Properties

Label 144.8.i.b.49.4
Level $144$
Weight $8$
Character 144.49
Analytic conductor $44.983$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,8,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9834436697\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1336x^{6} + 633664x^{4} + 125389995x^{2} + 8783438400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.4
Root \(13.4379i\) of defining polynomial
Character \(\chi\) \(=\) 144.49
Dual form 144.8.i.b.97.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(46.0138 + 8.35049i) q^{3} +(103.252 - 178.837i) q^{5} +(808.604 + 1400.54i) q^{7} +(2047.54 + 768.476i) q^{9} +(2338.01 + 4049.55i) q^{11} +(-3336.65 + 5779.25i) q^{13} +(6244.39 - 7366.78i) q^{15} -25731.9 q^{17} -22384.5 q^{19} +(25511.7 + 71196.6i) q^{21} +(11710.7 - 20283.5i) q^{23} +(17740.6 + 30727.7i) q^{25} +(87797.9 + 52458.4i) q^{27} +(-81488.4 - 141142. i) q^{29} +(-116733. + 202187. i) q^{31} +(73764.9 + 205859. i) q^{33} +333959. q^{35} +308867. q^{37} +(-201792. + 238063. i) q^{39} +(157555. - 272893. i) q^{41} +(-61173.2 - 105955. i) q^{43} +(348844. - 286830. i) q^{45} +(-97801.6 - 169397. i) q^{47} +(-895910. + 1.55176e6i) q^{49} +(-1.18402e6 - 214874. i) q^{51} -369367. q^{53} +965615. q^{55} +(-1.02999e6 - 186921. i) q^{57} +(-560669. + 971107. i) q^{59} +(-45155.7 - 78212.0i) q^{61} +(579364. + 3.48906e6i) q^{63} +(689031. + 1.19344e6i) q^{65} +(1.76399e6 - 3.05533e6i) q^{67} +(708232. - 835532. i) q^{69} +703989. q^{71} +4.06113e6 q^{73} +(559723. + 1.56204e6i) q^{75} +(-3.78105e6 + 6.54897e6i) q^{77} +(2.33651e6 + 4.04696e6i) q^{79} +(3.60186e6 + 3.14697e6i) q^{81} +(4.38570e6 + 7.59625e6i) q^{83} +(-2.65686e6 + 4.60182e6i) q^{85} +(-2.57099e6 - 7.17495e6i) q^{87} +1.07368e7 q^{89} -1.07921e7 q^{91} +(-7.05968e6 + 8.32862e6i) q^{93} +(-2.31123e6 + 4.00317e6i) q^{95} +(-3.72029e6 - 6.44373e6i) q^{97} +(1.67518e6 + 1.00883e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} + 54 q^{5} + 44 q^{7} - 2238 q^{9} - 2172 q^{11} - 6398 q^{13} - 17604 q^{15} - 51972 q^{17} - 90712 q^{19} + 192390 q^{21} + 2028 q^{23} - 173446 q^{25} + 288360 q^{27} + 283098 q^{29} + 812 q^{31}+ \cdots - 26558784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 46.0138 + 8.35049i 0.983929 + 0.178561i
\(4\) 0 0
\(5\) 103.252 178.837i 0.369405 0.639828i −0.620068 0.784548i \(-0.712895\pi\)
0.989473 + 0.144720i \(0.0462283\pi\)
\(6\) 0 0
\(7\) 808.604 + 1400.54i 0.891031 + 1.54331i 0.838641 + 0.544684i \(0.183350\pi\)
0.0523898 + 0.998627i \(0.483316\pi\)
\(8\) 0 0
\(9\) 2047.54 + 768.476i 0.936232 + 0.351384i
\(10\) 0 0
\(11\) 2338.01 + 4049.55i 0.529629 + 0.917345i 0.999403 + 0.0345577i \(0.0110022\pi\)
−0.469774 + 0.882787i \(0.655664\pi\)
\(12\) 0 0
\(13\) −3336.65 + 5779.25i −0.421220 + 0.729575i −0.996059 0.0886915i \(-0.971731\pi\)
0.574839 + 0.818267i \(0.305065\pi\)
\(14\) 0 0
\(15\) 6244.39 7366.78i 0.477717 0.563584i
\(16\) 0 0
\(17\) −25731.9 −1.27028 −0.635141 0.772396i \(-0.719058\pi\)
−0.635141 + 0.772396i \(0.719058\pi\)
\(18\) 0 0
\(19\) −22384.5 −0.748702 −0.374351 0.927287i \(-0.622134\pi\)
−0.374351 + 0.927287i \(0.622134\pi\)
\(20\) 0 0
\(21\) 25511.7 + 71196.6i 0.601135 + 1.67761i
\(22\) 0 0
\(23\) 11710.7 20283.5i 0.200695 0.347613i −0.748058 0.663634i \(-0.769013\pi\)
0.948752 + 0.316020i \(0.102347\pi\)
\(24\) 0 0
\(25\) 17740.6 + 30727.7i 0.227080 + 0.393315i
\(26\) 0 0
\(27\) 87797.9 + 52458.4i 0.858442 + 0.512911i
\(28\) 0 0
\(29\) −81488.4 141142.i −0.620444 1.07464i −0.989403 0.145195i \(-0.953619\pi\)
0.368959 0.929446i \(-0.379714\pi\)
\(30\) 0 0
\(31\) −116733. + 202187.i −0.703763 + 1.21895i 0.263373 + 0.964694i \(0.415165\pi\)
−0.967136 + 0.254260i \(0.918168\pi\)
\(32\) 0 0
\(33\) 73764.9 + 205859.i 0.357315 + 0.997173i
\(34\) 0 0
\(35\) 333959. 1.31660
\(36\) 0 0
\(37\) 308867. 1.00246 0.501229 0.865315i \(-0.332882\pi\)
0.501229 + 0.865315i \(0.332882\pi\)
\(38\) 0 0
\(39\) −201792. + 238063.i −0.544725 + 0.642636i
\(40\) 0 0
\(41\) 157555. 272893.i 0.357017 0.618372i −0.630444 0.776235i \(-0.717127\pi\)
0.987461 + 0.157863i \(0.0504605\pi\)
\(42\) 0 0
\(43\) −61173.2 105955.i −0.117333 0.203228i 0.801377 0.598160i \(-0.204101\pi\)
−0.918710 + 0.394933i \(0.870768\pi\)
\(44\) 0 0
\(45\) 348844. 286830.i 0.570673 0.469224i
\(46\) 0 0
\(47\) −97801.6 169397.i −0.137405 0.237993i 0.789108 0.614254i \(-0.210543\pi\)
−0.926514 + 0.376261i \(0.877210\pi\)
\(48\) 0 0
\(49\) −895910. + 1.55176e6i −1.08787 + 1.88425i
\(50\) 0 0
\(51\) −1.18402e6 214874.i −1.24987 0.226823i
\(52\) 0 0
\(53\) −369367. −0.340794 −0.170397 0.985375i \(-0.554505\pi\)
−0.170397 + 0.985375i \(0.554505\pi\)
\(54\) 0 0
\(55\) 965615. 0.782590
\(56\) 0 0
\(57\) −1.02999e6 186921.i −0.736669 0.133689i
\(58\) 0 0
\(59\) −560669. + 971107.i −0.355406 + 0.615581i −0.987187 0.159565i \(-0.948991\pi\)
0.631781 + 0.775147i \(0.282324\pi\)
\(60\) 0 0
\(61\) −45155.7 78212.0i −0.0254717 0.0441183i 0.853009 0.521897i \(-0.174775\pi\)
−0.878480 + 0.477779i \(0.841442\pi\)
\(62\) 0 0
\(63\) 579364. + 3.48906e6i 0.291917 + 1.75799i
\(64\) 0 0
\(65\) 689031. + 1.19344e6i 0.311202 + 0.539017i
\(66\) 0 0
\(67\) 1.76399e6 3.05533e6i 0.716532 1.24107i −0.245834 0.969312i \(-0.579062\pi\)
0.962366 0.271758i \(-0.0876049\pi\)
\(68\) 0 0
\(69\) 708232. 835532.i 0.259540 0.306190i
\(70\) 0 0
\(71\) 703989. 0.233433 0.116716 0.993165i \(-0.462763\pi\)
0.116716 + 0.993165i \(0.462763\pi\)
\(72\) 0 0
\(73\) 4.06113e6 1.22185 0.610923 0.791690i \(-0.290799\pi\)
0.610923 + 0.791690i \(0.290799\pi\)
\(74\) 0 0
\(75\) 559723. + 1.56204e6i 0.153200 + 0.427541i
\(76\) 0 0
\(77\) −3.78105e6 + 6.54897e6i −0.943832 + 1.63477i
\(78\) 0 0
\(79\) 2.33651e6 + 4.04696e6i 0.533180 + 0.923494i 0.999249 + 0.0387462i \(0.0123364\pi\)
−0.466069 + 0.884748i \(0.654330\pi\)
\(80\) 0 0
\(81\) 3.60186e6 + 3.14697e6i 0.753059 + 0.657953i
\(82\) 0 0
\(83\) 4.38570e6 + 7.59625e6i 0.841910 + 1.45823i 0.888278 + 0.459306i \(0.151902\pi\)
−0.0463686 + 0.998924i \(0.514765\pi\)
\(84\) 0 0
\(85\) −2.65686e6 + 4.60182e6i −0.469248 + 0.812762i
\(86\) 0 0
\(87\) −2.57099e6 7.17495e6i −0.418584 1.16816i
\(88\) 0 0
\(89\) 1.07368e7 1.61439 0.807194 0.590286i \(-0.200985\pi\)
0.807194 + 0.590286i \(0.200985\pi\)
\(90\) 0 0
\(91\) −1.07921e7 −1.50128
\(92\) 0 0
\(93\) −7.05968e6 + 8.32862e6i −0.910111 + 1.07370i
\(94\) 0 0
\(95\) −2.31123e6 + 4.00317e6i −0.276574 + 0.479040i
\(96\) 0 0
\(97\) −3.72029e6 6.44373e6i −0.413881 0.716863i 0.581429 0.813597i \(-0.302494\pi\)
−0.995310 + 0.0967340i \(0.969160\pi\)
\(98\) 0 0
\(99\) 1.67518e6 + 1.00883e7i 0.173516 + 1.04495i
\(100\) 0 0
\(101\) −7.40397e6 1.28241e7i −0.715056 1.23851i −0.962938 0.269723i \(-0.913068\pi\)
0.247882 0.968790i \(-0.420265\pi\)
\(102\) 0 0
\(103\) −8.62804e6 + 1.49442e7i −0.778004 + 1.34754i 0.155086 + 0.987901i \(0.450435\pi\)
−0.933090 + 0.359642i \(0.882899\pi\)
\(104\) 0 0
\(105\) 1.53667e7 + 2.78872e6i 1.29544 + 0.235095i
\(106\) 0 0
\(107\) 1.31928e7 1.04110 0.520552 0.853830i \(-0.325726\pi\)
0.520552 + 0.853830i \(0.325726\pi\)
\(108\) 0 0
\(109\) −2.46882e6 −0.182598 −0.0912990 0.995824i \(-0.529102\pi\)
−0.0912990 + 0.995824i \(0.529102\pi\)
\(110\) 0 0
\(111\) 1.42122e7 + 2.57919e6i 0.986347 + 0.179000i
\(112\) 0 0
\(113\) −1.72194e6 + 2.98249e6i −0.112265 + 0.194448i −0.916683 0.399615i \(-0.869144\pi\)
0.804418 + 0.594063i \(0.202477\pi\)
\(114\) 0 0
\(115\) −2.41830e6 4.18862e6i −0.148275 0.256820i
\(116\) 0 0
\(117\) −1.12731e7 + 9.26911e6i −0.650721 + 0.535041i
\(118\) 0 0
\(119\) −2.08069e7 3.60386e7i −1.13186 1.96044i
\(120\) 0 0
\(121\) −1.18899e6 + 2.05940e6i −0.0610141 + 0.105680i
\(122\) 0 0
\(123\) 9.52850e6 1.12412e7i 0.461697 0.544684i
\(124\) 0 0
\(125\) 2.34601e7 1.07435
\(126\) 0 0
\(127\) 119100. 0.00515940 0.00257970 0.999997i \(-0.499179\pi\)
0.00257970 + 0.999997i \(0.499179\pi\)
\(128\) 0 0
\(129\) −1.93004e6 5.38623e6i −0.0791592 0.220913i
\(130\) 0 0
\(131\) 1.10622e7 1.91602e7i 0.429923 0.744648i −0.566943 0.823757i \(-0.691874\pi\)
0.996866 + 0.0791089i \(0.0252075\pi\)
\(132\) 0 0
\(133\) −1.81002e7 3.13504e7i −0.667116 1.15548i
\(134\) 0 0
\(135\) 1.84468e7 1.02851e7i 0.645287 0.359783i
\(136\) 0 0
\(137\) 2.94797e6 + 5.10604e6i 0.0979493 + 0.169653i 0.910836 0.412769i \(-0.135438\pi\)
−0.812886 + 0.582422i \(0.802105\pi\)
\(138\) 0 0
\(139\) 1.77894e7 3.08121e7i 0.561834 0.973126i −0.435502 0.900188i \(-0.643429\pi\)
0.997336 0.0729381i \(-0.0232376\pi\)
\(140\) 0 0
\(141\) −3.08567e6 8.61131e6i −0.0927007 0.258703i
\(142\) 0 0
\(143\) −3.12045e7 −0.892363
\(144\) 0 0
\(145\) −3.36553e7 −0.916780
\(146\) 0 0
\(147\) −5.41822e7 + 6.39211e7i −1.40684 + 1.65972i
\(148\) 0 0
\(149\) 1.67110e7 2.89443e7i 0.413857 0.716821i −0.581451 0.813582i \(-0.697515\pi\)
0.995308 + 0.0967603i \(0.0308480\pi\)
\(150\) 0 0
\(151\) −2.49541e7 4.32217e7i −0.589823 1.02160i −0.994255 0.107036i \(-0.965864\pi\)
0.404432 0.914568i \(-0.367469\pi\)
\(152\) 0 0
\(153\) −5.26870e7 1.97743e7i −1.18928 0.446356i
\(154\) 0 0
\(155\) 2.41057e7 + 4.17523e7i 0.519947 + 0.900575i
\(156\) 0 0
\(157\) 2.13156e7 3.69197e7i 0.439590 0.761393i −0.558067 0.829796i \(-0.688457\pi\)
0.997658 + 0.0684026i \(0.0217902\pi\)
\(158\) 0 0
\(159\) −1.69960e7 3.08440e6i −0.335317 0.0608527i
\(160\) 0 0
\(161\) 3.78773e7 0.715300
\(162\) 0 0
\(163\) 4.06125e7 0.734519 0.367259 0.930119i \(-0.380296\pi\)
0.367259 + 0.930119i \(0.380296\pi\)
\(164\) 0 0
\(165\) 4.44316e7 + 8.06336e6i 0.770013 + 0.139740i
\(166\) 0 0
\(167\) 3.62955e7 6.28656e7i 0.603038 1.04449i −0.389320 0.921102i \(-0.627290\pi\)
0.992358 0.123390i \(-0.0393766\pi\)
\(168\) 0 0
\(169\) 9.10774e6 + 1.57751e7i 0.145147 + 0.251401i
\(170\) 0 0
\(171\) −4.58330e7 1.72019e7i −0.700958 0.263081i
\(172\) 0 0
\(173\) −1.61254e7 2.79301e7i −0.236783 0.410120i 0.723006 0.690841i \(-0.242760\pi\)
−0.959789 + 0.280721i \(0.909426\pi\)
\(174\) 0 0
\(175\) −2.86903e7 + 4.96931e7i −0.404671 + 0.700911i
\(176\) 0 0
\(177\) −3.39077e7 + 4.00025e7i −0.459613 + 0.542226i
\(178\) 0 0
\(179\) 5.74576e7 0.748793 0.374396 0.927269i \(-0.377850\pi\)
0.374396 + 0.927269i \(0.377850\pi\)
\(180\) 0 0
\(181\) 2.89626e7 0.363047 0.181524 0.983387i \(-0.441897\pi\)
0.181524 + 0.983387i \(0.441897\pi\)
\(182\) 0 0
\(183\) −1.42468e6 3.97590e6i −0.0171845 0.0479576i
\(184\) 0 0
\(185\) 3.18911e7 5.52370e7i 0.370313 0.641400i
\(186\) 0 0
\(187\) −6.01614e7 1.04203e8i −0.672779 1.16529i
\(188\) 0 0
\(189\) −2.47661e6 + 1.65383e8i −0.0266834 + 1.78186i
\(190\) 0 0
\(191\) 4.94718e7 + 8.56877e7i 0.513737 + 0.889819i 0.999873 + 0.0159358i \(0.00507275\pi\)
−0.486136 + 0.873883i \(0.661594\pi\)
\(192\) 0 0
\(193\) 7.72389e6 1.33782e7i 0.0773367 0.133951i −0.824763 0.565478i \(-0.808692\pi\)
0.902100 + 0.431527i \(0.142025\pi\)
\(194\) 0 0
\(195\) 2.17391e7 + 6.06683e7i 0.209953 + 0.585923i
\(196\) 0 0
\(197\) −9.85117e7 −0.918028 −0.459014 0.888429i \(-0.651797\pi\)
−0.459014 + 0.888429i \(0.651797\pi\)
\(198\) 0 0
\(199\) −1.40825e8 −1.26676 −0.633380 0.773841i \(-0.718333\pi\)
−0.633380 + 0.773841i \(0.718333\pi\)
\(200\) 0 0
\(201\) 1.06682e8 1.25857e8i 0.926623 1.09318i
\(202\) 0 0
\(203\) 1.31784e8 2.28256e8i 1.10567 1.91508i
\(204\) 0 0
\(205\) −3.25357e7 5.63534e7i −0.263768 0.456859i
\(206\) 0 0
\(207\) 3.95655e7 3.25319e7i 0.310042 0.254926i
\(208\) 0 0
\(209\) −5.23351e7 9.06470e7i −0.396534 0.686818i
\(210\) 0 0
\(211\) −3.02133e7 + 5.23309e7i −0.221416 + 0.383504i −0.955238 0.295838i \(-0.904401\pi\)
0.733822 + 0.679342i \(0.237735\pi\)
\(212\) 0 0
\(213\) 3.23932e7 + 5.87866e6i 0.229681 + 0.0416821i
\(214\) 0 0
\(215\) −2.52650e7 −0.173374
\(216\) 0 0
\(217\) −3.77562e8 −2.50830
\(218\) 0 0
\(219\) 1.86868e8 + 3.39124e7i 1.20221 + 0.218175i
\(220\) 0 0
\(221\) 8.58584e7 1.48711e8i 0.535069 0.926767i
\(222\) 0 0
\(223\) −1.42446e8 2.46723e8i −0.860165 1.48985i −0.871769 0.489918i \(-0.837027\pi\)
0.0116033 0.999933i \(-0.496306\pi\)
\(224\) 0 0
\(225\) 1.27112e7 + 7.65494e7i 0.0743955 + 0.448026i
\(226\) 0 0
\(227\) 7.13578e7 + 1.23595e8i 0.404903 + 0.701312i 0.994310 0.106524i \(-0.0339720\pi\)
−0.589407 + 0.807836i \(0.700639\pi\)
\(228\) 0 0
\(229\) −6.39437e7 + 1.10754e8i −0.351863 + 0.609445i −0.986576 0.163303i \(-0.947785\pi\)
0.634713 + 0.772748i \(0.281118\pi\)
\(230\) 0 0
\(231\) −2.28667e8 + 2.69769e8i −1.22057 + 1.43996i
\(232\) 0 0
\(233\) 2.85503e8 1.47865 0.739324 0.673350i \(-0.235145\pi\)
0.739324 + 0.673350i \(0.235145\pi\)
\(234\) 0 0
\(235\) −4.03928e7 −0.203033
\(236\) 0 0
\(237\) 7.37178e7 + 2.05727e8i 0.359710 + 1.00386i
\(238\) 0 0
\(239\) 5.90868e6 1.02341e7i 0.0279961 0.0484907i −0.851688 0.524049i \(-0.824421\pi\)
0.879684 + 0.475559i \(0.157754\pi\)
\(240\) 0 0
\(241\) −7.41195e7 1.28379e8i −0.341093 0.590791i 0.643543 0.765410i \(-0.277464\pi\)
−0.984636 + 0.174619i \(0.944130\pi\)
\(242\) 0 0
\(243\) 1.39456e8 + 1.74881e8i 0.623472 + 0.781846i
\(244\) 0 0
\(245\) 1.85009e8 + 3.20444e8i 0.803731 + 1.39210i
\(246\) 0 0
\(247\) 7.46892e7 1.29365e8i 0.315368 0.546234i
\(248\) 0 0
\(249\) 1.38370e8 + 3.86155e8i 0.567995 + 1.58513i
\(250\) 0 0
\(251\) −6.92645e7 −0.276473 −0.138237 0.990399i \(-0.544143\pi\)
−0.138237 + 0.990399i \(0.544143\pi\)
\(252\) 0 0
\(253\) 1.09519e8 0.425175
\(254\) 0 0
\(255\) −1.60680e8 + 1.89561e8i −0.606835 + 0.715910i
\(256\) 0 0
\(257\) −8.27289e7 + 1.43291e8i −0.304013 + 0.526565i −0.977041 0.213051i \(-0.931660\pi\)
0.673028 + 0.739617i \(0.264993\pi\)
\(258\) 0 0
\(259\) 2.49751e8 + 4.32582e8i 0.893221 + 1.54710i
\(260\) 0 0
\(261\) −5.83864e7 3.51616e8i −0.203268 1.22413i
\(262\) 0 0
\(263\) −8.54750e7 1.48047e8i −0.289730 0.501828i 0.684015 0.729468i \(-0.260232\pi\)
−0.973745 + 0.227640i \(0.926899\pi\)
\(264\) 0 0
\(265\) −3.81378e7 + 6.60566e7i −0.125891 + 0.218050i
\(266\) 0 0
\(267\) 4.94039e8 + 8.96572e7i 1.58844 + 0.288267i
\(268\) 0 0
\(269\) 2.40056e8 0.751932 0.375966 0.926633i \(-0.377311\pi\)
0.375966 + 0.926633i \(0.377311\pi\)
\(270\) 0 0
\(271\) −2.92612e8 −0.893098 −0.446549 0.894759i \(-0.647347\pi\)
−0.446549 + 0.894759i \(0.647347\pi\)
\(272\) 0 0
\(273\) −4.96587e8 9.01196e7i −1.47715 0.268071i
\(274\) 0 0
\(275\) −8.29556e7 + 1.43683e8i −0.240537 + 0.416622i
\(276\) 0 0
\(277\) −4.35557e7 7.54407e7i −0.123131 0.213269i 0.797870 0.602829i \(-0.205960\pi\)
−0.921001 + 0.389561i \(0.872627\pi\)
\(278\) 0 0
\(279\) −3.94391e8 + 3.24279e8i −1.08721 + 0.893932i
\(280\) 0 0
\(281\) 7.68148e7 + 1.33047e8i 0.206525 + 0.357712i 0.950618 0.310365i \(-0.100451\pi\)
−0.744092 + 0.668077i \(0.767118\pi\)
\(282\) 0 0
\(283\) −1.09494e8 + 1.89650e8i −0.287170 + 0.497393i −0.973133 0.230243i \(-0.926048\pi\)
0.685963 + 0.727636i \(0.259381\pi\)
\(284\) 0 0
\(285\) −1.39777e8 + 1.64901e8i −0.357667 + 0.421956i
\(286\) 0 0
\(287\) 5.09599e8 1.27245
\(288\) 0 0
\(289\) 2.51791e8 0.613617
\(290\) 0 0
\(291\) −1.17376e8 3.27567e8i −0.279225 0.779245i
\(292\) 0 0
\(293\) 1.45004e8 2.51154e8i 0.336777 0.583315i −0.647048 0.762450i \(-0.723996\pi\)
0.983825 + 0.179135i \(0.0573298\pi\)
\(294\) 0 0
\(295\) 1.15780e8 + 2.00537e8i 0.262577 + 0.454797i
\(296\) 0 0
\(297\) −7.16090e6 + 4.78190e8i −0.0158606 + 1.05914i
\(298\) 0 0
\(299\) 7.81492e7 + 1.35358e8i 0.169073 + 0.292844i
\(300\) 0 0
\(301\) 9.89299e7 1.71352e8i 0.209095 0.362164i
\(302\) 0 0
\(303\) −2.33598e8 6.51910e8i −0.482413 1.34629i
\(304\) 0 0
\(305\) −1.86496e7 −0.0376375
\(306\) 0 0
\(307\) −2.99914e7 −0.0591579 −0.0295789 0.999562i \(-0.509417\pi\)
−0.0295789 + 0.999562i \(0.509417\pi\)
\(308\) 0 0
\(309\) −5.21801e8 + 6.15591e8i −1.00612 + 1.18696i
\(310\) 0 0
\(311\) −7.31419e6 + 1.26686e7i −0.0137881 + 0.0238817i −0.872837 0.488012i \(-0.837722\pi\)
0.859049 + 0.511893i \(0.171056\pi\)
\(312\) 0 0
\(313\) 2.52793e7 + 4.37851e7i 0.0465973 + 0.0807089i 0.888383 0.459102i \(-0.151829\pi\)
−0.841786 + 0.539811i \(0.818496\pi\)
\(314\) 0 0
\(315\) 6.83794e8 + 2.56640e8i 1.23265 + 0.462633i
\(316\) 0 0
\(317\) 3.24798e7 + 5.62566e7i 0.0572671 + 0.0991896i 0.893238 0.449585i \(-0.148428\pi\)
−0.835971 + 0.548774i \(0.815095\pi\)
\(318\) 0 0
\(319\) 3.81041e8 6.59983e8i 0.657211 1.13832i
\(320\) 0 0
\(321\) 6.07052e8 + 1.10167e8i 1.02437 + 0.185901i
\(322\) 0 0
\(323\) 5.75994e8 0.951063
\(324\) 0 0
\(325\) −2.36778e8 −0.382603
\(326\) 0 0
\(327\) −1.13600e8 2.06158e7i −0.179663 0.0326050i
\(328\) 0 0
\(329\) 1.58166e8 2.73951e8i 0.244865 0.424118i
\(330\) 0 0
\(331\) 4.42586e7 + 7.66582e7i 0.0670811 + 0.116188i 0.897615 0.440780i \(-0.145298\pi\)
−0.830534 + 0.556968i \(0.811965\pi\)
\(332\) 0 0
\(333\) 6.32418e8 + 2.37357e8i 0.938532 + 0.352247i
\(334\) 0 0
\(335\) −3.64271e8 6.30936e8i −0.529381 0.916914i
\(336\) 0 0
\(337\) 2.27637e8 3.94279e8i 0.323995 0.561176i −0.657313 0.753618i \(-0.728307\pi\)
0.981309 + 0.192441i \(0.0616404\pi\)
\(338\) 0 0
\(339\) −1.04138e8 + 1.22857e8i −0.145181 + 0.171277i
\(340\) 0 0
\(341\) −1.09169e9 −1.49093
\(342\) 0 0
\(343\) −1.56590e9 −2.09525
\(344\) 0 0
\(345\) −7.62982e7 2.12928e8i −0.100034 0.279169i
\(346\) 0 0
\(347\) 1.48016e8 2.56372e8i 0.190176 0.329395i −0.755132 0.655572i \(-0.772427\pi\)
0.945309 + 0.326178i \(0.105761\pi\)
\(348\) 0 0
\(349\) −3.80328e8 6.58748e8i −0.478927 0.829526i 0.520781 0.853691i \(-0.325641\pi\)
−0.999708 + 0.0241640i \(0.992308\pi\)
\(350\) 0 0
\(351\) −5.96122e8 + 3.32371e8i −0.735800 + 0.410249i
\(352\) 0 0
\(353\) −7.00254e8 1.21288e9i −0.847313 1.46759i −0.883597 0.468248i \(-0.844885\pi\)
0.0362837 0.999342i \(-0.488448\pi\)
\(354\) 0 0
\(355\) 7.26882e7 1.25900e8i 0.0862312 0.149357i
\(356\) 0 0
\(357\) −6.56464e8 1.83202e9i −0.763611 2.13104i
\(358\) 0 0
\(359\) −1.32132e9 −1.50722 −0.753612 0.657320i \(-0.771690\pi\)
−0.753612 + 0.657320i \(0.771690\pi\)
\(360\) 0 0
\(361\) −3.92808e8 −0.439446
\(362\) 0 0
\(363\) −7.19071e7 + 8.48320e7i −0.0789039 + 0.0930864i
\(364\) 0 0
\(365\) 4.19318e8 7.26281e8i 0.451356 0.781771i
\(366\) 0 0
\(367\) −3.70961e8 6.42523e8i −0.391739 0.678511i 0.600940 0.799294i \(-0.294793\pi\)
−0.992679 + 0.120783i \(0.961460\pi\)
\(368\) 0 0
\(369\) 5.32312e8 4.37682e8i 0.551536 0.453489i
\(370\) 0 0
\(371\) −2.98672e8 5.17314e8i −0.303658 0.525952i
\(372\) 0 0
\(373\) −4.39730e8 + 7.61635e8i −0.438738 + 0.759916i −0.997592 0.0693494i \(-0.977908\pi\)
0.558855 + 0.829266i \(0.311241\pi\)
\(374\) 0 0
\(375\) 1.07949e9 + 1.95903e8i 1.05708 + 0.191837i
\(376\) 0 0
\(377\) 1.08759e9 1.04538
\(378\) 0 0
\(379\) 1.99736e9 1.88460 0.942301 0.334767i \(-0.108658\pi\)
0.942301 + 0.334767i \(0.108658\pi\)
\(380\) 0 0
\(381\) 5.48024e6 + 994544.i 0.00507648 + 0.000921269i
\(382\) 0 0
\(383\) 1.54585e8 2.67750e8i 0.140596 0.243519i −0.787125 0.616793i \(-0.788432\pi\)
0.927721 + 0.373274i \(0.121765\pi\)
\(384\) 0 0
\(385\) 7.80800e8 + 1.35239e9i 0.697312 + 1.20778i
\(386\) 0 0
\(387\) −4.38306e7 2.63957e8i −0.0384405 0.231497i
\(388\) 0 0
\(389\) 9.64068e8 + 1.66982e9i 0.830394 + 1.43828i 0.897726 + 0.440554i \(0.145218\pi\)
−0.0673322 + 0.997731i \(0.521449\pi\)
\(390\) 0 0
\(391\) −3.01338e8 + 5.21934e8i −0.254939 + 0.441567i
\(392\) 0 0
\(393\) 6.69009e8 7.89260e8i 0.555979 0.655913i
\(394\) 0 0
\(395\) 9.64997e8 0.787837
\(396\) 0 0
\(397\) −1.08397e9 −0.869460 −0.434730 0.900561i \(-0.643156\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(398\) 0 0
\(399\) −5.71066e8 1.59370e9i −0.450071 1.25603i
\(400\) 0 0
\(401\) −4.81857e8 + 8.34600e8i −0.373175 + 0.646358i −0.990052 0.140701i \(-0.955064\pi\)
0.616877 + 0.787060i \(0.288398\pi\)
\(402\) 0 0
\(403\) −7.78993e8 1.34926e9i −0.592879 1.02690i
\(404\) 0 0
\(405\) 9.34694e8 3.19217e8i 0.699160 0.238777i
\(406\) 0 0
\(407\) 7.22135e8 + 1.25077e9i 0.530931 + 0.919599i
\(408\) 0 0
\(409\) 6.07460e7 1.05215e8i 0.0439022 0.0760408i −0.843239 0.537538i \(-0.819354\pi\)
0.887141 + 0.461498i \(0.152688\pi\)
\(410\) 0 0
\(411\) 9.30095e7 + 2.59565e8i 0.0660816 + 0.184417i
\(412\) 0 0
\(413\) −1.81344e9 −1.26671
\(414\) 0 0
\(415\) 1.81132e9 1.24402
\(416\) 0 0
\(417\) 1.07585e9 1.26923e9i 0.726568 0.857165i
\(418\) 0 0
\(419\) −4.52373e8 + 7.83532e8i −0.300433 + 0.520365i −0.976234 0.216719i \(-0.930464\pi\)
0.675801 + 0.737084i \(0.263798\pi\)
\(420\) 0 0
\(421\) 5.94491e8 + 1.02969e9i 0.388292 + 0.672541i 0.992220 0.124498i \(-0.0397320\pi\)
−0.603928 + 0.797039i \(0.706399\pi\)
\(422\) 0 0
\(423\) −7.00748e7 4.22006e8i −0.0450164 0.271098i
\(424\) 0 0
\(425\) −4.56500e8 7.90681e8i −0.288456 0.499621i
\(426\) 0 0
\(427\) 7.30262e7 1.26485e8i 0.0453922 0.0786216i
\(428\) 0 0
\(429\) −1.43584e9 2.60573e8i −0.878021 0.159342i
\(430\) 0 0
\(431\) −1.77750e9 −1.06940 −0.534700 0.845042i \(-0.679575\pi\)
−0.534700 + 0.845042i \(0.679575\pi\)
\(432\) 0 0
\(433\) 1.98626e9 1.17579 0.587894 0.808938i \(-0.299957\pi\)
0.587894 + 0.808938i \(0.299957\pi\)
\(434\) 0 0
\(435\) −1.54861e9 2.81038e8i −0.902047 0.163702i
\(436\) 0 0
\(437\) −2.62138e8 + 4.54036e8i −0.150260 + 0.260259i
\(438\) 0 0
\(439\) 6.54719e8 + 1.13401e9i 0.369342 + 0.639719i 0.989463 0.144787i \(-0.0462497\pi\)
−0.620121 + 0.784506i \(0.712916\pi\)
\(440\) 0 0
\(441\) −3.02690e9 + 2.48881e9i −1.68060 + 1.38183i
\(442\) 0 0
\(443\) 9.12222e8 + 1.58002e9i 0.498526 + 0.863472i 0.999999 0.00170136i \(-0.000541559\pi\)
−0.501473 + 0.865173i \(0.667208\pi\)
\(444\) 0 0
\(445\) 1.10859e9 1.92013e9i 0.596363 1.03293i
\(446\) 0 0
\(447\) 1.01064e9 1.19229e9i 0.535202 0.631402i
\(448\) 0 0
\(449\) −3.58855e9 −1.87093 −0.935464 0.353423i \(-0.885018\pi\)
−0.935464 + 0.353423i \(0.885018\pi\)
\(450\) 0 0
\(451\) 1.47346e9 0.756346
\(452\) 0 0
\(453\) −7.87308e8 2.19717e9i −0.397925 1.11051i
\(454\) 0 0
\(455\) −1.11431e9 + 1.93004e9i −0.554581 + 0.960562i
\(456\) 0 0
\(457\) −1.59845e9 2.76860e9i −0.783417 1.35692i −0.929940 0.367711i \(-0.880141\pi\)
0.146522 0.989207i \(-0.453192\pi\)
\(458\) 0 0
\(459\) −2.25920e9 1.34985e9i −1.09046 0.651542i
\(460\) 0 0
\(461\) 1.87364e9 + 3.24524e9i 0.890704 + 1.54275i 0.839033 + 0.544081i \(0.183122\pi\)
0.0516717 + 0.998664i \(0.483545\pi\)
\(462\) 0 0
\(463\) −1.09312e9 + 1.89333e9i −0.511838 + 0.886530i 0.488068 + 0.872806i \(0.337702\pi\)
−0.999906 + 0.0137240i \(0.995631\pi\)
\(464\) 0 0
\(465\) 7.60543e8 + 2.12248e9i 0.350783 + 0.978944i
\(466\) 0 0
\(467\) −9.63843e8 −0.437922 −0.218961 0.975734i \(-0.570267\pi\)
−0.218961 + 0.975734i \(0.570267\pi\)
\(468\) 0 0
\(469\) 5.70549e9 2.55381
\(470\) 0 0
\(471\) 1.28911e9 1.52082e9i 0.568481 0.670663i
\(472\) 0 0
\(473\) 2.86047e8 4.95448e8i 0.124286 0.215270i
\(474\) 0 0
\(475\) −3.97115e8 6.87823e8i −0.170015 0.294475i
\(476\) 0 0
\(477\) −7.56293e8 2.83850e8i −0.319063 0.119750i
\(478\) 0 0
\(479\) −8.61804e8 1.49269e9i −0.358290 0.620576i 0.629386 0.777093i \(-0.283307\pi\)
−0.987675 + 0.156517i \(0.949973\pi\)
\(480\) 0 0
\(481\) −1.03058e9 + 1.78502e9i −0.422256 + 0.731368i
\(482\) 0 0
\(483\) 1.74288e9 + 3.16294e8i 0.703805 + 0.127725i
\(484\) 0 0
\(485\) −1.53651e9 −0.611558
\(486\) 0 0
\(487\) 6.57115e7 0.0257804 0.0128902 0.999917i \(-0.495897\pi\)
0.0128902 + 0.999917i \(0.495897\pi\)
\(488\) 0 0
\(489\) 1.86873e9 + 3.39134e8i 0.722714 + 0.131157i
\(490\) 0 0
\(491\) 9.79411e8 1.69639e9i 0.373405 0.646756i −0.616682 0.787212i \(-0.711524\pi\)
0.990087 + 0.140456i \(0.0448570\pi\)
\(492\) 0 0
\(493\) 2.09685e9 + 3.63185e9i 0.788140 + 1.36510i
\(494\) 0 0
\(495\) 1.97713e9 + 7.42051e8i 0.732686 + 0.274989i
\(496\) 0 0
\(497\) 5.69249e8 + 9.85968e8i 0.207996 + 0.360259i
\(498\) 0 0
\(499\) −1.54210e9 + 2.67100e9i −0.555599 + 0.962325i 0.442258 + 0.896888i \(0.354178\pi\)
−0.997857 + 0.0654372i \(0.979156\pi\)
\(500\) 0 0
\(501\) 2.19505e9 2.58960e9i 0.779852 0.920027i
\(502\) 0 0
\(503\) −3.95457e9 −1.38552 −0.692758 0.721170i \(-0.743605\pi\)
−0.692758 + 0.721170i \(0.743605\pi\)
\(504\) 0 0
\(505\) −3.05789e9 −1.05658
\(506\) 0 0
\(507\) 2.87352e8 + 8.01925e8i 0.0979234 + 0.273279i
\(508\) 0 0
\(509\) 1.92422e9 3.33285e9i 0.646760 1.12022i −0.337132 0.941457i \(-0.609457\pi\)
0.983892 0.178764i \(-0.0572099\pi\)
\(510\) 0 0
\(511\) 3.28384e9 + 5.68778e9i 1.08870 + 1.88569i
\(512\) 0 0
\(513\) −1.96531e9 1.17425e9i −0.642717 0.384018i
\(514\) 0 0
\(515\) 1.78172e9 + 3.08603e9i 0.574797 + 0.995578i
\(516\) 0 0
\(517\) 4.57322e8 7.92105e8i 0.145548 0.252096i
\(518\) 0 0
\(519\) −5.08763e8 1.41982e9i −0.159746 0.445809i
\(520\) 0 0
\(521\) −1.90239e8 −0.0589344 −0.0294672 0.999566i \(-0.509381\pi\)
−0.0294672 + 0.999566i \(0.509381\pi\)
\(522\) 0 0
\(523\) 9.89767e8 0.302536 0.151268 0.988493i \(-0.451664\pi\)
0.151268 + 0.988493i \(0.451664\pi\)
\(524\) 0 0
\(525\) −1.73511e9 + 2.04699e9i −0.523323 + 0.617388i
\(526\) 0 0
\(527\) 3.00375e9 5.20265e9i 0.893978 1.54842i
\(528\) 0 0
\(529\) 1.42813e9 + 2.47360e9i 0.419443 + 0.726497i
\(530\) 0 0
\(531\) −1.89426e9 + 1.55752e9i −0.549047 + 0.451443i
\(532\) 0 0
\(533\) 1.05141e9 + 1.82110e9i 0.300766 + 0.520941i
\(534\) 0 0
\(535\) 1.36218e9 2.35937e9i 0.384589 0.666128i
\(536\) 0 0
\(537\) 2.64384e9 + 4.79799e8i 0.736759 + 0.133706i
\(538\) 0 0
\(539\) −8.37858e9 −2.30468
\(540\) 0 0
\(541\) −3.06000e9 −0.830865 −0.415433 0.909624i \(-0.636370\pi\)
−0.415433 + 0.909624i \(0.636370\pi\)
\(542\) 0 0
\(543\) 1.33268e9 + 2.41852e8i 0.357213 + 0.0648263i
\(544\) 0 0
\(545\) −2.54910e8 + 4.41517e8i −0.0674526 + 0.116831i
\(546\) 0 0
\(547\) 2.69716e9 + 4.67161e9i 0.704612 + 1.22042i 0.966831 + 0.255416i \(0.0822124\pi\)
−0.262219 + 0.965008i \(0.584454\pi\)
\(548\) 0 0
\(549\) −3.23541e7 1.94843e8i −0.00834499 0.0502553i
\(550\) 0 0
\(551\) 1.82407e9 + 3.15939e9i 0.464528 + 0.804586i
\(552\) 0 0
\(553\) −3.77863e9 + 6.54478e9i −0.950159 + 1.64572i
\(554\) 0 0
\(555\) 1.92869e9 2.27536e9i 0.478891 0.564969i
\(556\) 0 0
\(557\) −704537. −0.000172747 −8.63736e−5 1.00000i \(-0.500027\pi\)
−8.63736e−5 1.00000i \(0.500027\pi\)
\(558\) 0 0
\(559\) 8.16456e8 0.197693
\(560\) 0 0
\(561\) −1.89811e9 5.29713e9i −0.453891 1.26669i
\(562\) 0 0
\(563\) −1.58230e9 + 2.74063e9i −0.373688 + 0.647247i −0.990130 0.140153i \(-0.955240\pi\)
0.616441 + 0.787401i \(0.288574\pi\)
\(564\) 0 0
\(565\) 3.55587e8 + 6.15894e8i 0.0829423 + 0.143660i
\(566\) 0 0
\(567\) −1.49499e9 + 7.58921e9i −0.344426 + 1.74846i
\(568\) 0 0
\(569\) −6.94504e8 1.20292e9i −0.158045 0.273742i 0.776118 0.630587i \(-0.217186\pi\)
−0.934164 + 0.356845i \(0.883853\pi\)
\(570\) 0 0
\(571\) 2.83085e9 4.90317e9i 0.636341 1.10217i −0.349889 0.936791i \(-0.613781\pi\)
0.986229 0.165383i \(-0.0528861\pi\)
\(572\) 0 0
\(573\) 1.56085e9 + 4.35593e9i 0.346594 + 0.967252i
\(574\) 0 0
\(575\) 8.31022e8 0.182295
\(576\) 0 0
\(577\) 3.72547e9 0.807358 0.403679 0.914901i \(-0.367731\pi\)
0.403679 + 0.914901i \(0.367731\pi\)
\(578\) 0 0
\(579\) 4.67120e8 5.51082e8i 0.100012 0.117989i
\(580\) 0 0
\(581\) −7.09259e9 + 1.22847e10i −1.50034 + 2.59866i
\(582\) 0 0
\(583\) −8.63583e8 1.49577e9i −0.180495 0.312626i
\(584\) 0 0
\(585\) 4.93690e8 + 2.97311e9i 0.101955 + 0.613996i
\(586\) 0 0
\(587\) −6.23155e8 1.07934e9i −0.127164 0.220254i 0.795413 0.606068i \(-0.207254\pi\)
−0.922577 + 0.385814i \(0.873921\pi\)
\(588\) 0 0
\(589\) 2.61300e9 4.52584e9i 0.526909 0.912633i
\(590\) 0 0
\(591\) −4.53290e9 8.22621e8i −0.903274 0.163924i
\(592\) 0 0
\(593\) 2.28414e9 0.449813 0.224906 0.974380i \(-0.427792\pi\)
0.224906 + 0.974380i \(0.427792\pi\)
\(594\) 0 0
\(595\) −8.59340e9 −1.67246
\(596\) 0 0
\(597\) −6.47990e9 1.17596e9i −1.24640 0.226194i
\(598\) 0 0
\(599\) 9.17038e8 1.58836e9i 0.174339 0.301963i −0.765594 0.643325i \(-0.777555\pi\)
0.939932 + 0.341361i \(0.110888\pi\)
\(600\) 0 0
\(601\) −1.04820e9 1.81554e9i −0.196962 0.341149i 0.750580 0.660780i \(-0.229774\pi\)
−0.947542 + 0.319631i \(0.896441\pi\)
\(602\) 0 0
\(603\) 5.95979e9 4.90032e9i 1.10693 0.910151i
\(604\) 0 0
\(605\) 2.45531e8 + 4.25273e8i 0.0450778 + 0.0780771i
\(606\) 0 0
\(607\) 1.96750e9 3.40781e9i 0.357070 0.618464i −0.630400 0.776271i \(-0.717109\pi\)
0.987470 + 0.157807i \(0.0504423\pi\)
\(608\) 0 0
\(609\) 7.96992e9 9.40247e9i 1.42986 1.68687i
\(610\) 0 0
\(611\) 1.30532e9 0.231512
\(612\) 0 0
\(613\) 8.35535e9 1.46505 0.732526 0.680739i \(-0.238341\pi\)
0.732526 + 0.680739i \(0.238341\pi\)
\(614\) 0 0
\(615\) −1.02651e9 2.86472e9i −0.177951 0.496615i
\(616\) 0 0
\(617\) 5.33262e9 9.23638e9i 0.913993 1.58308i 0.105624 0.994406i \(-0.466316\pi\)
0.808369 0.588676i \(-0.200351\pi\)
\(618\) 0 0
\(619\) −3.59538e9 6.22739e9i −0.609295 1.05533i −0.991357 0.131194i \(-0.958119\pi\)
0.382061 0.924137i \(-0.375214\pi\)
\(620\) 0 0
\(621\) 2.09222e9 1.16653e9i 0.350579 0.195467i
\(622\) 0 0
\(623\) 8.68178e9 + 1.50373e10i 1.43847 + 2.49150i
\(624\) 0 0
\(625\) 1.03631e9 1.79494e9i 0.169789 0.294083i
\(626\) 0 0
\(627\) −1.65119e9 4.60804e9i −0.267522 0.746585i
\(628\) 0 0
\(629\) −7.94774e9 −1.27340
\(630\) 0 0
\(631\) 6.01287e9 0.952750 0.476375 0.879242i \(-0.341951\pi\)
0.476375 + 0.879242i \(0.341951\pi\)
\(632\) 0 0
\(633\) −1.82722e9 + 2.15565e9i −0.286337 + 0.337804i
\(634\) 0 0
\(635\) 1.22973e7 2.12995e7i 0.00190591 0.00330113i
\(636\) 0 0
\(637\) −5.97868e9 1.03554e10i −0.916468 1.58737i
\(638\) 0 0
\(639\) 1.44145e9 + 5.40999e8i 0.218547 + 0.0820245i
\(640\) 0 0
\(641\) −1.26243e9 2.18659e9i −0.189323 0.327917i 0.755702 0.654916i \(-0.227296\pi\)
−0.945025 + 0.326999i \(0.893963\pi\)
\(642\) 0 0
\(643\) −4.05815e9 + 7.02892e9i −0.601990 + 1.04268i 0.390529 + 0.920590i \(0.372292\pi\)
−0.992519 + 0.122087i \(0.961041\pi\)
\(644\) 0 0
\(645\) −1.16254e9 2.10975e8i −0.170588 0.0309579i
\(646\) 0 0
\(647\) 6.70712e9 0.973578 0.486789 0.873519i \(-0.338168\pi\)
0.486789 + 0.873519i \(0.338168\pi\)
\(648\) 0 0
\(649\) −5.24340e9 −0.752933
\(650\) 0 0
\(651\) −1.73731e10 3.15283e9i −2.46799 0.447886i
\(652\) 0 0
\(653\) 3.33252e9 5.77210e9i 0.468357 0.811218i −0.530989 0.847379i \(-0.678179\pi\)
0.999346 + 0.0361606i \(0.0115128\pi\)
\(654\) 0 0
\(655\) −2.28438e9 3.95665e9i −0.317631 0.550153i
\(656\) 0 0
\(657\) 8.31531e9 + 3.12088e9i 1.14393 + 0.429337i
\(658\) 0 0
\(659\) −6.56243e9 1.13665e10i −0.893235 1.54713i −0.835973 0.548770i \(-0.815096\pi\)
−0.0572622 0.998359i \(-0.518237\pi\)
\(660\) 0 0
\(661\) 8.40716e8 1.45616e9i 0.113226 0.196112i −0.803843 0.594841i \(-0.797215\pi\)
0.917069 + 0.398728i \(0.130548\pi\)
\(662\) 0 0
\(663\) 5.19248e9 6.12580e9i 0.691954 0.816330i
\(664\) 0 0
\(665\) −7.47549e9 −0.985744
\(666\) 0 0
\(667\) −3.81715e9 −0.498079
\(668\) 0 0
\(669\) −4.49420e9 1.25422e10i −0.580312 1.61950i
\(670\) 0 0
\(671\) 2.11149e8 3.65721e8i 0.0269811 0.0467327i
\(672\) 0 0
\(673\) 1.90889e9 + 3.30630e9i 0.241395 + 0.418109i 0.961112 0.276159i \(-0.0890616\pi\)
−0.719717 + 0.694268i \(0.755728\pi\)
\(674\) 0 0
\(675\) −5.43364e7 + 3.62847e9i −0.00680029 + 0.454110i
\(676\) 0 0
\(677\) −4.08674e9 7.07845e9i −0.506194 0.876754i −0.999974 0.00716716i \(-0.997719\pi\)
0.493780 0.869587i \(-0.335615\pi\)
\(678\) 0 0
\(679\) 6.01648e9 1.04209e10i 0.737562 1.27749i
\(680\) 0 0
\(681\) 2.25136e9 + 6.28296e9i 0.273168 + 0.762341i
\(682\) 0 0
\(683\) −1.11162e10 −1.33501 −0.667507 0.744604i \(-0.732638\pi\)
−0.667507 + 0.744604i \(0.732638\pi\)
\(684\) 0 0
\(685\) 1.21753e9 0.144732
\(686\) 0 0
\(687\) −3.86714e9 + 4.56224e9i −0.455032 + 0.536821i
\(688\) 0 0
\(689\) 1.23245e9 2.13467e9i 0.143550 0.248635i
\(690\) 0 0
\(691\) −1.06038e9 1.83664e9i −0.122262 0.211763i 0.798398 0.602131i \(-0.205681\pi\)
−0.920659 + 0.390367i \(0.872348\pi\)
\(692\) 0 0
\(693\) −1.27746e10 + 1.05036e10i −1.45807 + 1.19887i
\(694\) 0 0
\(695\) −3.67356e9 6.36280e9i −0.415089 0.718955i
\(696\) 0 0
\(697\) −4.05419e9 + 7.02206e9i −0.453512 + 0.785506i
\(698\) 0 0
\(699\) 1.31371e10 + 2.38409e9i 1.45488 + 0.264029i
\(700\) 0 0
\(701\) 1.27398e10 1.39684 0.698422 0.715686i \(-0.253886\pi\)
0.698422 + 0.715686i \(0.253886\pi\)
\(702\) 0 0
\(703\) −6.91383e9 −0.750542
\(704\) 0 0
\(705\) −1.85862e9 3.37299e8i −0.199770 0.0362538i
\(706\) 0 0
\(707\) 1.19738e10 2.07392e10i 1.27427 2.20711i
\(708\) 0 0
\(709\) 3.84065e9 + 6.65221e9i 0.404710 + 0.700977i 0.994288 0.106734i \(-0.0340393\pi\)
−0.589578 + 0.807711i \(0.700706\pi\)
\(710\) 0 0
\(711\) 1.67411e9 + 1.00819e10i 0.174679 + 1.05196i
\(712\) 0 0
\(713\) 2.73405e9 + 4.73551e9i 0.282483 + 0.489275i
\(714\) 0 0
\(715\) −3.22192e9 + 5.58053e9i −0.329643 + 0.570958i
\(716\) 0 0
\(717\) 3.57341e8 4.21571e8i 0.0362047 0.0427123i
\(718\) 0 0
\(719\) 1.29899e10 1.30333 0.651666 0.758506i \(-0.274071\pi\)
0.651666 + 0.758506i \(0.274071\pi\)
\(720\) 0 0
\(721\) −2.79067e10 −2.77290
\(722\) 0 0
\(723\) −2.33849e9 6.52613e9i −0.230119 0.642202i
\(724\) 0 0
\(725\) 2.89131e9 5.00790e9i 0.281781 0.488060i
\(726\) 0 0
\(727\) −4.67747e8 8.10161e8i −0.0451482 0.0781990i 0.842568 0.538590i \(-0.181043\pi\)
−0.887716 + 0.460391i \(0.847709\pi\)
\(728\) 0 0
\(729\) 4.95658e9 + 9.21148e9i 0.473844 + 0.880609i
\(730\) 0 0
\(731\) 1.57410e9 + 2.72643e9i 0.149047 + 0.258156i
\(732\) 0 0
\(733\) 5.82375e9 1.00870e10i 0.546184 0.946019i −0.452347 0.891842i \(-0.649413\pi\)
0.998531 0.0541767i \(-0.0172534\pi\)
\(734\) 0 0
\(735\) 5.83708e9 + 1.62898e10i 0.542238 + 1.51324i
\(736\) 0 0
\(737\) 1.64969e10 1.51798
\(738\) 0 0
\(739\) 1.36168e10 1.24114 0.620570 0.784151i \(-0.286901\pi\)
0.620570 + 0.784151i \(0.286901\pi\)
\(740\) 0 0
\(741\) 4.51700e9 5.32890e9i 0.407836 0.481143i
\(742\) 0 0
\(743\) 7.55834e8 1.30914e9i 0.0676029 0.117092i −0.830243 0.557402i \(-0.811798\pi\)
0.897846 + 0.440310i \(0.145132\pi\)
\(744\) 0 0
\(745\) −3.45088e9 5.97710e9i −0.305762 0.529594i
\(746\) 0 0
\(747\) 3.14235e9 + 1.89239e10i 0.275824 + 1.66107i
\(748\) 0 0
\(749\) 1.06678e10 + 1.84771e10i 0.927657 + 1.60675i
\(750\) 0 0
\(751\) −9.52029e9 + 1.64896e10i −0.820183 + 1.42060i 0.0853635 + 0.996350i \(0.472795\pi\)
−0.905546 + 0.424248i \(0.860538\pi\)
\(752\) 0 0
\(753\) −3.18712e9 5.78393e8i −0.272030 0.0493674i
\(754\) 0 0
\(755\) −1.03062e10 −0.871534
\(756\) 0 0
\(757\) −6.00984e9 −0.503532 −0.251766 0.967788i \(-0.581011\pi\)
−0.251766 + 0.967788i \(0.581011\pi\)
\(758\) 0 0
\(759\) 5.03938e9 + 9.14537e8i 0.418342 + 0.0759198i
\(760\) 0 0
\(761\) 1.12107e10 1.94175e10i 0.922116 1.59715i 0.125981 0.992033i \(-0.459792\pi\)
0.796135 0.605119i \(-0.206874\pi\)
\(762\) 0 0
\(763\) −1.99630e9 3.45769e9i −0.162701 0.281806i
\(764\) 0 0
\(765\) −8.97641e9 + 7.38067e9i −0.724916 + 0.596047i
\(766\) 0 0
\(767\) −3.74152e9 6.48050e9i −0.299408 0.518591i
\(768\) 0 0
\(769\) 3.36877e9 5.83488e9i 0.267134 0.462690i −0.700987 0.713175i \(-0.747257\pi\)
0.968121 + 0.250485i \(0.0805900\pi\)
\(770\) 0 0
\(771\) −5.00322e9 + 5.90252e9i −0.393151 + 0.463818i
\(772\) 0 0
\(773\) −9.36137e9 −0.728973 −0.364486 0.931209i \(-0.618755\pi\)
−0.364486 + 0.931209i \(0.618755\pi\)
\(774\) 0 0
\(775\) −8.28365e9 −0.639243
\(776\) 0 0
\(777\) 7.87974e9 + 2.19903e10i 0.602612 + 1.68173i
\(778\) 0 0
\(779\) −3.52678e9 + 6.10857e9i −0.267299 + 0.462976i
\(780\) 0 0
\(781\) 1.64593e9 + 2.85084e9i 0.123633 + 0.214138i
\(782\) 0 0
\(783\) 2.49584e8 1.66667e10i 0.0185802 1.24075i
\(784\) 0 0
\(785\) −4.40174e9 7.62404e9i −0.324774 0.562524i
\(786\) 0 0
\(787\) 3.25442e9 5.63682e9i 0.237992 0.412214i −0.722146 0.691740i \(-0.756844\pi\)
0.960138 + 0.279527i \(0.0901776\pi\)
\(788\) 0 0
\(789\) −2.69676e9 7.52597e9i −0.195467 0.545497i
\(790\) 0 0
\(791\) −5.56947e9 −0.400125
\(792\) 0 0
\(793\) 6.02676e8 0.0429169
\(794\) 0 0
\(795\) −2.30647e9 + 2.72105e9i −0.162803 + 0.192066i
\(796\) 0 0
\(797\) −8.12967e9 + 1.40810e10i −0.568812 + 0.985211i 0.427872 + 0.903839i \(0.359263\pi\)
−0.996684 + 0.0813716i \(0.974070\pi\)
\(798\) 0 0
\(799\) 2.51662e9 + 4.35891e9i 0.174544 + 0.302318i
\(800\) 0 0
\(801\) 2.19839e10 + 8.25093e9i 1.51144 + 0.567269i
\(802\) 0 0
\(803\) 9.49495e9 + 1.64457e10i 0.647125 + 1.12085i
\(804\) 0 0
\(805\) 3.91090e9 6.77387e9i 0.264235 0.457669i
\(806\) 0 0
\(807\) 1.10459e10 + 2.00458e9i 0.739848 + 0.134266i
\(808\) 0 0
\(809\) −2.11275e10 −1.40291 −0.701454 0.712715i \(-0.747465\pi\)
−0.701454 + 0.712715i \(0.747465\pi\)
\(810\) 0 0
\(811\) −1.05784e10 −0.696383 −0.348191 0.937423i \(-0.613204\pi\)
−0.348191 + 0.937423i \(0.613204\pi\)
\(812\) 0 0
\(813\) −1.34642e10 2.44345e9i −0.878745 0.159473i
\(814\) 0 0
\(815\) 4.19331e9 7.26303e9i 0.271335 0.469965i
\(816\) 0 0
\(817\) 1.36933e9 + 2.37175e9i 0.0878478 + 0.152157i
\(818\) 0 0
\(819\) −2.20973e10 8.29349e9i −1.40555 0.527526i
\(820\) 0 0
\(821\) 1.46609e10 + 2.53934e10i 0.924610 + 1.60147i 0.792188 + 0.610277i \(0.208942\pi\)
0.132422 + 0.991193i \(0.457725\pi\)
\(822\) 0 0
\(823\) 4.13709e9 7.16565e9i 0.258700 0.448081i −0.707194 0.707019i \(-0.750039\pi\)
0.965894 + 0.258939i \(0.0833727\pi\)
\(824\) 0 0
\(825\) −5.01693e9 + 5.91869e9i −0.311064 + 0.366975i
\(826\) 0 0
\(827\) 1.68712e10 1.03723 0.518616 0.855007i \(-0.326448\pi\)
0.518616 + 0.855007i \(0.326448\pi\)
\(828\) 0 0
\(829\) 1.62532e10 0.990830 0.495415 0.868657i \(-0.335016\pi\)
0.495415 + 0.868657i \(0.335016\pi\)
\(830\) 0 0
\(831\) −1.37420e9 3.83503e9i −0.0830702 0.231827i
\(832\) 0 0
\(833\) 2.30534e10 3.99297e10i 1.38191 2.39353i
\(834\) 0 0
\(835\) −7.49514e9 1.29820e10i −0.445530 0.771681i
\(836\) 0 0
\(837\) −2.08553e10 + 1.16280e10i −1.22935 + 0.685433i
\(838\) 0 0
\(839\) 1.12134e10 + 1.94222e10i 0.655498 + 1.13536i 0.981769 + 0.190079i \(0.0608745\pi\)
−0.326271 + 0.945276i \(0.605792\pi\)
\(840\) 0 0
\(841\) −4.65578e9 + 8.06405e9i −0.269902 + 0.467485i
\(842\) 0 0
\(843\) 2.42353e9 + 6.76345e9i 0.139332 + 0.388840i
\(844\) 0 0
\(845\) 3.76156e9 0.214471
\(846\) 0 0
\(847\) −3.84570e9 −0.217462
\(848\) 0 0
\(849\) −6.62192e9 + 7.81217e9i −0.371370 + 0.438122i
\(850\) 0 0
\(851\) 3.61706e9 6.26492e9i 0.201188 0.348468i
\(852\) 0 0
\(853\) −1.11195e10 1.92595e10i −0.613428 1.06249i −0.990658 0.136369i \(-0.956457\pi\)
0.377230 0.926120i \(-0.376877\pi\)
\(854\) 0 0
\(855\) −7.80868e9 + 6.42053e9i −0.427264 + 0.351309i
\(856\) 0 0
\(857\) 8.25516e9 + 1.42984e10i 0.448015 + 0.775985i 0.998257 0.0590205i \(-0.0187977\pi\)
−0.550242 + 0.835005i \(0.685464\pi\)
\(858\) 0 0
\(859\) −1.01406e10 + 1.75640e10i −0.545866 + 0.945468i 0.452686 + 0.891670i \(0.350466\pi\)
−0.998552 + 0.0537978i \(0.982867\pi\)
\(860\) 0 0
\(861\) 2.34486e10 + 4.25540e9i 1.25200 + 0.227211i
\(862\) 0 0
\(863\) −2.39028e10 −1.26593 −0.632967 0.774179i \(-0.718163\pi\)
−0.632967 + 0.774179i \(0.718163\pi\)
\(864\) 0 0
\(865\) −6.65992e9 −0.349875
\(866\) 0 0
\(867\) 1.15859e10 + 2.10258e9i 0.603756 + 0.109568i
\(868\) 0 0
\(869\) −1.09256e10 + 1.89237e10i −0.564775 + 0.978219i
\(870\) 0 0
\(871\) 1.17717e10 + 2.03891e10i 0.603636 + 1.04553i
\(872\) 0 0
\(873\) −2.66558e9 1.60527e10i −0.135595 0.816581i
\(874\) 0 0
\(875\) 1.89699e10 + 3.28569e10i 0.957277 + 1.65805i
\(876\) 0 0
\(877\) 1.28617e9 2.22771e9i 0.0643873 0.111522i −0.832035 0.554724i \(-0.812824\pi\)
0.896422 + 0.443201i \(0.146157\pi\)
\(878\) 0 0
\(879\) 8.76943e9 1.03457e10i 0.435522 0.513805i
\(880\) 0 0
\(881\) −3.40624e10 −1.67826 −0.839130 0.543931i \(-0.816935\pi\)
−0.839130 + 0.543931i \(0.816935\pi\)
\(882\) 0 0
\(883\) −5.47993e9 −0.267863 −0.133931 0.990991i \(-0.542760\pi\)
−0.133931 + 0.990991i \(0.542760\pi\)
\(884\) 0 0
\(885\) 3.65290e9 + 1.01943e10i 0.177148 + 0.494374i
\(886\) 0 0
\(887\) 1.08266e10 1.87522e10i 0.520904 0.902233i −0.478800 0.877924i \(-0.658928\pi\)
0.999704 0.0243090i \(-0.00773856\pi\)
\(888\) 0 0
\(889\) 9.63048e7 + 1.66805e8i 0.00459718 + 0.00796255i
\(890\) 0 0
\(891\) −4.32263e9 + 2.19436e10i −0.204727 + 1.03929i
\(892\) 0 0
\(893\) 2.18924e9 + 3.79187e9i 0.102876 + 0.178186i
\(894\) 0 0
\(895\) 5.93260e9 1.02756e10i 0.276608 0.479098i
\(896\) 0 0
\(897\) 2.46563e9 + 6.88093e9i 0.114066 + 0.318327i
\(898\) 0 0
\(899\) 3.80495e10 1.74658
\(900\) 0 0
\(901\) 9.50451e9 0.432905
\(902\) 0 0
\(903\) 5.98301e9 7.05842e9i 0.270404 0.319007i
\(904\) 0 0
\(905\) 2.99044e9 5.17960e9i 0.134111 0.232288i
\(906\) 0 0
\(907\) −1.64024e10 2.84098e10i −0.729931 1.26428i −0.956912 0.290378i \(-0.906219\pi\)
0.226982 0.973899i \(-0.427114\pi\)
\(908\) 0 0
\(909\) −5.30494e9 3.19475e10i −0.234265 1.41079i
\(910\) 0 0
\(911\) −9.25174e9 1.60245e10i −0.405423 0.702214i 0.588947 0.808172i \(-0.299543\pi\)
−0.994371 + 0.105957i \(0.966209\pi\)
\(912\) 0 0
\(913\) −2.05076e10 + 3.55202e10i −0.891800 + 1.54464i
\(914\) 0 0
\(915\) −8.58141e8 1.55734e8i −0.0370326 0.00672061i
\(916\) 0 0
\(917\) 3.57796e10 1.53230
\(918\) 0 0
\(919\) −1.47226e10 −0.625720 −0.312860 0.949799i \(-0.601287\pi\)
−0.312860 + 0.949799i \(0.601287\pi\)
\(920\) 0 0
\(921\) −1.38002e9 2.50443e8i −0.0582071 0.0105633i
\(922\) 0 0
\(923\) −2.34897e9 + 4.06853e9i −0.0983267 + 0.170307i
\(924\) 0 0
\(925\) 5.47951e9 + 9.49078e9i 0.227638 + 0.394281i
\(926\) 0 0
\(927\) −2.91505e10 + 2.39684e10i −1.20190 + 0.988235i
\(928\) 0 0
\(929\) 2.24590e9 + 3.89000e9i 0.0919040 + 0.159182i 0.908312 0.418293i \(-0.137371\pi\)
−0.816408 + 0.577475i \(0.804038\pi\)
\(930\) 0 0
\(931\) 2.00544e10 3.47353e10i 0.814492 1.41074i
\(932\) 0 0
\(933\) −4.42343e8 + 5.21851e8i −0.0178309 + 0.0210359i
\(934\) 0 0
\(935\) −2.48471e10 −0.994111
\(936\) 0 0
\(937\) −3.45477e10 −1.37193 −0.685963 0.727637i \(-0.740619\pi\)
−0.685963 + 0.727637i \(0.740619\pi\)
\(938\) 0 0
\(939\) 7.97571e8 + 2.22581e9i 0.0314369 + 0.0877322i
\(940\) 0 0
\(941\) 1.06261e10 1.84050e10i 0.415729 0.720065i −0.579775 0.814776i \(-0.696860\pi\)
0.995505 + 0.0947119i \(0.0301930\pi\)
\(942\) 0 0
\(943\) −3.69016e9 6.39155e9i −0.143303 0.248208i
\(944\) 0 0
\(945\) 2.93209e10 + 1.75190e10i 1.13023 + 0.675301i
\(946\) 0 0
\(947\) −1.52119e10 2.63477e10i −0.582046 1.00813i −0.995237 0.0974893i \(-0.968919\pi\)
0.413190 0.910645i \(-0.364415\pi\)
\(948\) 0 0
\(949\) −1.35506e10 + 2.34703e10i −0.514666 + 0.891429i
\(950\) 0 0
\(951\) 1.02475e9 + 2.85980e9i 0.0386353 + 0.107821i
\(952\) 0 0
\(953\) −3.86478e10 −1.44644 −0.723218 0.690620i \(-0.757338\pi\)
−0.723218 + 0.690620i \(0.757338\pi\)
\(954\) 0 0
\(955\) 2.04322e10 0.759108
\(956\) 0 0
\(957\) 2.30443e10 2.71864e10i 0.849909 1.00268i
\(958\) 0 0
\(959\) −4.76749e9 + 8.25753e9i −0.174552 + 0.302333i
\(960\) 0 0
\(961\) −1.34967e10 2.33771e10i −0.490566 0.849685i
\(962\) 0 0
\(963\) 2.70128e10 + 1.01384e10i 0.974715 + 0.365827i
\(964\) 0 0
\(965\) −1.59501e9 2.76264e9i −0.0571371 0.0989643i
\(966\) 0 0
\(967\) −1.70024e10 + 2.94491e10i −0.604670 + 1.04732i 0.387434 + 0.921898i \(0.373362\pi\)
−0.992104 + 0.125421i \(0.959972\pi\)
\(968\) 0 0
\(969\) 2.65037e10 + 4.80983e9i 0.935778 + 0.169823i
\(970\) 0 0
\(971\) −2.08691e10 −0.731538 −0.365769 0.930706i \(-0.619194\pi\)
−0.365769 + 0.930706i \(0.619194\pi\)
\(972\) 0 0
\(973\) 5.75382e10 2.00245
\(974\) 0 0
\(975\) −1.08950e10 1.97721e9i −0.376454 0.0683182i
\(976\) 0 0
\(977\) 2.13334e10 3.69505e10i 0.731862 1.26762i −0.224225 0.974537i \(-0.571985\pi\)
0.956087 0.293085i \(-0.0946817\pi\)
\(978\) 0 0
\(979\) 2.51026e10 + 4.34790e10i 0.855027 + 1.48095i
\(980\) 0 0
\(981\) −5.05500e9 1.89723e9i −0.170954 0.0641619i
\(982\) 0 0
\(983\) −9.99083e9 1.73046e10i −0.335478 0.581065i 0.648098 0.761557i \(-0.275565\pi\)
−0.983577 + 0.180491i \(0.942231\pi\)
\(984\) 0 0
\(985\) −1.01715e10 + 1.76176e10i −0.339124 + 0.587380i
\(986\) 0 0
\(987\) 9.56542e9 1.12848e10i 0.316661 0.373579i
\(988\) 0 0
\(989\) −2.86553e9 −0.0941928
\(990\) 0 0
\(991\) 3.14380e10 1.02612 0.513059 0.858353i \(-0.328512\pi\)
0.513059 + 0.858353i \(0.328512\pi\)
\(992\) 0 0
\(993\) 1.39637e9 + 3.89692e9i 0.0452563 + 0.126299i
\(994\) 0 0
\(995\) −1.45404e10 + 2.51848e10i −0.467947 + 0.810508i
\(996\) 0 0
\(997\) −1.75392e10 3.03787e10i −0.560500 0.970814i −0.997453 0.0713299i \(-0.977276\pi\)
0.436953 0.899484i \(-0.356058\pi\)
\(998\) 0 0
\(999\) 2.71179e10 + 1.62027e10i 0.860551 + 0.514172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.8.i.b.49.4 8
3.2 odd 2 432.8.i.b.145.2 8
4.3 odd 2 18.8.c.b.13.1 yes 8
9.2 odd 6 432.8.i.b.289.2 8
9.7 even 3 inner 144.8.i.b.97.4 8
12.11 even 2 54.8.c.b.37.2 8
36.7 odd 6 18.8.c.b.7.1 8
36.11 even 6 54.8.c.b.19.2 8
36.23 even 6 162.8.a.i.1.3 4
36.31 odd 6 162.8.a.h.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.b.7.1 8 36.7 odd 6
18.8.c.b.13.1 yes 8 4.3 odd 2
54.8.c.b.19.2 8 36.11 even 6
54.8.c.b.37.2 8 12.11 even 2
144.8.i.b.49.4 8 1.1 even 1 trivial
144.8.i.b.97.4 8 9.7 even 3 inner
162.8.a.h.1.2 4 36.31 odd 6
162.8.a.i.1.3 4 36.23 even 6
432.8.i.b.145.2 8 3.2 odd 2
432.8.i.b.289.2 8 9.2 odd 6