Properties

Label 468.2.k.a
Level $468$
Weight $2$
Character orbit 468.k
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(61,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43} - 38 q^{45} + 11 q^{47} + 24 q^{49} + 5 q^{51} + 52 q^{53} - q^{57} - 8 q^{59} + 14 q^{61} - 21 q^{63} + 38 q^{65} + 14 q^{67} - 21 q^{69} - 12 q^{71} + 14 q^{73} - 14 q^{75} - 28 q^{77} + 5 q^{79} + 10 q^{81} + 9 q^{83} + 18 q^{85} + 18 q^{87} - 11 q^{89} - q^{91} - 9 q^{93} + 28 q^{95} + 50 q^{97} - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1 0 −1.72988 0.0866924i 0 0.826802 + 1.43206i 0 −3.50986 0 2.98497 + 0.299935i 0
61.2 0 −1.72274 + 0.179356i 0 −1.94663 3.37166i 0 −2.50913 0 2.93566 0.617967i 0
61.3 0 −1.43490 0.970080i 0 −0.883304 1.52993i 0 3.13090 0 1.11789 + 2.78394i 0
61.4 0 −0.958062 1.44295i 0 1.10190 + 1.90855i 0 0.307428 0 −1.16424 + 2.76488i 0
61.5 0 −0.824641 + 1.52314i 0 −0.913993 1.58308i 0 3.54787 0 −1.63994 2.51209i 0
61.6 0 −0.674997 + 1.59511i 0 −0.0842838 0.145984i 0 −2.38663 0 −2.08876 2.15339i 0
61.7 0 −0.328747 + 1.70057i 0 2.03195 + 3.51944i 0 −1.23400 0 −2.78385 1.11811i 0
61.8 0 0.180043 1.72267i 0 0.0380222 + 0.0658564i 0 −3.72476 0 −2.93517 0.620309i 0
61.9 0 0.583701 1.63073i 0 −1.31191 2.27229i 0 3.59326 0 −2.31859 1.90372i 0
61.10 0 0.964854 + 1.43842i 0 −0.468893 0.812147i 0 −0.897167 0 −1.13811 + 2.77573i 0
61.11 0 1.20815 1.24112i 0 1.66845 + 2.88984i 0 −0.0102323 0 −0.0807596 2.99891i 0
61.12 0 1.36018 + 1.07234i 0 1.62465 + 2.81398i 0 4.02812 0 0.700171 + 2.91715i 0
61.13 0 1.64886 0.530344i 0 −1.46582 2.53887i 0 −3.91907 0 2.43747 1.74892i 0
61.14 0 1.72819 + 0.115654i 0 −0.216950 0.375768i 0 1.58327 0 2.97325 + 0.399741i 0
445.1 0 −1.72988 + 0.0866924i 0 0.826802 1.43206i 0 −3.50986 0 2.98497 0.299935i 0
445.2 0 −1.72274 0.179356i 0 −1.94663 + 3.37166i 0 −2.50913 0 2.93566 + 0.617967i 0
445.3 0 −1.43490 + 0.970080i 0 −0.883304 + 1.52993i 0 3.13090 0 1.11789 2.78394i 0
445.4 0 −0.958062 + 1.44295i 0 1.10190 1.90855i 0 0.307428 0 −1.16424 2.76488i 0
445.5 0 −0.824641 1.52314i 0 −0.913993 + 1.58308i 0 3.54787 0 −1.63994 + 2.51209i 0
445.6 0 −0.674997 1.59511i 0 −0.0842838 + 0.145984i 0 −2.38663 0 −2.08876 + 2.15339i 0
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 61.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.f even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.2.k.a yes 28
3.b odd 2 1 1404.2.k.a 28
9.c even 3 1 468.2.j.a 28
9.d odd 6 1 1404.2.j.a 28
13.c even 3 1 468.2.j.a 28
39.i odd 6 1 1404.2.j.a 28
117.f even 3 1 inner 468.2.k.a yes 28
117.u odd 6 1 1404.2.k.a 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.2.j.a 28 9.c even 3 1
468.2.j.a 28 13.c even 3 1
468.2.k.a yes 28 1.a even 1 1 trivial
468.2.k.a yes 28 117.f even 3 1 inner
1404.2.j.a 28 9.d odd 6 1
1404.2.j.a 28 39.i odd 6 1
1404.2.k.a 28 3.b odd 2 1
1404.2.k.a 28 117.u odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(468, [\chi])\).