Properties

Label 468.2.k.a.61.7
Level $468$
Weight $2$
Character 468.61
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(61,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.7
Character \(\chi\) \(=\) 468.61
Dual form 468.2.k.a.445.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.328747 + 1.70057i) q^{3} +(2.03195 + 3.51944i) q^{5} -1.23400 q^{7} +(-2.78385 - 1.11811i) q^{9} +O(q^{10})\) \(q+(-0.328747 + 1.70057i) q^{3} +(2.03195 + 3.51944i) q^{5} -1.23400 q^{7} +(-2.78385 - 1.11811i) q^{9} +(3.15860 + 5.47085i) q^{11} +(0.199477 - 3.60003i) q^{13} +(-6.65304 + 2.29846i) q^{15} +(-2.45192 - 4.24685i) q^{17} +(0.346591 + 0.600313i) q^{19} +(0.405673 - 2.09850i) q^{21} +1.41399 q^{23} +(-5.75764 + 9.97252i) q^{25} +(2.81661 - 4.36655i) q^{27} +(-3.35150 - 5.80497i) q^{29} +(1.88555 + 3.26586i) q^{31} +(-10.3419 + 3.57288i) q^{33} +(-2.50742 - 4.34298i) q^{35} +(-1.48705 + 2.57565i) q^{37} +(6.05651 + 1.52272i) q^{39} +7.12257 q^{41} -1.13355 q^{43} +(-1.72152 - 12.0695i) q^{45} +(-3.76496 + 6.52111i) q^{47} -5.47725 q^{49} +(8.02812 - 2.77352i) q^{51} +13.1961 q^{53} +(-12.8362 + 22.2330i) q^{55} +(-1.13481 + 0.392049i) q^{57} +(-5.22399 + 9.04821i) q^{59} +5.76307 q^{61} +(3.43527 + 1.37975i) q^{63} +(13.0754 - 6.61303i) q^{65} +7.40886 q^{67} +(-0.464845 + 2.40458i) q^{69} +(-1.36182 - 2.35874i) q^{71} -1.45266 q^{73} +(-15.0661 - 13.0697i) q^{75} +(-3.89770 - 6.75102i) q^{77} +(3.73863 - 6.47550i) q^{79} +(6.49965 + 6.22531i) q^{81} +(4.02165 - 6.96570i) q^{83} +(9.96436 - 17.2588i) q^{85} +(10.9735 - 3.79108i) q^{87} +(6.75612 - 11.7020i) q^{89} +(-0.246154 + 4.44243i) q^{91} +(-6.17368 + 2.13285i) q^{93} +(-1.40851 + 2.43961i) q^{95} +3.06393 q^{97} +(-2.67604 - 18.7617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43} - 38 q^{45} + 11 q^{47} + 24 q^{49} + 5 q^{51} + 52 q^{53} - q^{57} - 8 q^{59} + 14 q^{61} - 21 q^{63} + 38 q^{65} + 14 q^{67} - 21 q^{69} - 12 q^{71} + 14 q^{73} - 14 q^{75} - 28 q^{77} + 5 q^{79} + 10 q^{81} + 9 q^{83} + 18 q^{85} + 18 q^{87} - 11 q^{89} - q^{91} - 9 q^{93} + 28 q^{95} + 50 q^{97} - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.328747 + 1.70057i −0.189802 + 0.981822i
\(4\) 0 0
\(5\) 2.03195 + 3.51944i 0.908716 + 1.57394i 0.815851 + 0.578263i \(0.196269\pi\)
0.0928649 + 0.995679i \(0.470398\pi\)
\(6\) 0 0
\(7\) −1.23400 −0.466408 −0.233204 0.972428i \(-0.574921\pi\)
−0.233204 + 0.972428i \(0.574921\pi\)
\(8\) 0 0
\(9\) −2.78385 1.11811i −0.927950 0.372704i
\(10\) 0 0
\(11\) 3.15860 + 5.47085i 0.952353 + 1.64952i 0.740314 + 0.672262i \(0.234677\pi\)
0.212039 + 0.977261i \(0.431990\pi\)
\(12\) 0 0
\(13\) 0.199477 3.60003i 0.0553249 0.998468i
\(14\) 0 0
\(15\) −6.65304 + 2.29846i −1.71781 + 0.593460i
\(16\) 0 0
\(17\) −2.45192 4.24685i −0.594678 1.03001i −0.993592 0.113025i \(-0.963946\pi\)
0.398914 0.916988i \(-0.369387\pi\)
\(18\) 0 0
\(19\) 0.346591 + 0.600313i 0.0795134 + 0.137721i 0.903040 0.429556i \(-0.141330\pi\)
−0.823527 + 0.567277i \(0.807997\pi\)
\(20\) 0 0
\(21\) 0.405673 2.09850i 0.0885252 0.457929i
\(22\) 0 0
\(23\) 1.41399 0.294837 0.147419 0.989074i \(-0.452904\pi\)
0.147419 + 0.989074i \(0.452904\pi\)
\(24\) 0 0
\(25\) −5.75764 + 9.97252i −1.15153 + 1.99450i
\(26\) 0 0
\(27\) 2.81661 4.36655i 0.542056 0.840342i
\(28\) 0 0
\(29\) −3.35150 5.80497i −0.622358 1.07796i −0.989045 0.147612i \(-0.952841\pi\)
0.366687 0.930344i \(-0.380492\pi\)
\(30\) 0 0
\(31\) 1.88555 + 3.26586i 0.338654 + 0.586566i 0.984180 0.177173i \(-0.0566951\pi\)
−0.645526 + 0.763738i \(0.723362\pi\)
\(32\) 0 0
\(33\) −10.3419 + 3.57288i −1.80030 + 0.621958i
\(34\) 0 0
\(35\) −2.50742 4.34298i −0.423832 0.734098i
\(36\) 0 0
\(37\) −1.48705 + 2.57565i −0.244470 + 0.423434i −0.961982 0.273112i \(-0.911947\pi\)
0.717513 + 0.696545i \(0.245280\pi\)
\(38\) 0 0
\(39\) 6.05651 + 1.52272i 0.969818 + 0.243831i
\(40\) 0 0
\(41\) 7.12257 1.11236 0.556179 0.831062i \(-0.312267\pi\)
0.556179 + 0.831062i \(0.312267\pi\)
\(42\) 0 0
\(43\) −1.13355 −0.172864 −0.0864320 0.996258i \(-0.527547\pi\)
−0.0864320 + 0.996258i \(0.527547\pi\)
\(44\) 0 0
\(45\) −1.72152 12.0695i −0.256629 1.79922i
\(46\) 0 0
\(47\) −3.76496 + 6.52111i −0.549176 + 0.951201i 0.449155 + 0.893454i \(0.351725\pi\)
−0.998331 + 0.0577473i \(0.981608\pi\)
\(48\) 0 0
\(49\) −5.47725 −0.782464
\(50\) 0 0
\(51\) 8.02812 2.77352i 1.12416 0.388370i
\(52\) 0 0
\(53\) 13.1961 1.81263 0.906315 0.422603i \(-0.138884\pi\)
0.906315 + 0.422603i \(0.138884\pi\)
\(54\) 0 0
\(55\) −12.8362 + 22.2330i −1.73084 + 2.99789i
\(56\) 0 0
\(57\) −1.13481 + 0.392049i −0.150310 + 0.0519282i
\(58\) 0 0
\(59\) −5.22399 + 9.04821i −0.680105 + 1.17798i 0.294844 + 0.955546i \(0.404732\pi\)
−0.974948 + 0.222431i \(0.928601\pi\)
\(60\) 0 0
\(61\) 5.76307 0.737886 0.368943 0.929452i \(-0.379720\pi\)
0.368943 + 0.929452i \(0.379720\pi\)
\(62\) 0 0
\(63\) 3.43527 + 1.37975i 0.432803 + 0.173832i
\(64\) 0 0
\(65\) 13.0754 6.61303i 1.62181 0.820246i
\(66\) 0 0
\(67\) 7.40886 0.905136 0.452568 0.891730i \(-0.350508\pi\)
0.452568 + 0.891730i \(0.350508\pi\)
\(68\) 0 0
\(69\) −0.464845 + 2.40458i −0.0559607 + 0.289478i
\(70\) 0 0
\(71\) −1.36182 2.35874i −0.161618 0.279930i 0.773831 0.633392i \(-0.218338\pi\)
−0.935449 + 0.353461i \(0.885005\pi\)
\(72\) 0 0
\(73\) −1.45266 −0.170021 −0.0850104 0.996380i \(-0.527092\pi\)
−0.0850104 + 0.996380i \(0.527092\pi\)
\(74\) 0 0
\(75\) −15.0661 13.0697i −1.73969 1.50916i
\(76\) 0 0
\(77\) −3.89770 6.75102i −0.444185 0.769350i
\(78\) 0 0
\(79\) 3.73863 6.47550i 0.420629 0.728550i −0.575372 0.817892i \(-0.695143\pi\)
0.996001 + 0.0893413i \(0.0284762\pi\)
\(80\) 0 0
\(81\) 6.49965 + 6.22531i 0.722184 + 0.691701i
\(82\) 0 0
\(83\) 4.02165 6.96570i 0.441433 0.764585i −0.556363 0.830939i \(-0.687804\pi\)
0.997796 + 0.0663546i \(0.0211369\pi\)
\(84\) 0 0
\(85\) 9.96436 17.2588i 1.08079 1.87198i
\(86\) 0 0
\(87\) 10.9735 3.79108i 1.17649 0.406447i
\(88\) 0 0
\(89\) 6.75612 11.7020i 0.716148 1.24040i −0.246367 0.969177i \(-0.579237\pi\)
0.962515 0.271228i \(-0.0874297\pi\)
\(90\) 0 0
\(91\) −0.246154 + 4.44243i −0.0258040 + 0.465693i
\(92\) 0 0
\(93\) −6.17368 + 2.13285i −0.640181 + 0.221167i
\(94\) 0 0
\(95\) −1.40851 + 2.43961i −0.144510 + 0.250299i
\(96\) 0 0
\(97\) 3.06393 0.311095 0.155547 0.987828i \(-0.450286\pi\)
0.155547 + 0.987828i \(0.450286\pi\)
\(98\) 0 0
\(99\) −2.67604 18.7617i −0.268952 1.88562i
\(100\) 0 0
\(101\) 3.05797 + 5.29656i 0.304279 + 0.527027i 0.977101 0.212778i \(-0.0682511\pi\)
−0.672821 + 0.739805i \(0.734918\pi\)
\(102\) 0 0
\(103\) −2.17185 3.76176i −0.213999 0.370657i 0.738964 0.673745i \(-0.235316\pi\)
−0.952962 + 0.303089i \(0.901982\pi\)
\(104\) 0 0
\(105\) 8.20984 2.83630i 0.801198 0.276794i
\(106\) 0 0
\(107\) 2.96304 5.13214i 0.286448 0.496143i −0.686511 0.727119i \(-0.740859\pi\)
0.972959 + 0.230976i \(0.0741920\pi\)
\(108\) 0 0
\(109\) −0.553911 −0.0530550 −0.0265275 0.999648i \(-0.508445\pi\)
−0.0265275 + 0.999648i \(0.508445\pi\)
\(110\) 0 0
\(111\) −3.89119 3.37556i −0.369336 0.320394i
\(112\) 0 0
\(113\) 3.05239 5.28690i 0.287145 0.497350i −0.685982 0.727618i \(-0.740627\pi\)
0.973127 + 0.230269i \(0.0739605\pi\)
\(114\) 0 0
\(115\) 2.87315 + 4.97645i 0.267923 + 0.464056i
\(116\) 0 0
\(117\) −4.58055 + 9.79891i −0.423472 + 0.905909i
\(118\) 0 0
\(119\) 3.02567 + 5.24061i 0.277363 + 0.480406i
\(120\) 0 0
\(121\) −14.4535 + 25.0341i −1.31395 + 2.27583i
\(122\) 0 0
\(123\) −2.34152 + 12.1124i −0.211128 + 1.09214i
\(124\) 0 0
\(125\) −26.4774 −2.36821
\(126\) 0 0
\(127\) 4.40433 7.62852i 0.390821 0.676922i −0.601737 0.798694i \(-0.705525\pi\)
0.992558 + 0.121773i \(0.0388579\pi\)
\(128\) 0 0
\(129\) 0.372649 1.92767i 0.0328100 0.169722i
\(130\) 0 0
\(131\) 5.71507 + 9.89879i 0.499328 + 0.864861i 1.00000 0.000776096i \(-0.000247039\pi\)
−0.500672 + 0.865637i \(0.666914\pi\)
\(132\) 0 0
\(133\) −0.427692 0.740785i −0.0370856 0.0642342i
\(134\) 0 0
\(135\) 21.0910 + 1.04027i 1.81522 + 0.0895323i
\(136\) 0 0
\(137\) 11.7040 0.999939 0.499969 0.866043i \(-0.333345\pi\)
0.499969 + 0.866043i \(0.333345\pi\)
\(138\) 0 0
\(139\) −3.49733 + 6.05755i −0.296639 + 0.513794i −0.975365 0.220598i \(-0.929199\pi\)
0.678726 + 0.734392i \(0.262533\pi\)
\(140\) 0 0
\(141\) −9.85185 8.54636i −0.829676 0.719734i
\(142\) 0 0
\(143\) 20.3253 10.2797i 1.69969 0.859634i
\(144\) 0 0
\(145\) 13.6202 23.5908i 1.13109 1.95911i
\(146\) 0 0
\(147\) 1.80063 9.31442i 0.148513 0.768241i
\(148\) 0 0
\(149\) −4.55253 + 7.88521i −0.372957 + 0.645981i −0.990019 0.140934i \(-0.954990\pi\)
0.617062 + 0.786915i \(0.288323\pi\)
\(150\) 0 0
\(151\) 0.185604 0.321476i 0.0151043 0.0261614i −0.858374 0.513024i \(-0.828525\pi\)
0.873479 + 0.486862i \(0.161859\pi\)
\(152\) 0 0
\(153\) 2.07733 + 14.5641i 0.167942 + 1.17744i
\(154\) 0 0
\(155\) −7.66267 + 13.2721i −0.615480 + 1.06604i
\(156\) 0 0
\(157\) −0.686457 1.18898i −0.0547852 0.0948908i 0.837332 0.546694i \(-0.184114\pi\)
−0.892117 + 0.451804i \(0.850781\pi\)
\(158\) 0 0
\(159\) −4.33819 + 22.4409i −0.344041 + 1.77968i
\(160\) 0 0
\(161\) −1.74486 −0.137514
\(162\) 0 0
\(163\) −8.53586 14.7845i −0.668580 1.15802i −0.978301 0.207188i \(-0.933569\pi\)
0.309721 0.950828i \(-0.399764\pi\)
\(164\) 0 0
\(165\) −33.5888 29.1379i −2.61488 2.26838i
\(166\) 0 0
\(167\) 3.14950 0.243716 0.121858 0.992548i \(-0.461115\pi\)
0.121858 + 0.992548i \(0.461115\pi\)
\(168\) 0 0
\(169\) −12.9204 1.43624i −0.993878 0.110480i
\(170\) 0 0
\(171\) −0.293640 2.05871i −0.0224552 0.157433i
\(172\) 0 0
\(173\) 8.80265 0.669253 0.334626 0.942351i \(-0.391390\pi\)
0.334626 + 0.942351i \(0.391390\pi\)
\(174\) 0 0
\(175\) 7.10492 12.3061i 0.537081 0.930252i
\(176\) 0 0
\(177\) −13.6697 11.8583i −1.02748 0.891325i
\(178\) 0 0
\(179\) −10.8390 + 18.7736i −0.810142 + 1.40321i 0.102622 + 0.994720i \(0.467277\pi\)
−0.912764 + 0.408487i \(0.866056\pi\)
\(180\) 0 0
\(181\) 17.3637 1.29063 0.645315 0.763916i \(-0.276726\pi\)
0.645315 + 0.763916i \(0.276726\pi\)
\(182\) 0 0
\(183\) −1.89459 + 9.80048i −0.140052 + 0.724473i
\(184\) 0 0
\(185\) −12.0864 −0.888613
\(186\) 0 0
\(187\) 15.4893 26.8282i 1.13269 1.96187i
\(188\) 0 0
\(189\) −3.47569 + 5.38831i −0.252819 + 0.391942i
\(190\) 0 0
\(191\) 2.23950 0.162044 0.0810221 0.996712i \(-0.474182\pi\)
0.0810221 + 0.996712i \(0.474182\pi\)
\(192\) 0 0
\(193\) −18.9028 −1.36065 −0.680326 0.732909i \(-0.738162\pi\)
−0.680326 + 0.732909i \(0.738162\pi\)
\(194\) 0 0
\(195\) 6.94739 + 24.4096i 0.497513 + 1.74801i
\(196\) 0 0
\(197\) 4.09745 7.09699i 0.291931 0.505640i −0.682335 0.731039i \(-0.739036\pi\)
0.974266 + 0.225400i \(0.0723688\pi\)
\(198\) 0 0
\(199\) −0.765637 1.32612i −0.0542745 0.0940063i 0.837612 0.546266i \(-0.183951\pi\)
−0.891886 + 0.452260i \(0.850618\pi\)
\(200\) 0 0
\(201\) −2.43564 + 12.5993i −0.171797 + 0.888683i
\(202\) 0 0
\(203\) 4.13575 + 7.16333i 0.290273 + 0.502767i
\(204\) 0 0
\(205\) 14.4727 + 25.0675i 1.01082 + 1.75079i
\(206\) 0 0
\(207\) −3.93634 1.58100i −0.273594 0.109887i
\(208\) 0 0
\(209\) −2.18948 + 3.79229i −0.151449 + 0.262318i
\(210\) 0 0
\(211\) −18.3932 −1.26624 −0.633119 0.774055i \(-0.718225\pi\)
−0.633119 + 0.774055i \(0.718225\pi\)
\(212\) 0 0
\(213\) 4.45888 1.54043i 0.305517 0.105549i
\(214\) 0 0
\(215\) −2.30331 3.98944i −0.157084 0.272078i
\(216\) 0 0
\(217\) −2.32676 4.03007i −0.157951 0.273579i
\(218\) 0 0
\(219\) 0.477557 2.47034i 0.0322703 0.166930i
\(220\) 0 0
\(221\) −15.7779 + 7.97984i −1.06134 + 0.536782i
\(222\) 0 0
\(223\) 10.5975 + 18.3553i 0.709658 + 1.22916i 0.964984 + 0.262309i \(0.0844840\pi\)
−0.255326 + 0.966855i \(0.582183\pi\)
\(224\) 0 0
\(225\) 27.1788 21.3243i 1.81192 1.42162i
\(226\) 0 0
\(227\) 19.0279 1.26293 0.631464 0.775405i \(-0.282454\pi\)
0.631464 + 0.775405i \(0.282454\pi\)
\(228\) 0 0
\(229\) 7.57460 + 13.1196i 0.500544 + 0.866967i 1.00000 0.000627856i \(0.000199853\pi\)
−0.499456 + 0.866339i \(0.666467\pi\)
\(230\) 0 0
\(231\) 12.7619 4.40893i 0.839672 0.290086i
\(232\) 0 0
\(233\) −20.1509 −1.32013 −0.660064 0.751209i \(-0.729471\pi\)
−0.660064 + 0.751209i \(0.729471\pi\)
\(234\) 0 0
\(235\) −30.6009 −1.99618
\(236\) 0 0
\(237\) 9.78295 + 8.48659i 0.635471 + 0.551263i
\(238\) 0 0
\(239\) −1.15357 1.99805i −0.0746186 0.129243i 0.826302 0.563228i \(-0.190441\pi\)
−0.900920 + 0.433985i \(0.857107\pi\)
\(240\) 0 0
\(241\) −11.7563 −0.757288 −0.378644 0.925542i \(-0.623610\pi\)
−0.378644 + 0.925542i \(0.623610\pi\)
\(242\) 0 0
\(243\) −12.7233 + 9.00654i −0.816200 + 0.577770i
\(244\) 0 0
\(245\) −11.1295 19.2768i −0.711037 1.23155i
\(246\) 0 0
\(247\) 2.23028 1.12799i 0.141909 0.0717722i
\(248\) 0 0
\(249\) 10.5235 + 9.12903i 0.666902 + 0.578529i
\(250\) 0 0
\(251\) −9.40736 16.2940i −0.593787 1.02847i −0.993717 0.111924i \(-0.964299\pi\)
0.399929 0.916546i \(-0.369035\pi\)
\(252\) 0 0
\(253\) 4.46622 + 7.73572i 0.280789 + 0.486341i
\(254\) 0 0
\(255\) 26.0740 + 22.6188i 1.63281 + 1.41645i
\(256\) 0 0
\(257\) −3.59795 −0.224434 −0.112217 0.993684i \(-0.535795\pi\)
−0.112217 + 0.993684i \(0.535795\pi\)
\(258\) 0 0
\(259\) 1.83502 3.17834i 0.114022 0.197493i
\(260\) 0 0
\(261\) 2.83947 + 19.9075i 0.175759 + 1.23225i
\(262\) 0 0
\(263\) −3.18175 5.51095i −0.196195 0.339819i 0.751097 0.660192i \(-0.229525\pi\)
−0.947292 + 0.320373i \(0.896192\pi\)
\(264\) 0 0
\(265\) 26.8139 + 46.4430i 1.64716 + 2.85297i
\(266\) 0 0
\(267\) 17.6789 + 15.3362i 1.08193 + 0.938561i
\(268\) 0 0
\(269\) −4.24582 7.35398i −0.258872 0.448380i 0.707068 0.707146i \(-0.250018\pi\)
−0.965940 + 0.258766i \(0.916684\pi\)
\(270\) 0 0
\(271\) 15.8863 27.5159i 0.965023 1.67147i 0.255470 0.966817i \(-0.417770\pi\)
0.709553 0.704652i \(-0.248897\pi\)
\(272\) 0 0
\(273\) −7.47373 1.87904i −0.452330 0.113724i
\(274\) 0 0
\(275\) −72.7442 −4.38664
\(276\) 0 0
\(277\) 15.0872 0.906503 0.453252 0.891383i \(-0.350264\pi\)
0.453252 + 0.891383i \(0.350264\pi\)
\(278\) 0 0
\(279\) −1.59748 11.1999i −0.0956386 0.670522i
\(280\) 0 0
\(281\) −9.06790 + 15.7061i −0.540945 + 0.936945i 0.457905 + 0.889001i \(0.348600\pi\)
−0.998850 + 0.0479435i \(0.984733\pi\)
\(282\) 0 0
\(283\) −9.52842 −0.566406 −0.283203 0.959060i \(-0.591397\pi\)
−0.283203 + 0.959060i \(0.591397\pi\)
\(284\) 0 0
\(285\) −3.68568 3.19728i −0.218321 0.189390i
\(286\) 0 0
\(287\) −8.78924 −0.518813
\(288\) 0 0
\(289\) −3.52384 + 6.10348i −0.207285 + 0.359028i
\(290\) 0 0
\(291\) −1.00726 + 5.21042i −0.0590465 + 0.305440i
\(292\) 0 0
\(293\) 0.154098 0.266906i 0.00900252 0.0155928i −0.861489 0.507776i \(-0.830468\pi\)
0.870492 + 0.492183i \(0.163801\pi\)
\(294\) 0 0
\(295\) −42.4595 −2.47209
\(296\) 0 0
\(297\) 32.7852 + 1.61707i 1.90239 + 0.0938317i
\(298\) 0 0
\(299\) 0.282058 5.09040i 0.0163118 0.294386i
\(300\) 0 0
\(301\) 1.39879 0.0806251
\(302\) 0 0
\(303\) −10.0124 + 3.45905i −0.575200 + 0.198717i
\(304\) 0 0
\(305\) 11.7103 + 20.2828i 0.670528 + 1.16139i
\(306\) 0 0
\(307\) −30.6770 −1.75083 −0.875415 0.483372i \(-0.839412\pi\)
−0.875415 + 0.483372i \(0.839412\pi\)
\(308\) 0 0
\(309\) 7.11111 2.45671i 0.404537 0.139757i
\(310\) 0 0
\(311\) 11.6222 + 20.1302i 0.659033 + 1.14148i 0.980866 + 0.194682i \(0.0623676\pi\)
−0.321833 + 0.946796i \(0.604299\pi\)
\(312\) 0 0
\(313\) 3.47080 6.01160i 0.196181 0.339796i −0.751106 0.660182i \(-0.770479\pi\)
0.947287 + 0.320386i \(0.103813\pi\)
\(314\) 0 0
\(315\) 2.12435 + 14.8938i 0.119694 + 0.839171i
\(316\) 0 0
\(317\) 6.08590 10.5411i 0.341818 0.592046i −0.642952 0.765906i \(-0.722291\pi\)
0.984770 + 0.173860i \(0.0556241\pi\)
\(318\) 0 0
\(319\) 21.1721 36.6711i 1.18541 2.05319i
\(320\) 0 0
\(321\) 7.75346 + 6.72603i 0.432756 + 0.375410i
\(322\) 0 0
\(323\) 1.69963 2.94384i 0.0945698 0.163800i
\(324\) 0 0
\(325\) 34.7529 + 22.7170i 1.92774 + 1.26011i
\(326\) 0 0
\(327\) 0.182096 0.941962i 0.0100700 0.0520906i
\(328\) 0 0
\(329\) 4.64596 8.04704i 0.256140 0.443648i
\(330\) 0 0
\(331\) −18.6570 −1.02548 −0.512741 0.858543i \(-0.671370\pi\)
−0.512741 + 0.858543i \(0.671370\pi\)
\(332\) 0 0
\(333\) 7.01959 5.50753i 0.384671 0.301811i
\(334\) 0 0
\(335\) 15.0544 + 26.0750i 0.822511 + 1.42463i
\(336\) 0 0
\(337\) −10.0206 17.3562i −0.545858 0.945454i −0.998552 0.0537879i \(-0.982871\pi\)
0.452694 0.891666i \(-0.350463\pi\)
\(338\) 0 0
\(339\) 7.98726 + 6.92885i 0.433808 + 0.376323i
\(340\) 0 0
\(341\) −11.9114 + 20.6311i −0.645036 + 1.11723i
\(342\) 0 0
\(343\) 15.3969 0.831355
\(344\) 0 0
\(345\) −9.40732 + 3.25000i −0.506473 + 0.174974i
\(346\) 0 0
\(347\) 10.1229 17.5333i 0.543424 0.941239i −0.455280 0.890348i \(-0.650461\pi\)
0.998704 0.0508902i \(-0.0162059\pi\)
\(348\) 0 0
\(349\) −17.9009 31.0052i −0.958212 1.65967i −0.726840 0.686807i \(-0.759012\pi\)
−0.231372 0.972865i \(-0.574322\pi\)
\(350\) 0 0
\(351\) −15.1578 11.0109i −0.809066 0.587718i
\(352\) 0 0
\(353\) −13.2650 22.9756i −0.706022 1.22287i −0.966321 0.257339i \(-0.917154\pi\)
0.260299 0.965528i \(-0.416179\pi\)
\(354\) 0 0
\(355\) 5.53429 9.58566i 0.293729 0.508754i
\(356\) 0 0
\(357\) −9.90669 + 3.42251i −0.524317 + 0.181139i
\(358\) 0 0
\(359\) −5.94247 −0.313632 −0.156816 0.987628i \(-0.550123\pi\)
−0.156816 + 0.987628i \(0.550123\pi\)
\(360\) 0 0
\(361\) 9.25975 16.0384i 0.487355 0.844124i
\(362\) 0 0
\(363\) −37.8207 32.8090i −1.98507 1.72202i
\(364\) 0 0
\(365\) −2.95173 5.11255i −0.154501 0.267603i
\(366\) 0 0
\(367\) −10.0026 17.3250i −0.522130 0.904356i −0.999669 0.0257451i \(-0.991804\pi\)
0.477538 0.878611i \(-0.341529\pi\)
\(368\) 0 0
\(369\) −19.8282 7.96383i −1.03221 0.414580i
\(370\) 0 0
\(371\) −16.2840 −0.845424
\(372\) 0 0
\(373\) 9.86899 17.0936i 0.510997 0.885073i −0.488922 0.872328i \(-0.662610\pi\)
0.999919 0.0127450i \(-0.00405696\pi\)
\(374\) 0 0
\(375\) 8.70437 45.0266i 0.449492 2.32517i
\(376\) 0 0
\(377\) −21.5666 + 10.9075i −1.11074 + 0.561767i
\(378\) 0 0
\(379\) −1.58794 + 2.75040i −0.0815672 + 0.141278i −0.903923 0.427695i \(-0.859326\pi\)
0.822356 + 0.568973i \(0.192659\pi\)
\(380\) 0 0
\(381\) 11.5249 + 9.99770i 0.590438 + 0.512198i
\(382\) 0 0
\(383\) −1.75166 + 3.03397i −0.0895058 + 0.155029i −0.907302 0.420479i \(-0.861862\pi\)
0.817797 + 0.575507i \(0.195195\pi\)
\(384\) 0 0
\(385\) 15.8399 27.4355i 0.807275 1.39824i
\(386\) 0 0
\(387\) 3.15562 + 1.26743i 0.160409 + 0.0644271i
\(388\) 0 0
\(389\) 7.61988 13.1980i 0.386343 0.669166i −0.605612 0.795760i \(-0.707071\pi\)
0.991955 + 0.126595i \(0.0404048\pi\)
\(390\) 0 0
\(391\) −3.46699 6.00501i −0.175333 0.303686i
\(392\) 0 0
\(393\) −18.7124 + 6.46465i −0.943913 + 0.326099i
\(394\) 0 0
\(395\) 30.3868 1.52893
\(396\) 0 0
\(397\) −6.12766 10.6134i −0.307538 0.532672i 0.670285 0.742104i \(-0.266172\pi\)
−0.977823 + 0.209432i \(0.932839\pi\)
\(398\) 0 0
\(399\) 1.40036 0.483789i 0.0701055 0.0242197i
\(400\) 0 0
\(401\) 14.1903 0.708632 0.354316 0.935126i \(-0.384714\pi\)
0.354316 + 0.935126i \(0.384714\pi\)
\(402\) 0 0
\(403\) 12.1333 6.13655i 0.604403 0.305684i
\(404\) 0 0
\(405\) −8.70265 + 35.5247i −0.432438 + 1.76523i
\(406\) 0 0
\(407\) −18.7880 −0.931285
\(408\) 0 0
\(409\) −7.54929 + 13.0758i −0.373289 + 0.646555i −0.990069 0.140580i \(-0.955103\pi\)
0.616781 + 0.787135i \(0.288437\pi\)
\(410\) 0 0
\(411\) −3.84765 + 19.9034i −0.189790 + 0.981762i
\(412\) 0 0
\(413\) 6.44639 11.1655i 0.317206 0.549417i
\(414\) 0 0
\(415\) 32.6872 1.60455
\(416\) 0 0
\(417\) −9.15152 7.93884i −0.448152 0.388766i
\(418\) 0 0
\(419\) 14.9144 0.728617 0.364309 0.931278i \(-0.381305\pi\)
0.364309 + 0.931278i \(0.381305\pi\)
\(420\) 0 0
\(421\) 5.12630 8.87902i 0.249841 0.432737i −0.713641 0.700512i \(-0.752955\pi\)
0.963481 + 0.267775i \(0.0862884\pi\)
\(422\) 0 0
\(423\) 17.7724 13.9441i 0.864125 0.677987i
\(424\) 0 0
\(425\) 56.4691 2.73915
\(426\) 0 0
\(427\) −7.11162 −0.344156
\(428\) 0 0
\(429\) 10.7995 + 37.9439i 0.521404 + 1.83195i
\(430\) 0 0
\(431\) 4.95272 8.57837i 0.238564 0.413206i −0.721738 0.692166i \(-0.756657\pi\)
0.960303 + 0.278961i \(0.0899899\pi\)
\(432\) 0 0
\(433\) 4.64659 + 8.04813i 0.223301 + 0.386768i 0.955808 0.293991i \(-0.0949834\pi\)
−0.732507 + 0.680759i \(0.761650\pi\)
\(434\) 0 0
\(435\) 35.6402 + 30.9174i 1.70881 + 1.48238i
\(436\) 0 0
\(437\) 0.490076 + 0.848836i 0.0234435 + 0.0406053i
\(438\) 0 0
\(439\) −4.44439 7.69790i −0.212119 0.367401i 0.740259 0.672322i \(-0.234703\pi\)
−0.952377 + 0.304922i \(0.901370\pi\)
\(440\) 0 0
\(441\) 15.2478 + 6.12418i 0.726088 + 0.291627i
\(442\) 0 0
\(443\) −16.7207 + 28.9612i −0.794426 + 1.37599i 0.128777 + 0.991674i \(0.458895\pi\)
−0.923203 + 0.384313i \(0.874438\pi\)
\(444\) 0 0
\(445\) 54.9124 2.60310
\(446\) 0 0
\(447\) −11.9127 10.3341i −0.563451 0.488787i
\(448\) 0 0
\(449\) 6.81689 + 11.8072i 0.321709 + 0.557216i 0.980841 0.194811i \(-0.0624095\pi\)
−0.659132 + 0.752027i \(0.729076\pi\)
\(450\) 0 0
\(451\) 22.4973 + 38.9665i 1.05936 + 1.83486i
\(452\) 0 0
\(453\) 0.485675 + 0.421317i 0.0228190 + 0.0197952i
\(454\) 0 0
\(455\) −16.1350 + 8.16047i −0.756422 + 0.382569i
\(456\) 0 0
\(457\) −2.40357 4.16311i −0.112434 0.194742i 0.804317 0.594201i \(-0.202531\pi\)
−0.916751 + 0.399459i \(0.869198\pi\)
\(458\) 0 0
\(459\) −25.4502 1.25528i −1.18791 0.0585914i
\(460\) 0 0
\(461\) 27.9065 1.29973 0.649867 0.760048i \(-0.274825\pi\)
0.649867 + 0.760048i \(0.274825\pi\)
\(462\) 0 0
\(463\) 5.16665 + 8.94891i 0.240115 + 0.415891i 0.960747 0.277427i \(-0.0894816\pi\)
−0.720632 + 0.693318i \(0.756148\pi\)
\(464\) 0 0
\(465\) −20.0511 17.3940i −0.929845 0.806629i
\(466\) 0 0
\(467\) −10.3158 −0.477359 −0.238679 0.971098i \(-0.576714\pi\)
−0.238679 + 0.971098i \(0.576714\pi\)
\(468\) 0 0
\(469\) −9.14252 −0.422162
\(470\) 0 0
\(471\) 2.24761 0.776492i 0.103564 0.0357789i
\(472\) 0 0
\(473\) −3.58041 6.20145i −0.164627 0.285143i
\(474\) 0 0
\(475\) −7.98218 −0.366247
\(476\) 0 0
\(477\) −36.7361 14.7548i −1.68203 0.675574i
\(478\) 0 0
\(479\) 12.2295 + 21.1821i 0.558780 + 0.967836i 0.997599 + 0.0692603i \(0.0220639\pi\)
−0.438818 + 0.898576i \(0.644603\pi\)
\(480\) 0 0
\(481\) 8.97577 + 5.86721i 0.409260 + 0.267522i
\(482\) 0 0
\(483\) 0.573618 2.96725i 0.0261005 0.135015i
\(484\) 0 0
\(485\) 6.22575 + 10.7833i 0.282697 + 0.489645i
\(486\) 0 0
\(487\) −2.64195 4.57600i −0.119718 0.207358i 0.799938 0.600083i \(-0.204866\pi\)
−0.919656 + 0.392725i \(0.871532\pi\)
\(488\) 0 0
\(489\) 27.9482 9.65542i 1.26386 0.436633i
\(490\) 0 0
\(491\) −20.0941 −0.906834 −0.453417 0.891299i \(-0.649795\pi\)
−0.453417 + 0.891299i \(0.649795\pi\)
\(492\) 0 0
\(493\) −16.4352 + 28.4667i −0.740206 + 1.28207i
\(494\) 0 0
\(495\) 60.5931 47.5410i 2.72346 2.13681i
\(496\) 0 0
\(497\) 1.68048 + 2.91068i 0.0753798 + 0.130562i
\(498\) 0 0
\(499\) −13.0843 22.6626i −0.585733 1.01452i −0.994784 0.102007i \(-0.967473\pi\)
0.409051 0.912512i \(-0.365860\pi\)
\(500\) 0 0
\(501\) −1.03539 + 5.35593i −0.0462577 + 0.239285i
\(502\) 0 0
\(503\) −10.6471 18.4414i −0.474732 0.822260i 0.524849 0.851195i \(-0.324122\pi\)
−0.999581 + 0.0289349i \(0.990788\pi\)
\(504\) 0 0
\(505\) −12.4273 + 21.5247i −0.553006 + 0.957835i
\(506\) 0 0
\(507\) 6.68998 21.4999i 0.297112 0.954843i
\(508\) 0 0
\(509\) 22.6648 1.00460 0.502299 0.864694i \(-0.332487\pi\)
0.502299 + 0.864694i \(0.332487\pi\)
\(510\) 0 0
\(511\) 1.79258 0.0792990
\(512\) 0 0
\(513\) 3.59750 + 0.177440i 0.158834 + 0.00783415i
\(514\) 0 0
\(515\) 8.82618 15.2874i 0.388928 0.673643i
\(516\) 0 0
\(517\) −47.5680 −2.09204
\(518\) 0 0
\(519\) −2.89384 + 14.9695i −0.127026 + 0.657087i
\(520\) 0 0
\(521\) 12.1834 0.533765 0.266883 0.963729i \(-0.414006\pi\)
0.266883 + 0.963729i \(0.414006\pi\)
\(522\) 0 0
\(523\) 17.2158 29.8186i 0.752794 1.30388i −0.193670 0.981067i \(-0.562039\pi\)
0.946464 0.322810i \(-0.104628\pi\)
\(524\) 0 0
\(525\) 18.5916 + 16.1280i 0.811403 + 0.703882i
\(526\) 0 0
\(527\) 9.24642 16.0153i 0.402780 0.697636i
\(528\) 0 0
\(529\) −21.0006 −0.913071
\(530\) 0 0
\(531\) 24.6597 19.3479i 1.07014 0.839626i
\(532\) 0 0
\(533\) 1.42079 25.6415i 0.0615412 1.11066i
\(534\) 0 0
\(535\) 24.0830 1.04120
\(536\) 0 0
\(537\) −28.3625 24.6042i −1.22393 1.06175i
\(538\) 0 0
\(539\) −17.3004 29.9652i −0.745181 1.29069i
\(540\) 0 0
\(541\) −44.8888 −1.92992 −0.964960 0.262398i \(-0.915487\pi\)
−0.964960 + 0.262398i \(0.915487\pi\)
\(542\) 0 0
\(543\) −5.70825 + 29.5281i −0.244964 + 1.26717i
\(544\) 0 0
\(545\) −1.12552 1.94946i −0.0482119 0.0835055i
\(546\) 0 0
\(547\) 0.758838 1.31435i 0.0324456 0.0561974i −0.849347 0.527835i \(-0.823004\pi\)
0.881792 + 0.471638i \(0.156337\pi\)
\(548\) 0 0
\(549\) −16.0435 6.44376i −0.684721 0.275013i
\(550\) 0 0
\(551\) 2.32320 4.02390i 0.0989716 0.171424i
\(552\) 0 0
\(553\) −4.61346 + 7.99075i −0.196184 + 0.339801i
\(554\) 0 0
\(555\) 3.97338 20.5538i 0.168661 0.872460i
\(556\) 0 0
\(557\) −11.0013 + 19.0548i −0.466139 + 0.807376i −0.999252 0.0386680i \(-0.987689\pi\)
0.533114 + 0.846044i \(0.321022\pi\)
\(558\) 0 0
\(559\) −0.226116 + 4.08080i −0.00956369 + 0.172599i
\(560\) 0 0
\(561\) 40.5311 + 35.1602i 1.71122 + 1.48446i
\(562\) 0 0
\(563\) 3.71374 6.43238i 0.156515 0.271093i −0.777094 0.629384i \(-0.783307\pi\)
0.933610 + 0.358291i \(0.116641\pi\)
\(564\) 0 0
\(565\) 24.8092 1.04373
\(566\) 0 0
\(567\) −8.02056 7.68203i −0.336832 0.322615i
\(568\) 0 0
\(569\) −12.7578 22.0972i −0.534836 0.926362i −0.999171 0.0407030i \(-0.987040\pi\)
0.464336 0.885659i \(-0.346293\pi\)
\(570\) 0 0
\(571\) −13.2087 22.8782i −0.552769 0.957423i −0.998073 0.0620443i \(-0.980238\pi\)
0.445305 0.895379i \(-0.353095\pi\)
\(572\) 0 0
\(573\) −0.736228 + 3.80841i −0.0307564 + 0.159099i
\(574\) 0 0
\(575\) −8.14124 + 14.1010i −0.339513 + 0.588054i
\(576\) 0 0
\(577\) 8.20970 0.341774 0.170887 0.985291i \(-0.445337\pi\)
0.170887 + 0.985291i \(0.445337\pi\)
\(578\) 0 0
\(579\) 6.21424 32.1455i 0.258255 1.33592i
\(580\) 0 0
\(581\) −4.96271 + 8.59566i −0.205888 + 0.356608i
\(582\) 0 0
\(583\) 41.6813 + 72.1941i 1.72626 + 2.98997i
\(584\) 0 0
\(585\) −43.7941 + 3.78992i −1.81066 + 0.156694i
\(586\) 0 0
\(587\) −8.07874 13.9928i −0.333445 0.577544i 0.649740 0.760157i \(-0.274878\pi\)
−0.983185 + 0.182612i \(0.941545\pi\)
\(588\) 0 0
\(589\) −1.30702 + 2.26383i −0.0538550 + 0.0932796i
\(590\) 0 0
\(591\) 10.7219 + 9.30110i 0.441039 + 0.382596i
\(592\) 0 0
\(593\) 38.1696 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(594\) 0 0
\(595\) −12.2960 + 21.2973i −0.504087 + 0.873105i
\(596\) 0 0
\(597\) 2.50686 0.866057i 0.102599 0.0354454i
\(598\) 0 0
\(599\) −10.0046 17.3285i −0.408778 0.708024i 0.585975 0.810329i \(-0.300712\pi\)
−0.994753 + 0.102305i \(0.967378\pi\)
\(600\) 0 0
\(601\) 4.50392 + 7.80102i 0.183719 + 0.318210i 0.943144 0.332384i \(-0.107853\pi\)
−0.759425 + 0.650595i \(0.774520\pi\)
\(602\) 0 0
\(603\) −20.6252 8.28393i −0.839921 0.337348i
\(604\) 0 0
\(605\) −117.475 −4.77603
\(606\) 0 0
\(607\) −14.3741 + 24.8967i −0.583427 + 1.01053i 0.411642 + 0.911345i \(0.364955\pi\)
−0.995070 + 0.0991800i \(0.968378\pi\)
\(608\) 0 0
\(609\) −13.5413 + 4.67819i −0.548722 + 0.189570i
\(610\) 0 0
\(611\) 22.7252 + 14.8548i 0.919361 + 0.600960i
\(612\) 0 0
\(613\) 4.46519 7.73394i 0.180347 0.312371i −0.761651 0.647987i \(-0.775611\pi\)
0.941999 + 0.335616i \(0.108944\pi\)
\(614\) 0 0
\(615\) −47.3867 + 16.3709i −1.91082 + 0.660140i
\(616\) 0 0
\(617\) −9.34148 + 16.1799i −0.376074 + 0.651379i −0.990487 0.137605i \(-0.956059\pi\)
0.614413 + 0.788984i \(0.289393\pi\)
\(618\) 0 0
\(619\) 9.16531 15.8748i 0.368385 0.638061i −0.620928 0.783867i \(-0.713244\pi\)
0.989313 + 0.145806i \(0.0465776\pi\)
\(620\) 0 0
\(621\) 3.98265 6.17425i 0.159818 0.247764i
\(622\) 0 0
\(623\) −8.33705 + 14.4402i −0.334017 + 0.578534i
\(624\) 0 0
\(625\) −25.0126 43.3231i −1.00050 1.73292i
\(626\) 0 0
\(627\) −5.72926 4.97006i −0.228804 0.198485i
\(628\) 0 0
\(629\) 14.5845 0.581523
\(630\) 0 0
\(631\) −4.52993 7.84607i −0.180334 0.312347i 0.761660 0.647976i \(-0.224384\pi\)
−0.941994 + 0.335629i \(0.891051\pi\)
\(632\) 0 0
\(633\) 6.04669 31.2788i 0.240334 1.24322i
\(634\) 0 0
\(635\) 35.7975 1.42058
\(636\) 0 0
\(637\) −1.09258 + 19.7182i −0.0432898 + 0.781265i
\(638\) 0 0
\(639\) 1.15376 + 8.08903i 0.0456422 + 0.319997i
\(640\) 0 0
\(641\) 17.6912 0.698760 0.349380 0.936981i \(-0.386392\pi\)
0.349380 + 0.936981i \(0.386392\pi\)
\(642\) 0 0
\(643\) −22.9864 + 39.8137i −0.906497 + 1.57010i −0.0876021 + 0.996156i \(0.527920\pi\)
−0.818895 + 0.573943i \(0.805413\pi\)
\(644\) 0 0
\(645\) 7.54152 2.60541i 0.296947 0.102588i
\(646\) 0 0
\(647\) 18.5411 32.1142i 0.728927 1.26254i −0.228411 0.973565i \(-0.573353\pi\)
0.957337 0.288973i \(-0.0933138\pi\)
\(648\) 0 0
\(649\) −66.0018 −2.59080
\(650\) 0 0
\(651\) 7.61831 2.63194i 0.298585 0.103154i
\(652\) 0 0
\(653\) 25.8466 1.01146 0.505728 0.862693i \(-0.331224\pi\)
0.505728 + 0.862693i \(0.331224\pi\)
\(654\) 0 0
\(655\) −23.2255 + 40.2277i −0.907494 + 1.57183i
\(656\) 0 0
\(657\) 4.04399 + 1.62424i 0.157771 + 0.0633675i
\(658\) 0 0
\(659\) −0.943057 −0.0367363 −0.0183681 0.999831i \(-0.505847\pi\)
−0.0183681 + 0.999831i \(0.505847\pi\)
\(660\) 0 0
\(661\) 9.86572 0.383732 0.191866 0.981421i \(-0.438546\pi\)
0.191866 + 0.981421i \(0.438546\pi\)
\(662\) 0 0
\(663\) −8.38331 29.4547i −0.325581 1.14393i
\(664\) 0 0
\(665\) 1.73810 3.01048i 0.0674006 0.116741i
\(666\) 0 0
\(667\) −4.73899 8.20817i −0.183494 0.317821i
\(668\) 0 0
\(669\) −34.6983 + 11.9874i −1.34152 + 0.463460i
\(670\) 0 0
\(671\) 18.2032 + 31.5289i 0.702727 + 1.21716i
\(672\) 0 0
\(673\) 12.6742 + 21.9524i 0.488555 + 0.846202i 0.999913 0.0131657i \(-0.00419088\pi\)
−0.511358 + 0.859368i \(0.670858\pi\)
\(674\) 0 0
\(675\) 27.3285 + 53.2297i 1.05187 + 2.04881i
\(676\) 0 0
\(677\) −20.2261 + 35.0326i −0.777352 + 1.34641i 0.156111 + 0.987740i \(0.450104\pi\)
−0.933463 + 0.358674i \(0.883229\pi\)
\(678\) 0 0
\(679\) −3.78089 −0.145097
\(680\) 0 0
\(681\) −6.25538 + 32.3583i −0.239707 + 1.23997i
\(682\) 0 0
\(683\) −11.6007 20.0931i −0.443890 0.768840i 0.554084 0.832461i \(-0.313069\pi\)
−0.997974 + 0.0636208i \(0.979735\pi\)
\(684\) 0 0
\(685\) 23.7819 + 41.1915i 0.908660 + 1.57384i
\(686\) 0 0
\(687\) −24.8009 + 8.56808i −0.946212 + 0.326893i
\(688\) 0 0
\(689\) 2.63233 47.5065i 0.100284 1.80985i
\(690\) 0 0
\(691\) 1.21656 + 2.10714i 0.0462801 + 0.0801595i 0.888238 0.459384i \(-0.151930\pi\)
−0.841957 + 0.539544i \(0.818597\pi\)
\(692\) 0 0
\(693\) 3.30223 + 23.1519i 0.125441 + 0.879468i
\(694\) 0 0
\(695\) −28.4256 −1.07824
\(696\) 0 0
\(697\) −17.4640 30.2485i −0.661496 1.14574i
\(698\) 0 0
\(699\) 6.62454 34.2679i 0.250563 1.29613i
\(700\) 0 0
\(701\) 0.254890 0.00962706 0.00481353 0.999988i \(-0.498468\pi\)
0.00481353 + 0.999988i \(0.498468\pi\)
\(702\) 0 0
\(703\) −2.06159 −0.0777544
\(704\) 0 0
\(705\) 10.0599 52.0388i 0.378879 1.95989i
\(706\) 0 0
\(707\) −3.77353 6.53594i −0.141918 0.245809i
\(708\) 0 0
\(709\) 12.1334 0.455681 0.227840 0.973698i \(-0.426834\pi\)
0.227840 + 0.973698i \(0.426834\pi\)
\(710\) 0 0
\(711\) −17.6481 + 13.8466i −0.661856 + 0.519288i
\(712\) 0 0
\(713\) 2.66614 + 4.61789i 0.0998478 + 0.172941i
\(714\) 0 0
\(715\) 77.4788 + 50.6457i 2.89754 + 1.89404i
\(716\) 0 0
\(717\) 3.77705 1.30488i 0.141057 0.0487315i
\(718\) 0 0
\(719\) 26.3387 + 45.6200i 0.982268 + 1.70134i 0.653497 + 0.756929i \(0.273301\pi\)
0.328771 + 0.944410i \(0.393365\pi\)
\(720\) 0 0
\(721\) 2.68006 + 4.64200i 0.0998107 + 0.172877i
\(722\) 0 0
\(723\) 3.86484 19.9923i 0.143735 0.743522i
\(724\) 0 0
\(725\) 77.1869 2.86665
\(726\) 0 0
\(727\) −1.58322 + 2.74222i −0.0587184 + 0.101703i −0.893890 0.448286i \(-0.852035\pi\)
0.835172 + 0.549989i \(0.185368\pi\)
\(728\) 0 0
\(729\) −11.1335 24.5977i −0.412351 0.911025i
\(730\) 0 0
\(731\) 2.77936 + 4.81400i 0.102799 + 0.178052i
\(732\) 0 0
\(733\) 11.4180 + 19.7766i 0.421734 + 0.730466i 0.996109 0.0881269i \(-0.0280881\pi\)
−0.574375 + 0.818592i \(0.694755\pi\)
\(734\) 0 0
\(735\) 36.4403 12.5892i 1.34412 0.464361i
\(736\) 0 0
\(737\) 23.4016 + 40.5327i 0.862009 + 1.49304i
\(738\) 0 0
\(739\) 10.9208 18.9154i 0.401728 0.695813i −0.592207 0.805786i \(-0.701743\pi\)
0.993935 + 0.109973i \(0.0350765\pi\)
\(740\) 0 0
\(741\) 1.18502 + 4.16356i 0.0435328 + 0.152952i
\(742\) 0 0
\(743\) −10.9092 −0.400218 −0.200109 0.979774i \(-0.564130\pi\)
−0.200109 + 0.979774i \(0.564130\pi\)
\(744\) 0 0
\(745\) −37.0020 −1.35565
\(746\) 0 0
\(747\) −18.9841 + 14.8948i −0.694592 + 0.544973i
\(748\) 0 0
\(749\) −3.65639 + 6.33306i −0.133602 + 0.231405i
\(750\) 0 0
\(751\) −29.2500 −1.06735 −0.533674 0.845690i \(-0.679189\pi\)
−0.533674 + 0.845690i \(0.679189\pi\)
\(752\) 0 0
\(753\) 30.8017 10.6412i 1.12248 0.387788i
\(754\) 0 0
\(755\) 1.50856 0.0549020
\(756\) 0 0
\(757\) −15.6746 + 27.1492i −0.569703 + 0.986755i 0.426892 + 0.904303i \(0.359609\pi\)
−0.996595 + 0.0824524i \(0.973725\pi\)
\(758\) 0 0
\(759\) −14.6234 + 5.05201i −0.530794 + 0.183376i
\(760\) 0 0
\(761\) −11.6645 + 20.2035i −0.422838 + 0.732377i −0.996216 0.0869143i \(-0.972299\pi\)
0.573378 + 0.819291i \(0.305633\pi\)
\(762\) 0 0
\(763\) 0.683525 0.0247453
\(764\) 0 0
\(765\) −47.0366 + 36.9046i −1.70061 + 1.33429i
\(766\) 0 0
\(767\) 31.5317 + 20.6114i 1.13855 + 0.744235i
\(768\) 0 0
\(769\) 8.21952 0.296404 0.148202 0.988957i \(-0.452651\pi\)
0.148202 + 0.988957i \(0.452651\pi\)
\(770\) 0 0
\(771\) 1.18281 6.11855i 0.0425980 0.220354i
\(772\) 0 0
\(773\) −19.9461 34.5476i −0.717411 1.24259i −0.962022 0.272971i \(-0.911994\pi\)
0.244611 0.969621i \(-0.421340\pi\)
\(774\) 0 0
\(775\) −43.4252 −1.55988
\(776\) 0 0
\(777\) 4.80173 + 4.16544i 0.172261 + 0.149434i
\(778\) 0 0
\(779\) 2.46862 + 4.27577i 0.0884474 + 0.153195i
\(780\) 0 0
\(781\) 8.60286 14.9006i 0.307834 0.533185i
\(782\) 0 0
\(783\) −34.7875 1.71583i −1.24321 0.0613186i
\(784\) 0 0
\(785\) 2.78969 4.83189i 0.0995683 0.172457i
\(786\) 0 0
\(787\) −21.0076 + 36.3863i −0.748841 + 1.29703i 0.199538 + 0.979890i \(0.436056\pi\)
−0.948379 + 0.317140i \(0.897277\pi\)
\(788\) 0 0
\(789\) 10.4177 3.59906i 0.370881 0.128130i
\(790\) 0 0
\(791\) −3.76665 + 6.52403i −0.133927 + 0.231968i
\(792\) 0 0
\(793\) 1.14960 20.7472i 0.0408235 0.736755i
\(794\) 0 0
\(795\) −87.7944 + 30.3308i −3.11375 + 1.07572i
\(796\) 0 0
\(797\) 14.2345 24.6549i 0.504212 0.873321i −0.495776 0.868451i \(-0.665116\pi\)
0.999988 0.00487082i \(-0.00155044\pi\)
\(798\) 0 0
\(799\) 36.9256 1.30633
\(800\) 0 0
\(801\) −31.8921 + 25.0224i −1.12685 + 0.884122i
\(802\) 0 0
\(803\) −4.58836 7.94728i −0.161920 0.280453i
\(804\) 0 0
\(805\) −3.54547 6.14093i −0.124961 0.216439i
\(806\) 0 0
\(807\) 13.9017 4.80271i 0.489364 0.169063i
\(808\) 0 0
\(809\) −25.8229 + 44.7266i −0.907885 + 1.57250i −0.0908889 + 0.995861i \(0.528971\pi\)
−0.816997 + 0.576643i \(0.804363\pi\)
\(810\) 0 0
\(811\) −14.1240 −0.495959 −0.247980 0.968765i \(-0.579767\pi\)
−0.247980 + 0.968765i \(0.579767\pi\)
\(812\) 0 0
\(813\) 41.5700 + 36.0614i 1.45792 + 1.26473i
\(814\) 0 0
\(815\) 34.6889 60.0829i 1.21510 2.10461i
\(816\) 0 0
\(817\) −0.392876 0.680482i −0.0137450 0.0238070i
\(818\) 0 0
\(819\) 5.65239 12.0918i 0.197511 0.422523i
\(820\) 0 0
\(821\) 11.3074 + 19.5850i 0.394632 + 0.683522i 0.993054 0.117659i \(-0.0375389\pi\)
−0.598422 + 0.801181i \(0.704206\pi\)
\(822\) 0 0
\(823\) 2.12463 3.67997i 0.0740600 0.128276i −0.826617 0.562765i \(-0.809738\pi\)
0.900677 + 0.434489i \(0.143071\pi\)
\(824\) 0 0
\(825\) 23.9144 123.706i 0.832594 4.30690i
\(826\) 0 0
\(827\) −4.50665 −0.156711 −0.0783557 0.996925i \(-0.524967\pi\)
−0.0783557 + 0.996925i \(0.524967\pi\)
\(828\) 0 0
\(829\) 4.99777 8.65638i 0.173580 0.300649i −0.766089 0.642734i \(-0.777800\pi\)
0.939669 + 0.342086i \(0.111133\pi\)
\(830\) 0 0
\(831\) −4.95988 + 25.6568i −0.172056 + 0.890025i
\(832\) 0 0
\(833\) 13.4298 + 23.2611i 0.465314 + 0.805948i
\(834\) 0 0
\(835\) 6.39962 + 11.0845i 0.221468 + 0.383594i
\(836\) 0 0
\(837\) 19.5714 + 0.965319i 0.676485 + 0.0333663i
\(838\) 0 0
\(839\) 9.27534 0.320220 0.160110 0.987099i \(-0.448815\pi\)
0.160110 + 0.987099i \(0.448815\pi\)
\(840\) 0 0
\(841\) −7.96513 + 13.7960i −0.274660 + 0.475724i
\(842\) 0 0
\(843\) −23.7281 20.5839i −0.817241 0.708946i
\(844\) 0 0
\(845\) −21.1989 48.3910i −0.729263 1.66470i
\(846\) 0 0
\(847\) 17.8355 30.8921i 0.612837 1.06146i
\(848\) 0 0
\(849\) 3.13244 16.2037i 0.107505 0.556110i
\(850\) 0 0
\(851\) −2.10267 + 3.64194i −0.0720787 + 0.124844i
\(852\) 0 0
\(853\) 8.60320 14.9012i 0.294568 0.510207i −0.680316 0.732919i \(-0.738158\pi\)
0.974884 + 0.222712i \(0.0714909\pi\)
\(854\) 0 0
\(855\) 6.64884 5.21664i 0.227385 0.178405i
\(856\) 0 0
\(857\) 10.2451 17.7450i 0.349964 0.606156i −0.636278 0.771460i \(-0.719527\pi\)
0.986243 + 0.165303i \(0.0528603\pi\)
\(858\) 0 0
\(859\) 8.09018 + 14.0126i 0.276034 + 0.478104i 0.970395 0.241522i \(-0.0776466\pi\)
−0.694362 + 0.719626i \(0.744313\pi\)
\(860\) 0 0
\(861\) 2.88944 14.9467i 0.0984717 0.509382i
\(862\) 0 0
\(863\) −26.3268 −0.896176 −0.448088 0.893989i \(-0.647895\pi\)
−0.448088 + 0.893989i \(0.647895\pi\)
\(864\) 0 0
\(865\) 17.8865 + 30.9804i 0.608160 + 1.05336i
\(866\) 0 0
\(867\) −9.22091 7.99903i −0.313159 0.271661i
\(868\) 0 0
\(869\) 47.2353 1.60235
\(870\) 0 0
\(871\) 1.47790 26.6721i 0.0500766 0.903750i
\(872\) 0 0
\(873\) −8.52952 3.42582i −0.288681 0.115946i
\(874\) 0 0
\(875\) 32.6731 1.10455
\(876\) 0 0
\(877\) 16.7190 28.9581i 0.564559 0.977845i −0.432532 0.901619i \(-0.642380\pi\)
0.997091 0.0762261i \(-0.0242871\pi\)
\(878\) 0 0
\(879\) 0.403232 + 0.349799i 0.0136007 + 0.0117984i
\(880\) 0 0
\(881\) −1.74235 + 3.01783i −0.0587011 + 0.101673i −0.893883 0.448301i \(-0.852029\pi\)
0.835181 + 0.549974i \(0.185363\pi\)
\(882\) 0 0
\(883\) −21.7609 −0.732313 −0.366156 0.930553i \(-0.619326\pi\)
−0.366156 + 0.930553i \(0.619326\pi\)
\(884\) 0 0
\(885\) 13.9584 72.2052i 0.469208 2.42715i
\(886\) 0 0
\(887\) −34.8933 −1.17160 −0.585802 0.810454i \(-0.699220\pi\)
−0.585802 + 0.810454i \(0.699220\pi\)
\(888\) 0 0
\(889\) −5.43493 + 9.41358i −0.182282 + 0.315721i
\(890\) 0 0
\(891\) −13.5280 + 55.2219i −0.453204 + 1.85000i
\(892\) 0 0
\(893\) −5.21960 −0.174667
\(894\) 0 0
\(895\) −88.0969 −2.94476
\(896\) 0 0
\(897\) 8.56384 + 2.15311i 0.285938 + 0.0718903i
\(898\) 0 0
\(899\) 12.6388 21.8911i 0.421528 0.730108i
\(900\) 0 0
\(901\) −32.3559 56.0421i −1.07793 1.86703i
\(902\) 0 0
\(903\) −0.459849 + 2.37874i −0.0153028 + 0.0791595i
\(904\) 0 0
\(905\) 35.2821 + 61.1104i 1.17282 + 2.03138i
\(906\) 0 0
\(907\) −9.01748 15.6187i −0.299420 0.518611i 0.676583 0.736366i \(-0.263460\pi\)
−0.976003 + 0.217755i \(0.930127\pi\)
\(908\) 0 0
\(909\) −2.59079 18.1640i −0.0859309 0.602461i
\(910\) 0 0
\(911\) −25.8853 + 44.8346i −0.857617 + 1.48544i 0.0165778 + 0.999863i \(0.494723\pi\)
−0.874195 + 0.485574i \(0.838610\pi\)
\(912\) 0 0
\(913\) 50.8111 1.68160
\(914\) 0 0
\(915\) −38.3419 + 13.2462i −1.26755 + 0.437905i
\(916\) 0 0
\(917\) −7.05239 12.2151i −0.232890 0.403378i
\(918\) 0 0
\(919\) 25.9608 + 44.9655i 0.856369 + 1.48327i 0.875369 + 0.483455i \(0.160618\pi\)
−0.0190005 + 0.999819i \(0.506048\pi\)
\(920\) 0 0
\(921\) 10.0850 52.1683i 0.332311 1.71900i
\(922\) 0 0
\(923\) −8.76317 + 4.43207i −0.288443 + 0.145883i
\(924\) 0 0
\(925\) −17.1238 29.6593i −0.563027 0.975191i
\(926\) 0 0
\(927\) 1.84005 + 12.9005i 0.0604350 + 0.423709i
\(928\) 0 0
\(929\) −41.6437 −1.36629 −0.683144 0.730284i \(-0.739388\pi\)
−0.683144 + 0.730284i \(0.739388\pi\)
\(930\) 0 0
\(931\) −1.89836 3.28806i −0.0622163 0.107762i
\(932\) 0 0
\(933\) −38.0535 + 13.1465i −1.24581 + 0.430398i
\(934\) 0 0
\(935\) 125.894 4.11716
\(936\) 0 0
\(937\) 24.2358 0.791749 0.395875 0.918305i \(-0.370441\pi\)
0.395875 + 0.918305i \(0.370441\pi\)
\(938\) 0 0
\(939\) 9.08211 + 7.87862i 0.296383 + 0.257109i
\(940\) 0 0
\(941\) 0.333504 + 0.577647i 0.0108719 + 0.0188307i 0.871410 0.490555i \(-0.163206\pi\)
−0.860538 + 0.509386i \(0.829873\pi\)
\(942\) 0 0
\(943\) 10.0712 0.327965
\(944\) 0 0
\(945\) −26.0263 1.28369i −0.846635 0.0417586i
\(946\) 0 0
\(947\) 6.27850 + 10.8747i 0.204024 + 0.353380i 0.949821 0.312793i \(-0.101265\pi\)
−0.745797 + 0.666173i \(0.767931\pi\)
\(948\) 0 0
\(949\) −0.289772 + 5.22961i −0.00940639 + 0.169760i
\(950\) 0 0
\(951\) 15.9251 + 13.8148i 0.516406 + 0.447976i
\(952\) 0 0
\(953\) 3.43257 + 5.94539i 0.111192 + 0.192590i 0.916251 0.400604i \(-0.131200\pi\)
−0.805059 + 0.593194i \(0.797867\pi\)
\(954\) 0 0
\(955\) 4.55054 + 7.88177i 0.147252 + 0.255048i
\(956\) 0 0
\(957\) 55.4014 + 48.0600i 1.79087 + 1.55356i
\(958\) 0 0
\(959\) −14.4427 −0.466379
\(960\) 0 0
\(961\) 8.38944 14.5309i 0.270627 0.468740i
\(962\) 0 0
\(963\) −13.9870 + 10.9741i −0.450724 + 0.353636i
\(964\) 0 0
\(965\) −38.4095 66.5272i −1.23645 2.14159i
\(966\) 0 0
\(967\) −22.6585 39.2457i −0.728648 1.26206i −0.957455 0.288583i \(-0.906816\pi\)
0.228807 0.973472i \(-0.426518\pi\)
\(968\) 0 0
\(969\) 4.44745 + 3.85811i 0.142873 + 0.123940i
\(970\) 0 0
\(971\) 22.8736 + 39.6183i 0.734049 + 1.27141i 0.955139 + 0.296157i \(0.0957052\pi\)
−0.221090 + 0.975253i \(0.570961\pi\)
\(972\) 0 0
\(973\) 4.31570 7.47501i 0.138355 0.239638i
\(974\) 0 0
\(975\) −50.0566 + 51.6314i −1.60309 + 1.65353i
\(976\) 0 0
\(977\) −19.6241 −0.627830 −0.313915 0.949451i \(-0.601641\pi\)
−0.313915 + 0.949451i \(0.601641\pi\)
\(978\) 0 0
\(979\) 85.3595 2.72810
\(980\) 0 0
\(981\) 1.54200 + 0.619334i 0.0492324 + 0.0197738i
\(982\) 0 0
\(983\) 21.4131 37.0886i 0.682972 1.18294i −0.291098 0.956693i \(-0.594020\pi\)
0.974070 0.226249i \(-0.0726462\pi\)
\(984\) 0 0
\(985\) 33.3032 1.06113
\(986\) 0 0
\(987\) 12.1572 + 10.5462i 0.386967 + 0.335689i
\(988\) 0 0
\(989\) −1.60282 −0.0509667
\(990\) 0 0
\(991\) 24.4276 42.3099i 0.775969 1.34402i −0.158279 0.987394i \(-0.550595\pi\)
0.934248 0.356623i \(-0.116072\pi\)
\(992\) 0 0
\(993\) 6.13343 31.7275i 0.194639 1.00684i
\(994\) 0 0
\(995\) 3.11147 5.38922i 0.0986402 0.170850i
\(996\) 0 0
\(997\) 17.0256 0.539208 0.269604 0.962971i \(-0.413107\pi\)
0.269604 + 0.962971i \(0.413107\pi\)
\(998\) 0 0
\(999\) 7.05825 + 13.7479i 0.223313 + 0.434963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.61.7 yes 28
3.2 odd 2 1404.2.k.a.1153.1 28
9.4 even 3 468.2.j.a.373.3 yes 28
9.5 odd 6 1404.2.j.a.685.1 28
13.3 even 3 468.2.j.a.133.3 28
39.29 odd 6 1404.2.j.a.289.1 28
117.68 odd 6 1404.2.k.a.1225.1 28
117.94 even 3 inner 468.2.k.a.445.7 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.3 28 13.3 even 3
468.2.j.a.373.3 yes 28 9.4 even 3
468.2.k.a.61.7 yes 28 1.1 even 1 trivial
468.2.k.a.445.7 yes 28 117.94 even 3 inner
1404.2.j.a.289.1 28 39.29 odd 6
1404.2.j.a.685.1 28 9.5 odd 6
1404.2.k.a.1153.1 28 3.2 odd 2
1404.2.k.a.1225.1 28 117.68 odd 6