Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [468,2,Mod(61,468)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(468, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("468.61");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 468.k (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.73699881460\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61.1 | 0 | −1.72988 | − | 0.0866924i | 0 | 0.826802 | + | 1.43206i | 0 | −3.50986 | 0 | 2.98497 | + | 0.299935i | 0 | ||||||||||||
61.2 | 0 | −1.72274 | + | 0.179356i | 0 | −1.94663 | − | 3.37166i | 0 | −2.50913 | 0 | 2.93566 | − | 0.617967i | 0 | ||||||||||||
61.3 | 0 | −1.43490 | − | 0.970080i | 0 | −0.883304 | − | 1.52993i | 0 | 3.13090 | 0 | 1.11789 | + | 2.78394i | 0 | ||||||||||||
61.4 | 0 | −0.958062 | − | 1.44295i | 0 | 1.10190 | + | 1.90855i | 0 | 0.307428 | 0 | −1.16424 | + | 2.76488i | 0 | ||||||||||||
61.5 | 0 | −0.824641 | + | 1.52314i | 0 | −0.913993 | − | 1.58308i | 0 | 3.54787 | 0 | −1.63994 | − | 2.51209i | 0 | ||||||||||||
61.6 | 0 | −0.674997 | + | 1.59511i | 0 | −0.0842838 | − | 0.145984i | 0 | −2.38663 | 0 | −2.08876 | − | 2.15339i | 0 | ||||||||||||
61.7 | 0 | −0.328747 | + | 1.70057i | 0 | 2.03195 | + | 3.51944i | 0 | −1.23400 | 0 | −2.78385 | − | 1.11811i | 0 | ||||||||||||
61.8 | 0 | 0.180043 | − | 1.72267i | 0 | 0.0380222 | + | 0.0658564i | 0 | −3.72476 | 0 | −2.93517 | − | 0.620309i | 0 | ||||||||||||
61.9 | 0 | 0.583701 | − | 1.63073i | 0 | −1.31191 | − | 2.27229i | 0 | 3.59326 | 0 | −2.31859 | − | 1.90372i | 0 | ||||||||||||
61.10 | 0 | 0.964854 | + | 1.43842i | 0 | −0.468893 | − | 0.812147i | 0 | −0.897167 | 0 | −1.13811 | + | 2.77573i | 0 | ||||||||||||
61.11 | 0 | 1.20815 | − | 1.24112i | 0 | 1.66845 | + | 2.88984i | 0 | −0.0102323 | 0 | −0.0807596 | − | 2.99891i | 0 | ||||||||||||
61.12 | 0 | 1.36018 | + | 1.07234i | 0 | 1.62465 | + | 2.81398i | 0 | 4.02812 | 0 | 0.700171 | + | 2.91715i | 0 | ||||||||||||
61.13 | 0 | 1.64886 | − | 0.530344i | 0 | −1.46582 | − | 2.53887i | 0 | −3.91907 | 0 | 2.43747 | − | 1.74892i | 0 | ||||||||||||
61.14 | 0 | 1.72819 | + | 0.115654i | 0 | −0.216950 | − | 0.375768i | 0 | 1.58327 | 0 | 2.97325 | + | 0.399741i | 0 | ||||||||||||
445.1 | 0 | −1.72988 | + | 0.0866924i | 0 | 0.826802 | − | 1.43206i | 0 | −3.50986 | 0 | 2.98497 | − | 0.299935i | 0 | ||||||||||||
445.2 | 0 | −1.72274 | − | 0.179356i | 0 | −1.94663 | + | 3.37166i | 0 | −2.50913 | 0 | 2.93566 | + | 0.617967i | 0 | ||||||||||||
445.3 | 0 | −1.43490 | + | 0.970080i | 0 | −0.883304 | + | 1.52993i | 0 | 3.13090 | 0 | 1.11789 | − | 2.78394i | 0 | ||||||||||||
445.4 | 0 | −0.958062 | + | 1.44295i | 0 | 1.10190 | − | 1.90855i | 0 | 0.307428 | 0 | −1.16424 | − | 2.76488i | 0 | ||||||||||||
445.5 | 0 | −0.824641 | − | 1.52314i | 0 | −0.913993 | + | 1.58308i | 0 | 3.54787 | 0 | −1.63994 | + | 2.51209i | 0 | ||||||||||||
445.6 | 0 | −0.674997 | − | 1.59511i | 0 | −0.0842838 | + | 0.145984i | 0 | −2.38663 | 0 | −2.08876 | + | 2.15339i | 0 | ||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.f | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 468.2.k.a | yes | 28 |
3.b | odd | 2 | 1 | 1404.2.k.a | 28 | ||
9.c | even | 3 | 1 | 468.2.j.a | ✓ | 28 | |
9.d | odd | 6 | 1 | 1404.2.j.a | 28 | ||
13.c | even | 3 | 1 | 468.2.j.a | ✓ | 28 | |
39.i | odd | 6 | 1 | 1404.2.j.a | 28 | ||
117.f | even | 3 | 1 | inner | 468.2.k.a | yes | 28 |
117.u | odd | 6 | 1 | 1404.2.k.a | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
468.2.j.a | ✓ | 28 | 9.c | even | 3 | 1 | |
468.2.j.a | ✓ | 28 | 13.c | even | 3 | 1 | |
468.2.k.a | yes | 28 | 1.a | even | 1 | 1 | trivial |
468.2.k.a | yes | 28 | 117.f | even | 3 | 1 | inner |
1404.2.j.a | 28 | 9.d | odd | 6 | 1 | ||
1404.2.j.a | 28 | 39.i | odd | 6 | 1 | ||
1404.2.k.a | 28 | 3.b | odd | 2 | 1 | ||
1404.2.k.a | 28 | 117.u | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(468, [\chi])\).