Properties

Label 4284.2.a.k
Level $4284$
Weight $2$
Character orbit 4284.a
Self dual yes
Analytic conductor $34.208$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4284,2,Mod(1,4284)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4284, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4284.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4284 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4284.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.2079122259\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1428)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{5} + q^{7} - 3 q^{11} + ( - \beta + 3) q^{13} + q^{17} + (\beta - 5) q^{19} + ( - 2 \beta - 1) q^{23} + ( - 2 \beta + 6) q^{25} + ( - 2 \beta - 4) q^{29} + (\beta - 2) q^{31} + (\beta - 1) q^{35}+ \cdots + (4 \beta + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 2 q^{7} - 6 q^{11} + 6 q^{13} + 2 q^{17} - 10 q^{19} - 2 q^{23} + 12 q^{25} - 8 q^{29} - 4 q^{31} - 2 q^{35} - 12 q^{37} + 14 q^{41} + 6 q^{43} - 4 q^{47} + 2 q^{49} + 6 q^{55} - 20 q^{59}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
0 0 0 −4.16228 0 1.00000 0 0 0
1.2 0 0 0 2.16228 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4284.2.a.k 2
3.b odd 2 1 1428.2.a.h 2
12.b even 2 1 5712.2.a.bj 2
21.c even 2 1 9996.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1428.2.a.h 2 3.b odd 2 1
4284.2.a.k 2 1.a even 1 1 trivial
5712.2.a.bj 2 12.b even 2 1
9996.2.a.s 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4284))\):

\( T_{5}^{2} + 2T_{5} - 9 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 9 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T - 1 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 10T + 15 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 39 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T - 24 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 6 \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 26 \) Copy content Toggle raw display
$41$ \( T^{2} - 14T + 39 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 31 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 6 \) Copy content Toggle raw display
$53$ \( T^{2} - 90 \) Copy content Toggle raw display
$59$ \( T^{2} + 20T + 90 \) Copy content Toggle raw display
$61$ \( T^{2} - 10 \) Copy content Toggle raw display
$67$ \( (T + 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 156 \) Copy content Toggle raw display
$73$ \( T^{2} - 12T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T + 6 \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 8T - 24 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 144 \) Copy content Toggle raw display
show more
show less