Properties

Label 54.8.c.b.19.2
Level $54$
Weight $8$
Character 54.19
Analytic conductor $16.869$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,8,Mod(19,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8687913761\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1336x^{6} + 633664x^{4} + 125389995x^{2} + 8783438400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{18} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 19.2
Root \(-13.4379i\) of defining polynomial
Character \(\chi\) \(=\) 54.19
Dual form 54.8.c.b.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-103.252 - 178.837i) q^{5} +(-808.604 + 1400.54i) q^{7} +512.000 q^{8} +1652.03 q^{10} +(2338.01 - 4049.55i) q^{11} +(-3336.65 - 5779.25i) q^{13} +(-6468.83 - 11204.3i) q^{14} +(-2048.00 + 3547.24i) q^{16} +25731.9 q^{17} +22384.5 q^{19} +(-6608.11 + 11445.6i) q^{20} +(18704.1 + 32396.4i) q^{22} +(11710.7 + 20283.5i) q^{23} +(17740.6 - 30727.7i) q^{25} +53386.5 q^{26} +103501. q^{28} +(81488.4 - 141142. i) q^{29} +(116733. + 202187. i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(-102928. + 178276. i) q^{34} +333959. q^{35} +308867. q^{37} +(-89537.8 + 155084. i) q^{38} +(-52864.9 - 91564.7i) q^{40} +(-157555. - 272893. i) q^{41} +(61173.2 - 105955. i) q^{43} -299265. q^{44} -187371. q^{46} +(-97801.6 + 169397. i) q^{47} +(-895910. - 1.55176e6i) q^{49} +(141925. + 245822. i) q^{50} +(-213546. + 369872. i) q^{52} +369367. q^{53} -965615. q^{55} +(-414005. + 717078. i) q^{56} +(651907. + 1.12914e6i) q^{58} +(-560669. - 971107. i) q^{59} +(-45155.7 + 78212.0i) q^{61} -1.86772e6 q^{62} +262144. q^{64} +(-689031. + 1.19344e6i) q^{65} +(-1.76399e6 - 3.05533e6i) q^{67} +(-823420. - 1.42621e6i) q^{68} +(-1.33584e6 + 2.31374e6i) q^{70} +703989. q^{71} +4.06113e6 q^{73} +(-1.23547e6 + 2.13990e6i) q^{74} +(-716302. - 1.24067e6i) q^{76} +(3.78105e6 + 6.54897e6i) q^{77} +(-2.33651e6 + 4.04696e6i) q^{79} +845839. q^{80} +2.52088e6 q^{82} +(4.38570e6 - 7.59625e6i) q^{83} +(-2.65686e6 - 4.60182e6i) q^{85} +(489386. + 847641. i) q^{86} +(1.19706e6 - 2.07337e6i) q^{88} -1.07368e7 q^{89} +1.07921e7 q^{91} +(749485. - 1.29815e6i) q^{92} +(-782413. - 1.35518e6i) q^{94} +(-2.31123e6 - 4.00317e6i) q^{95} +(-3.72029e6 + 6.44373e6i) q^{97} +1.43346e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} - 54 q^{5} - 44 q^{7} + 4096 q^{8} + 864 q^{10} - 2172 q^{11} - 6398 q^{13} - 352 q^{14} - 16384 q^{16} + 51972 q^{17} + 90712 q^{19} - 3456 q^{20} - 17376 q^{22} + 2028 q^{23}+ \cdots + 20368608 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −103.252 178.837i −0.369405 0.639828i 0.620068 0.784548i \(-0.287105\pi\)
−0.989473 + 0.144720i \(0.953772\pi\)
\(6\) 0 0
\(7\) −808.604 + 1400.54i −0.891031 + 1.54331i −0.0523898 + 0.998627i \(0.516684\pi\)
−0.838641 + 0.544684i \(0.816650\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 1652.03 0.522417
\(11\) 2338.01 4049.55i 0.529629 0.917345i −0.469774 0.882787i \(-0.655664\pi\)
0.999403 0.0345577i \(-0.0110022\pi\)
\(12\) 0 0
\(13\) −3336.65 5779.25i −0.421220 0.729575i 0.574839 0.818267i \(-0.305065\pi\)
−0.996059 + 0.0886915i \(0.971731\pi\)
\(14\) −6468.83 11204.3i −0.630054 1.09129i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 25731.9 1.27028 0.635141 0.772396i \(-0.280942\pi\)
0.635141 + 0.772396i \(0.280942\pi\)
\(18\) 0 0
\(19\) 22384.5 0.748702 0.374351 0.927287i \(-0.377866\pi\)
0.374351 + 0.927287i \(0.377866\pi\)
\(20\) −6608.11 + 11445.6i −0.184702 + 0.319914i
\(21\) 0 0
\(22\) 18704.1 + 32396.4i 0.374504 + 0.648661i
\(23\) 11710.7 + 20283.5i 0.200695 + 0.347613i 0.948752 0.316020i \(-0.102347\pi\)
−0.748058 + 0.663634i \(0.769013\pi\)
\(24\) 0 0
\(25\) 17740.6 30727.7i 0.227080 0.393315i
\(26\) 53386.5 0.595696
\(27\) 0 0
\(28\) 103501. 0.891031
\(29\) 81488.4 141142.i 0.620444 1.07464i −0.368959 0.929446i \(-0.620286\pi\)
0.989403 0.145195i \(-0.0463811\pi\)
\(30\) 0 0
\(31\) 116733. + 202187.i 0.703763 + 1.21895i 0.967136 + 0.254260i \(0.0818318\pi\)
−0.263373 + 0.964694i \(0.584835\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −102928. + 178276.i −0.449113 + 0.777886i
\(35\) 333959. 1.31660
\(36\) 0 0
\(37\) 308867. 1.00246 0.501229 0.865315i \(-0.332882\pi\)
0.501229 + 0.865315i \(0.332882\pi\)
\(38\) −89537.8 + 155084.i −0.264706 + 0.458484i
\(39\) 0 0
\(40\) −52864.9 91564.7i −0.130604 0.226213i
\(41\) −157555. 272893.i −0.357017 0.618372i 0.630444 0.776235i \(-0.282873\pi\)
−0.987461 + 0.157863i \(0.949539\pi\)
\(42\) 0 0
\(43\) 61173.2 105955.i 0.117333 0.203228i −0.801377 0.598160i \(-0.795899\pi\)
0.918710 + 0.394933i \(0.129232\pi\)
\(44\) −299265. −0.529629
\(45\) 0 0
\(46\) −187371. −0.283825
\(47\) −97801.6 + 169397.i −0.137405 + 0.237993i −0.926514 0.376261i \(-0.877210\pi\)
0.789108 + 0.614254i \(0.210543\pi\)
\(48\) 0 0
\(49\) −895910. 1.55176e6i −1.08787 1.88425i
\(50\) 141925. + 245822.i 0.160570 + 0.278115i
\(51\) 0 0
\(52\) −213546. + 369872.i −0.210610 + 0.364788i
\(53\) 369367. 0.340794 0.170397 0.985375i \(-0.445495\pi\)
0.170397 + 0.985375i \(0.445495\pi\)
\(54\) 0 0
\(55\) −965615. −0.782590
\(56\) −414005. + 717078.i −0.315027 + 0.545643i
\(57\) 0 0
\(58\) 651907. + 1.12914e6i 0.438720 + 0.759886i
\(59\) −560669. 971107.i −0.355406 0.615581i 0.631781 0.775147i \(-0.282324\pi\)
−0.987187 + 0.159565i \(0.948991\pi\)
\(60\) 0 0
\(61\) −45155.7 + 78212.0i −0.0254717 + 0.0441183i −0.878480 0.477779i \(-0.841442\pi\)
0.853009 + 0.521897i \(0.174775\pi\)
\(62\) −1.86772e6 −0.995272
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −689031. + 1.19344e6i −0.311202 + 0.539017i
\(66\) 0 0
\(67\) −1.76399e6 3.05533e6i −0.716532 1.24107i −0.962366 0.271758i \(-0.912395\pi\)
0.245834 0.969312i \(-0.420938\pi\)
\(68\) −823420. 1.42621e6i −0.317571 0.550048i
\(69\) 0 0
\(70\) −1.33584e6 + 2.31374e6i −0.465490 + 0.806252i
\(71\) 703989. 0.233433 0.116716 0.993165i \(-0.462763\pi\)
0.116716 + 0.993165i \(0.462763\pi\)
\(72\) 0 0
\(73\) 4.06113e6 1.22185 0.610923 0.791690i \(-0.290799\pi\)
0.610923 + 0.791690i \(0.290799\pi\)
\(74\) −1.23547e6 + 2.13990e6i −0.354422 + 0.613877i
\(75\) 0 0
\(76\) −716302. 1.24067e6i −0.187175 0.324197i
\(77\) 3.78105e6 + 6.54897e6i 0.943832 + 1.63477i
\(78\) 0 0
\(79\) −2.33651e6 + 4.04696e6i −0.533180 + 0.923494i 0.466069 + 0.884748i \(0.345670\pi\)
−0.999249 + 0.0387462i \(0.987664\pi\)
\(80\) 845839. 0.184702
\(81\) 0 0
\(82\) 2.52088e6 0.504898
\(83\) 4.38570e6 7.59625e6i 0.841910 1.45823i −0.0463686 0.998924i \(-0.514765\pi\)
0.888278 0.459306i \(-0.151902\pi\)
\(84\) 0 0
\(85\) −2.65686e6 4.60182e6i −0.469248 0.812762i
\(86\) 489386. + 847641.i 0.0829673 + 0.143704i
\(87\) 0 0
\(88\) 1.19706e6 2.07337e6i 0.187252 0.324330i
\(89\) −1.07368e7 −1.61439 −0.807194 0.590286i \(-0.799015\pi\)
−0.807194 + 0.590286i \(0.799015\pi\)
\(90\) 0 0
\(91\) 1.07921e7 1.50128
\(92\) 749485. 1.29815e6i 0.100347 0.173807i
\(93\) 0 0
\(94\) −782413. 1.35518e6i −0.0971602 0.168286i
\(95\) −2.31123e6 4.00317e6i −0.276574 0.479040i
\(96\) 0 0
\(97\) −3.72029e6 + 6.44373e6i −0.413881 + 0.716863i −0.995310 0.0967340i \(-0.969160\pi\)
0.581429 + 0.813597i \(0.302494\pi\)
\(98\) 1.43346e7 1.53848
\(99\) 0 0
\(100\) −2.27080e6 −0.227080
\(101\) 7.40397e6 1.28241e7i 0.715056 1.23851i −0.247882 0.968790i \(-0.579735\pi\)
0.962938 0.269723i \(-0.0869321\pi\)
\(102\) 0 0
\(103\) 8.62804e6 + 1.49442e7i 0.778004 + 1.34754i 0.933090 + 0.359642i \(0.117101\pi\)
−0.155086 + 0.987901i \(0.549565\pi\)
\(104\) −1.70837e6 2.95898e6i −0.148924 0.257944i
\(105\) 0 0
\(106\) −1.47747e6 + 2.55905e6i −0.120489 + 0.208693i
\(107\) 1.31928e7 1.04110 0.520552 0.853830i \(-0.325726\pi\)
0.520552 + 0.853830i \(0.325726\pi\)
\(108\) 0 0
\(109\) −2.46882e6 −0.182598 −0.0912990 0.995824i \(-0.529102\pi\)
−0.0912990 + 0.995824i \(0.529102\pi\)
\(110\) 3.86246e6 6.68997e6i 0.276687 0.479237i
\(111\) 0 0
\(112\) −3.31204e6 5.73663e6i −0.222758 0.385828i
\(113\) 1.72194e6 + 2.98249e6i 0.112265 + 0.194448i 0.916683 0.399615i \(-0.130856\pi\)
−0.804418 + 0.594063i \(0.797523\pi\)
\(114\) 0 0
\(115\) 2.41830e6 4.18862e6i 0.148275 0.256820i
\(116\) −1.04305e7 −0.620444
\(117\) 0 0
\(118\) 8.97071e6 0.502620
\(119\) −2.08069e7 + 3.60386e7i −1.13186 + 1.96044i
\(120\) 0 0
\(121\) −1.18899e6 2.05940e6i −0.0610141 0.105680i
\(122\) −361246. 625696.i −0.0180112 0.0311964i
\(123\) 0 0
\(124\) 7.47089e6 1.29400e7i 0.351882 0.609477i
\(125\) −2.34601e7 −1.07435
\(126\) 0 0
\(127\) −119100. −0.00515940 −0.00257970 0.999997i \(-0.500821\pi\)
−0.00257970 + 0.999997i \(0.500821\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −5.51225e6 9.54749e6i −0.220053 0.381143i
\(131\) 1.10622e7 + 1.91602e7i 0.429923 + 0.744648i 0.996866 0.0791089i \(-0.0252075\pi\)
−0.566943 + 0.823757i \(0.691874\pi\)
\(132\) 0 0
\(133\) −1.81002e7 + 3.13504e7i −0.667116 + 1.15548i
\(134\) 2.82239e7 1.01333
\(135\) 0 0
\(136\) 1.31747e7 0.449113
\(137\) −2.94797e6 + 5.10604e6i −0.0979493 + 0.169653i −0.910836 0.412769i \(-0.864562\pi\)
0.812886 + 0.582422i \(0.197895\pi\)
\(138\) 0 0
\(139\) −1.77894e7 3.08121e7i −0.561834 0.973126i −0.997336 0.0729381i \(-0.976762\pi\)
0.435502 0.900188i \(-0.356571\pi\)
\(140\) −1.06867e7 1.85099e7i −0.329151 0.570106i
\(141\) 0 0
\(142\) −2.81596e6 + 4.87738e6i −0.0825310 + 0.142948i
\(143\) −3.12045e7 −0.892363
\(144\) 0 0
\(145\) −3.36553e7 −0.916780
\(146\) −1.62445e7 + 2.81363e7i −0.431988 + 0.748225i
\(147\) 0 0
\(148\) −9.88376e6 1.71192e7i −0.250614 0.434077i
\(149\) −1.67110e7 2.89443e7i −0.413857 0.716821i 0.581451 0.813582i \(-0.302485\pi\)
−0.995308 + 0.0967603i \(0.969152\pi\)
\(150\) 0 0
\(151\) 2.49541e7 4.32217e7i 0.589823 1.02160i −0.404432 0.914568i \(-0.632531\pi\)
0.994255 0.107036i \(-0.0341359\pi\)
\(152\) 1.14608e7 0.264706
\(153\) 0 0
\(154\) −6.04968e7 −1.33478
\(155\) 2.41057e7 4.17523e7i 0.519947 0.900575i
\(156\) 0 0
\(157\) 2.13156e7 + 3.69197e7i 0.439590 + 0.761393i 0.997658 0.0684026i \(-0.0217902\pi\)
−0.558067 + 0.829796i \(0.688457\pi\)
\(158\) −1.86921e7 3.23757e7i −0.377015 0.653009i
\(159\) 0 0
\(160\) −3.38335e6 + 5.86014e6i −0.0653022 + 0.113107i
\(161\) −3.78773e7 −0.715300
\(162\) 0 0
\(163\) −4.06125e7 −0.734519 −0.367259 0.930119i \(-0.619704\pi\)
−0.367259 + 0.930119i \(0.619704\pi\)
\(164\) −1.00835e7 + 1.74652e7i −0.178508 + 0.309186i
\(165\) 0 0
\(166\) 3.50856e7 + 6.07700e7i 0.595320 + 1.03112i
\(167\) 3.62955e7 + 6.28656e7i 0.603038 + 1.04449i 0.992358 + 0.123390i \(0.0393766\pi\)
−0.389320 + 0.921102i \(0.627290\pi\)
\(168\) 0 0
\(169\) 9.10774e6 1.57751e7i 0.145147 0.251401i
\(170\) 4.25098e7 0.663617
\(171\) 0 0
\(172\) −7.83017e6 −0.117333
\(173\) 1.61254e7 2.79301e7i 0.236783 0.410120i −0.723006 0.690841i \(-0.757240\pi\)
0.959789 + 0.280721i \(0.0905736\pi\)
\(174\) 0 0
\(175\) 2.86903e7 + 4.96931e7i 0.404671 + 0.700911i
\(176\) 9.57649e6 + 1.65870e7i 0.132407 + 0.229336i
\(177\) 0 0
\(178\) 4.29470e7 7.43864e7i 0.570772 0.988607i
\(179\) 5.74576e7 0.748793 0.374396 0.927269i \(-0.377850\pi\)
0.374396 + 0.927269i \(0.377850\pi\)
\(180\) 0 0
\(181\) 2.89626e7 0.363047 0.181524 0.983387i \(-0.441897\pi\)
0.181524 + 0.983387i \(0.441897\pi\)
\(182\) −4.31685e7 + 7.47701e7i −0.530783 + 0.919344i
\(183\) 0 0
\(184\) 5.99588e6 + 1.03852e7i 0.0709563 + 0.122900i
\(185\) −3.18911e7 5.52370e7i −0.370313 0.641400i
\(186\) 0 0
\(187\) 6.01614e7 1.04203e8i 0.672779 1.16529i
\(188\) 1.25186e7 0.137405
\(189\) 0 0
\(190\) 3.69797e7 0.391135
\(191\) 4.94718e7 8.56877e7i 0.513737 0.889819i −0.486136 0.873883i \(-0.661594\pi\)
0.999873 0.0159358i \(-0.00507275\pi\)
\(192\) 0 0
\(193\) 7.72389e6 + 1.33782e7i 0.0773367 + 0.133951i 0.902100 0.431527i \(-0.142025\pi\)
−0.824763 + 0.565478i \(0.808692\pi\)
\(194\) −2.97623e7 5.15498e7i −0.292658 0.506899i
\(195\) 0 0
\(196\) −5.73382e7 + 9.93127e7i −0.543936 + 0.942125i
\(197\) 9.85117e7 0.918028 0.459014 0.888429i \(-0.348203\pi\)
0.459014 + 0.888429i \(0.348203\pi\)
\(198\) 0 0
\(199\) 1.40825e8 1.26676 0.633380 0.773841i \(-0.281667\pi\)
0.633380 + 0.773841i \(0.281667\pi\)
\(200\) 9.08321e6 1.57326e7i 0.0802850 0.139058i
\(201\) 0 0
\(202\) 5.92318e7 + 1.02592e8i 0.505621 + 0.875761i
\(203\) 1.31784e8 + 2.28256e8i 1.10567 + 1.91508i
\(204\) 0 0
\(205\) −3.25357e7 + 5.63534e7i −0.263768 + 0.456859i
\(206\) −1.38049e8 −1.10026
\(207\) 0 0
\(208\) 2.73339e7 0.210610
\(209\) 5.23351e7 9.06470e7i 0.396534 0.686818i
\(210\) 0 0
\(211\) 3.02133e7 + 5.23309e7i 0.221416 + 0.383504i 0.955238 0.295838i \(-0.0955987\pi\)
−0.733822 + 0.679342i \(0.762265\pi\)
\(212\) −1.18197e7 2.04724e7i −0.0851986 0.147568i
\(213\) 0 0
\(214\) −5.27713e7 + 9.14025e7i −0.368086 + 0.637544i
\(215\) −2.52650e7 −0.173374
\(216\) 0 0
\(217\) −3.77562e8 −2.50830
\(218\) 9.87527e6 1.71045e7i 0.0645582 0.111818i
\(219\) 0 0
\(220\) 3.08997e7 + 5.35198e7i 0.195648 + 0.338871i
\(221\) −8.58584e7 1.48711e8i −0.535069 0.926767i
\(222\) 0 0
\(223\) 1.42446e8 2.46723e8i 0.860165 1.48985i −0.0116033 0.999933i \(-0.503694\pi\)
0.871769 0.489918i \(-0.162973\pi\)
\(224\) 5.29927e7 0.315027
\(225\) 0 0
\(226\) −2.75510e7 −0.158766
\(227\) 7.13578e7 1.23595e8i 0.404903 0.701312i −0.589407 0.807836i \(-0.700639\pi\)
0.994310 + 0.106524i \(0.0339720\pi\)
\(228\) 0 0
\(229\) −6.39437e7 1.10754e8i −0.351863 0.609445i 0.634713 0.772748i \(-0.281118\pi\)
−0.986576 + 0.163303i \(0.947785\pi\)
\(230\) 1.93464e7 + 3.35090e7i 0.104846 + 0.181599i
\(231\) 0 0
\(232\) 4.17221e7 7.22647e7i 0.219360 0.379943i
\(233\) −2.85503e8 −1.47865 −0.739324 0.673350i \(-0.764855\pi\)
−0.739324 + 0.673350i \(0.764855\pi\)
\(234\) 0 0
\(235\) 4.03928e7 0.203033
\(236\) −3.58828e7 + 6.21509e7i −0.177703 + 0.307791i
\(237\) 0 0
\(238\) −1.66455e8 2.88309e8i −0.800347 1.38624i
\(239\) 5.90868e6 + 1.02341e7i 0.0279961 + 0.0484907i 0.879684 0.475559i \(-0.157754\pi\)
−0.851688 + 0.524049i \(0.824421\pi\)
\(240\) 0 0
\(241\) −7.41195e7 + 1.28379e8i −0.341093 + 0.590791i −0.984636 0.174619i \(-0.944130\pi\)
0.643543 + 0.765410i \(0.277464\pi\)
\(242\) 1.90239e7 0.0862870
\(243\) 0 0
\(244\) 5.77993e6 0.0254717
\(245\) −1.85009e8 + 3.20444e8i −0.803731 + 1.39210i
\(246\) 0 0
\(247\) −7.46892e7 1.29365e8i −0.315368 0.546234i
\(248\) 5.97672e7 + 1.03520e8i 0.248818 + 0.430965i
\(249\) 0 0
\(250\) 9.38404e7 1.62536e8i 0.379839 0.657901i
\(251\) −6.92645e7 −0.276473 −0.138237 0.990399i \(-0.544143\pi\)
−0.138237 + 0.990399i \(0.544143\pi\)
\(252\) 0 0
\(253\) 1.09519e8 0.425175
\(254\) 476400. 825149.i 0.00182412 0.00315947i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 8.27289e7 + 1.43291e8i 0.304013 + 0.526565i 0.977041 0.213051i \(-0.0683402\pi\)
−0.673028 + 0.739617i \(0.735007\pi\)
\(258\) 0 0
\(259\) −2.49751e8 + 4.32582e8i −0.893221 + 1.54710i
\(260\) 8.81960e7 0.311202
\(261\) 0 0
\(262\) −1.76995e8 −0.608003
\(263\) −8.54750e7 + 1.48047e8i −0.289730 + 0.501828i −0.973745 0.227640i \(-0.926899\pi\)
0.684015 + 0.729468i \(0.260232\pi\)
\(264\) 0 0
\(265\) −3.81378e7 6.60566e7i −0.125891 0.218050i
\(266\) −1.44801e8 2.50803e8i −0.471723 0.817047i
\(267\) 0 0
\(268\) −1.12896e8 + 1.95541e8i −0.358266 + 0.620535i
\(269\) −2.40056e8 −0.751932 −0.375966 0.926633i \(-0.622689\pi\)
−0.375966 + 0.926633i \(0.622689\pi\)
\(270\) 0 0
\(271\) 2.92612e8 0.893098 0.446549 0.894759i \(-0.352653\pi\)
0.446549 + 0.894759i \(0.352653\pi\)
\(272\) −5.26989e7 + 9.12772e7i −0.158785 + 0.275024i
\(273\) 0 0
\(274\) −2.35838e7 4.08483e7i −0.0692606 0.119963i
\(275\) −8.29556e7 1.43683e8i −0.240537 0.416622i
\(276\) 0 0
\(277\) −4.35557e7 + 7.54407e7i −0.123131 + 0.213269i −0.921001 0.389561i \(-0.872627\pi\)
0.797870 + 0.602829i \(0.205960\pi\)
\(278\) 2.84630e8 0.794554
\(279\) 0 0
\(280\) 1.70987e8 0.465490
\(281\) −7.68148e7 + 1.33047e8i −0.206525 + 0.357712i −0.950618 0.310365i \(-0.899549\pi\)
0.744092 + 0.668077i \(0.232882\pi\)
\(282\) 0 0
\(283\) 1.09494e8 + 1.89650e8i 0.287170 + 0.497393i 0.973133 0.230243i \(-0.0739522\pi\)
−0.685963 + 0.727636i \(0.740619\pi\)
\(284\) −2.25277e7 3.90191e7i −0.0583582 0.101079i
\(285\) 0 0
\(286\) 1.24818e8 2.16191e8i 0.315498 0.546458i
\(287\) 5.09599e8 1.27245
\(288\) 0 0
\(289\) 2.51791e8 0.613617
\(290\) 1.34621e8 2.33171e8i 0.324131 0.561411i
\(291\) 0 0
\(292\) −1.29956e8 2.25090e8i −0.305461 0.529075i
\(293\) −1.45004e8 2.51154e8i −0.336777 0.583315i 0.647048 0.762450i \(-0.276004\pi\)
−0.983825 + 0.179135i \(0.942670\pi\)
\(294\) 0 0
\(295\) −1.15780e8 + 2.00537e8i −0.262577 + 0.454797i
\(296\) 1.58140e8 0.354422
\(297\) 0 0
\(298\) 2.67376e8 0.585282
\(299\) 7.81492e7 1.35358e8i 0.169073 0.292844i
\(300\) 0 0
\(301\) 9.89299e7 + 1.71352e8i 0.209095 + 0.362164i
\(302\) 1.99632e8 + 3.45774e8i 0.417068 + 0.722383i
\(303\) 0 0
\(304\) −4.58434e7 + 7.94030e7i −0.0935877 + 0.162099i
\(305\) 1.86496e7 0.0376375
\(306\) 0 0
\(307\) 2.99914e7 0.0591579 0.0295789 0.999562i \(-0.490583\pi\)
0.0295789 + 0.999562i \(0.490583\pi\)
\(308\) 2.41987e8 4.19134e8i 0.471916 0.817383i
\(309\) 0 0
\(310\) 1.92846e8 + 3.34019e8i 0.367658 + 0.636803i
\(311\) −7.31419e6 1.26686e7i −0.0137881 0.0238817i 0.859049 0.511893i \(-0.171056\pi\)
−0.872837 + 0.488012i \(0.837722\pi\)
\(312\) 0 0
\(313\) 2.52793e7 4.37851e7i 0.0465973 0.0807089i −0.841786 0.539811i \(-0.818496\pi\)
0.888383 + 0.459102i \(0.151829\pi\)
\(314\) −3.41049e8 −0.621675
\(315\) 0 0
\(316\) 2.99074e8 0.533180
\(317\) −3.24798e7 + 5.62566e7i −0.0572671 + 0.0991896i −0.893238 0.449585i \(-0.851572\pi\)
0.835971 + 0.548774i \(0.184905\pi\)
\(318\) 0 0
\(319\) −3.81041e8 6.59983e8i −0.657211 1.13832i
\(320\) −2.70668e7 4.68811e7i −0.0461756 0.0799785i
\(321\) 0 0
\(322\) 1.51509e8 2.62422e8i 0.252897 0.438030i
\(323\) 5.75994e8 0.951063
\(324\) 0 0
\(325\) −2.36778e8 −0.382603
\(326\) 1.62450e8 2.81371e8i 0.259692 0.449799i
\(327\) 0 0
\(328\) −8.06682e7 1.39721e8i −0.126225 0.218627i
\(329\) −1.58166e8 2.73951e8i −0.244865 0.424118i
\(330\) 0 0
\(331\) −4.42586e7 + 7.66582e7i −0.0670811 + 0.116188i −0.897615 0.440780i \(-0.854702\pi\)
0.830534 + 0.556968i \(0.188035\pi\)
\(332\) −5.61369e8 −0.841910
\(333\) 0 0
\(334\) −5.80727e8 −0.852824
\(335\) −3.64271e8 + 6.30936e8i −0.529381 + 0.916914i
\(336\) 0 0
\(337\) 2.27637e8 + 3.94279e8i 0.323995 + 0.561176i 0.981309 0.192441i \(-0.0616404\pi\)
−0.657313 + 0.753618i \(0.728307\pi\)
\(338\) 7.28619e7 + 1.26201e8i 0.102634 + 0.177768i
\(339\) 0 0
\(340\) −1.70039e8 + 2.94516e8i −0.234624 + 0.406381i
\(341\) 1.09169e9 1.49093
\(342\) 0 0
\(343\) 1.56590e9 2.09525
\(344\) 3.13207e7 5.42490e7i 0.0414836 0.0718518i
\(345\) 0 0
\(346\) 1.29004e8 + 2.23441e8i 0.167431 + 0.289999i
\(347\) 1.48016e8 + 2.56372e8i 0.190176 + 0.329395i 0.945309 0.326178i \(-0.105761\pi\)
−0.755132 + 0.655572i \(0.772427\pi\)
\(348\) 0 0
\(349\) −3.80328e8 + 6.58748e8i −0.478927 + 0.829526i −0.999708 0.0241640i \(-0.992308\pi\)
0.520781 + 0.853691i \(0.325641\pi\)
\(350\) −4.59045e8 −0.572291
\(351\) 0 0
\(352\) −1.53224e8 −0.187252
\(353\) 7.00254e8 1.21288e9i 0.847313 1.46759i −0.0362837 0.999342i \(-0.511552\pi\)
0.883597 0.468248i \(-0.155115\pi\)
\(354\) 0 0
\(355\) −7.26882e7 1.25900e8i −0.0862312 0.149357i
\(356\) 3.43576e8 + 5.95091e8i 0.403597 + 0.699051i
\(357\) 0 0
\(358\) −2.29830e8 + 3.98078e8i −0.264738 + 0.458540i
\(359\) −1.32132e9 −1.50722 −0.753612 0.657320i \(-0.771690\pi\)
−0.753612 + 0.657320i \(0.771690\pi\)
\(360\) 0 0
\(361\) −3.92808e8 −0.439446
\(362\) −1.15851e8 + 2.00659e8i −0.128357 + 0.222320i
\(363\) 0 0
\(364\) −3.45348e8 5.98160e8i −0.375320 0.650074i
\(365\) −4.19318e8 7.26281e8i −0.451356 0.781771i
\(366\) 0 0
\(367\) 3.70961e8 6.42523e8i 0.391739 0.678511i −0.600940 0.799294i \(-0.705207\pi\)
0.992679 + 0.120783i \(0.0385404\pi\)
\(368\) −9.59341e7 −0.100347
\(369\) 0 0
\(370\) 5.10258e8 0.523701
\(371\) −2.98672e8 + 5.17314e8i −0.303658 + 0.525952i
\(372\) 0 0
\(373\) −4.39730e8 7.61635e8i −0.438738 0.759916i 0.558855 0.829266i \(-0.311241\pi\)
−0.997592 + 0.0693494i \(0.977908\pi\)
\(374\) 4.81291e8 + 8.33621e8i 0.475726 + 0.823982i
\(375\) 0 0
\(376\) −5.00744e7 + 8.67314e7i −0.0485801 + 0.0841432i
\(377\) −1.08759e9 −1.04538
\(378\) 0 0
\(379\) −1.99736e9 −1.88460 −0.942301 0.334767i \(-0.891342\pi\)
−0.942301 + 0.334767i \(0.891342\pi\)
\(380\) −1.47919e8 + 2.56203e8i −0.138287 + 0.239520i
\(381\) 0 0
\(382\) 3.95775e8 + 6.85502e8i 0.363267 + 0.629197i
\(383\) 1.54585e8 + 2.67750e8i 0.140596 + 0.243519i 0.927721 0.373274i \(-0.121765\pi\)
−0.787125 + 0.616793i \(0.788432\pi\)
\(384\) 0 0
\(385\) 7.80800e8 1.35239e9i 0.697312 1.20778i
\(386\) −1.23582e8 −0.109371
\(387\) 0 0
\(388\) 4.76197e8 0.413881
\(389\) −9.64068e8 + 1.66982e9i −0.830394 + 1.43828i 0.0673322 + 0.997731i \(0.478551\pi\)
−0.897726 + 0.440554i \(0.854782\pi\)
\(390\) 0 0
\(391\) 3.01338e8 + 5.21934e8i 0.254939 + 0.441567i
\(392\) −4.58706e8 7.94502e8i −0.384621 0.666183i
\(393\) 0 0
\(394\) −3.94047e8 + 6.82509e8i −0.324572 + 0.562175i
\(395\) 9.64997e8 0.787837
\(396\) 0 0
\(397\) −1.08397e9 −0.869460 −0.434730 0.900561i \(-0.643156\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(398\) −5.63300e8 + 9.75665e8i −0.447867 + 0.775729i
\(399\) 0 0
\(400\) 7.26657e7 + 1.25861e8i 0.0567701 + 0.0983286i
\(401\) 4.81857e8 + 8.34600e8i 0.373175 + 0.646358i 0.990052 0.140701i \(-0.0449357\pi\)
−0.616877 + 0.787060i \(0.711602\pi\)
\(402\) 0 0
\(403\) 7.78993e8 1.34926e9i 0.592879 1.02690i
\(404\) −9.47708e8 −0.715056
\(405\) 0 0
\(406\) −2.10854e9 −1.56365
\(407\) 7.22135e8 1.25077e9i 0.530931 0.919599i
\(408\) 0 0
\(409\) 6.07460e7 + 1.05215e8i 0.0439022 + 0.0760408i 0.887141 0.461498i \(-0.152688\pi\)
−0.843239 + 0.537538i \(0.819354\pi\)
\(410\) −2.60285e8 4.50828e8i −0.186512 0.323048i
\(411\) 0 0
\(412\) 5.52195e8 9.56429e8i 0.389002 0.673772i
\(413\) 1.81344e9 1.26671
\(414\) 0 0
\(415\) −1.81132e9 −1.24402
\(416\) −1.09335e8 + 1.89375e8i −0.0744620 + 0.128972i
\(417\) 0 0
\(418\) 4.18680e8 + 7.25176e8i 0.280392 + 0.485653i
\(419\) −4.52373e8 7.83532e8i −0.300433 0.520365i 0.675801 0.737084i \(-0.263798\pi\)
−0.976234 + 0.216719i \(0.930464\pi\)
\(420\) 0 0
\(421\) 5.94491e8 1.02969e9i 0.388292 0.672541i −0.603928 0.797039i \(-0.706399\pi\)
0.992220 + 0.124498i \(0.0397320\pi\)
\(422\) −4.83413e8 −0.313130
\(423\) 0 0
\(424\) 1.89116e8 0.120489
\(425\) 4.56500e8 7.90681e8i 0.288456 0.499621i
\(426\) 0 0
\(427\) −7.30262e7 1.26485e8i −0.0453922 0.0786216i
\(428\) −4.22170e8 7.31220e8i −0.260276 0.450812i
\(429\) 0 0
\(430\) 1.01060e8 1.75041e8i 0.0612970 0.106170i
\(431\) −1.77750e9 −1.06940 −0.534700 0.845042i \(-0.679575\pi\)
−0.534700 + 0.845042i \(0.679575\pi\)
\(432\) 0 0
\(433\) 1.98626e9 1.17579 0.587894 0.808938i \(-0.299957\pi\)
0.587894 + 0.808938i \(0.299957\pi\)
\(434\) 1.51025e9 2.61583e9i 0.886818 1.53601i
\(435\) 0 0
\(436\) 7.90021e7 + 1.36836e8i 0.0456495 + 0.0790673i
\(437\) 2.62138e8 + 4.54036e8i 0.150260 + 0.260259i
\(438\) 0 0
\(439\) −6.54719e8 + 1.13401e9i −0.369342 + 0.639719i −0.989463 0.144787i \(-0.953750\pi\)
0.620121 + 0.784506i \(0.287084\pi\)
\(440\) −4.94395e8 −0.276687
\(441\) 0 0
\(442\) 1.37373e9 0.756702
\(443\) 9.12222e8 1.58002e9i 0.498526 0.863472i −0.501473 0.865173i \(-0.667208\pi\)
0.999999 + 0.00170136i \(0.000541559\pi\)
\(444\) 0 0
\(445\) 1.10859e9 + 1.92013e9i 0.596363 + 1.03293i
\(446\) 1.13956e9 + 1.97378e9i 0.608229 + 1.05348i
\(447\) 0 0
\(448\) −2.11971e8 + 3.67144e8i −0.111379 + 0.192914i
\(449\) 3.58855e9 1.87093 0.935464 0.353423i \(-0.114982\pi\)
0.935464 + 0.353423i \(0.114982\pi\)
\(450\) 0 0
\(451\) −1.47346e9 −0.756346
\(452\) 1.10204e8 1.90879e8i 0.0561324 0.0972241i
\(453\) 0 0
\(454\) 5.70862e8 + 9.88762e8i 0.286310 + 0.495903i
\(455\) −1.11431e9 1.93004e9i −0.554581 0.960562i
\(456\) 0 0
\(457\) −1.59845e9 + 2.76860e9i −0.783417 + 1.35692i 0.146522 + 0.989207i \(0.453192\pi\)
−0.929940 + 0.367711i \(0.880141\pi\)
\(458\) 1.02310e9 0.497610
\(459\) 0 0
\(460\) −3.09543e8 −0.148275
\(461\) −1.87364e9 + 3.24524e9i −0.890704 + 1.54275i −0.0516717 + 0.998664i \(0.516455\pi\)
−0.839033 + 0.544081i \(0.816878\pi\)
\(462\) 0 0
\(463\) 1.09312e9 + 1.89333e9i 0.511838 + 0.886530i 0.999906 + 0.0137240i \(0.00436861\pi\)
−0.488068 + 0.872806i \(0.662298\pi\)
\(464\) 3.33777e8 + 5.78118e8i 0.155111 + 0.268660i
\(465\) 0 0
\(466\) 1.14201e9 1.97802e9i 0.522781 0.905483i
\(467\) −9.63843e8 −0.437922 −0.218961 0.975734i \(-0.570267\pi\)
−0.218961 + 0.975734i \(0.570267\pi\)
\(468\) 0 0
\(469\) 5.70549e9 2.55381
\(470\) −1.61571e8 + 2.79849e8i −0.0717829 + 0.124332i
\(471\) 0 0
\(472\) −2.87063e8 4.97207e8i −0.125655 0.217641i
\(473\) −2.86047e8 4.95448e8i −0.124286 0.215270i
\(474\) 0 0
\(475\) 3.97115e8 6.87823e8i 0.170015 0.294475i
\(476\) 2.66328e9 1.13186
\(477\) 0 0
\(478\) −9.45388e7 −0.0395925
\(479\) −8.61804e8 + 1.49269e9i −0.358290 + 0.620576i −0.987675 0.156517i \(-0.949973\pi\)
0.629386 + 0.777093i \(0.283307\pi\)
\(480\) 0 0
\(481\) −1.03058e9 1.78502e9i −0.422256 0.731368i
\(482\) −5.92956e8 1.02703e9i −0.241189 0.417752i
\(483\) 0 0
\(484\) −7.60956e7 + 1.31801e8i −0.0305071 + 0.0528398i
\(485\) 1.53651e9 0.611558
\(486\) 0 0
\(487\) −6.57115e7 −0.0257804 −0.0128902 0.999917i \(-0.504103\pi\)
−0.0128902 + 0.999917i \(0.504103\pi\)
\(488\) −2.31197e7 + 4.00446e7i −0.00900562 + 0.0155982i
\(489\) 0 0
\(490\) −1.48007e9 2.56355e9i −0.568323 0.984365i
\(491\) 9.79411e8 + 1.69639e9i 0.373405 + 0.646756i 0.990087 0.140456i \(-0.0448570\pi\)
−0.616682 + 0.787212i \(0.711524\pi\)
\(492\) 0 0
\(493\) 2.09685e9 3.63185e9i 0.788140 1.36510i
\(494\) 1.19503e9 0.445998
\(495\) 0 0
\(496\) −9.56274e8 −0.351882
\(497\) −5.69249e8 + 9.85968e8i −0.207996 + 0.360259i
\(498\) 0 0
\(499\) 1.54210e9 + 2.67100e9i 0.555599 + 0.962325i 0.997857 + 0.0654372i \(0.0208442\pi\)
−0.442258 + 0.896888i \(0.645822\pi\)
\(500\) 7.50723e8 + 1.30029e9i 0.268587 + 0.465206i
\(501\) 0 0
\(502\) 2.77058e8 4.79879e8i 0.0977480 0.169304i
\(503\) −3.95457e9 −1.38552 −0.692758 0.721170i \(-0.743605\pi\)
−0.692758 + 0.721170i \(0.743605\pi\)
\(504\) 0 0
\(505\) −3.05789e9 −1.05658
\(506\) −4.38076e8 + 7.58770e8i −0.150322 + 0.260365i
\(507\) 0 0
\(508\) 3.81120e6 + 6.60119e6i 0.00128985 + 0.00223408i
\(509\) −1.92422e9 3.33285e9i −0.646760 1.12022i −0.983892 0.178764i \(-0.942790\pi\)
0.337132 0.941457i \(-0.390543\pi\)
\(510\) 0 0
\(511\) −3.28384e9 + 5.68778e9i −1.08870 + 1.88569i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −1.32366e9 −0.429939
\(515\) 1.78172e9 3.08603e9i 0.574797 0.995578i
\(516\) 0 0
\(517\) 4.57322e8 + 7.92105e8i 0.145548 + 0.252096i
\(518\) −1.99801e9 3.46066e9i −0.631602 1.09397i
\(519\) 0 0
\(520\) −3.52784e8 + 6.11039e8i −0.110026 + 0.190571i
\(521\) 1.90239e8 0.0589344 0.0294672 0.999566i \(-0.490619\pi\)
0.0294672 + 0.999566i \(0.490619\pi\)
\(522\) 0 0
\(523\) −9.89767e8 −0.302536 −0.151268 0.988493i \(-0.548336\pi\)
−0.151268 + 0.988493i \(0.548336\pi\)
\(524\) 7.07978e8 1.22625e9i 0.214961 0.372324i
\(525\) 0 0
\(526\) −6.83800e8 1.18438e9i −0.204870 0.354846i
\(527\) 3.00375e9 + 5.20265e9i 0.893978 + 1.54842i
\(528\) 0 0
\(529\) 1.42813e9 2.47360e9i 0.419443 0.726497i
\(530\) 6.10205e8 0.178037
\(531\) 0 0
\(532\) 2.31682e9 0.667116
\(533\) −1.05141e9 + 1.82110e9i −0.300766 + 0.520941i
\(534\) 0 0
\(535\) −1.36218e9 2.35937e9i −0.384589 0.666128i
\(536\) −9.03165e8 1.56433e9i −0.253332 0.438784i
\(537\) 0 0
\(538\) 9.60222e8 1.66315e9i 0.265848 0.460463i
\(539\) −8.37858e9 −2.30468
\(540\) 0 0
\(541\) −3.06000e9 −0.830865 −0.415433 0.909624i \(-0.636370\pi\)
−0.415433 + 0.909624i \(0.636370\pi\)
\(542\) −1.17045e9 + 2.02727e9i −0.315758 + 0.546909i
\(543\) 0 0
\(544\) −4.21591e8 7.30217e8i −0.112278 0.194471i
\(545\) 2.54910e8 + 4.41517e8i 0.0674526 + 0.116831i
\(546\) 0 0
\(547\) −2.69716e9 + 4.67161e9i −0.704612 + 1.22042i 0.262219 + 0.965008i \(0.415546\pi\)
−0.966831 + 0.255416i \(0.917788\pi\)
\(548\) 3.77340e8 0.0979493
\(549\) 0 0
\(550\) 1.32729e9 0.340170
\(551\) 1.82407e9 3.15939e9i 0.464528 0.804586i
\(552\) 0 0
\(553\) −3.77863e9 6.54478e9i −0.950159 1.64572i
\(554\) −3.48446e8 6.03526e8i −0.0870665 0.150804i
\(555\) 0 0
\(556\) −1.13852e9 + 1.97197e9i −0.280917 + 0.486563i
\(557\) 704537. 0.000172747 8.63736e−5 1.00000i \(-0.499973\pi\)
8.63736e−5 1.00000i \(0.499973\pi\)
\(558\) 0 0
\(559\) −8.16456e8 −0.197693
\(560\) −6.83948e8 + 1.18463e9i −0.164576 + 0.285053i
\(561\) 0 0
\(562\) −6.14518e8 1.06438e9i −0.146035 0.252941i
\(563\) −1.58230e9 2.74063e9i −0.373688 0.647247i 0.616441 0.787401i \(-0.288574\pi\)
−0.990130 + 0.140153i \(0.955240\pi\)
\(564\) 0 0
\(565\) 3.55587e8 6.15894e8i 0.0829423 0.143660i
\(566\) −1.75191e9 −0.406120
\(567\) 0 0
\(568\) 3.60443e8 0.0825310
\(569\) 6.94504e8 1.20292e9i 0.158045 0.273742i −0.776118 0.630587i \(-0.782814\pi\)
0.934164 + 0.356845i \(0.116147\pi\)
\(570\) 0 0
\(571\) −2.83085e9 4.90317e9i −0.636341 1.10217i −0.986229 0.165383i \(-0.947114\pi\)
0.349889 0.936791i \(-0.386219\pi\)
\(572\) 9.98545e8 + 1.72953e9i 0.223091 + 0.386404i
\(573\) 0 0
\(574\) −2.03839e9 + 3.53060e9i −0.449880 + 0.779215i
\(575\) 8.31022e8 0.182295
\(576\) 0 0
\(577\) 3.72547e9 0.807358 0.403679 0.914901i \(-0.367731\pi\)
0.403679 + 0.914901i \(0.367731\pi\)
\(578\) −1.00716e9 + 1.74446e9i −0.216946 + 0.375762i
\(579\) 0 0
\(580\) 1.07697e9 + 1.86537e9i 0.229195 + 0.396978i
\(581\) 7.09259e9 + 1.22847e10i 1.50034 + 2.59866i
\(582\) 0 0
\(583\) 8.63583e8 1.49577e9i 0.180495 0.312626i
\(584\) 2.07930e9 0.431988
\(585\) 0 0
\(586\) 2.32006e9 0.476275
\(587\) −6.23155e8 + 1.07934e9i −0.127164 + 0.220254i −0.922577 0.385814i \(-0.873921\pi\)
0.795413 + 0.606068i \(0.207254\pi\)
\(588\) 0 0
\(589\) 2.61300e9 + 4.52584e9i 0.526909 + 0.912633i
\(590\) −9.26241e8 1.60430e9i −0.185670 0.321590i
\(591\) 0 0
\(592\) −6.32560e8 + 1.09563e9i −0.125307 + 0.217038i
\(593\) −2.28414e9 −0.449813 −0.224906 0.974380i \(-0.572208\pi\)
−0.224906 + 0.974380i \(0.572208\pi\)
\(594\) 0 0
\(595\) 8.59340e9 1.67246
\(596\) −1.06950e9 + 1.85243e9i −0.206929 + 0.358411i
\(597\) 0 0
\(598\) 6.25193e8 + 1.08287e9i 0.119553 + 0.207072i
\(599\) 9.17038e8 + 1.58836e9i 0.174339 + 0.301963i 0.939932 0.341361i \(-0.110888\pi\)
−0.765594 + 0.643325i \(0.777555\pi\)
\(600\) 0 0
\(601\) −1.04820e9 + 1.81554e9i −0.196962 + 0.341149i −0.947542 0.319631i \(-0.896441\pi\)
0.750580 + 0.660780i \(0.229774\pi\)
\(602\) −1.58288e9 −0.295706
\(603\) 0 0
\(604\) −3.19412e9 −0.589823
\(605\) −2.45531e8 + 4.25273e8i −0.0450778 + 0.0780771i
\(606\) 0 0
\(607\) −1.96750e9 3.40781e9i −0.357070 0.618464i 0.630400 0.776271i \(-0.282891\pi\)
−0.987470 + 0.157807i \(0.949558\pi\)
\(608\) −3.66747e8 6.35224e8i −0.0661765 0.114621i
\(609\) 0 0
\(610\) −7.45985e7 + 1.29208e8i −0.0133069 + 0.0230482i
\(611\) 1.30532e9 0.231512
\(612\) 0 0
\(613\) 8.35535e9 1.46505 0.732526 0.680739i \(-0.238341\pi\)
0.732526 + 0.680739i \(0.238341\pi\)
\(614\) −1.19966e8 + 2.07787e8i −0.0209155 + 0.0362266i
\(615\) 0 0
\(616\) 1.93590e9 + 3.35307e9i 0.333695 + 0.577977i
\(617\) −5.33262e9 9.23638e9i −0.913993 1.58308i −0.808369 0.588676i \(-0.799649\pi\)
−0.105624 0.994406i \(-0.533684\pi\)
\(618\) 0 0
\(619\) 3.59538e9 6.22739e9i 0.609295 1.05533i −0.382061 0.924137i \(-0.624786\pi\)
0.991357 0.131194i \(-0.0418809\pi\)
\(620\) −3.08553e9 −0.519947
\(621\) 0 0
\(622\) 1.17027e8 0.0194994
\(623\) 8.68178e9 1.50373e10i 1.43847 2.49150i
\(624\) 0 0
\(625\) 1.03631e9 + 1.79494e9i 0.169789 + 0.294083i
\(626\) 2.02235e8 + 3.50281e8i 0.0329493 + 0.0570698i
\(627\) 0 0
\(628\) 1.36420e9 2.36286e9i 0.219795 0.380697i
\(629\) 7.94774e9 1.27340
\(630\) 0 0
\(631\) −6.01287e9 −0.952750 −0.476375 0.879242i \(-0.658049\pi\)
−0.476375 + 0.879242i \(0.658049\pi\)
\(632\) −1.19630e9 + 2.07204e9i −0.188507 + 0.326505i
\(633\) 0 0
\(634\) −2.59838e8 4.50053e8i −0.0404940 0.0701376i
\(635\) 1.22973e7 + 2.12995e7i 0.00190591 + 0.00330113i
\(636\) 0 0
\(637\) −5.97868e9 + 1.03554e10i −0.916468 + 1.58737i
\(638\) 6.09666e9 0.929437
\(639\) 0 0
\(640\) 4.33069e8 0.0653022
\(641\) 1.26243e9 2.18659e9i 0.189323 0.327917i −0.755702 0.654916i \(-0.772704\pi\)
0.945025 + 0.326999i \(0.106037\pi\)
\(642\) 0 0
\(643\) 4.05815e9 + 7.02892e9i 0.601990 + 1.04268i 0.992519 + 0.122087i \(0.0389587\pi\)
−0.390529 + 0.920590i \(0.627708\pi\)
\(644\) 1.21207e9 + 2.09937e9i 0.178825 + 0.309734i
\(645\) 0 0
\(646\) −2.30398e9 + 3.99060e9i −0.336251 + 0.582405i
\(647\) 6.70712e9 0.973578 0.486789 0.873519i \(-0.338168\pi\)
0.486789 + 0.873519i \(0.338168\pi\)
\(648\) 0 0
\(649\) −5.24340e9 −0.752933
\(650\) 9.47110e8 1.64044e9i 0.135271 0.234296i
\(651\) 0 0
\(652\) 1.29960e9 + 2.25097e9i 0.183630 + 0.318056i
\(653\) −3.33252e9 5.77210e9i −0.468357 0.811218i 0.530989 0.847379i \(-0.321821\pi\)
−0.999346 + 0.0361606i \(0.988487\pi\)
\(654\) 0 0
\(655\) 2.28438e9 3.95665e9i 0.317631 0.550153i
\(656\) 1.29069e9 0.178508
\(657\) 0 0
\(658\) 2.53065e9 0.346291
\(659\) −6.56243e9 + 1.13665e10i −0.893235 + 1.54713i −0.0572622 + 0.998359i \(0.518237\pi\)
−0.835973 + 0.548770i \(0.815096\pi\)
\(660\) 0 0
\(661\) 8.40716e8 + 1.45616e9i 0.113226 + 0.196112i 0.917069 0.398728i \(-0.130548\pi\)
−0.803843 + 0.594841i \(0.797215\pi\)
\(662\) −3.54069e8 6.13266e8i −0.0474335 0.0821572i
\(663\) 0 0
\(664\) 2.24548e9 3.88928e9i 0.297660 0.515562i
\(665\) 7.47549e9 0.985744
\(666\) 0 0
\(667\) 3.81715e9 0.498079
\(668\) 2.32291e9 4.02340e9i 0.301519 0.522246i
\(669\) 0 0
\(670\) −2.91417e9 5.04749e9i −0.374329 0.648356i
\(671\) 2.11149e8 + 3.65721e8i 0.0269811 + 0.0467327i
\(672\) 0 0
\(673\) 1.90889e9 3.30630e9i 0.241395 0.418109i −0.719717 0.694268i \(-0.755728\pi\)
0.961112 + 0.276159i \(0.0890616\pi\)
\(674\) −3.64220e9 −0.458199
\(675\) 0 0
\(676\) −1.16579e9 −0.145147
\(677\) 4.08674e9 7.07845e9i 0.506194 0.876754i −0.493780 0.869587i \(-0.664385\pi\)
0.999974 0.00716716i \(-0.00228140\pi\)
\(678\) 0 0
\(679\) −6.01648e9 1.04209e10i −0.737562 1.27749i
\(680\) −1.36031e9 2.35613e9i −0.165904 0.287355i
\(681\) 0 0
\(682\) −4.36676e9 + 7.56344e9i −0.527125 + 0.913007i
\(683\) −1.11162e10 −1.33501 −0.667507 0.744604i \(-0.732638\pi\)
−0.667507 + 0.744604i \(0.732638\pi\)
\(684\) 0 0
\(685\) 1.21753e9 0.144732
\(686\) −6.26362e9 + 1.08489e10i −0.740783 + 1.28307i
\(687\) 0 0
\(688\) 2.50566e8 + 4.33992e8i 0.0293334 + 0.0508069i
\(689\) −1.23245e9 2.13467e9i −0.143550 0.248635i
\(690\) 0 0
\(691\) 1.06038e9 1.83664e9i 0.122262 0.211763i −0.798398 0.602131i \(-0.794319\pi\)
0.920659 + 0.390367i \(0.127652\pi\)
\(692\) −2.06406e9 −0.236783
\(693\) 0 0
\(694\) −2.36826e9 −0.268950
\(695\) −3.67356e9 + 6.36280e9i −0.415089 + 0.718955i
\(696\) 0 0
\(697\) −4.05419e9 7.02206e9i −0.453512 0.785506i
\(698\) −3.04263e9 5.26998e9i −0.338653 0.586564i
\(699\) 0 0
\(700\) 1.83618e9 3.18036e9i 0.202336 0.350455i
\(701\) −1.27398e10 −1.39684 −0.698422 0.715686i \(-0.746114\pi\)
−0.698422 + 0.715686i \(0.746114\pi\)
\(702\) 0 0
\(703\) 6.91383e9 0.750542
\(704\) 6.12895e8 1.06157e9i 0.0662036 0.114668i
\(705\) 0 0
\(706\) 5.60203e9 + 9.70300e9i 0.599141 + 1.03774i
\(707\) 1.19738e10 + 2.07392e10i 1.27427 + 2.20711i
\(708\) 0 0
\(709\) 3.84065e9 6.65221e9i 0.404710 0.700977i −0.589578 0.807711i \(-0.700706\pi\)
0.994288 + 0.106734i \(0.0340393\pi\)
\(710\) 1.16301e9 0.121949
\(711\) 0 0
\(712\) −5.49722e9 −0.570772
\(713\) −2.73405e9 + 4.73551e9i −0.282483 + 0.489275i
\(714\) 0 0
\(715\) 3.22192e9 + 5.58053e9i 0.329643 + 0.570958i
\(716\) −1.83864e9 3.18462e9i −0.187198 0.324237i
\(717\) 0 0
\(718\) 5.28528e9 9.15438e9i 0.532884 0.922982i
\(719\) 1.29899e10 1.30333 0.651666 0.758506i \(-0.274071\pi\)
0.651666 + 0.758506i \(0.274071\pi\)
\(720\) 0 0
\(721\) −2.79067e10 −2.77290
\(722\) 1.57123e9 2.72145e9i 0.155368 0.269104i
\(723\) 0 0
\(724\) −9.26805e8 1.60527e9i −0.0907618 0.157204i
\(725\) −2.89131e9 5.00790e9i −0.281781 0.488060i
\(726\) 0 0
\(727\) 4.67747e8 8.10161e8i 0.0451482 0.0781990i −0.842568 0.538590i \(-0.818957\pi\)
0.887716 + 0.460391i \(0.152291\pi\)
\(728\) 5.52557e9 0.530783
\(729\) 0 0
\(730\) 6.70910e9 0.638313
\(731\) 1.57410e9 2.72643e9i 0.149047 0.258156i
\(732\) 0 0
\(733\) 5.82375e9 + 1.00870e10i 0.546184 + 0.946019i 0.998531 + 0.0541767i \(0.0172534\pi\)
−0.452347 + 0.891842i \(0.649413\pi\)
\(734\) 2.96768e9 + 5.14018e9i 0.277001 + 0.479780i
\(735\) 0 0
\(736\) 3.83736e8 6.64651e8i 0.0354781 0.0614499i
\(737\) −1.64969e10 −1.51798
\(738\) 0 0
\(739\) −1.36168e10 −1.24114 −0.620570 0.784151i \(-0.713099\pi\)
−0.620570 + 0.784151i \(0.713099\pi\)
\(740\) −2.04103e9 + 3.53517e9i −0.185156 + 0.320700i
\(741\) 0 0
\(742\) −2.38937e9 4.13852e9i −0.214719 0.371904i
\(743\) 7.55834e8 + 1.30914e9i 0.0676029 + 0.117092i 0.897846 0.440310i \(-0.145132\pi\)
−0.830243 + 0.557402i \(0.811798\pi\)
\(744\) 0 0
\(745\) −3.45088e9 + 5.97710e9i −0.305762 + 0.529594i
\(746\) 7.03568e9 0.620469
\(747\) 0 0
\(748\) −7.70066e9 −0.672779
\(749\) −1.06678e10 + 1.84771e10i −0.927657 + 1.60675i
\(750\) 0 0
\(751\) 9.52029e9 + 1.64896e10i 0.820183 + 1.42060i 0.905546 + 0.424248i \(0.139462\pi\)
−0.0853635 + 0.996350i \(0.527205\pi\)
\(752\) −4.00595e8 6.93852e8i −0.0343513 0.0594982i
\(753\) 0 0
\(754\) 4.35038e9 7.53508e9i 0.369596 0.640159i
\(755\) −1.03062e10 −0.871534
\(756\) 0 0
\(757\) −6.00984e9 −0.503532 −0.251766 0.967788i \(-0.581011\pi\)
−0.251766 + 0.967788i \(0.581011\pi\)
\(758\) 7.98945e9 1.38381e10i 0.666307 1.15408i
\(759\) 0 0
\(760\) −1.18335e9 2.04963e9i −0.0977837 0.169366i
\(761\) −1.12107e10 1.94175e10i −0.922116 1.59715i −0.796135 0.605119i \(-0.793126\pi\)
−0.125981 0.992033i \(-0.540208\pi\)
\(762\) 0 0
\(763\) 1.99630e9 3.45769e9i 0.162701 0.281806i
\(764\) −6.33239e9 −0.513737
\(765\) 0 0
\(766\) −2.47336e9 −0.198833
\(767\) −3.74152e9 + 6.48050e9i −0.299408 + 0.518591i
\(768\) 0 0
\(769\) 3.36877e9 + 5.83488e9i 0.267134 + 0.462690i 0.968121 0.250485i \(-0.0805900\pi\)
−0.700987 + 0.713175i \(0.747257\pi\)
\(770\) 6.24640e9 + 1.08191e10i 0.493074 + 0.854029i
\(771\) 0 0
\(772\) 4.94329e8 8.56203e8i 0.0386683 0.0669755i
\(773\) 9.36137e9 0.728973 0.364486 0.931209i \(-0.381245\pi\)
0.364486 + 0.931209i \(0.381245\pi\)
\(774\) 0 0
\(775\) 8.28365e9 0.639243
\(776\) −1.90479e9 + 3.29919e9i −0.146329 + 0.253449i
\(777\) 0 0
\(778\) −7.71255e9 1.33585e10i −0.587177 1.01702i
\(779\) −3.52678e9 6.10857e9i −0.267299 0.462976i
\(780\) 0 0
\(781\) 1.64593e9 2.85084e9i 0.123633 0.214138i
\(782\) −4.82142e9 −0.360538
\(783\) 0 0
\(784\) 7.33929e9 0.543936
\(785\) 4.40174e9 7.62404e9i 0.324774 0.562524i
\(786\) 0 0
\(787\) −3.25442e9 5.63682e9i −0.237992 0.412214i 0.722146 0.691740i \(-0.243156\pi\)
−0.960138 + 0.279527i \(0.909822\pi\)
\(788\) −3.15237e9 5.46007e9i −0.229507 0.397518i
\(789\) 0 0
\(790\) −3.85999e9 + 6.68569e9i −0.278542 + 0.482449i
\(791\) −5.56947e9 −0.400125
\(792\) 0 0
\(793\) 6.02676e8 0.0429169
\(794\) 4.33587e9 7.50995e9i 0.307401 0.532434i
\(795\) 0 0
\(796\) −4.50640e9 7.80532e9i −0.316690 0.548523i
\(797\) 8.12967e9 + 1.40810e10i 0.568812 + 0.985211i 0.996684 + 0.0813716i \(0.0259300\pi\)
−0.427872 + 0.903839i \(0.640737\pi\)
\(798\) 0 0
\(799\) −2.51662e9 + 4.35891e9i −0.174544 + 0.302318i
\(800\) −1.16265e9 −0.0802850
\(801\) 0 0
\(802\) −7.70971e9 −0.527749
\(803\) 9.49495e9 1.64457e10i 0.647125 1.12085i
\(804\) 0 0
\(805\) 3.91090e9 + 6.77387e9i 0.264235 + 0.457669i
\(806\) 6.23195e9 + 1.07940e10i 0.419229 + 0.726126i
\(807\) 0 0
\(808\) 3.79083e9 6.56592e9i 0.252810 0.437880i
\(809\) 2.11275e10 1.40291 0.701454 0.712715i \(-0.252535\pi\)
0.701454 + 0.712715i \(0.252535\pi\)
\(810\) 0 0
\(811\) 1.05784e10 0.696383 0.348191 0.937423i \(-0.386796\pi\)
0.348191 + 0.937423i \(0.386796\pi\)
\(812\) 8.43416e9 1.46084e10i 0.552835 0.957539i
\(813\) 0 0
\(814\) 5.77708e9 + 1.00062e10i 0.375425 + 0.650255i
\(815\) 4.19331e9 + 7.26303e9i 0.271335 + 0.469965i
\(816\) 0 0
\(817\) 1.36933e9 2.37175e9i 0.0878478 0.152157i
\(818\) −9.71936e8 −0.0620870
\(819\) 0 0
\(820\) 4.16457e9 0.263768
\(821\) −1.46609e10 + 2.53934e10i −0.924610 + 1.60147i −0.132422 + 0.991193i \(0.542275\pi\)
−0.792188 + 0.610277i \(0.791058\pi\)
\(822\) 0 0
\(823\) −4.13709e9 7.16565e9i −0.258700 0.448081i 0.707194 0.707019i \(-0.249961\pi\)
−0.965894 + 0.258939i \(0.916627\pi\)
\(824\) 4.41756e9 + 7.65144e9i 0.275066 + 0.476428i
\(825\) 0 0
\(826\) −7.25375e9 + 1.25639e10i −0.447850 + 0.775699i
\(827\) 1.68712e10 1.03723 0.518616 0.855007i \(-0.326448\pi\)
0.518616 + 0.855007i \(0.326448\pi\)
\(828\) 0 0
\(829\) 1.62532e10 0.990830 0.495415 0.868657i \(-0.335016\pi\)
0.495415 + 0.868657i \(0.335016\pi\)
\(830\) 7.24530e9 1.25492e10i 0.439828 0.761805i
\(831\) 0 0
\(832\) −8.74684e8 1.51500e9i −0.0526526 0.0911969i
\(833\) −2.30534e10 3.99297e10i −1.38191 2.39353i
\(834\) 0 0
\(835\) 7.49514e9 1.29820e10i 0.445530 0.771681i
\(836\) −6.69889e9 −0.396534
\(837\) 0 0
\(838\) 7.23796e9 0.424876
\(839\) 1.12134e10 1.94222e10i 0.655498 1.13536i −0.326271 0.945276i \(-0.605792\pi\)
0.981769 0.190079i \(-0.0608745\pi\)
\(840\) 0 0
\(841\) −4.65578e9 8.06405e9i −0.269902 0.467485i
\(842\) 4.75593e9 + 8.23751e9i 0.274564 + 0.475558i
\(843\) 0 0
\(844\) 1.93365e9 3.34918e9i 0.110708 0.191752i
\(845\) −3.76156e9 −0.214471
\(846\) 0 0
\(847\) 3.84570e9 0.217462
\(848\) −7.56463e8 + 1.31023e9i −0.0425993 + 0.0737842i
\(849\) 0 0
\(850\) 3.65200e9 + 6.32545e9i 0.203969 + 0.353285i
\(851\) 3.61706e9 + 6.26492e9i 0.201188 + 0.348468i
\(852\) 0 0
\(853\) −1.11195e10 + 1.92595e10i −0.613428 + 1.06249i 0.377230 + 0.926120i \(0.376877\pi\)
−0.990658 + 0.136369i \(0.956457\pi\)
\(854\) 1.16842e9 0.0641943
\(855\) 0 0
\(856\) 6.75472e9 0.368086
\(857\) −8.25516e9 + 1.42984e10i −0.448015 + 0.775985i −0.998257 0.0590205i \(-0.981202\pi\)
0.550242 + 0.835005i \(0.314536\pi\)
\(858\) 0 0
\(859\) 1.01406e10 + 1.75640e10i 0.545866 + 0.945468i 0.998552 + 0.0537978i \(0.0171326\pi\)
−0.452686 + 0.891670i \(0.649534\pi\)
\(860\) 8.08479e8 + 1.40033e9i 0.0433435 + 0.0750732i
\(861\) 0 0
\(862\) 7.11002e9 1.23149e10i 0.378090 0.654871i
\(863\) −2.39028e10 −1.26593 −0.632967 0.774179i \(-0.718163\pi\)
−0.632967 + 0.774179i \(0.718163\pi\)
\(864\) 0 0
\(865\) −6.65992e9 −0.349875
\(866\) −7.94505e9 + 1.37612e10i −0.415704 + 0.720020i
\(867\) 0 0
\(868\) 1.20820e10 + 2.09266e10i 0.627075 + 1.08613i
\(869\) 1.09256e10 + 1.89237e10i 0.564775 + 0.978219i
\(870\) 0 0
\(871\) −1.17717e10 + 2.03891e10i −0.603636 + 1.04553i
\(872\) −1.26403e9 −0.0645582
\(873\) 0 0
\(874\) −4.19420e9 −0.212500
\(875\) 1.89699e10 3.28569e10i 0.957277 1.65805i
\(876\) 0 0
\(877\) 1.28617e9 + 2.22771e9i 0.0643873 + 0.111522i 0.896422 0.443201i \(-0.146157\pi\)
−0.832035 + 0.554724i \(0.812824\pi\)
\(878\) −5.23775e9 9.07205e9i −0.261164 0.452350i
\(879\) 0 0
\(880\) 1.97758e9 3.42527e9i 0.0978238 0.169436i
\(881\) 3.40624e10 1.67826 0.839130 0.543931i \(-0.183065\pi\)
0.839130 + 0.543931i \(0.183065\pi\)
\(882\) 0 0
\(883\) 5.47993e9 0.267863 0.133931 0.990991i \(-0.457240\pi\)
0.133931 + 0.990991i \(0.457240\pi\)
\(884\) −5.49494e9 + 9.51751e9i −0.267534 + 0.463383i
\(885\) 0 0
\(886\) 7.29778e9 + 1.26401e10i 0.352511 + 0.610567i
\(887\) 1.08266e10 + 1.87522e10i 0.520904 + 0.902233i 0.999704 + 0.0243090i \(0.00773856\pi\)
−0.478800 + 0.877924i \(0.658928\pi\)
\(888\) 0 0
\(889\) 9.63048e7 1.66805e8i 0.00459718 0.00796255i
\(890\) −1.77374e10 −0.843384
\(891\) 0 0
\(892\) −1.82330e10 −0.860165
\(893\) −2.18924e9 + 3.79187e9i −0.102876 + 0.178186i
\(894\) 0 0
\(895\) −5.93260e9 1.02756e10i −0.276608 0.479098i
\(896\) −1.69577e9 2.93715e9i −0.0787568 0.136411i
\(897\) 0 0
\(898\) −1.43542e10 + 2.48622e10i −0.661473 + 1.14570i
\(899\) 3.80495e10 1.74658
\(900\) 0 0
\(901\) 9.50451e9 0.432905
\(902\) 5.89384e9 1.02084e10i 0.267409 0.463166i
\(903\) 0 0
\(904\) 8.81633e8 + 1.52703e9i 0.0396916 + 0.0687478i
\(905\) −2.99044e9 5.17960e9i −0.134111 0.232288i
\(906\) 0 0
\(907\) 1.64024e10 2.84098e10i 0.729931 1.26428i −0.226982 0.973899i \(-0.572886\pi\)
0.956912 0.290378i \(-0.0937810\pi\)
\(908\) −9.13379e9 −0.404903
\(909\) 0 0
\(910\) 1.78289e10 0.784296
\(911\) −9.25174e9 + 1.60245e10i −0.405423 + 0.702214i −0.994371 0.105957i \(-0.966209\pi\)
0.588947 + 0.808172i \(0.299543\pi\)
\(912\) 0 0
\(913\) −2.05076e10 3.55202e10i −0.891800 1.54464i
\(914\) −1.27876e10 2.21488e10i −0.553960 0.959487i
\(915\) 0 0
\(916\) −4.09240e9 + 7.08824e9i −0.175932 + 0.304723i
\(917\) −3.57796e10 −1.53230
\(918\) 0 0
\(919\) 1.47226e10 0.625720 0.312860 0.949799i \(-0.398713\pi\)
0.312860 + 0.949799i \(0.398713\pi\)
\(920\) 1.23817e9 2.14457e9i 0.0524232 0.0907996i
\(921\) 0 0
\(922\) −1.49891e10 2.59620e10i −0.629823 1.09089i
\(923\) −2.34897e9 4.06853e9i −0.0983267 0.170307i
\(924\) 0 0
\(925\) 5.47951e9 9.49078e9i 0.227638 0.394281i
\(926\) −1.74899e10 −0.723849
\(927\) 0 0
\(928\) −5.34042e9 −0.219360
\(929\) −2.24590e9 + 3.89000e9i −0.0919040 + 0.159182i −0.908312 0.418293i \(-0.862629\pi\)
0.816408 + 0.577475i \(0.195962\pi\)
\(930\) 0 0
\(931\) −2.00544e10 3.47353e10i −0.814492 1.41074i
\(932\) 9.13609e9 + 1.58242e10i 0.369662 + 0.640273i
\(933\) 0 0
\(934\) 3.85537e9 6.67770e9i 0.154829 0.268172i
\(935\) −2.48471e10 −0.994111
\(936\) 0 0
\(937\) −3.45477e10 −1.37193 −0.685963 0.727637i \(-0.740619\pi\)
−0.685963 + 0.727637i \(0.740619\pi\)
\(938\) −2.28220e10 + 3.95288e10i −0.902908 + 1.56388i
\(939\) 0 0
\(940\) −1.29257e9 2.23879e9i −0.0507582 0.0879157i
\(941\) −1.06261e10 1.84050e10i −0.415729 0.720065i 0.579775 0.814776i \(-0.303140\pi\)
−0.995505 + 0.0947119i \(0.969807\pi\)
\(942\) 0 0
\(943\) 3.69016e9 6.39155e9i 0.143303 0.248208i
\(944\) 4.59300e9 0.177703
\(945\) 0 0
\(946\) 4.57676e9 0.175768
\(947\) −1.52119e10 + 2.63477e10i −0.582046 + 1.00813i 0.413190 + 0.910645i \(0.364415\pi\)
−0.995237 + 0.0974893i \(0.968919\pi\)
\(948\) 0 0
\(949\) −1.35506e10 2.34703e10i −0.514666 0.891429i
\(950\) 3.17692e9 + 5.50258e9i 0.120219 + 0.208225i
\(951\) 0 0
\(952\) −1.06531e10 + 1.84518e10i −0.400173 + 0.693120i
\(953\) 3.86478e10 1.44644 0.723218 0.690620i \(-0.242662\pi\)
0.723218 + 0.690620i \(0.242662\pi\)
\(954\) 0 0
\(955\) −2.04322e10 −0.759108
\(956\) 3.78155e8 6.54984e8i 0.0139981 0.0242453i
\(957\) 0 0
\(958\) −6.89443e9 1.19415e10i −0.253349 0.438813i
\(959\) −4.76749e9 8.25753e9i −0.174552 0.302333i
\(960\) 0 0
\(961\) −1.34967e10 + 2.33771e10i −0.490566 + 0.849685i
\(962\) 1.64893e10 0.597160
\(963\) 0 0
\(964\) 9.48730e9 0.341093
\(965\) 1.59501e9 2.76264e9i 0.0571371 0.0989643i
\(966\) 0 0
\(967\) 1.70024e10 + 2.94491e10i 0.604670 + 1.04732i 0.992104 + 0.125421i \(0.0400282\pi\)
−0.387434 + 0.921898i \(0.626638\pi\)
\(968\) −6.08764e8 1.05441e9i −0.0215718 0.0373634i
\(969\) 0 0
\(970\) −6.14602e9 + 1.06452e10i −0.216219 + 0.374502i
\(971\) −2.08691e10 −0.731538 −0.365769 0.930706i \(-0.619194\pi\)
−0.365769 + 0.930706i \(0.619194\pi\)
\(972\) 0 0
\(973\) 5.75382e10 2.00245
\(974\) 2.62846e8 4.55263e8i 0.00911476 0.0157872i
\(975\) 0 0
\(976\) −1.84958e8 3.20356e8i −0.00636793 0.0110296i
\(977\) −2.13334e10 3.69505e10i −0.731862 1.26762i −0.956087 0.293085i \(-0.905318\pi\)
0.224225 0.974537i \(-0.428015\pi\)
\(978\) 0 0
\(979\) −2.51026e10 + 4.34790e10i −0.855027 + 1.48095i
\(980\) 2.36811e10 0.803731
\(981\) 0 0
\(982\) −1.56706e10 −0.528074
\(983\) −9.99083e9 + 1.73046e10i −0.335478 + 0.581065i −0.983577 0.180491i \(-0.942231\pi\)
0.648098 + 0.761557i \(0.275565\pi\)
\(984\) 0 0
\(985\) −1.01715e10 1.76176e10i −0.339124 0.587380i
\(986\) 1.67748e10 + 2.90548e10i 0.557299 + 0.965270i
\(987\) 0 0
\(988\) −4.78011e9 + 8.27939e9i −0.157684 + 0.273117i
\(989\) 2.86553e9 0.0941928
\(990\) 0 0
\(991\) −3.14380e10 −1.02612 −0.513059 0.858353i \(-0.671488\pi\)
−0.513059 + 0.858353i \(0.671488\pi\)
\(992\) 3.82510e9 6.62526e9i 0.124409 0.215483i
\(993\) 0 0
\(994\) −4.55399e9 7.88774e9i −0.147075 0.254742i
\(995\) −1.45404e10 2.51848e10i −0.467947 0.810508i
\(996\) 0 0
\(997\) −1.75392e10 + 3.03787e10i −0.560500 + 0.970814i 0.436953 + 0.899484i \(0.356058\pi\)
−0.997453 + 0.0713299i \(0.977276\pi\)
\(998\) −2.46736e10 −0.785735
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.8.c.b.19.2 8
3.2 odd 2 18.8.c.b.7.1 8
4.3 odd 2 432.8.i.b.289.2 8
9.2 odd 6 162.8.a.h.1.2 4
9.4 even 3 inner 54.8.c.b.37.2 8
9.5 odd 6 18.8.c.b.13.1 yes 8
9.7 even 3 162.8.a.i.1.3 4
12.11 even 2 144.8.i.b.97.4 8
36.23 even 6 144.8.i.b.49.4 8
36.31 odd 6 432.8.i.b.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.b.7.1 8 3.2 odd 2
18.8.c.b.13.1 yes 8 9.5 odd 6
54.8.c.b.19.2 8 1.1 even 1 trivial
54.8.c.b.37.2 8 9.4 even 3 inner
144.8.i.b.49.4 8 36.23 even 6
144.8.i.b.97.4 8 12.11 even 2
162.8.a.h.1.2 4 9.2 odd 6
162.8.a.i.1.3 4 9.7 even 3
432.8.i.b.145.2 8 36.31 odd 6
432.8.i.b.289.2 8 4.3 odd 2