 + 8.59566i 0.205888 + 0.356608i
\(582\) 0 0
\(583\) 41.6813 72.1941i 1.72626 2.98997i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.07874 13.9928i 0.333445 0.577544i −0.649740 0.760157i \(-0.725122\pi\)
0.983185 + 0.182612i \(0.0584554\pi\)
\(588\) 0 0
\(589\) −1.30702 2.26383i −0.0538550 0.0932796i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −38.1696 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(594\) 0 0
\(595\) −12.2960 21.2973i −0.504087 0.873105i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0046 17.3285i 0.408778 0.708024i −0.585975 0.810329i \(-0.699288\pi\)
0.994753 + 0.102305i \(0.0326218\pi\)
\(600\) 0 0
\(601\) 4.50392 7.80102i 0.183719 0.318210i −0.759425 0.650595i \(-0.774520\pi\)
0.943144 + 0.332384i \(0.107853\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 117.475 4.77603
\(606\) 0 0
\(607\) −14.3741 24.8967i −0.583427 1.01053i −0.995070 0.0991800i \(-0.968378\pi\)
0.411642 0.911345i \(-0.364955\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.7252 + 14.8548i −0.919361 + 0.600960i
\(612\) 0 0
\(613\) 4.46519 + 7.73394i 0.180347 + 0.312371i 0.941999 0.335616i \(-0.108944\pi\)
−0.761651 + 0.647987i \(0.775611\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.34148 + 16.1799i 0.376074 + 0.651379i 0.990487 0.137605i \(-0.0439406\pi\)
−0.614413 + 0.788984i \(0.710607\pi\)
\(618\) 0 0
\(619\) 9.16531 + 15.8748i 0.368385 + 0.638061i 0.989313 0.145806i \(-0.0465776\pi\)
−0.620928 + 0.783867i \(0.713244\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.33705 + 14.4402i 0.334017 + 0.578534i
\(624\) 0 0
\(625\) −25.0126 + 43.3231i −1.00050 + 1.73292i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.5845 −0.581523
\(630\) 0 0
\(631\) −4.52993 + 7.84607i −0.180334 + 0.312347i −0.941994 0.335629i \(-0.891051\pi\)
0.761660 + 0.647976i \(0.224384\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −35.7975 −1.42058
\(636\) 0 0
\(637\) −1.09258 19.7182i −0.0432898 0.781265i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.6912 −0.698760 −0.349380 0.936981i \(-0.613608\pi\)
−0.349380 + 0.936981i \(0.613608\pi\)
\(642\) 0 0
\(643\) −22.9864 39.8137i −0.906497 1.57010i −0.818895 0.573943i \(-0.805413\pi\)
−0.0876021 0.996156i \(-0.527920\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.5411 32.1142i −0.728927 1.26254i −0.957337 0.288973i \(-0.906686\pi\)
0.228411 0.973565i \(-0.426647\pi\)
\(648\) 0 0
\(649\) −66.0018 −2.59080
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.8466 −1.01146 −0.505728 0.862693i \(-0.668776\pi\)
−0.505728 + 0.862693i \(0.668776\pi\)
\(654\) 0 0
\(655\) −23.2255 40.2277i −0.907494 1.57183i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.943057 0.0367363 0.0183681 0.999831i \(-0.494153\pi\)
0.0183681 + 0.999831i \(0.494153\pi\)
\(660\) 0 0
\(661\) 9.86572 0.383732 0.191866 0.981421i \(-0.438546\pi\)
0.191866 + 0.981421i \(0.438546\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.73810 3.01048i −0.0674006 0.116741i
\(666\) 0 0
\(667\) −4.73899 + 8.20817i −0.183494 + 0.317821i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.2032 + 31.5289i −0.702727 + 1.21716i
\(672\) 0 0
\(673\) 12.6742 21.9524i 0.488555 0.846202i −0.511358 0.859368i \(-0.670858\pi\)
0.999913 + 0.0131657i \(0.00419088\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.2261 + 35.0326i 0.777352 + 1.34641i 0.933463 + 0.358674i \(0.116771\pi\)
−0.156111 + 0.987740i \(0.549896\pi\)
\(678\) 0 0
\(679\) −3.78089 −0.145097
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.6007 20.0931i 0.443890 0.768840i −0.554084 0.832461i \(-0.686931\pi\)
0.997974 + 0.0636208i \(0.0202648\pi\)
\(684\) 0 0
\(685\) 23.7819 41.1915i 0.908660 1.57384i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.63233 47.5065i −0.100284 1.80985i
\(690\) 0 0
\(691\) 1.21656 2.10714i 0.0462801 0.0801595i −0.841957 0.539544i \(-0.818597\pi\)
0.888238 + 0.459384i \(0.151930\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.4256 1.07824
\(696\) 0 0
\(697\) −17.4640 + 30.2485i −0.661496 + 1.14574i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.254890 −0.00962706 −0.00481353 0.999988i \(-0.501532\pi\)
−0.00481353 + 0.999988i \(0.501532\pi\)
\(702\) 0 0
\(703\) −2.06159 −0.0777544
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.77353 6.53594i 0.141918 0.245809i
\(708\) 0 0
\(709\) 12.1334 0.455681 0.227840 0.973698i \(-0.426834\pi\)
0.227840 + 0.973698i \(0.426834\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.66614 + 4.61789i −0.0998478 + 0.172941i
\(714\) 0 0
\(715\) 77.4788 50.6457i 2.89754 1.89404i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.3387 + 45.6200i −0.982268 + 1.70134i −0.328771 + 0.944410i \(0.606635\pi\)
−0.653497 + 0.756929i \(0.726699\pi\)
\(720\) 0 0
\(721\) 2.68006 4.64200i 0.0998107 0.172877i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −77.1869 −2.86665
\(726\) 0 0
\(727\) −1.58322 2.74222i −0.0587184 0.101703i 0.835172 0.549989i \(-0.185368\pi\)
−0.893890 + 0.448286i \(0.852035\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.77936 + 4.81400i −0.102799 + 0.178052i
\(732\) 0 0
\(733\) 11.4180 19.7766i 0.421734 0.730466i −0.574375 0.818592i \(-0.694755\pi\)
0.996109 + 0.0881269i \(0.0280881\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.4016 + 40.5327i −0.862009 + 1.49304i
\(738\) 0 0
\(739\) 10.9208 + 18.9154i 0.401728 + 0.695813i 0.993935 0.109973i \(-0.0350765\pi\)
−0.592207 + 0.805786i \(0.701743\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9092 0.400218 0.200109 0.979774i \(-0.435870\pi\)
0.200109 + 0.979774i \(0.435870\pi\)
\(744\) 0 0
\(745\) −37.0020 −1.35565
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.65639 + 6.33306i 0.133602 + 0.231405i
\(750\) 0 0
\(751\) −29.2500 −1.06735 −0.533674 0.845690i \(-0.679189\pi\)
−0.533674 + 0.845690i \(0.679189\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.50856 −0.0549020
\(756\) 0 0
\(757\) −15.6746 27.1492i −0.569703 0.986755i −0.996595 0.0824524i \(-0.973725\pi\)
0.426892 0.904303i \(-0.359609\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.6645 + 20.2035i 0.422838 + 0.732377i 0.996216 0.0869143i \(-0.0277006\pi\)
−0.573378 + 0.819291i \(0.694367\pi\)
\(762\) 0 0
\(763\) 0.683525 0.0247453
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.5317 + 20.6114i −1.13855 + 0.744235i
\(768\) 0 0
\(769\) 8.21952 0.296404 0.148202 0.988957i \(-0.452651\pi\)
0.148202 + 0.988957i \(0.452651\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.9461 34.5476i 0.717411 1.24259i −0.244611 0.969621i \(-0.578660\pi\)
0.962022 0.272971i \(-0.0880064\pi\)
\(774\) 0 0
\(775\) −43.4252 −1.55988
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.46862 + 4.27577i −0.0884474 + 0.153195i
\(780\) 0 0
\(781\) 8.60286 + 14.9006i 0.307834 + 0.533185i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.78969 4.83189i −0.0995683 0.172457i
\(786\) 0 0
\(787\) −21.0076 36.3863i −0.748841 1.29703i −0.948379 0.317140i \(-0.897277\pi\)
0.199538 0.979890i \(-0.436056\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.76665 + 6.52403i 0.133927 + 0.231968i
\(792\) 0 0
\(793\) 1.14960 + 20.7472i 0.0408235 + 0.736755i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.2345 24.6549i −0.504212 0.873321i −0.999988 0.00487082i \(-0.998450\pi\)
0.495776 0.868451i \(-0.334884\pi\)
\(798\) 0 0
\(799\) 36.9256 1.30633
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.58836 7.94728i 0.161920 0.280453i
\(804\) 0 0
\(805\) −3.54547 + 6.14093i −0.124961 + 0.216439i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.8229 + 44.7266i 0.907885 + 1.57250i 0.816997 + 0.576643i \(0.195637\pi\)
0.0908889 + 0.995861i \(0.471029\pi\)
\(810\) 0 0
\(811\) −14.1240 −0.495959 −0.247980 0.968765i \(-0.579767\pi\)
−0.247980 + 0.968765i \(0.579767\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −34.6889 60.0829i −1.21510 2.10461i
\(816\) 0 0
\(817\) −0.392876 + 0.680482i −0.0137450 + 0.0238070i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.3074 + 19.5850i −0.394632 + 0.683522i −0.993054 0.117659i \(-0.962461\pi\)
0.598422 + 0.801181i \(0.295794\pi\)
\(822\) 0 0
\(823\) 2.12463 + 3.67997i 0.0740600 + 0.128276i 0.900677 0.434489i \(-0.143071\pi\)
−0.826617 + 0.562765i \(0.809738\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.50665 0.156711 0.0783557 0.996925i \(-0.475033\pi\)
0.0783557 + 0.996925i \(0.475033\pi\)
\(828\) 0 0
\(829\) 4.99777 + 8.65638i 0.173580 + 0.300649i 0.939669 0.342086i \(-0.111133\pi\)
−0.766089 + 0.642734i \(0.777800\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4298 + 23.2611i −0.465314 + 0.805948i
\(834\) 0 0
\(835\) 6.39962 11.0845i 0.221468 0.383594i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.27534 −0.320220 −0.160110 0.987099i \(-0.551185\pi\)
−0.160110 + 0.987099i \(0.551185\pi\)
\(840\) 0 0
\(841\) −7.96513 13.7960i −0.274660 0.475724i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21.1989 48.3910i 0.729263 1.66470i
\(846\) 0 0
\(847\) 17.8355 + 30.8921i 0.612837 + 1.06146i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.10267 + 3.64194i 0.0720787 + 0.124844i
\(852\) 0 0
\(853\) 8.60320 + 14.9012i 0.294568 + 0.510207i 0.974884 0.222712i \(-0.0714909\pi\)
−0.680316 + 0.732919i \(0.738158\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10.2451 17.7450i −0.349964 0.606156i 0.636278 0.771460i \(-0.280473\pi\)
−0.986243 + 0.165303i \(0.947140\pi\)
\(858\) 0 0
\(859\) 8.09018 14.0126i 0.276034 0.478104i −0.694362 0.719626i \(-0.744313\pi\)
0.970395 + 0.241522i \(0.0776466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.3268 0.896176 0.448088 0.893989i \(-0.352105\pi\)
0.448088 + 0.893989i \(0.352105\pi\)
\(864\) 0 0
\(865\) 17.8865 30.9804i 0.608160 1.05336i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −47.2353 −1.60235
\(870\) 0 0
\(871\) 1.47790 + 26.6721i 0.0500766 + 0.903750i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −32.6731 −1.10455
\(876\) 0 0
\(877\) 16.7190 + 28.9581i 0.564559 + 0.977845i 0.997091 + 0.0762261i \(0.0242871\pi\)
−0.432532 + 0.901619i \(0.642380\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.74235 + 3.01783i 0.0587011 + 0.101673i 0.893883 0.448301i \(-0.147971\pi\)
−0.835181 + 0.549974i \(0.814637\pi\)
\(882\) 0 0
\(883\) −21.7609 −0.732313 −0.366156 0.930553i \(-0.619326\pi\)
−0.366156 + 0.930553i \(0.619326\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34.8933 1.17160 0.585802 0.810454i \(-0.300780\pi\)
0.585802 + 0.810454i \(0.300780\pi\)
\(888\) 0 0
\(889\) −5.43493 9.41358i −0.182282 0.315721i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.21960 0.174667
\(894\) 0 0
\(895\) −88.0969 −2.94476
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.6388 21.8911i −0.421528 0.730108i
\(900\) 0 0
\(901\) −32.3559 + 56.0421i −1.07793 + 1.86703i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −35.2821 + 61.1104i −1.17282 + 2.03138i
\(906\) 0 0
\(907\) −9.01748 + 15.6187i −0.299420 + 0.518611i −0.976003 0.217755i \(-0.930127\pi\)
0.676583 + 0.736366i \(0.263460\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.8853 + 44.8346i 0.857617 + 1.48544i 0.874195 + 0.485574i \(0.161390\pi\)
−0.0165778 + 0.999863i \(0.505277\pi\)
\(912\) 0 0
\(913\) 50.8111 1.68160
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.05239 12.2151i 0.232890 0.403378i
\(918\) 0 0
\(919\) 25.9608 44.9655i 0.856369 1.48327i −0.0190005 0.999819i \(-0.506048\pi\)
0.875369 0.483455i \(-0.160618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.76317 + 4.43207i 0.288443 + 0.145883i
\(924\) 0 0
\(925\) −17.1238 + 29.6593i −0.563027 + 0.975191i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 41.6437 1.36629 0.683144 0.730284i \(-0.260612\pi\)
0.683144 + 0.730284i \(0.260612\pi\)
\(930\) 0 0
\(931\) −1.89836 + 3.28806i −0.0622163 + 0.107762i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −125.894 −4.11716
\(936\) 0 0
\(937\) 24.2358 0.791749 0.395875 0.918305i \(-0.370441\pi\)
0.395875 + 0.918305i \(0.370441\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.333504 + 0.577647i −0.0108719 + 0.0188307i −0.871410 0.490555i \(-0.836794\pi\)
0.860538 + 0.509386i \(0.170127\pi\)
\(942\) 0 0
\(943\) 10.0712 0.327965
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.27850 + 10.8747i −0.204024 + 0.353380i −0.949821 0.312793i \(-0.898735\pi\)
0.745797 + 0.666173i \(0.232069\pi\)
\(948\) 0 0
\(949\) −0.289772 5.22961i −0.00940639 0.169760i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.43257 + 5.94539i −0.111192 + 0.192590i −0.916251 0.400604i \(-0.868800\pi\)
0.805059 + 0.593194i \(0.202133\pi\)
\(954\) 0 0
\(955\) 4.55054 7.88177i 0.147252 0.255048i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.4427 0.466379
\(960\) 0 0
\(961\) 8.38944 + 14.5309i 0.270627 + 0.468740i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 38.4095 66.5272i 1.23645 2.14159i
\(966\) 0 0
\(967\) −22.6585 + 39.2457i −0.728648 + 1.26206i 0.228807 + 0.973472i \(0.426518\pi\)
−0.957455 + 0.288583i \(0.906816\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.8736 + 39.6183i −0.734049 + 1.27141i 0.221090 + 0.975253i \(0.429039\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(972\) 0 0
\(973\) 4.31570 + 7.47501i 0.138355 + 0.239638i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.6241 0.627830 0.313915 0.949451i \(-0.398359\pi\)
0.313915 + 0.949451i \(0.398359\pi\)
\(978\) 0 0
\(979\) 85.3595 2.72810
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.4131 37.0886i −0.682972 1.18294i −0.974070 0.226249i \(-0.927354\pi\)
0.291098 0.956693i \(-0.405980\pi\)
\(984\) 0 0
\(985\) 33.3032 1.06113
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.60282 0.0509667
\(990\) 0 0
\(991\) 24.4276 + 42.3099i 0.775969 + 1.34402i 0.934248 + 0.356623i \(0.116072\pi\)
−0.158279 + 0.987394i \(0.550595\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.11147 5.38922i −0.0986402 0.170850i
\(996\) 0 0
\(997\) 17.0256 0.539208 0.269604 0.962971i \(-0.413107\pi\)
0.269604 + 0.962971i \(0.413107\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.k.a.1225.1 28
3.2 odd 2 468.2.k.a.445.7 yes 28
9.2 odd 6 468.2.j.a.133.3 28
9.7 even 3 1404.2.j.a.289.1 28
13.9 even 3 1404.2.j.a.685.1 28
39.35 odd 6 468.2.j.a.373.3 yes 28
117.61 even 3 inner 1404.2.k.a.1153.1 28
117.74 odd 6 468.2.k.a.61.7 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.3 28 9.2 odd 6
468.2.j.a.373.3 yes 28 39.35 odd 6
468.2.k.a.61.7 yes 28 117.74 odd 6
468.2.k.a.445.7 yes 28 3.2 odd 2
1404.2.j.a.289.1 28 9.7 even 3
1404.2.j.a.685.1 28 13.9 even 3
1404.2.k.a.1153.1 28 117.61 even 3 inner
1404.2.k.a.1225.1 28 1.1 even 1 trivial