Properties

Label 1428.2.a.h
Level 14281428
Weight 22
Character orbit 1428.a
Self dual yes
Analytic conductor 11.40311.403
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1428,2,Mod(1,1428)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1428, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1428.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1428=223717 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1428.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.402637408611.4026374086
Analytic rank: 00
Dimension: 22
Coefficient field: Q(10)\Q(\sqrt{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x210 x^{2} - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=10\beta = \sqrt{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3+(β+1)q5+q7+q9+3q11+(β+3)q13+(β+1)q15q17+(β5)q19+q21+(2β+1)q23+(2β+6)q25+q27++3q99+O(q100) q + q^{3} + (\beta + 1) q^{5} + q^{7} + q^{9} + 3 q^{11} + (\beta + 3) q^{13} + (\beta + 1) q^{15} - q^{17} + ( - \beta - 5) q^{19} + q^{21} + ( - 2 \beta + 1) q^{23} + (2 \beta + 6) q^{25} + q^{27}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q3+2q5+2q7+2q9+6q11+6q13+2q152q1710q19+2q21+2q23+12q25+2q27+8q294q31+6q33+2q3512q37+6q39++6q99+O(q100) 2 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} + 6 q^{11} + 6 q^{13} + 2 q^{15} - 2 q^{17} - 10 q^{19} + 2 q^{21} + 2 q^{23} + 12 q^{25} + 2 q^{27} + 8 q^{29} - 4 q^{31} + 6 q^{33} + 2 q^{35} - 12 q^{37} + 6 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.16228
3.16228
0 1.00000 0 −2.16228 0 1.00000 0 1.00000 0
1.2 0 1.00000 0 4.16228 0 1.00000 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1428.2.a.h 2
3.b odd 2 1 4284.2.a.k 2
4.b odd 2 1 5712.2.a.bj 2
7.b odd 2 1 9996.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1428.2.a.h 2 1.a even 1 1 trivial
4284.2.a.k 2 3.b odd 2 1
5712.2.a.bj 2 4.b odd 2 1
9996.2.a.s 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1428))S_{2}^{\mathrm{new}}(\Gamma_0(1428)):

T522T59 T_{5}^{2} - 2T_{5} - 9 Copy content Toggle raw display
T113 T_{11} - 3 Copy content Toggle raw display
T1326T131 T_{13}^{2} - 6T_{13} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 T22T9 T^{2} - 2T - 9 Copy content Toggle raw display
77 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1111 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1313 T26T1 T^{2} - 6T - 1 Copy content Toggle raw display
1717 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1919 T2+10T+15 T^{2} + 10T + 15 Copy content Toggle raw display
2323 T22T39 T^{2} - 2T - 39 Copy content Toggle raw display
2929 T28T24 T^{2} - 8T - 24 Copy content Toggle raw display
3131 T2+4T6 T^{2} + 4T - 6 Copy content Toggle raw display
3737 T2+12T+26 T^{2} + 12T + 26 Copy content Toggle raw display
4141 T2+14T+39 T^{2} + 14T + 39 Copy content Toggle raw display
4343 T26T31 T^{2} - 6T - 31 Copy content Toggle raw display
4747 T24T6 T^{2} - 4T - 6 Copy content Toggle raw display
5353 T290 T^{2} - 90 Copy content Toggle raw display
5959 T220T+90 T^{2} - 20T + 90 Copy content Toggle raw display
6161 T210 T^{2} - 10 Copy content Toggle raw display
6767 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
7171 T24T156 T^{2} - 4T - 156 Copy content Toggle raw display
7373 T212T4 T^{2} - 12T - 4 Copy content Toggle raw display
7979 T28T+6 T^{2} - 8T + 6 Copy content Toggle raw display
8383 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8989 T2+8T24 T^{2} + 8T - 24 Copy content Toggle raw display
9797 T28T144 T^{2} - 8T - 144 Copy content Toggle raw display
show more
show less