Properties

Label 144.4.i.e.97.3
Level $144$
Weight $4$
Character 144.97
Analytic conductor $8.496$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,4,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.5206055409.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + 9x^{5} - 23x^{4} + 27x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 97.3
Root \(0.172469 - 1.72344i\) of defining polynomial
Character \(\chi\) \(=\) 144.97
Dual form 144.4.i.e.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.78092 - 4.38936i) q^{3} +(-8.65944 - 14.9986i) q^{5} +(-1.18676 + 2.05553i) q^{7} +(-11.5330 - 24.4129i) q^{9} +(-26.1082 + 45.2208i) q^{11} +(-6.84965 - 11.8639i) q^{13} +(-89.9154 - 3.70048i) q^{15} -82.9217 q^{17} +126.803 q^{19} +(5.72218 + 10.9254i) q^{21} +(-27.1831 - 47.0825i) q^{23} +(-87.4718 + 151.506i) q^{25} +(-139.229 - 17.2680i) q^{27} +(106.425 - 184.334i) q^{29} +(-112.061 - 194.095i) q^{31} +(125.885 + 240.354i) q^{33} +41.1068 q^{35} -32.2229 q^{37} +(-71.1234 - 2.92709i) q^{39} +(-250.331 - 433.586i) q^{41} +(-6.41270 + 11.1071i) q^{43} +(-266.290 + 384.380i) q^{45} +(104.770 - 181.467i) q^{47} +(168.683 + 292.168i) q^{49} +(-230.599 + 363.973i) q^{51} +371.213 q^{53} +904.331 q^{55} +(352.629 - 556.584i) q^{57} +(2.90924 + 5.03895i) q^{59} +(302.016 - 523.107i) q^{61} +(63.8685 + 5.26595i) q^{63} +(-118.628 + 205.470i) q^{65} +(377.033 + 653.040i) q^{67} +(-282.256 - 11.6163i) q^{69} -43.4780 q^{71} +671.029 q^{73} +(421.761 + 805.270i) q^{75} +(-61.9686 - 107.333i) q^{77} +(-324.601 + 562.226i) q^{79} +(-462.981 + 563.107i) q^{81} +(67.2629 - 116.503i) q^{83} +(718.056 + 1243.71i) q^{85} +(-513.148 - 979.757i) q^{87} -206.076 q^{89} +32.5156 q^{91} +(-1163.59 - 47.8876i) q^{93} +(-1098.04 - 1901.87i) q^{95} +(726.420 - 1258.20i) q^{97} +(1405.08 + 115.848i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{3} - 5 q^{5} - 3 q^{7} - 15 q^{9} - 16 q^{11} + 29 q^{13} - 141 q^{15} - 34 q^{17} + 218 q^{19} + 27 q^{21} - 37 q^{23} + 97 q^{25} + 216 q^{27} - 3 q^{29} - 331 q^{31} + 468 q^{33} + 342 q^{35}+ \cdots + 5133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.78092 4.38936i 0.535188 0.844733i
\(4\) 0 0
\(5\) −8.65944 14.9986i −0.774524 1.34151i −0.935062 0.354485i \(-0.884656\pi\)
0.160538 0.987030i \(-0.448677\pi\)
\(6\) 0 0
\(7\) −1.18676 + 2.05553i −0.0640792 + 0.110988i −0.896285 0.443478i \(-0.853744\pi\)
0.832206 + 0.554467i \(0.187078\pi\)
\(8\) 0 0
\(9\) −11.5330 24.4129i −0.427147 0.904182i
\(10\) 0 0
\(11\) −26.1082 + 45.2208i −0.715630 + 1.23951i 0.247086 + 0.968994i \(0.420527\pi\)
−0.962716 + 0.270514i \(0.912806\pi\)
\(12\) 0 0
\(13\) −6.84965 11.8639i −0.146135 0.253113i 0.783661 0.621189i \(-0.213350\pi\)
−0.929796 + 0.368076i \(0.880017\pi\)
\(14\) 0 0
\(15\) −89.9154 3.70048i −1.54774 0.0636973i
\(16\) 0 0
\(17\) −82.9217 −1.18303 −0.591514 0.806295i \(-0.701469\pi\)
−0.591514 + 0.806295i \(0.701469\pi\)
\(18\) 0 0
\(19\) 126.803 1.53108 0.765542 0.643386i \(-0.222471\pi\)
0.765542 + 0.643386i \(0.222471\pi\)
\(20\) 0 0
\(21\) 5.72218 + 10.9254i 0.0594611 + 0.113529i
\(22\) 0 0
\(23\) −27.1831 47.0825i −0.246437 0.426842i 0.716097 0.698000i \(-0.245927\pi\)
−0.962535 + 0.271158i \(0.912593\pi\)
\(24\) 0 0
\(25\) −87.4718 + 151.506i −0.699775 + 1.21205i
\(26\) 0 0
\(27\) −139.229 17.2680i −0.992396 0.123083i
\(28\) 0 0
\(29\) 106.425 184.334i 0.681471 1.18034i −0.293060 0.956094i \(-0.594674\pi\)
0.974532 0.224249i \(-0.0719929\pi\)
\(30\) 0 0
\(31\) −112.061 194.095i −0.649250 1.12453i −0.983302 0.181980i \(-0.941749\pi\)
0.334052 0.942555i \(-0.391584\pi\)
\(32\) 0 0
\(33\) 125.885 + 240.354i 0.664056 + 1.26789i
\(34\) 0 0
\(35\) 41.1068 0.198523
\(36\) 0 0
\(37\) −32.2229 −0.143173 −0.0715866 0.997434i \(-0.522806\pi\)
−0.0715866 + 0.997434i \(0.522806\pi\)
\(38\) 0 0
\(39\) −71.1234 2.92709i −0.292022 0.0120182i
\(40\) 0 0
\(41\) −250.331 433.586i −0.953540 1.65158i −0.737673 0.675158i \(-0.764076\pi\)
−0.215867 0.976423i \(-0.569258\pi\)
\(42\) 0 0
\(43\) −6.41270 + 11.1071i −0.0227425 + 0.0393912i −0.877173 0.480175i \(-0.840573\pi\)
0.854430 + 0.519566i \(0.173906\pi\)
\(44\) 0 0
\(45\) −266.290 + 384.380i −0.882138 + 1.27333i
\(46\) 0 0
\(47\) 104.770 181.467i 0.325156 0.563186i −0.656388 0.754423i \(-0.727917\pi\)
0.981544 + 0.191237i \(0.0612500\pi\)
\(48\) 0 0
\(49\) 168.683 + 292.168i 0.491788 + 0.851801i
\(50\) 0 0
\(51\) −230.599 + 363.973i −0.633143 + 0.999342i
\(52\) 0 0
\(53\) 371.213 0.962075 0.481038 0.876700i \(-0.340260\pi\)
0.481038 + 0.876700i \(0.340260\pi\)
\(54\) 0 0
\(55\) 904.331 2.21709
\(56\) 0 0
\(57\) 352.629 556.584i 0.819418 1.29336i
\(58\) 0 0
\(59\) 2.90924 + 5.03895i 0.00641950 + 0.0111189i 0.869217 0.494430i \(-0.164623\pi\)
−0.862798 + 0.505549i \(0.831290\pi\)
\(60\) 0 0
\(61\) 302.016 523.107i 0.633921 1.09798i −0.352822 0.935691i \(-0.614778\pi\)
0.986743 0.162293i \(-0.0518889\pi\)
\(62\) 0 0
\(63\) 63.8685 + 5.26595i 0.127725 + 0.0105309i
\(64\) 0 0
\(65\) −118.628 + 205.470i −0.226370 + 0.392083i
\(66\) 0 0
\(67\) 377.033 + 653.040i 0.687491 + 1.19077i 0.972647 + 0.232288i \(0.0746213\pi\)
−0.285156 + 0.958481i \(0.592045\pi\)
\(68\) 0 0
\(69\) −282.256 11.6163i −0.492458 0.0202672i
\(70\) 0 0
\(71\) −43.4780 −0.0726744 −0.0363372 0.999340i \(-0.511569\pi\)
−0.0363372 + 0.999340i \(0.511569\pi\)
\(72\) 0 0
\(73\) 671.029 1.07586 0.537931 0.842989i \(-0.319206\pi\)
0.537931 + 0.842989i \(0.319206\pi\)
\(74\) 0 0
\(75\) 421.761 + 805.270i 0.649343 + 1.23979i
\(76\) 0 0
\(77\) −61.9686 107.333i −0.0917139 0.158853i
\(78\) 0 0
\(79\) −324.601 + 562.226i −0.462284 + 0.800700i −0.999074 0.0430157i \(-0.986303\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(80\) 0 0
\(81\) −462.981 + 563.107i −0.635091 + 0.772437i
\(82\) 0 0
\(83\) 67.2629 116.503i 0.0889526 0.154070i −0.818116 0.575053i \(-0.804981\pi\)
0.907069 + 0.420983i \(0.138315\pi\)
\(84\) 0 0
\(85\) 718.056 + 1243.71i 0.916283 + 1.58705i
\(86\) 0 0
\(87\) −513.148 979.757i −0.632359 1.20737i
\(88\) 0 0
\(89\) −206.076 −0.245439 −0.122719 0.992441i \(-0.539162\pi\)
−0.122719 + 0.992441i \(0.539162\pi\)
\(90\) 0 0
\(91\) 32.5156 0.0374567
\(92\) 0 0
\(93\) −1163.59 47.8876i −1.29740 0.0533947i
\(94\) 0 0
\(95\) −1098.04 1901.87i −1.18586 2.05397i
\(96\) 0 0
\(97\) 726.420 1258.20i 0.760379 1.31702i −0.182276 0.983247i \(-0.558347\pi\)
0.942655 0.333768i \(-0.108320\pi\)
\(98\) 0 0
\(99\) 1405.08 + 115.848i 1.42642 + 0.117608i
\(100\) 0 0
\(101\) −101.980 + 176.634i −0.100469 + 0.174017i −0.911878 0.410461i \(-0.865368\pi\)
0.811409 + 0.584479i \(0.198701\pi\)
\(102\) 0 0
\(103\) −777.773 1347.14i −0.744042 1.28872i −0.950641 0.310292i \(-0.899573\pi\)
0.206600 0.978426i \(-0.433760\pi\)
\(104\) 0 0
\(105\) 114.315 180.433i 0.106247 0.167699i
\(106\) 0 0
\(107\) 584.436 0.528033 0.264016 0.964518i \(-0.414953\pi\)
0.264016 + 0.964518i \(0.414953\pi\)
\(108\) 0 0
\(109\) −782.671 −0.687764 −0.343882 0.939013i \(-0.611742\pi\)
−0.343882 + 0.939013i \(0.611742\pi\)
\(110\) 0 0
\(111\) −89.6093 + 141.438i −0.0766247 + 0.120943i
\(112\) 0 0
\(113\) 435.124 + 753.658i 0.362239 + 0.627417i 0.988329 0.152334i \(-0.0486789\pi\)
−0.626090 + 0.779751i \(0.715346\pi\)
\(114\) 0 0
\(115\) −470.780 + 815.415i −0.381743 + 0.661199i
\(116\) 0 0
\(117\) −210.637 + 304.046i −0.166439 + 0.240249i
\(118\) 0 0
\(119\) 98.4084 170.448i 0.0758074 0.131302i
\(120\) 0 0
\(121\) −697.780 1208.59i −0.524253 0.908032i
\(122\) 0 0
\(123\) −2599.32 106.975i −1.90547 0.0784198i
\(124\) 0 0
\(125\) 864.968 0.618921
\(126\) 0 0
\(127\) −994.050 −0.694548 −0.347274 0.937764i \(-0.612893\pi\)
−0.347274 + 0.937764i \(0.612893\pi\)
\(128\) 0 0
\(129\) 30.9200 + 59.0357i 0.0211035 + 0.0402930i
\(130\) 0 0
\(131\) −401.039 694.620i −0.267473 0.463277i 0.700736 0.713421i \(-0.252855\pi\)
−0.968209 + 0.250144i \(0.919522\pi\)
\(132\) 0 0
\(133\) −150.485 + 260.648i −0.0981106 + 0.169933i
\(134\) 0 0
\(135\) 946.652 + 2237.78i 0.603517 + 1.42664i
\(136\) 0 0
\(137\) −659.936 + 1143.04i −0.411548 + 0.712822i −0.995059 0.0992828i \(-0.968345\pi\)
0.583511 + 0.812105i \(0.301678\pi\)
\(138\) 0 0
\(139\) 263.397 + 456.216i 0.160727 + 0.278387i 0.935130 0.354306i \(-0.115283\pi\)
−0.774403 + 0.632693i \(0.781950\pi\)
\(140\) 0 0
\(141\) −505.168 964.521i −0.301722 0.576080i
\(142\) 0 0
\(143\) 715.329 0.418313
\(144\) 0 0
\(145\) −3686.33 −2.11126
\(146\) 0 0
\(147\) 1751.52 + 72.0842i 0.982744 + 0.0404449i
\(148\) 0 0
\(149\) −1538.88 2665.41i −0.846105 1.46550i −0.884659 0.466239i \(-0.845609\pi\)
0.0385540 0.999257i \(-0.487725\pi\)
\(150\) 0 0
\(151\) 41.0954 71.1794i 0.0221477 0.0383609i −0.854739 0.519058i \(-0.826283\pi\)
0.876887 + 0.480697i \(0.159616\pi\)
\(152\) 0 0
\(153\) 956.333 + 2024.36i 0.505327 + 1.06967i
\(154\) 0 0
\(155\) −1940.77 + 3361.52i −1.00572 + 1.74196i
\(156\) 0 0
\(157\) 1192.09 + 2064.76i 0.605981 + 1.04959i 0.991896 + 0.127055i \(0.0405526\pi\)
−0.385915 + 0.922534i \(0.626114\pi\)
\(158\) 0 0
\(159\) 1032.31 1629.39i 0.514891 0.812696i
\(160\) 0 0
\(161\) 129.039 0.0631660
\(162\) 0 0
\(163\) −1226.77 −0.589496 −0.294748 0.955575i \(-0.595236\pi\)
−0.294748 + 0.955575i \(0.595236\pi\)
\(164\) 0 0
\(165\) 2514.87 3969.43i 1.18656 1.87285i
\(166\) 0 0
\(167\) 1948.20 + 3374.38i 0.902733 + 1.56358i 0.823932 + 0.566689i \(0.191776\pi\)
0.0788009 + 0.996890i \(0.474891\pi\)
\(168\) 0 0
\(169\) 1004.66 1740.13i 0.457289 0.792048i
\(170\) 0 0
\(171\) −1462.41 3095.63i −0.653998 1.38438i
\(172\) 0 0
\(173\) −73.2019 + 126.789i −0.0321701 + 0.0557203i −0.881662 0.471881i \(-0.843575\pi\)
0.849492 + 0.527601i \(0.176909\pi\)
\(174\) 0 0
\(175\) −207.617 359.602i −0.0896819 0.155334i
\(176\) 0 0
\(177\) 30.2081 + 1.24322i 0.0128282 + 0.000527944i
\(178\) 0 0
\(179\) 1540.84 0.643396 0.321698 0.946842i \(-0.395746\pi\)
0.321698 + 0.946842i \(0.395746\pi\)
\(180\) 0 0
\(181\) 1173.94 0.482090 0.241045 0.970514i \(-0.422510\pi\)
0.241045 + 0.970514i \(0.422510\pi\)
\(182\) 0 0
\(183\) −1456.22 2780.38i −0.588235 1.12312i
\(184\) 0 0
\(185\) 279.032 + 483.298i 0.110891 + 0.192069i
\(186\) 0 0
\(187\) 2164.94 3749.79i 0.846610 1.46637i
\(188\) 0 0
\(189\) 200.727 265.698i 0.0772527 0.102257i
\(190\) 0 0
\(191\) −1096.82 + 1899.74i −0.415513 + 0.719689i −0.995482 0.0949489i \(-0.969731\pi\)
0.579969 + 0.814638i \(0.303065\pi\)
\(192\) 0 0
\(193\) −1231.66 2133.29i −0.459360 0.795635i 0.539567 0.841943i \(-0.318588\pi\)
−0.998927 + 0.0463073i \(0.985255\pi\)
\(194\) 0 0
\(195\) 571.987 + 1092.10i 0.210055 + 0.401060i
\(196\) 0 0
\(197\) 3593.52 1.29963 0.649816 0.760091i \(-0.274846\pi\)
0.649816 + 0.760091i \(0.274846\pi\)
\(198\) 0 0
\(199\) 4599.36 1.63839 0.819197 0.573513i \(-0.194420\pi\)
0.819197 + 0.573513i \(0.194420\pi\)
\(200\) 0 0
\(201\) 3914.93 + 161.119i 1.37382 + 0.0565397i
\(202\) 0 0
\(203\) 252.603 + 437.521i 0.0873362 + 0.151271i
\(204\) 0 0
\(205\) −4335.46 + 7509.23i −1.47708 + 2.55838i
\(206\) 0 0
\(207\) −835.919 + 1206.62i −0.280678 + 0.405149i
\(208\) 0 0
\(209\) −3310.60 + 5734.13i −1.09569 + 1.89779i
\(210\) 0 0
\(211\) −1166.12 2019.78i −0.380469 0.658992i 0.610660 0.791893i \(-0.290904\pi\)
−0.991129 + 0.132901i \(0.957571\pi\)
\(212\) 0 0
\(213\) −120.909 + 190.840i −0.0388945 + 0.0613905i
\(214\) 0 0
\(215\) 222.122 0.0704584
\(216\) 0 0
\(217\) 531.959 0.166414
\(218\) 0 0
\(219\) 1866.08 2945.39i 0.575789 0.908816i
\(220\) 0 0
\(221\) 567.984 + 983.778i 0.172881 + 0.299439i
\(222\) 0 0
\(223\) −2028.55 + 3513.55i −0.609156 + 1.05509i 0.382224 + 0.924070i \(0.375158\pi\)
−0.991380 + 0.131019i \(0.958175\pi\)
\(224\) 0 0
\(225\) 4707.50 + 388.133i 1.39482 + 0.115002i
\(226\) 0 0
\(227\) 648.626 1123.45i 0.189651 0.328486i −0.755483 0.655169i \(-0.772598\pi\)
0.945134 + 0.326683i \(0.105931\pi\)
\(228\) 0 0
\(229\) −1555.98 2695.04i −0.449005 0.777699i 0.549317 0.835614i \(-0.314888\pi\)
−0.998322 + 0.0579149i \(0.981555\pi\)
\(230\) 0 0
\(231\) −643.452 26.4813i −0.183273 0.00754261i
\(232\) 0 0
\(233\) 2034.74 0.572103 0.286052 0.958214i \(-0.407657\pi\)
0.286052 + 0.958214i \(0.407657\pi\)
\(234\) 0 0
\(235\) −3629.01 −1.00736
\(236\) 0 0
\(237\) 1565.12 + 2988.30i 0.428968 + 0.819032i
\(238\) 0 0
\(239\) 734.229 + 1271.72i 0.198717 + 0.344188i 0.948113 0.317935i \(-0.102989\pi\)
−0.749396 + 0.662122i \(0.769656\pi\)
\(240\) 0 0
\(241\) −329.582 + 570.852i −0.0880922 + 0.152580i −0.906705 0.421766i \(-0.861410\pi\)
0.818612 + 0.574346i \(0.194744\pi\)
\(242\) 0 0
\(243\) 1184.16 + 3598.15i 0.312610 + 0.949882i
\(244\) 0 0
\(245\) 2921.40 5060.02i 0.761803 1.31948i
\(246\) 0 0
\(247\) −868.555 1504.38i −0.223744 0.387537i
\(248\) 0 0
\(249\) −324.320 619.226i −0.0825419 0.157598i
\(250\) 0 0
\(251\) 5509.13 1.38539 0.692696 0.721230i \(-0.256423\pi\)
0.692696 + 0.721230i \(0.256423\pi\)
\(252\) 0 0
\(253\) 2838.81 0.705432
\(254\) 0 0
\(255\) 7455.94 + 306.850i 1.83102 + 0.0753557i
\(256\) 0 0
\(257\) −1833.82 3176.26i −0.445098 0.770933i 0.552961 0.833207i \(-0.313498\pi\)
−0.998059 + 0.0622742i \(0.980165\pi\)
\(258\) 0 0
\(259\) 38.2409 66.2352i 0.00917443 0.0158906i
\(260\) 0 0
\(261\) −5727.53 472.234i −1.35833 0.111994i
\(262\) 0 0
\(263\) −2496.38 + 4323.86i −0.585299 + 1.01377i 0.409539 + 0.912292i \(0.365689\pi\)
−0.994838 + 0.101475i \(0.967644\pi\)
\(264\) 0 0
\(265\) −3214.49 5567.67i −0.745150 1.29064i
\(266\) 0 0
\(267\) −573.082 + 904.544i −0.131356 + 0.207330i
\(268\) 0 0
\(269\) 88.5142 0.0200625 0.0100312 0.999950i \(-0.496807\pi\)
0.0100312 + 0.999950i \(0.496807\pi\)
\(270\) 0 0
\(271\) −5226.56 −1.17155 −0.585777 0.810472i \(-0.699211\pi\)
−0.585777 + 0.810472i \(0.699211\pi\)
\(272\) 0 0
\(273\) 90.4233 142.723i 0.0200464 0.0316409i
\(274\) 0 0
\(275\) −4567.47 7911.09i −1.00156 1.73475i
\(276\) 0 0
\(277\) 1056.13 1829.26i 0.229085 0.396787i −0.728452 0.685097i \(-0.759760\pi\)
0.957537 + 0.288310i \(0.0930933\pi\)
\(278\) 0 0
\(279\) −3446.04 + 4974.23i −0.739459 + 1.06738i
\(280\) 0 0
\(281\) −862.569 + 1494.01i −0.183120 + 0.317172i −0.942941 0.332959i \(-0.891953\pi\)
0.759822 + 0.650131i \(0.225286\pi\)
\(282\) 0 0
\(283\) 1670.90 + 2894.08i 0.350970 + 0.607898i 0.986420 0.164244i \(-0.0525186\pi\)
−0.635450 + 0.772142i \(0.719185\pi\)
\(284\) 0 0
\(285\) −11401.5 469.232i −2.36972 0.0975260i
\(286\) 0 0
\(287\) 1188.33 0.244408
\(288\) 0 0
\(289\) 1963.01 0.399554
\(290\) 0 0
\(291\) −3502.56 6687.46i −0.705580 1.34717i
\(292\) 0 0
\(293\) 2629.21 + 4553.92i 0.524232 + 0.907997i 0.999602 + 0.0282107i \(0.00898093\pi\)
−0.475370 + 0.879786i \(0.657686\pi\)
\(294\) 0 0
\(295\) 50.3848 87.2690i 0.00994412 0.0172237i
\(296\) 0 0
\(297\) 4415.91 5845.22i 0.862751 1.14200i
\(298\) 0 0
\(299\) −372.389 + 644.996i −0.0720261 + 0.124753i
\(300\) 0 0
\(301\) −15.2207 26.3630i −0.00291464 0.00504831i
\(302\) 0 0
\(303\) 491.714 + 938.832i 0.0932284 + 0.178002i
\(304\) 0 0
\(305\) −10461.2 −1.96395
\(306\) 0 0
\(307\) −2582.56 −0.480112 −0.240056 0.970759i \(-0.577166\pi\)
−0.240056 + 0.970759i \(0.577166\pi\)
\(308\) 0 0
\(309\) −8076.02 332.370i −1.48682 0.0611905i
\(310\) 0 0
\(311\) −2544.26 4406.79i −0.463897 0.803493i 0.535254 0.844691i \(-0.320216\pi\)
−0.999151 + 0.0411980i \(0.986883\pi\)
\(312\) 0 0
\(313\) 1465.53 2538.38i 0.264654 0.458395i −0.702819 0.711369i \(-0.748076\pi\)
0.967473 + 0.252974i \(0.0814088\pi\)
\(314\) 0 0
\(315\) −474.083 1003.54i −0.0847986 0.179501i
\(316\) 0 0
\(317\) −1799.78 + 3117.32i −0.318883 + 0.552322i −0.980255 0.197736i \(-0.936641\pi\)
0.661372 + 0.750058i \(0.269974\pi\)
\(318\) 0 0
\(319\) 5557.15 + 9625.27i 0.975363 + 1.68938i
\(320\) 0 0
\(321\) 1625.27 2565.30i 0.282597 0.446047i
\(322\) 0 0
\(323\) −10514.7 −1.81131
\(324\) 0 0
\(325\) 2396.60 0.409045
\(326\) 0 0
\(327\) −2176.55 + 3435.42i −0.368083 + 0.580977i
\(328\) 0 0
\(329\) 248.675 + 430.718i 0.0416714 + 0.0721770i
\(330\) 0 0
\(331\) 1838.91 3185.08i 0.305364 0.528905i −0.671979 0.740571i \(-0.734555\pi\)
0.977342 + 0.211665i \(0.0678886\pi\)
\(332\) 0 0
\(333\) 371.626 + 786.655i 0.0611560 + 0.129455i
\(334\) 0 0
\(335\) 6529.79 11309.9i 1.06496 1.84456i
\(336\) 0 0
\(337\) 2778.02 + 4811.67i 0.449046 + 0.777770i 0.998324 0.0578696i \(-0.0184308\pi\)
−0.549279 + 0.835639i \(0.685097\pi\)
\(338\) 0 0
\(339\) 4518.12 + 185.944i 0.723866 + 0.0297908i
\(340\) 0 0
\(341\) 11702.9 1.85849
\(342\) 0 0
\(343\) −1614.87 −0.254212
\(344\) 0 0
\(345\) 2269.95 + 4334.03i 0.354232 + 0.676337i
\(346\) 0 0
\(347\) −1534.56 2657.94i −0.237405 0.411198i 0.722564 0.691304i \(-0.242964\pi\)
−0.959969 + 0.280106i \(0.909630\pi\)
\(348\) 0 0
\(349\) 595.716 1031.81i 0.0913694 0.158256i −0.816718 0.577037i \(-0.804209\pi\)
0.908088 + 0.418780i \(0.137542\pi\)
\(350\) 0 0
\(351\) 748.805 + 1770.09i 0.113870 + 0.269175i
\(352\) 0 0
\(353\) −3215.50 + 5569.41i −0.484827 + 0.839745i −0.999848 0.0174329i \(-0.994451\pi\)
0.515021 + 0.857177i \(0.327784\pi\)
\(354\) 0 0
\(355\) 376.495 + 652.108i 0.0562881 + 0.0974938i
\(356\) 0 0
\(357\) −474.493 905.953i −0.0703441 0.134308i
\(358\) 0 0
\(359\) −4236.73 −0.622858 −0.311429 0.950270i \(-0.600808\pi\)
−0.311429 + 0.950270i \(0.600808\pi\)
\(360\) 0 0
\(361\) 9219.99 1.34422
\(362\) 0 0
\(363\) −7245.41 298.186i −1.04762 0.0431149i
\(364\) 0 0
\(365\) −5810.73 10064.5i −0.833281 1.44329i
\(366\) 0 0
\(367\) 3686.39 6385.02i 0.524327 0.908161i −0.475272 0.879839i \(-0.657650\pi\)
0.999599 0.0283220i \(-0.00901638\pi\)
\(368\) 0 0
\(369\) −7698.05 + 11111.9i −1.08603 + 1.56764i
\(370\) 0 0
\(371\) −440.541 + 763.040i −0.0616490 + 0.106779i
\(372\) 0 0
\(373\) 5992.51 + 10379.3i 0.831852 + 1.44081i 0.896568 + 0.442905i \(0.146052\pi\)
−0.0647168 + 0.997904i \(0.520614\pi\)
\(374\) 0 0
\(375\) 2405.41 3796.66i 0.331239 0.522823i
\(376\) 0 0
\(377\) −2915.90 −0.398346
\(378\) 0 0
\(379\) 3872.02 0.524782 0.262391 0.964962i \(-0.415489\pi\)
0.262391 + 0.964962i \(0.415489\pi\)
\(380\) 0 0
\(381\) −2764.37 + 4363.24i −0.371714 + 0.586708i
\(382\) 0 0
\(383\) 3621.33 + 6272.33i 0.483137 + 0.836818i 0.999813 0.0193636i \(-0.00616401\pi\)
−0.516676 + 0.856181i \(0.672831\pi\)
\(384\) 0 0
\(385\) −1073.23 + 1858.88i −0.142069 + 0.246071i
\(386\) 0 0
\(387\) 345.115 + 28.4547i 0.0453312 + 0.00373755i
\(388\) 0 0
\(389\) 4866.16 8428.44i 0.634253 1.09856i −0.352420 0.935842i \(-0.614641\pi\)
0.986673 0.162716i \(-0.0520254\pi\)
\(390\) 0 0
\(391\) 2254.07 + 3904.16i 0.291542 + 0.504966i
\(392\) 0 0
\(393\) −4164.20 171.378i −0.534494 0.0219971i
\(394\) 0 0
\(395\) 11243.5 1.43220
\(396\) 0 0
\(397\) −1393.66 −0.176186 −0.0880930 0.996112i \(-0.528077\pi\)
−0.0880930 + 0.996112i \(0.528077\pi\)
\(398\) 0 0
\(399\) 725.590 + 1385.37i 0.0910399 + 0.173823i
\(400\) 0 0
\(401\) 612.828 + 1061.45i 0.0763171 + 0.132185i 0.901658 0.432449i \(-0.142351\pi\)
−0.825341 + 0.564634i \(0.809017\pi\)
\(402\) 0 0
\(403\) −1535.16 + 2658.97i −0.189756 + 0.328667i
\(404\) 0 0
\(405\) 12455.0 + 2067.88i 1.52813 + 0.253713i
\(406\) 0 0
\(407\) 841.283 1457.15i 0.102459 0.177464i
\(408\) 0 0
\(409\) −4081.41 7069.22i −0.493430 0.854646i 0.506541 0.862216i \(-0.330924\pi\)
−0.999971 + 0.00756956i \(0.997591\pi\)
\(410\) 0 0
\(411\) 3181.99 + 6075.40i 0.381889 + 0.729142i
\(412\) 0 0
\(413\) −13.8103 −0.00164543
\(414\) 0 0
\(415\) −2329.84 −0.275584
\(416\) 0 0
\(417\) 2734.98 + 112.559i 0.321181 + 0.0132183i
\(418\) 0 0
\(419\) 1410.80 + 2443.58i 0.164492 + 0.284908i 0.936475 0.350735i \(-0.114068\pi\)
−0.771983 + 0.635643i \(0.780735\pi\)
\(420\) 0 0
\(421\) 2319.95 4018.27i 0.268569 0.465175i −0.699924 0.714218i \(-0.746783\pi\)
0.968492 + 0.249043i \(0.0801160\pi\)
\(422\) 0 0
\(423\) −5638.46 464.891i −0.648112 0.0534368i
\(424\) 0 0
\(425\) 7253.31 12563.1i 0.827853 1.43388i
\(426\) 0 0
\(427\) 716.843 + 1241.61i 0.0812423 + 0.140716i
\(428\) 0 0
\(429\) 1989.27 3139.84i 0.223876 0.353363i
\(430\) 0 0
\(431\) −5998.72 −0.670413 −0.335207 0.942145i \(-0.608806\pi\)
−0.335207 + 0.942145i \(0.608806\pi\)
\(432\) 0 0
\(433\) −10187.5 −1.13067 −0.565334 0.824862i \(-0.691253\pi\)
−0.565334 + 0.824862i \(0.691253\pi\)
\(434\) 0 0
\(435\) −10251.4 + 16180.6i −1.12992 + 1.78345i
\(436\) 0 0
\(437\) −3446.89 5970.19i −0.377316 0.653531i
\(438\) 0 0
\(439\) 7872.72 13636.0i 0.855910 1.48248i −0.0198884 0.999802i \(-0.506331\pi\)
0.875798 0.482677i \(-0.160336\pi\)
\(440\) 0 0
\(441\) 5187.25 7487.61i 0.560118 0.808510i
\(442\) 0 0
\(443\) 1216.83 2107.61i 0.130504 0.226040i −0.793367 0.608744i \(-0.791674\pi\)
0.923871 + 0.382704i \(0.125007\pi\)
\(444\) 0 0
\(445\) 1784.51 + 3090.86i 0.190098 + 0.329260i
\(446\) 0 0
\(447\) −15978.9 657.615i −1.69078 0.0695842i
\(448\) 0 0
\(449\) 7394.75 0.777238 0.388619 0.921399i \(-0.372952\pi\)
0.388619 + 0.921399i \(0.372952\pi\)
\(450\) 0 0
\(451\) 26142.8 2.72953
\(452\) 0 0
\(453\) −198.149 378.327i −0.0205515 0.0392392i
\(454\) 0 0
\(455\) −281.567 487.688i −0.0290111 0.0502488i
\(456\) 0 0
\(457\) −1064.96 + 1844.56i −0.109008 + 0.188807i −0.915369 0.402617i \(-0.868101\pi\)
0.806361 + 0.591424i \(0.201434\pi\)
\(458\) 0 0
\(459\) 11545.1 + 1431.90i 1.17403 + 0.145610i
\(460\) 0 0
\(461\) 4156.89 7199.95i 0.419969 0.727408i −0.575967 0.817473i \(-0.695374\pi\)
0.995936 + 0.0900653i \(0.0287076\pi\)
\(462\) 0 0
\(463\) −922.797 1598.33i −0.0926263 0.160434i 0.815989 0.578067i \(-0.196193\pi\)
−0.908615 + 0.417634i \(0.862860\pi\)
\(464\) 0 0
\(465\) 9357.77 + 17866.9i 0.933239 + 1.78184i
\(466\) 0 0
\(467\) 15653.2 1.55106 0.775529 0.631312i \(-0.217483\pi\)
0.775529 + 0.631312i \(0.217483\pi\)
\(468\) 0 0
\(469\) −1789.79 −0.176215
\(470\) 0 0
\(471\) 12378.1 + 509.421i 1.21094 + 0.0498363i
\(472\) 0 0
\(473\) −334.849 579.975i −0.0325504 0.0563790i
\(474\) 0 0
\(475\) −11091.7 + 19211.4i −1.07141 + 1.85574i
\(476\) 0 0
\(477\) −4281.18 9062.38i −0.410947 0.869891i
\(478\) 0 0
\(479\) 986.975 1709.49i 0.0941462 0.163066i −0.815106 0.579312i \(-0.803321\pi\)
0.909252 + 0.416246i \(0.136655\pi\)
\(480\) 0 0
\(481\) 220.715 + 382.290i 0.0209226 + 0.0362390i
\(482\) 0 0
\(483\) 358.848 566.400i 0.0338057 0.0533584i
\(484\) 0 0
\(485\) −25161.6 −2.35573
\(486\) 0 0
\(487\) 1753.49 0.163158 0.0815792 0.996667i \(-0.474004\pi\)
0.0815792 + 0.996667i \(0.474004\pi\)
\(488\) 0 0
\(489\) −3411.54 + 5384.72i −0.315491 + 0.497966i
\(490\) 0 0
\(491\) 3111.09 + 5388.56i 0.285950 + 0.495280i 0.972839 0.231482i \(-0.0743576\pi\)
−0.686889 + 0.726762i \(0.741024\pi\)
\(492\) 0 0
\(493\) −8824.96 + 15285.3i −0.806199 + 1.39638i
\(494\) 0 0
\(495\) −10429.6 22077.4i −0.947023 2.00465i
\(496\) 0 0
\(497\) 51.5980 89.3704i 0.00465692 0.00806602i
\(498\) 0 0
\(499\) −8646.88 14976.8i −0.775727 1.34360i −0.934385 0.356264i \(-0.884050\pi\)
0.158659 0.987333i \(-0.449283\pi\)
\(500\) 0 0
\(501\) 20229.2 + 832.535i 1.80394 + 0.0742413i
\(502\) 0 0
\(503\) −20578.6 −1.82416 −0.912082 0.410007i \(-0.865526\pi\)
−0.912082 + 0.410007i \(0.865526\pi\)
\(504\) 0 0
\(505\) 3532.35 0.311263
\(506\) 0 0
\(507\) −4844.17 9249.00i −0.424333 0.810182i
\(508\) 0 0
\(509\) 9277.57 + 16069.2i 0.807900 + 1.39932i 0.914316 + 0.405003i \(0.132729\pi\)
−0.106415 + 0.994322i \(0.533937\pi\)
\(510\) 0 0
\(511\) −796.352 + 1379.32i −0.0689404 + 0.119408i
\(512\) 0 0
\(513\) −17654.7 2189.64i −1.51944 0.188450i
\(514\) 0 0
\(515\) −13470.2 + 23331.0i −1.15256 + 1.99629i
\(516\) 0 0
\(517\) 5470.73 + 9475.59i 0.465382 + 0.806066i
\(518\) 0 0
\(519\) 352.956 + 673.900i 0.0298517 + 0.0569960i
\(520\) 0 0
\(521\) −5321.51 −0.447485 −0.223742 0.974648i \(-0.571827\pi\)
−0.223742 + 0.974648i \(0.571827\pi\)
\(522\) 0 0
\(523\) −7766.94 −0.649378 −0.324689 0.945821i \(-0.605260\pi\)
−0.324689 + 0.945821i \(0.605260\pi\)
\(524\) 0 0
\(525\) −2155.79 88.7218i −0.179212 0.00737550i
\(526\) 0 0
\(527\) 9292.29 + 16094.7i 0.768081 + 1.33036i
\(528\) 0 0
\(529\) 4605.66 7977.24i 0.378537 0.655646i
\(530\) 0 0
\(531\) 89.4634 129.137i 0.00731145 0.0105538i
\(532\) 0 0
\(533\) −3429.36 + 5939.83i −0.278691 + 0.482706i
\(534\) 0 0
\(535\) −5060.88 8765.71i −0.408974 0.708364i
\(536\) 0 0
\(537\) 4284.96 6763.31i 0.344338 0.543498i
\(538\) 0 0
\(539\) −17616.1 −1.40775
\(540\) 0 0
\(541\) −1292.25 −0.102695 −0.0513476 0.998681i \(-0.516352\pi\)
−0.0513476 + 0.998681i \(0.516352\pi\)
\(542\) 0 0
\(543\) 3264.63 5152.85i 0.258009 0.407237i
\(544\) 0 0
\(545\) 6777.49 + 11739.0i 0.532690 + 0.922646i
\(546\) 0 0
\(547\) 3766.48 6523.73i 0.294411 0.509935i −0.680437 0.732807i \(-0.738210\pi\)
0.974848 + 0.222872i \(0.0715432\pi\)
\(548\) 0 0
\(549\) −16253.7 1340.12i −1.26355 0.104180i
\(550\) 0 0
\(551\) 13495.0 23374.1i 1.04339 1.80720i
\(552\) 0 0
\(553\) −770.449 1334.46i −0.0592456 0.102616i
\(554\) 0 0
\(555\) 2897.34 + 119.240i 0.221595 + 0.00911976i
\(556\) 0 0
\(557\) −9856.22 −0.749769 −0.374884 0.927072i \(-0.622318\pi\)
−0.374884 + 0.927072i \(0.622318\pi\)
\(558\) 0 0
\(559\) 175.699 0.0132939
\(560\) 0 0
\(561\) −10438.6 19930.6i −0.785596 1.49994i
\(562\) 0 0
\(563\) −5141.10 8904.65i −0.384852 0.666583i 0.606897 0.794781i \(-0.292414\pi\)
−0.991749 + 0.128198i \(0.959081\pi\)
\(564\) 0 0
\(565\) 7535.87 13052.5i 0.561126 0.971899i
\(566\) 0 0
\(567\) −608.036 1619.95i −0.0450354 0.119985i
\(568\) 0 0
\(569\) 661.321 1145.44i 0.0487241 0.0843927i −0.840635 0.541602i \(-0.817818\pi\)
0.889359 + 0.457210i \(0.151151\pi\)
\(570\) 0 0
\(571\) −2127.29 3684.57i −0.155909 0.270043i 0.777480 0.628907i \(-0.216497\pi\)
−0.933390 + 0.358864i \(0.883164\pi\)
\(572\) 0 0
\(573\) 5288.50 + 10097.4i 0.385568 + 0.736167i
\(574\) 0 0
\(575\) 9511.01 0.689803
\(576\) 0 0
\(577\) −13268.4 −0.957312 −0.478656 0.878003i \(-0.658876\pi\)
−0.478656 + 0.878003i \(0.658876\pi\)
\(578\) 0 0
\(579\) −12788.9 526.329i −0.917944 0.0377781i
\(580\) 0 0
\(581\) 159.650 + 276.522i 0.0114000 + 0.0197454i
\(582\) 0 0
\(583\) −9691.71 + 16786.5i −0.688490 + 1.19250i
\(584\) 0 0
\(585\) 6384.26 + 526.382i 0.451208 + 0.0372020i
\(586\) 0 0
\(587\) 2355.25 4079.42i 0.165608 0.286841i −0.771263 0.636516i \(-0.780375\pi\)
0.936871 + 0.349676i \(0.113708\pi\)
\(588\) 0 0
\(589\) −14209.7 24611.9i −0.994057 1.72176i
\(590\) 0 0
\(591\) 9993.29 15773.3i 0.695548 1.09784i
\(592\) 0 0
\(593\) 16303.6 1.12902 0.564510 0.825426i \(-0.309065\pi\)
0.564510 + 0.825426i \(0.309065\pi\)
\(594\) 0 0
\(595\) −3408.65 −0.234859
\(596\) 0 0
\(597\) 12790.5 20188.3i 0.876849 1.38400i
\(598\) 0 0
\(599\) −5279.43 9144.25i −0.360120 0.623746i 0.627860 0.778326i \(-0.283931\pi\)
−0.987980 + 0.154580i \(0.950598\pi\)
\(600\) 0 0
\(601\) 936.177 1621.51i 0.0635399 0.110054i −0.832505 0.554017i \(-0.813094\pi\)
0.896045 + 0.443962i \(0.146428\pi\)
\(602\) 0 0
\(603\) 11594.3 16736.0i 0.783013 1.13025i
\(604\) 0 0
\(605\) −12084.8 + 20931.4i −0.812092 + 1.40659i
\(606\) 0 0
\(607\) −11535.9 19980.7i −0.771378 1.33607i −0.936808 0.349844i \(-0.886235\pi\)
0.165430 0.986222i \(-0.447099\pi\)
\(608\) 0 0
\(609\) 2622.91 + 107.946i 0.174525 + 0.00718259i
\(610\) 0 0
\(611\) −2870.56 −0.190066
\(612\) 0 0
\(613\) −24292.0 −1.60056 −0.800281 0.599625i \(-0.795317\pi\)
−0.800281 + 0.599625i \(0.795317\pi\)
\(614\) 0 0
\(615\) 20904.2 + 39912.4i 1.37063 + 2.61695i
\(616\) 0 0
\(617\) 3886.97 + 6732.43i 0.253620 + 0.439283i 0.964520 0.264010i \(-0.0850453\pi\)
−0.710900 + 0.703293i \(0.751712\pi\)
\(618\) 0 0
\(619\) −15287.6 + 26478.8i −0.992664 + 1.71934i −0.391626 + 0.920125i \(0.628087\pi\)
−0.601038 + 0.799220i \(0.705246\pi\)
\(620\) 0 0
\(621\) 2971.66 + 7024.66i 0.192027 + 0.453929i
\(622\) 0 0
\(623\) 244.564 423.597i 0.0157275 0.0272409i
\(624\) 0 0
\(625\) 3443.84 + 5964.90i 0.220406 + 0.381754i
\(626\) 0 0
\(627\) 15962.6 + 30477.6i 1.01673 + 1.94124i
\(628\) 0 0
\(629\) 2671.98 0.169378
\(630\) 0 0
\(631\) −14474.9 −0.913209 −0.456605 0.889670i \(-0.650935\pi\)
−0.456605 + 0.889670i \(0.650935\pi\)
\(632\) 0 0
\(633\) −12108.4 498.323i −0.760294 0.0312900i
\(634\) 0 0
\(635\) 8607.91 + 14909.3i 0.537944 + 0.931747i
\(636\) 0 0
\(637\) 2310.84 4002.49i 0.143734 0.248955i
\(638\) 0 0
\(639\) 501.430 + 1061.42i 0.0310427 + 0.0657109i
\(640\) 0 0
\(641\) 6841.90 11850.5i 0.421589 0.730214i −0.574506 0.818501i \(-0.694806\pi\)
0.996095 + 0.0882864i \(0.0281391\pi\)
\(642\) 0 0
\(643\) 8007.76 + 13869.8i 0.491128 + 0.850658i 0.999948 0.0102148i \(-0.00325153\pi\)
−0.508820 + 0.860873i \(0.669918\pi\)
\(644\) 0 0
\(645\) 617.702 974.972i 0.0377085 0.0595186i
\(646\) 0 0
\(647\) −12224.1 −0.742783 −0.371392 0.928476i \(-0.621119\pi\)
−0.371392 + 0.928476i \(0.621119\pi\)
\(648\) 0 0
\(649\) −303.821 −0.0183760
\(650\) 0 0
\(651\) 1479.34 2334.96i 0.0890626 0.140575i
\(652\) 0 0
\(653\) 8064.97 + 13968.9i 0.483318 + 0.837131i 0.999816 0.0191568i \(-0.00609816\pi\)
−0.516498 + 0.856288i \(0.672765\pi\)
\(654\) 0 0
\(655\) −6945.55 + 12030.0i −0.414328 + 0.717638i
\(656\) 0 0
\(657\) −7738.95 16381.8i −0.459551 0.972776i
\(658\) 0 0
\(659\) 3579.31 6199.55i 0.211579 0.366465i −0.740630 0.671913i \(-0.765473\pi\)
0.952209 + 0.305448i \(0.0988062\pi\)
\(660\) 0 0
\(661\) −4760.03 8244.61i −0.280096 0.485141i 0.691312 0.722556i \(-0.257033\pi\)
−0.971408 + 0.237415i \(0.923700\pi\)
\(662\) 0 0
\(663\) 5897.67 + 242.719i 0.345470 + 0.0142179i
\(664\) 0 0
\(665\) 5212.46 0.303956
\(666\) 0 0
\(667\) −11571.9 −0.671760
\(668\) 0 0
\(669\) 9781.01 + 18674.9i 0.565255 + 1.07925i
\(670\) 0 0
\(671\) 15770.2 + 27314.8i 0.907306 + 1.57150i
\(672\) 0 0
\(673\) 3801.82 6584.95i 0.217755 0.377163i −0.736366 0.676583i \(-0.763460\pi\)
0.954121 + 0.299420i \(0.0967932\pi\)
\(674\) 0 0
\(675\) 14794.9 19583.6i 0.843636 1.11670i
\(676\) 0 0
\(677\) 2475.98 4288.53i 0.140561 0.243459i −0.787147 0.616765i \(-0.788443\pi\)
0.927708 + 0.373307i \(0.121776\pi\)
\(678\) 0 0
\(679\) 1724.18 + 2986.36i 0.0974489 + 0.168786i
\(680\) 0 0
\(681\) −3127.46 5971.29i −0.175983 0.336006i
\(682\) 0 0
\(683\) 28231.4 1.58162 0.790809 0.612063i \(-0.209660\pi\)
0.790809 + 0.612063i \(0.209660\pi\)
\(684\) 0 0
\(685\) 22858.7 1.27502
\(686\) 0 0
\(687\) −16156.6 664.925i −0.897250 0.0369265i
\(688\) 0 0
\(689\) −2542.68 4404.04i −0.140592 0.243513i
\(690\) 0 0
\(691\) 12755.1 22092.5i 0.702212 1.21627i −0.265477 0.964117i \(-0.585529\pi\)
0.967688 0.252149i \(-0.0811373\pi\)
\(692\) 0 0
\(693\) −1905.62 + 2750.70i −0.104457 + 0.150780i
\(694\) 0 0
\(695\) 4561.73 7901.16i 0.248973 0.431234i
\(696\) 0 0
\(697\) 20757.9 + 35953.7i 1.12806 + 1.95387i
\(698\) 0 0
\(699\) 5658.44 8931.20i 0.306183 0.483274i
\(700\) 0 0
\(701\) 17524.1 0.944191 0.472095 0.881547i \(-0.343498\pi\)
0.472095 + 0.881547i \(0.343498\pi\)
\(702\) 0 0
\(703\) −4085.96 −0.219210
\(704\) 0 0
\(705\) −10092.0 + 15929.0i −0.539129 + 0.850953i
\(706\) 0 0
\(707\) −242.052 419.246i −0.0128759 0.0223018i
\(708\) 0 0
\(709\) 17490.8 30295.0i 0.926490 1.60473i 0.137343 0.990524i \(-0.456144\pi\)
0.789147 0.614205i \(-0.210523\pi\)
\(710\) 0 0
\(711\) 17469.2 + 1440.33i 0.921442 + 0.0759728i
\(712\) 0 0
\(713\) −6092.32 + 10552.2i −0.319999 + 0.554255i
\(714\) 0 0
\(715\) −6194.35 10728.9i −0.323994 0.561173i
\(716\) 0 0
\(717\) 7623.88 + 313.762i 0.397098 + 0.0163426i
\(718\) 0 0
\(719\) −30485.5 −1.58125 −0.790623 0.612303i \(-0.790243\pi\)
−0.790623 + 0.612303i \(0.790243\pi\)
\(720\) 0 0
\(721\) 3692.13 0.190710
\(722\) 0 0
\(723\) 1589.14 + 3034.15i 0.0817435 + 0.156073i
\(724\) 0 0
\(725\) 18618.4 + 32248.0i 0.953753 + 1.65195i
\(726\) 0 0
\(727\) 13348.9 23121.0i 0.680994 1.17952i −0.293683 0.955903i \(-0.594881\pi\)
0.974678 0.223614i \(-0.0717856\pi\)
\(728\) 0 0
\(729\) 19086.6 + 4808.44i 0.969701 + 0.244294i
\(730\) 0 0
\(731\) 531.752 921.022i 0.0269050 0.0466008i
\(732\) 0 0
\(733\) −15258.5 26428.4i −0.768874 1.33173i −0.938174 0.346164i \(-0.887484\pi\)
0.169301 0.985564i \(-0.445849\pi\)
\(734\) 0 0
\(735\) −14086.1 26894.6i −0.706901 1.34969i
\(736\) 0 0
\(737\) −39374.7 −1.96796
\(738\) 0 0
\(739\) 20020.0 0.996544 0.498272 0.867021i \(-0.333968\pi\)
0.498272 + 0.867021i \(0.333968\pi\)
\(740\) 0 0
\(741\) −9018.66 371.164i −0.447110 0.0184009i
\(742\) 0 0
\(743\) 8017.35 + 13886.5i 0.395866 + 0.685659i 0.993211 0.116325i \(-0.0371113\pi\)
−0.597346 + 0.801984i \(0.703778\pi\)
\(744\) 0 0
\(745\) −26651.6 + 46161.9i −1.31066 + 2.27012i
\(746\) 0 0
\(747\) −3619.92 298.462i −0.177304 0.0146187i
\(748\) 0 0
\(749\) −693.586 + 1201.33i −0.0338359 + 0.0586055i
\(750\) 0 0
\(751\) 12362.5 + 21412.5i 0.600686 + 1.04042i 0.992717 + 0.120467i \(0.0384392\pi\)
−0.392031 + 0.919952i \(0.628227\pi\)
\(752\) 0 0
\(753\) 15320.5 24181.6i 0.741446 1.17029i
\(754\) 0 0
\(755\) −1423.45 −0.0686156
\(756\) 0 0
\(757\) −13567.6 −0.651419 −0.325709 0.945470i \(-0.605603\pi\)
−0.325709 + 0.945470i \(0.605603\pi\)
\(758\) 0 0
\(759\) 7894.50 12460.6i 0.377539 0.595902i
\(760\) 0 0
\(761\) 1108.70 + 1920.32i 0.0528124 + 0.0914737i 0.891223 0.453565i \(-0.149848\pi\)
−0.838411 + 0.545039i \(0.816515\pi\)
\(762\) 0 0
\(763\) 928.845 1608.81i 0.0440713 0.0763338i
\(764\) 0 0
\(765\) 22081.3 31873.5i 1.04359 1.50639i
\(766\) 0 0
\(767\) 39.8545 69.0301i 0.00187622 0.00324971i
\(768\) 0 0
\(769\) 17449.5 + 30223.4i 0.818263 + 1.41727i 0.906961 + 0.421215i \(0.138396\pi\)
−0.0886978 + 0.996059i \(0.528271\pi\)
\(770\) 0 0
\(771\) −19041.5 783.654i −0.889444 0.0366052i
\(772\) 0 0
\(773\) −10244.1 −0.476656 −0.238328 0.971185i \(-0.576599\pi\)
−0.238328 + 0.971185i \(0.576599\pi\)
\(774\) 0 0
\(775\) 39208.7 1.81732
\(776\) 0 0
\(777\) −184.385 352.048i −0.00851324 0.0162544i
\(778\) 0 0
\(779\) −31742.7 54980.0i −1.45995 2.52871i
\(780\) 0 0
\(781\) 1135.13 1966.11i 0.0520080 0.0900805i
\(782\) 0 0
\(783\) −18000.6 + 23826.9i −0.821570 + 1.08749i
\(784\) 0 0
\(785\) 20645.6 35759.3i 0.938693 1.62586i
\(786\) 0 0
\(787\) −5430.76 9406.36i −0.245979 0.426049i 0.716427 0.697662i \(-0.245776\pi\)
−0.962407 + 0.271613i \(0.912443\pi\)
\(788\) 0 0
\(789\) 12036.7 + 22981.8i 0.543117 + 1.03698i
\(790\) 0 0
\(791\) −2065.56 −0.0928480
\(792\) 0 0
\(793\) −8274.81 −0.370551
\(794\) 0 0
\(795\) −33377.7 1373.67i −1.48904 0.0612816i
\(796\) 0 0
\(797\) −17802.4 30834.7i −0.791209 1.37041i −0.925219 0.379434i \(-0.876119\pi\)
0.134010 0.990980i \(-0.457214\pi\)
\(798\) 0 0
\(799\) −8687.73 + 15047.6i −0.384668 + 0.666265i
\(800\) 0 0
\(801\) 2376.67 + 5030.93i 0.104838 + 0.221922i
\(802\) 0 0
\(803\) −17519.4 + 30344.4i −0.769919 + 1.33354i
\(804\) 0 0
\(805\) −1117.41 1935.41i −0.0489236 0.0847381i
\(806\) 0 0
\(807\) 246.151 388.521i 0.0107372 0.0169474i
\(808\) 0 0
\(809\) 13929.4 0.605355 0.302678 0.953093i \(-0.402119\pi\)
0.302678 + 0.953093i \(0.402119\pi\)
\(810\) 0 0
\(811\) −41996.6 −1.81837 −0.909187 0.416388i \(-0.863296\pi\)
−0.909187 + 0.416388i \(0.863296\pi\)
\(812\) 0 0
\(813\) −14534.7 + 22941.3i −0.627002 + 0.989650i
\(814\) 0 0
\(815\) 10623.1 + 18399.8i 0.456579 + 0.790817i
\(816\) 0 0
\(817\) −813.149 + 1408.42i −0.0348207 + 0.0603112i
\(818\) 0 0
\(819\) −375.002 793.801i −0.0159995 0.0338677i
\(820\) 0 0
\(821\) −10540.1 + 18255.9i −0.448052 + 0.776049i −0.998259 0.0589791i \(-0.981215\pi\)
0.550207 + 0.835028i \(0.314549\pi\)
\(822\) 0 0
\(823\) 17182.6 + 29761.1i 0.727760 + 1.26052i 0.957828 + 0.287343i \(0.0927719\pi\)
−0.230068 + 0.973175i \(0.573895\pi\)
\(824\) 0 0
\(825\) −47426.4 1951.84i −2.00142 0.0823689i
\(826\) 0 0
\(827\) 32925.7 1.38445 0.692225 0.721682i \(-0.256631\pi\)
0.692225 + 0.721682i \(0.256631\pi\)
\(828\) 0 0
\(829\) 21195.7 0.888008 0.444004 0.896025i \(-0.353558\pi\)
0.444004 + 0.896025i \(0.353558\pi\)
\(830\) 0 0
\(831\) −5092.30 9722.76i −0.212575 0.405871i
\(832\) 0 0
\(833\) −13987.5 24227.1i −0.581798 1.00770i
\(834\) 0 0
\(835\) 33740.7 58440.6i 1.39838 2.42206i
\(836\) 0 0
\(837\) 12250.5 + 28958.9i 0.505903 + 1.19590i
\(838\) 0 0
\(839\) −11868.4 + 20556.7i −0.488370 + 0.845882i −0.999911 0.0133775i \(-0.995742\pi\)
0.511541 + 0.859259i \(0.329075\pi\)
\(840\) 0 0
\(841\) −10458.2 18114.1i −0.428806 0.742715i
\(842\) 0 0
\(843\) 4159.03 + 7940.86i 0.169922 + 0.324434i
\(844\) 0 0
\(845\) −34799.3 −1.41673
\(846\) 0 0
\(847\) 3312.40 0.134375
\(848\) 0 0
\(849\) 17349.8 + 714.032i 0.701346 + 0.0288640i
\(850\) 0 0
\(851\) 875.917 + 1517.13i 0.0352833 + 0.0611124i
\(852\) 0 0
\(853\) −10964.2 + 18990.6i −0.440104 + 0.762282i −0.997697 0.0678324i \(-0.978392\pi\)
0.557593 + 0.830114i \(0.311725\pi\)
\(854\) 0 0
\(855\) −33766.4 + 48740.6i −1.35063 + 1.94958i
\(856\) 0 0
\(857\) 20166.3 34929.1i 0.803814 1.39225i −0.113275 0.993564i \(-0.536134\pi\)
0.917089 0.398683i \(-0.130533\pi\)
\(858\) 0 0
\(859\) 11472.6 + 19871.1i 0.455691 + 0.789280i 0.998728 0.0504289i \(-0.0160588\pi\)
−0.543037 + 0.839709i \(0.682725\pi\)
\(860\) 0 0
\(861\) 3304.66 5216.03i 0.130804 0.206460i
\(862\) 0 0
\(863\) 40453.2 1.59565 0.797824 0.602890i \(-0.205984\pi\)
0.797824 + 0.602890i \(0.205984\pi\)
\(864\) 0 0
\(865\) 2535.55 0.0996662
\(866\) 0 0
\(867\) 5458.97 8616.36i 0.213837 0.337516i
\(868\) 0 0
\(869\) −16949.5 29357.4i −0.661649 1.14601i
\(870\) 0 0
\(871\) 5165.08 8946.19i 0.200932 0.348025i
\(872\) 0 0
\(873\) −39094.0 3223.30i −1.51562 0.124962i
\(874\) 0 0
\(875\) −1026.51 + 1777.97i −0.0396599 + 0.0686930i
\(876\) 0 0
\(877\) −2280.71 3950.30i −0.0878153 0.152101i 0.818772 0.574119i \(-0.194655\pi\)
−0.906587 + 0.422018i \(0.861322\pi\)
\(878\) 0 0
\(879\) 27300.4 + 1123.55i 1.04758 + 0.0431132i
\(880\) 0 0
\(881\) 31553.9 1.20667 0.603336 0.797487i \(-0.293838\pi\)
0.603336 + 0.797487i \(0.293838\pi\)
\(882\) 0 0
\(883\) −22726.0 −0.866128 −0.433064 0.901363i \(-0.642568\pi\)
−0.433064 + 0.901363i \(0.642568\pi\)
\(884\) 0 0
\(885\) −242.939 463.845i −0.00922746 0.0176181i
\(886\) 0 0
\(887\) 817.180 + 1415.40i 0.0309337 + 0.0535788i 0.881078 0.472971i \(-0.156819\pi\)
−0.850144 + 0.526550i \(0.823485\pi\)
\(888\) 0 0
\(889\) 1179.70 2043.30i 0.0445061 0.0770868i
\(890\) 0 0
\(891\) −13376.5 35638.1i −0.502952 1.33998i
\(892\) 0 0
\(893\) 13285.2 23010.6i 0.497841 0.862285i
\(894\) 0 0
\(895\) −13342.8 23110.4i −0.498325 0.863125i
\(896\) 0 0
\(897\) 1795.54 + 3428.23i 0.0668353 + 0.127609i
\(898\) 0 0
\(899\) −47704.5 −1.76978
\(900\) 0 0
\(901\) −30781.6 −1.13816
\(902\) 0 0
\(903\) −158.044 6.50434i −0.00582435 0.000239702i
\(904\) 0 0
\(905\) −10165.7 17607.5i −0.373390 0.646731i
\(906\) 0 0
\(907\) −3267.67 + 5659.76i −0.119626 + 0.207199i −0.919620 0.392810i \(-0.871503\pi\)
0.799993 + 0.600009i \(0.204836\pi\)
\(908\) 0 0
\(909\) 5488.29 + 452.509i 0.200259 + 0.0165113i
\(910\) 0 0
\(911\) 23043.3 39912.2i 0.838046 1.45154i −0.0534801 0.998569i \(-0.517031\pi\)
0.891526 0.452969i \(-0.149635\pi\)
\(912\) 0 0
\(913\) 3512.23 + 6083.37i 0.127314 + 0.220515i
\(914\) 0 0
\(915\) −29091.6 + 45917.8i −1.05108 + 1.65901i
\(916\) 0 0
\(917\) 1903.75 0.0685578
\(918\) 0 0
\(919\) −1857.94 −0.0666898 −0.0333449 0.999444i \(-0.510616\pi\)
−0.0333449 + 0.999444i \(0.510616\pi\)
\(920\) 0 0
\(921\) −7181.89 + 11335.8i −0.256950 + 0.405566i
\(922\) 0 0
\(923\) 297.809 + 515.820i 0.0106202 + 0.0183948i
\(924\) 0 0
\(925\) 2818.60 4881.95i 0.100189 0.173532i
\(926\) 0 0
\(927\) −23917.7 + 34524.3i −0.847421 + 1.22322i
\(928\) 0 0
\(929\) −12150.8 + 21045.8i −0.429123 + 0.743263i −0.996796 0.0799916i \(-0.974511\pi\)
0.567672 + 0.823254i \(0.307844\pi\)
\(930\) 0 0
\(931\) 21389.5 + 37047.8i 0.752968 + 1.30418i
\(932\) 0 0
\(933\) −26418.4 1087.25i −0.927009 0.0381512i
\(934\) 0 0
\(935\) −74988.7 −2.62288
\(936\) 0 0
\(937\) 52069.9 1.81542 0.907710 0.419597i \(-0.137829\pi\)
0.907710 + 0.419597i \(0.137829\pi\)
\(938\) 0 0
\(939\) −7066.32 13491.8i −0.245581 0.468890i
\(940\) 0 0
\(941\) −7854.48 13604.4i −0.272103 0.471296i 0.697297 0.716782i \(-0.254386\pi\)
−0.969400 + 0.245486i \(0.921052\pi\)
\(942\) 0 0
\(943\) −13609.5 + 23572.4i −0.469976 + 0.814023i
\(944\) 0 0
\(945\) −5723.27 709.834i −0.197014 0.0244348i
\(946\) 0 0
\(947\) 26244.3 45456.5i 0.900556 1.55981i 0.0737816 0.997274i \(-0.476493\pi\)
0.826774 0.562534i \(-0.190173\pi\)
\(948\) 0 0
\(949\) −4596.31 7961.04i −0.157221 0.272314i
\(950\) 0 0
\(951\) 8677.97 + 16568.9i 0.295902 + 0.564967i
\(952\) 0 0
\(953\) 2447.37 0.0831880 0.0415940 0.999135i \(-0.486756\pi\)
0.0415940 + 0.999135i \(0.486756\pi\)
\(954\) 0 0
\(955\) 37991.3 1.28730
\(956\) 0 0
\(957\) 57702.8 + 2374.76i 1.94908 + 0.0802144i
\(958\) 0 0
\(959\) −1566.37 2713.04i −0.0527433 0.0913541i
\(960\) 0 0
\(961\) −10219.9 + 17701.3i −0.343052 + 0.594183i
\(962\) 0 0
\(963\) −6740.27 14267.8i −0.225548 0.477438i
\(964\) 0 0
\(965\) −21330.9 + 36946.2i −0.711571 + 1.23248i
\(966\) 0 0
\(967\) −14696.1 25454.4i −0.488723 0.846494i 0.511193 0.859466i \(-0.329204\pi\)
−0.999916 + 0.0129726i \(0.995871\pi\)
\(968\) 0 0
\(969\) −29240.6 + 46152.9i −0.969394 + 1.53008i
\(970\) 0 0
\(971\) 32763.9 1.08285 0.541423 0.840751i \(-0.317886\pi\)
0.541423 + 0.840751i \(0.317886\pi\)
\(972\) 0 0
\(973\) −1250.36 −0.0411969
\(974\) 0 0
\(975\) 6664.76 10519.6i 0.218916 0.345534i
\(976\) 0 0
\(977\) −334.690 579.701i −0.0109598 0.0189829i 0.860494 0.509461i \(-0.170155\pi\)
−0.871453 + 0.490479i \(0.836822\pi\)
\(978\) 0 0
\(979\) 5380.29 9318.94i 0.175643 0.304223i
\(980\) 0 0
\(981\) 9026.52 + 19107.3i 0.293776 + 0.621864i
\(982\) 0 0
\(983\) 11895.5 20603.6i 0.385969 0.668518i −0.605934 0.795515i \(-0.707200\pi\)
0.991903 + 0.126997i \(0.0405338\pi\)
\(984\) 0 0
\(985\) −31117.9 53897.7i −1.00660 1.74348i
\(986\) 0 0
\(987\) 2582.12 + 106.267i 0.0832723 + 0.00342708i
\(988\) 0 0
\(989\) 697.267 0.0224184
\(990\) 0 0
\(991\) −7069.41 −0.226607 −0.113303 0.993560i \(-0.536143\pi\)
−0.113303 + 0.993560i \(0.536143\pi\)
\(992\) 0 0
\(993\) −8866.60 16929.1i −0.283357 0.541015i
\(994\) 0 0
\(995\) −39827.9 68984.0i −1.26897 2.19793i
\(996\) 0 0
\(997\) −17162.3 + 29726.0i −0.545172 + 0.944266i 0.453424 + 0.891295i \(0.350202\pi\)
−0.998596 + 0.0529711i \(0.983131\pi\)
\(998\) 0 0
\(999\) 4486.37 + 556.426i 0.142085 + 0.0176222i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.i.e.97.3 8
3.2 odd 2 432.4.i.e.289.4 8
4.3 odd 2 72.4.i.a.25.2 8
9.2 odd 6 1296.4.a.y.1.1 4
9.4 even 3 inner 144.4.i.e.49.3 8
9.5 odd 6 432.4.i.e.145.4 8
9.7 even 3 1296.4.a.ba.1.4 4
12.11 even 2 216.4.i.a.73.4 8
36.7 odd 6 648.4.a.i.1.4 4
36.11 even 6 648.4.a.h.1.1 4
36.23 even 6 216.4.i.a.145.4 8
36.31 odd 6 72.4.i.a.49.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.i.a.25.2 8 4.3 odd 2
72.4.i.a.49.2 yes 8 36.31 odd 6
144.4.i.e.49.3 8 9.4 even 3 inner
144.4.i.e.97.3 8 1.1 even 1 trivial
216.4.i.a.73.4 8 12.11 even 2
216.4.i.a.145.4 8 36.23 even 6
432.4.i.e.145.4 8 9.5 odd 6
432.4.i.e.289.4 8 3.2 odd 2
648.4.a.h.1.1 4 36.11 even 6
648.4.a.i.1.4 4 36.7 odd 6
1296.4.a.y.1.1 4 9.2 odd 6
1296.4.a.ba.1.4 4 9.7 even 3