Properties

Label 1440.4.a.bc.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53113\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +16.1245 q^{7} +16.1245 q^{11} -8.00000 q^{13} -26.0000 q^{17} -96.7471 q^{19} -128.996 q^{23} +25.0000 q^{25} -54.0000 q^{29} -128.996 q^{31} +80.6226 q^{35} -124.000 q^{37} -152.000 q^{41} -193.494 q^{43} -64.4981 q^{47} -83.0000 q^{49} -78.0000 q^{53} +80.6226 q^{55} +596.607 q^{59} -470.000 q^{61} -40.0000 q^{65} +741.728 q^{67} +225.743 q^{71} -162.000 q^{73} +260.000 q^{77} +128.996 q^{79} -1193.21 q^{83} -130.000 q^{85} -124.000 q^{89} -128.996 q^{91} -483.735 q^{95} -646.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} - 16 q^{13} - 52 q^{17} + 50 q^{25} - 108 q^{29} - 248 q^{37} - 304 q^{41} - 166 q^{49} - 156 q^{53} - 940 q^{61} - 80 q^{65} - 324 q^{73} + 520 q^{77} - 260 q^{85} - 248 q^{89} - 1292 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 16.1245 0.870642 0.435321 0.900275i \(-0.356635\pi\)
0.435321 + 0.900275i \(0.356635\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 16.1245 0.441975 0.220987 0.975277i \(-0.429072\pi\)
0.220987 + 0.975277i \(0.429072\pi\)
\(12\) 0 0
\(13\) −8.00000 −0.170677 −0.0853385 0.996352i \(-0.527197\pi\)
−0.0853385 + 0.996352i \(0.527197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −26.0000 −0.370937 −0.185468 0.982650i \(-0.559380\pi\)
−0.185468 + 0.982650i \(0.559380\pi\)
\(18\) 0 0
\(19\) −96.7471 −1.16817 −0.584087 0.811691i \(-0.698547\pi\)
−0.584087 + 0.811691i \(0.698547\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −128.996 −1.16946 −0.584729 0.811228i \(-0.698799\pi\)
−0.584729 + 0.811228i \(0.698799\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −54.0000 −0.345778 −0.172889 0.984941i \(-0.555310\pi\)
−0.172889 + 0.984941i \(0.555310\pi\)
\(30\) 0 0
\(31\) −128.996 −0.747367 −0.373684 0.927556i \(-0.621905\pi\)
−0.373684 + 0.927556i \(0.621905\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 80.6226 0.389363
\(36\) 0 0
\(37\) −124.000 −0.550959 −0.275479 0.961307i \(-0.588837\pi\)
−0.275479 + 0.961307i \(0.588837\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −152.000 −0.578986 −0.289493 0.957180i \(-0.593487\pi\)
−0.289493 + 0.957180i \(0.593487\pi\)
\(42\) 0 0
\(43\) −193.494 −0.686223 −0.343111 0.939295i \(-0.611481\pi\)
−0.343111 + 0.939295i \(0.611481\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −64.4981 −0.200170 −0.100085 0.994979i \(-0.531912\pi\)
−0.100085 + 0.994979i \(0.531912\pi\)
\(48\) 0 0
\(49\) −83.0000 −0.241983
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −78.0000 −0.202153 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(54\) 0 0
\(55\) 80.6226 0.197657
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 596.607 1.31647 0.658234 0.752813i \(-0.271304\pi\)
0.658234 + 0.752813i \(0.271304\pi\)
\(60\) 0 0
\(61\) −470.000 −0.986514 −0.493257 0.869884i \(-0.664194\pi\)
−0.493257 + 0.869884i \(0.664194\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −40.0000 −0.0763291
\(66\) 0 0
\(67\) 741.728 1.35248 0.676242 0.736679i \(-0.263607\pi\)
0.676242 + 0.736679i \(0.263607\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 225.743 0.377335 0.188668 0.982041i \(-0.439583\pi\)
0.188668 + 0.982041i \(0.439583\pi\)
\(72\) 0 0
\(73\) −162.000 −0.259735 −0.129868 0.991531i \(-0.541455\pi\)
−0.129868 + 0.991531i \(0.541455\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 260.000 0.384802
\(78\) 0 0
\(79\) 128.996 0.183711 0.0918557 0.995772i \(-0.470720\pi\)
0.0918557 + 0.995772i \(0.470720\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1193.21 −1.57798 −0.788990 0.614407i \(-0.789395\pi\)
−0.788990 + 0.614407i \(0.789395\pi\)
\(84\) 0 0
\(85\) −130.000 −0.165888
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −124.000 −0.147685 −0.0738425 0.997270i \(-0.523526\pi\)
−0.0738425 + 0.997270i \(0.523526\pi\)
\(90\) 0 0
\(91\) −128.996 −0.148599
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −483.735 −0.522423
\(96\) 0 0
\(97\) −646.000 −0.676200 −0.338100 0.941110i \(-0.609784\pi\)
−0.338100 + 0.941110i \(0.609784\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 530.000 0.522148 0.261074 0.965319i \(-0.415923\pi\)
0.261074 + 0.965319i \(0.415923\pi\)
\(102\) 0 0
\(103\) 983.595 0.940937 0.470469 0.882417i \(-0.344085\pi\)
0.470469 + 0.882417i \(0.344085\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 935.222 0.844966 0.422483 0.906371i \(-0.361159\pi\)
0.422483 + 0.906371i \(0.361159\pi\)
\(108\) 0 0
\(109\) −1374.00 −1.20739 −0.603694 0.797216i \(-0.706305\pi\)
−0.603694 + 0.797216i \(0.706305\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −158.000 −0.131534 −0.0657672 0.997835i \(-0.520949\pi\)
−0.0657672 + 0.997835i \(0.520949\pi\)
\(114\) 0 0
\(115\) −644.981 −0.522998
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −419.237 −0.322953
\(120\) 0 0
\(121\) −1071.00 −0.804658
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1338.33 −0.935102 −0.467551 0.883966i \(-0.654864\pi\)
−0.467551 + 0.883966i \(0.654864\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 951.346 0.634500 0.317250 0.948342i \(-0.397241\pi\)
0.317250 + 0.948342i \(0.397241\pi\)
\(132\) 0 0
\(133\) −1560.00 −1.01706
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 474.000 0.295595 0.147798 0.989018i \(-0.452782\pi\)
0.147798 + 0.989018i \(0.452782\pi\)
\(138\) 0 0
\(139\) 1580.20 0.964252 0.482126 0.876102i \(-0.339865\pi\)
0.482126 + 0.876102i \(0.339865\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −128.996 −0.0754349
\(144\) 0 0
\(145\) −270.000 −0.154636
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1270.00 0.698272 0.349136 0.937072i \(-0.386475\pi\)
0.349136 + 0.937072i \(0.386475\pi\)
\(150\) 0 0
\(151\) −290.241 −0.156421 −0.0782103 0.996937i \(-0.524921\pi\)
−0.0782103 + 0.996937i \(0.524921\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −644.981 −0.334233
\(156\) 0 0
\(157\) −2496.00 −1.26881 −0.634403 0.773003i \(-0.718754\pi\)
−0.634403 + 0.773003i \(0.718754\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2080.00 −1.01818
\(162\) 0 0
\(163\) −999.720 −0.480393 −0.240197 0.970724i \(-0.577212\pi\)
−0.240197 + 0.970724i \(0.577212\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 644.981 0.298863 0.149431 0.988772i \(-0.452256\pi\)
0.149431 + 0.988772i \(0.452256\pi\)
\(168\) 0 0
\(169\) −2133.00 −0.970869
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2018.00 0.886854 0.443427 0.896311i \(-0.353763\pi\)
0.443427 + 0.896311i \(0.353763\pi\)
\(174\) 0 0
\(175\) 403.113 0.174128
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2886.29 −1.20520 −0.602601 0.798042i \(-0.705869\pi\)
−0.602601 + 0.798042i \(0.705869\pi\)
\(180\) 0 0
\(181\) −1342.00 −0.551105 −0.275553 0.961286i \(-0.588861\pi\)
−0.275553 + 0.961286i \(0.588861\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −620.000 −0.246396
\(186\) 0 0
\(187\) −419.237 −0.163945
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4160.12 1.57600 0.788000 0.615675i \(-0.211117\pi\)
0.788000 + 0.615675i \(0.211117\pi\)
\(192\) 0 0
\(193\) −4362.00 −1.62686 −0.813429 0.581664i \(-0.802402\pi\)
−0.813429 + 0.581664i \(0.802402\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1374.00 0.496921 0.248461 0.968642i \(-0.420075\pi\)
0.248461 + 0.968642i \(0.420075\pi\)
\(198\) 0 0
\(199\) −1902.69 −0.677780 −0.338890 0.940826i \(-0.610052\pi\)
−0.338890 + 0.940826i \(0.610052\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −870.724 −0.301048
\(204\) 0 0
\(205\) −760.000 −0.258930
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1560.00 −0.516304
\(210\) 0 0
\(211\) −1838.19 −0.599747 −0.299873 0.953979i \(-0.596944\pi\)
−0.299873 + 0.953979i \(0.596944\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −967.471 −0.306888
\(216\) 0 0
\(217\) −2080.00 −0.650689
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 208.000 0.0633104
\(222\) 0 0
\(223\) −1402.83 −0.421258 −0.210629 0.977566i \(-0.567551\pi\)
−0.210629 + 0.977566i \(0.567551\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −322.490 −0.0942927 −0.0471463 0.998888i \(-0.515013\pi\)
−0.0471463 + 0.998888i \(0.515013\pi\)
\(228\) 0 0
\(229\) −1450.00 −0.418422 −0.209211 0.977870i \(-0.567090\pi\)
−0.209211 + 0.977870i \(0.567090\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3442.00 −0.967781 −0.483890 0.875129i \(-0.660777\pi\)
−0.483890 + 0.875129i \(0.660777\pi\)
\(234\) 0 0
\(235\) −322.490 −0.0895189
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3321.65 0.898995 0.449497 0.893282i \(-0.351603\pi\)
0.449497 + 0.893282i \(0.351603\pi\)
\(240\) 0 0
\(241\) −4570.00 −1.22149 −0.610746 0.791827i \(-0.709130\pi\)
−0.610746 + 0.791827i \(0.709130\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −415.000 −0.108218
\(246\) 0 0
\(247\) 773.977 0.199380
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 693.354 0.174359 0.0871795 0.996193i \(-0.472215\pi\)
0.0871795 + 0.996193i \(0.472215\pi\)
\(252\) 0 0
\(253\) −2080.00 −0.516871
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3214.00 −0.780093 −0.390046 0.920795i \(-0.627541\pi\)
−0.390046 + 0.920795i \(0.627541\pi\)
\(258\) 0 0
\(259\) −1999.44 −0.479688
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2966.91 −0.695618 −0.347809 0.937565i \(-0.613074\pi\)
−0.347809 + 0.937565i \(0.613074\pi\)
\(264\) 0 0
\(265\) −390.000 −0.0904057
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3330.00 0.754772 0.377386 0.926056i \(-0.376823\pi\)
0.377386 + 0.926056i \(0.376823\pi\)
\(270\) 0 0
\(271\) 8610.49 1.93007 0.965037 0.262113i \(-0.0844195\pi\)
0.965037 + 0.262113i \(0.0844195\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 403.113 0.0883950
\(276\) 0 0
\(277\) −1924.00 −0.417336 −0.208668 0.977987i \(-0.566913\pi\)
−0.208668 + 0.977987i \(0.566913\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4908.00 −1.04195 −0.520973 0.853573i \(-0.674431\pi\)
−0.520973 + 0.853573i \(0.674431\pi\)
\(282\) 0 0
\(283\) 4740.61 0.995759 0.497880 0.867246i \(-0.334112\pi\)
0.497880 + 0.867246i \(0.334112\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2450.93 −0.504089
\(288\) 0 0
\(289\) −4237.00 −0.862406
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2542.00 0.506844 0.253422 0.967356i \(-0.418444\pi\)
0.253422 + 0.967356i \(0.418444\pi\)
\(294\) 0 0
\(295\) 2983.04 0.588742
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1031.97 0.199600
\(300\) 0 0
\(301\) −3120.00 −0.597455
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2350.00 −0.441182
\(306\) 0 0
\(307\) 6449.81 1.19905 0.599527 0.800354i \(-0.295355\pi\)
0.599527 + 0.800354i \(0.295355\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10222.9 −1.86395 −0.931977 0.362517i \(-0.881918\pi\)
−0.931977 + 0.362517i \(0.881918\pi\)
\(312\) 0 0
\(313\) −1482.00 −0.267628 −0.133814 0.991006i \(-0.542722\pi\)
−0.133814 + 0.991006i \(0.542722\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10014.0 1.77427 0.887133 0.461514i \(-0.152694\pi\)
0.887133 + 0.461514i \(0.152694\pi\)
\(318\) 0 0
\(319\) −870.724 −0.152825
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2515.42 0.433319
\(324\) 0 0
\(325\) −200.000 −0.0341354
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1040.00 −0.174277
\(330\) 0 0
\(331\) −6224.06 −1.03355 −0.516776 0.856121i \(-0.672868\pi\)
−0.516776 + 0.856121i \(0.672868\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3708.64 0.604849
\(336\) 0 0
\(337\) −3546.00 −0.573184 −0.286592 0.958053i \(-0.592522\pi\)
−0.286592 + 0.958053i \(0.592522\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2080.00 −0.330318
\(342\) 0 0
\(343\) −6869.04 −1.08132
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5611.33 0.868104 0.434052 0.900888i \(-0.357083\pi\)
0.434052 + 0.900888i \(0.357083\pi\)
\(348\) 0 0
\(349\) −1710.00 −0.262276 −0.131138 0.991364i \(-0.541863\pi\)
−0.131138 + 0.991364i \(0.541863\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2058.00 −0.310301 −0.155151 0.987891i \(-0.549586\pi\)
−0.155151 + 0.987891i \(0.549586\pi\)
\(354\) 0 0
\(355\) 1128.72 0.168749
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3805.39 0.559444 0.279722 0.960081i \(-0.409758\pi\)
0.279722 + 0.960081i \(0.409758\pi\)
\(360\) 0 0
\(361\) 2501.00 0.364630
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −810.000 −0.116157
\(366\) 0 0
\(367\) −8949.11 −1.27286 −0.636430 0.771335i \(-0.719590\pi\)
−0.636430 + 0.771335i \(0.719590\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1257.71 −0.176003
\(372\) 0 0
\(373\) 2392.00 0.332046 0.166023 0.986122i \(-0.446907\pi\)
0.166023 + 0.986122i \(0.446907\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 432.000 0.0590163
\(378\) 0 0
\(379\) 3708.64 0.502638 0.251319 0.967904i \(-0.419136\pi\)
0.251319 + 0.967904i \(0.419136\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 257.992 0.0344198 0.0172099 0.999852i \(-0.494522\pi\)
0.0172099 + 0.999852i \(0.494522\pi\)
\(384\) 0 0
\(385\) 1300.00 0.172089
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9750.00 1.27081 0.635404 0.772180i \(-0.280833\pi\)
0.635404 + 0.772180i \(0.280833\pi\)
\(390\) 0 0
\(391\) 3353.90 0.433795
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 644.981 0.0821582
\(396\) 0 0
\(397\) −2164.00 −0.273572 −0.136786 0.990601i \(-0.543677\pi\)
−0.136786 + 0.990601i \(0.543677\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12500.0 −1.55666 −0.778329 0.627856i \(-0.783933\pi\)
−0.778329 + 0.627856i \(0.783933\pi\)
\(402\) 0 0
\(403\) 1031.97 0.127558
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1999.44 −0.243510
\(408\) 0 0
\(409\) −646.000 −0.0780994 −0.0390497 0.999237i \(-0.512433\pi\)
−0.0390497 + 0.999237i \(0.512433\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9620.00 1.14617
\(414\) 0 0
\(415\) −5966.07 −0.705694
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3079.78 0.359086 0.179543 0.983750i \(-0.442538\pi\)
0.179543 + 0.983750i \(0.442538\pi\)
\(420\) 0 0
\(421\) 230.000 0.0266259 0.0133130 0.999911i \(-0.495762\pi\)
0.0133130 + 0.999911i \(0.495762\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −650.000 −0.0741874
\(426\) 0 0
\(427\) −7578.52 −0.858900
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2192.93 0.245081 0.122541 0.992464i \(-0.460896\pi\)
0.122541 + 0.992464i \(0.460896\pi\)
\(432\) 0 0
\(433\) 5902.00 0.655039 0.327520 0.944844i \(-0.393787\pi\)
0.327520 + 0.944844i \(0.393787\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12480.0 1.36613
\(438\) 0 0
\(439\) 1902.69 0.206858 0.103429 0.994637i \(-0.467019\pi\)
0.103429 + 0.994637i \(0.467019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6062.82 0.650233 0.325116 0.945674i \(-0.394597\pi\)
0.325116 + 0.945674i \(0.394597\pi\)
\(444\) 0 0
\(445\) −620.000 −0.0660468
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7820.00 −0.821935 −0.410967 0.911650i \(-0.634809\pi\)
−0.410967 + 0.911650i \(0.634809\pi\)
\(450\) 0 0
\(451\) −2450.93 −0.255897
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −644.981 −0.0664553
\(456\) 0 0
\(457\) 12146.0 1.24325 0.621626 0.783314i \(-0.286472\pi\)
0.621626 + 0.783314i \(0.286472\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 750.000 0.0757722 0.0378861 0.999282i \(-0.487938\pi\)
0.0378861 + 0.999282i \(0.487938\pi\)
\(462\) 0 0
\(463\) 8755.61 0.878851 0.439425 0.898279i \(-0.355182\pi\)
0.439425 + 0.898279i \(0.355182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16479.3 −1.63291 −0.816455 0.577409i \(-0.804064\pi\)
−0.816455 + 0.577409i \(0.804064\pi\)
\(468\) 0 0
\(469\) 11960.0 1.17753
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3120.00 −0.303293
\(474\) 0 0
\(475\) −2418.68 −0.233635
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17317.7 −1.65191 −0.825957 0.563732i \(-0.809365\pi\)
−0.825957 + 0.563732i \(0.809365\pi\)
\(480\) 0 0
\(481\) 992.000 0.0940360
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3230.00 −0.302406
\(486\) 0 0
\(487\) 112.872 0.0105025 0.00525123 0.999986i \(-0.498328\pi\)
0.00525123 + 0.999986i \(0.498328\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10271.3 −0.944069 −0.472035 0.881580i \(-0.656480\pi\)
−0.472035 + 0.881580i \(0.656480\pi\)
\(492\) 0 0
\(493\) 1404.00 0.128262
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3640.00 0.328524
\(498\) 0 0
\(499\) −2612.17 −0.234342 −0.117171 0.993112i \(-0.537383\pi\)
−0.117171 + 0.993112i \(0.537383\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21090.9 1.86957 0.934787 0.355210i \(-0.115591\pi\)
0.934787 + 0.355210i \(0.115591\pi\)
\(504\) 0 0
\(505\) 2650.00 0.233512
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11834.0 1.03052 0.515258 0.857035i \(-0.327696\pi\)
0.515258 + 0.857035i \(0.327696\pi\)
\(510\) 0 0
\(511\) −2612.17 −0.226136
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4917.98 0.420800
\(516\) 0 0
\(517\) −1040.00 −0.0884703
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17860.0 −1.50184 −0.750922 0.660391i \(-0.770391\pi\)
−0.750922 + 0.660391i \(0.770391\pi\)
\(522\) 0 0
\(523\) −5321.09 −0.444885 −0.222443 0.974946i \(-0.571403\pi\)
−0.222443 + 0.974946i \(0.571403\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3353.90 0.277226
\(528\) 0 0
\(529\) 4473.00 0.367634
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1216.00 0.0988195
\(534\) 0 0
\(535\) 4676.11 0.377880
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1338.33 −0.106950
\(540\) 0 0
\(541\) 11642.0 0.925192 0.462596 0.886569i \(-0.346918\pi\)
0.462596 + 0.886569i \(0.346918\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6870.00 −0.539960
\(546\) 0 0
\(547\) 11416.2 0.892358 0.446179 0.894944i \(-0.352785\pi\)
0.446179 + 0.894944i \(0.352785\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5224.34 0.403928
\(552\) 0 0
\(553\) 2080.00 0.159947
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20026.0 1.52339 0.761696 0.647935i \(-0.224367\pi\)
0.761696 + 0.647935i \(0.224367\pi\)
\(558\) 0 0
\(559\) 1547.95 0.117122
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7868.76 0.589039 0.294519 0.955646i \(-0.404840\pi\)
0.294519 + 0.955646i \(0.404840\pi\)
\(564\) 0 0
\(565\) −790.000 −0.0588240
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5060.00 0.372805 0.186403 0.982473i \(-0.440317\pi\)
0.186403 + 0.982473i \(0.440317\pi\)
\(570\) 0 0
\(571\) −1709.20 −0.125267 −0.0626337 0.998037i \(-0.519950\pi\)
−0.0626337 + 0.998037i \(0.519950\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3224.90 −0.233892
\(576\) 0 0
\(577\) 23794.0 1.71674 0.858368 0.513034i \(-0.171478\pi\)
0.858368 + 0.513034i \(0.171478\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19240.0 −1.37385
\(582\) 0 0
\(583\) −1257.71 −0.0893467
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1064.22 0.0748296 0.0374148 0.999300i \(-0.488088\pi\)
0.0374148 + 0.999300i \(0.488088\pi\)
\(588\) 0 0
\(589\) 12480.0 0.873055
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14502.0 −1.00426 −0.502130 0.864792i \(-0.667450\pi\)
−0.502130 + 0.864792i \(0.667450\pi\)
\(594\) 0 0
\(595\) −2096.19 −0.144429
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6127.32 −0.417955 −0.208978 0.977920i \(-0.567014\pi\)
−0.208978 + 0.977920i \(0.567014\pi\)
\(600\) 0 0
\(601\) 13910.0 0.944094 0.472047 0.881573i \(-0.343515\pi\)
0.472047 + 0.881573i \(0.343515\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5355.00 −0.359854
\(606\) 0 0
\(607\) 11529.0 0.770921 0.385460 0.922724i \(-0.374043\pi\)
0.385460 + 0.922724i \(0.374043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 515.984 0.0341645
\(612\) 0 0
\(613\) 13108.0 0.863666 0.431833 0.901954i \(-0.357867\pi\)
0.431833 + 0.901954i \(0.357867\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13334.0 0.870027 0.435013 0.900424i \(-0.356744\pi\)
0.435013 + 0.900424i \(0.356744\pi\)
\(618\) 0 0
\(619\) 16027.8 1.04073 0.520364 0.853945i \(-0.325796\pi\)
0.520364 + 0.853945i \(0.325796\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1999.44 −0.128581
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3224.00 0.204371
\(630\) 0 0
\(631\) −10255.2 −0.646993 −0.323497 0.946229i \(-0.604858\pi\)
−0.323497 + 0.946229i \(0.604858\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6691.67 −0.418191
\(636\) 0 0
\(637\) 664.000 0.0413008
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28288.0 −1.74307 −0.871536 0.490332i \(-0.836876\pi\)
−0.871536 + 0.490332i \(0.836876\pi\)
\(642\) 0 0
\(643\) 225.743 0.0138452 0.00692258 0.999976i \(-0.497796\pi\)
0.00692258 + 0.999976i \(0.497796\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12448.1 0.756393 0.378197 0.925725i \(-0.376544\pi\)
0.378197 + 0.925725i \(0.376544\pi\)
\(648\) 0 0
\(649\) 9620.00 0.581846
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11542.0 0.691690 0.345845 0.938292i \(-0.387592\pi\)
0.345845 + 0.938292i \(0.387592\pi\)
\(654\) 0 0
\(655\) 4756.73 0.283757
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 628.856 0.0371726 0.0185863 0.999827i \(-0.494083\pi\)
0.0185863 + 0.999827i \(0.494083\pi\)
\(660\) 0 0
\(661\) 13930.0 0.819689 0.409844 0.912155i \(-0.365583\pi\)
0.409844 + 0.912155i \(0.365583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7800.00 −0.454844
\(666\) 0 0
\(667\) 6965.79 0.404373
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7578.52 −0.436014
\(672\) 0 0
\(673\) 7862.00 0.450309 0.225154 0.974323i \(-0.427711\pi\)
0.225154 + 0.974323i \(0.427711\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6526.00 0.370479 0.185240 0.982693i \(-0.440694\pi\)
0.185240 + 0.982693i \(0.440694\pi\)
\(678\) 0 0
\(679\) −10416.4 −0.588728
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20284.6 −1.13641 −0.568207 0.822886i \(-0.692363\pi\)
−0.568207 + 0.822886i \(0.692363\pi\)
\(684\) 0 0
\(685\) 2370.00 0.132194
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 624.000 0.0345029
\(690\) 0 0
\(691\) 18736.7 1.03152 0.515758 0.856734i \(-0.327510\pi\)
0.515758 + 0.856734i \(0.327510\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7901.01 0.431227
\(696\) 0 0
\(697\) 3952.00 0.214767
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8398.00 −0.452479 −0.226240 0.974072i \(-0.572643\pi\)
−0.226240 + 0.974072i \(0.572643\pi\)
\(702\) 0 0
\(703\) 11996.6 0.643616
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8545.99 0.454604
\(708\) 0 0
\(709\) 10550.0 0.558834 0.279417 0.960170i \(-0.409859\pi\)
0.279417 + 0.960170i \(0.409859\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16640.0 0.874015
\(714\) 0 0
\(715\) −644.981 −0.0337355
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19671.9 1.02036 0.510180 0.860068i \(-0.329579\pi\)
0.510180 + 0.860068i \(0.329579\pi\)
\(720\) 0 0
\(721\) 15860.0 0.819220
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1350.00 −0.0691555
\(726\) 0 0
\(727\) 11851.5 0.604606 0.302303 0.953212i \(-0.402245\pi\)
0.302303 + 0.953212i \(0.402245\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5030.85 0.254545
\(732\) 0 0
\(733\) 16948.0 0.854009 0.427005 0.904249i \(-0.359569\pi\)
0.427005 + 0.904249i \(0.359569\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11960.0 0.597764
\(738\) 0 0
\(739\) −36989.6 −1.84125 −0.920626 0.390445i \(-0.872321\pi\)
−0.920626 + 0.390445i \(0.872321\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11093.7 −0.547762 −0.273881 0.961764i \(-0.588307\pi\)
−0.273881 + 0.961764i \(0.588307\pi\)
\(744\) 0 0
\(745\) 6350.00 0.312277
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15080.0 0.735662
\(750\) 0 0
\(751\) −24186.8 −1.17522 −0.587608 0.809145i \(-0.699930\pi\)
−0.587608 + 0.809145i \(0.699930\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1451.21 −0.0699534
\(756\) 0 0
\(757\) 12716.0 0.610530 0.305265 0.952268i \(-0.401255\pi\)
0.305265 + 0.952268i \(0.401255\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20300.0 −0.966983 −0.483492 0.875349i \(-0.660632\pi\)
−0.483492 + 0.875349i \(0.660632\pi\)
\(762\) 0 0
\(763\) −22155.1 −1.05120
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4772.86 −0.224691
\(768\) 0 0
\(769\) −15570.0 −0.730128 −0.365064 0.930982i \(-0.618953\pi\)
−0.365064 + 0.930982i \(0.618953\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 438.000 0.0203800 0.0101900 0.999948i \(-0.496756\pi\)
0.0101900 + 0.999948i \(0.496756\pi\)
\(774\) 0 0
\(775\) −3224.90 −0.149473
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14705.6 0.676356
\(780\) 0 0
\(781\) 3640.00 0.166773
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12480.0 −0.567427
\(786\) 0 0
\(787\) −27572.9 −1.24888 −0.624440 0.781073i \(-0.714673\pi\)
−0.624440 + 0.781073i \(0.714673\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2547.67 −0.114519
\(792\) 0 0
\(793\) 3760.00 0.168375
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 31746.0 1.41092 0.705459 0.708751i \(-0.250741\pi\)
0.705459 + 0.708751i \(0.250741\pi\)
\(798\) 0 0
\(799\) 1676.95 0.0742506
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2612.17 −0.114796
\(804\) 0 0
\(805\) −10400.0 −0.455344
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35904.0 1.56034 0.780171 0.625566i \(-0.215132\pi\)
0.780171 + 0.625566i \(0.215132\pi\)
\(810\) 0 0
\(811\) 18994.7 0.822433 0.411217 0.911538i \(-0.365104\pi\)
0.411217 + 0.911538i \(0.365104\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4998.60 −0.214838
\(816\) 0 0
\(817\) 18720.0 0.801628
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42878.0 −1.82272 −0.911360 0.411611i \(-0.864966\pi\)
−0.911360 + 0.411611i \(0.864966\pi\)
\(822\) 0 0
\(823\) −15431.2 −0.653580 −0.326790 0.945097i \(-0.605967\pi\)
−0.326790 + 0.945097i \(0.605967\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20574.9 −0.865125 −0.432563 0.901604i \(-0.642391\pi\)
−0.432563 + 0.901604i \(0.642391\pi\)
\(828\) 0 0
\(829\) 36634.0 1.53480 0.767401 0.641167i \(-0.221549\pi\)
0.767401 + 0.641167i \(0.221549\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2158.00 0.0897602
\(834\) 0 0
\(835\) 3224.90 0.133656
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2192.93 0.0902366 0.0451183 0.998982i \(-0.485634\pi\)
0.0451183 + 0.998982i \(0.485634\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10665.0 −0.434186
\(846\) 0 0
\(847\) −17269.4 −0.700569
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15995.5 0.644324
\(852\) 0 0
\(853\) 9028.00 0.362383 0.181192 0.983448i \(-0.442005\pi\)
0.181192 + 0.983448i \(0.442005\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44886.0 1.78912 0.894560 0.446947i \(-0.147489\pi\)
0.894560 + 0.446947i \(0.147489\pi\)
\(858\) 0 0
\(859\) 24864.0 0.987601 0.493800 0.869575i \(-0.335607\pi\)
0.493800 + 0.869575i \(0.335607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −47599.6 −1.87753 −0.938765 0.344558i \(-0.888029\pi\)
−0.938765 + 0.344558i \(0.888029\pi\)
\(864\) 0 0
\(865\) 10090.0 0.396613
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2080.00 0.0811958
\(870\) 0 0
\(871\) −5933.82 −0.230838
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2015.56 0.0778726
\(876\) 0 0
\(877\) −25016.0 −0.963204 −0.481602 0.876390i \(-0.659945\pi\)
−0.481602 + 0.876390i \(0.659945\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −35532.0 −1.35880 −0.679400 0.733768i \(-0.737760\pi\)
−0.679400 + 0.733768i \(0.737760\pi\)
\(882\) 0 0
\(883\) 29249.9 1.11476 0.557382 0.830256i \(-0.311806\pi\)
0.557382 + 0.830256i \(0.311806\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13609.1 −0.515162 −0.257581 0.966257i \(-0.582925\pi\)
−0.257581 + 0.966257i \(0.582925\pi\)
\(888\) 0 0
\(889\) −21580.0 −0.814139
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6240.00 0.233834
\(894\) 0 0
\(895\) −14431.4 −0.538983
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6965.79 0.258423
\(900\) 0 0
\(901\) 2028.00 0.0749861
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6710.00 −0.246462
\(906\) 0 0
\(907\) −24186.8 −0.885456 −0.442728 0.896656i \(-0.645989\pi\)
−0.442728 + 0.896656i \(0.645989\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22574.3 0.820989 0.410494 0.911863i \(-0.365356\pi\)
0.410494 + 0.911863i \(0.365356\pi\)
\(912\) 0 0
\(913\) −19240.0 −0.697427
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15340.0 0.552422
\(918\) 0 0
\(919\) 48760.5 1.75023 0.875115 0.483915i \(-0.160786\pi\)
0.875115 + 0.483915i \(0.160786\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1805.95 −0.0644024
\(924\) 0 0
\(925\) −3100.00 −0.110192
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2500.00 0.0882910 0.0441455 0.999025i \(-0.485943\pi\)
0.0441455 + 0.999025i \(0.485943\pi\)
\(930\) 0 0
\(931\) 8030.01 0.282678
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2096.19 −0.0733183
\(936\) 0 0
\(937\) 25114.0 0.875602 0.437801 0.899072i \(-0.355758\pi\)
0.437801 + 0.899072i \(0.355758\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −29090.0 −1.00777 −0.503883 0.863772i \(-0.668096\pi\)
−0.503883 + 0.863772i \(0.668096\pi\)
\(942\) 0 0
\(943\) 19607.4 0.677100
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 56693.8 1.94541 0.972704 0.232051i \(-0.0745435\pi\)
0.972704 + 0.232051i \(0.0745435\pi\)
\(948\) 0 0
\(949\) 1296.00 0.0443308
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17202.0 0.584709 0.292354 0.956310i \(-0.405561\pi\)
0.292354 + 0.956310i \(0.405561\pi\)
\(954\) 0 0
\(955\) 20800.6 0.704809
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7643.02 0.257358
\(960\) 0 0
\(961\) −13151.0 −0.441442
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21810.0 −0.727553
\(966\) 0 0
\(967\) 3821.51 0.127085 0.0635426 0.997979i \(-0.479760\pi\)
0.0635426 + 0.997979i \(0.479760\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38811.7 1.28273 0.641363 0.767238i \(-0.278369\pi\)
0.641363 + 0.767238i \(0.278369\pi\)
\(972\) 0 0
\(973\) 25480.0 0.839518
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29046.0 0.951140 0.475570 0.879678i \(-0.342242\pi\)
0.475570 + 0.879678i \(0.342242\pi\)
\(978\) 0 0
\(979\) −1999.44 −0.0652731
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23735.3 −0.770130 −0.385065 0.922889i \(-0.625821\pi\)
−0.385065 + 0.922889i \(0.625821\pi\)
\(984\) 0 0
\(985\) 6870.00 0.222230
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24960.0 0.802509
\(990\) 0 0
\(991\) 33377.7 1.06991 0.534954 0.844881i \(-0.320329\pi\)
0.534954 + 0.844881i \(0.320329\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9513.46 −0.303113
\(996\) 0 0
\(997\) −52336.0 −1.66249 −0.831243 0.555910i \(-0.812370\pi\)
−0.831243 + 0.555910i \(0.812370\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.bc.1.2 yes 2
3.2 odd 2 1440.4.a.u.1.2 yes 2
4.3 odd 2 inner 1440.4.a.bc.1.1 yes 2
12.11 even 2 1440.4.a.u.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.4.a.u.1.1 2 12.11 even 2
1440.4.a.u.1.2 yes 2 3.2 odd 2
1440.4.a.bc.1.1 yes 2 4.3 odd 2 inner
1440.4.a.bc.1.2 yes 2 1.1 even 1 trivial