Properties

Label 1440.4.a.bi
Level 14401440
Weight 44
Character orbit 1440.a
Self dual yes
Analytic conductor 84.96384.963
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 84.962750408384.9627504083
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.16773.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x217x+18 x^{3} - x^{2} - 17x + 18 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q5q5+(β1+5)q7+(β22β17)q11+(β23β1+4)q13+(β25β110)q17+(3β2β1)q19+(3β2+β158)q23++(18β226β1462)q97+O(q100) q - 5 q^{5} + ( - \beta_1 + 5) q^{7} + ( - \beta_{2} - 2 \beta_1 - 7) q^{11} + (\beta_{2} - 3 \beta_1 + 4) q^{13} + ( - \beta_{2} - 5 \beta_1 - 10) q^{17} + (3 \beta_{2} - \beta_1) q^{19} + (3 \beta_{2} + \beta_1 - 58) q^{23}+ \cdots + ( - 18 \beta_{2} - 26 \beta_1 - 462) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q15q5+14q722q11+8q1334q174q19176q23+75q25+98q29+88q3170q35+284q378q41+504q43280q47409q49150q53+1394q97+O(q100) 3 q - 15 q^{5} + 14 q^{7} - 22 q^{11} + 8 q^{13} - 34 q^{17} - 4 q^{19} - 176 q^{23} + 75 q^{25} + 98 q^{29} + 88 q^{31} - 70 q^{35} + 284 q^{37} - 8 q^{41} + 504 q^{43} - 280 q^{47} - 409 q^{49} - 150 q^{53}+ \cdots - 1394 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x217x+18 x^{3} - x^{2} - 17x + 18 : Copy content Toggle raw display

β1\beta_{1}== 4ν1 4\nu - 1 Copy content Toggle raw display
β2\beta_{2}== 4ν247 4\nu^{2} - 47 Copy content Toggle raw display
ν\nu== (β1+1)/4 ( \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β2+47)/4 ( \beta_{2} + 47 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
4.08359
1.06301
−4.14660
0 0 0 −5.00000 0 −10.3344 0 0 0
1.2 0 0 0 −5.00000 0 1.74795 0 0 0
1.3 0 0 0 −5.00000 0 22.5864 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.4.a.bi yes 3
3.b odd 2 1 1440.4.a.bk yes 3
4.b odd 2 1 1440.4.a.bh 3
12.b even 2 1 1440.4.a.bj yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.4.a.bh 3 4.b odd 2 1
1440.4.a.bi yes 3 1.a even 1 1 trivial
1440.4.a.bj yes 3 12.b even 2 1
1440.4.a.bk yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1440))S_{4}^{\mathrm{new}}(\Gamma_0(1440)):

T7314T72212T7+408 T_{7}^{3} - 14T_{7}^{2} - 212T_{7} + 408 Copy content Toggle raw display
T113+22T1121844T11+10632 T_{11}^{3} + 22T_{11}^{2} - 1844T_{11} + 10632 Copy content Toggle raw display
T173+34T1726788T17+96888 T_{17}^{3} + 34T_{17}^{2} - 6788T_{17} + 96888 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 (T+5)3 (T + 5)^{3} Copy content Toggle raw display
77 T314T2++408 T^{3} - 14 T^{2} + \cdots + 408 Copy content Toggle raw display
1111 T3+22T2++10632 T^{3} + 22 T^{2} + \cdots + 10632 Copy content Toggle raw display
1313 T38T2+84480 T^{3} - 8 T^{2} + \cdots - 84480 Copy content Toggle raw display
1717 T3+34T2++96888 T^{3} + 34 T^{2} + \cdots + 96888 Copy content Toggle raw display
1919 T3+4T2++474368 T^{3} + 4 T^{2} + \cdots + 474368 Copy content Toggle raw display
2323 T3+176T2+30720 T^{3} + 176 T^{2} + \cdots - 30720 Copy content Toggle raw display
2929 T398T2+2277784 T^{3} - 98 T^{2} + \cdots - 2277784 Copy content Toggle raw display
3131 T388T2++1707904 T^{3} - 88 T^{2} + \cdots + 1707904 Copy content Toggle raw display
3737 T3284T2++15742208 T^{3} - 284 T^{2} + \cdots + 15742208 Copy content Toggle raw display
4141 T3+8T2++9332224 T^{3} + 8 T^{2} + \cdots + 9332224 Copy content Toggle raw display
4343 T3504T2++39200768 T^{3} - 504 T^{2} + \cdots + 39200768 Copy content Toggle raw display
4747 T3+280T2+3734656 T^{3} + 280 T^{2} + \cdots - 3734656 Copy content Toggle raw display
5353 T3+150T2++55880 T^{3} + 150 T^{2} + \cdots + 55880 Copy content Toggle raw display
5959 T3+350T2+160926744 T^{3} + 350 T^{2} + \cdots - 160926744 Copy content Toggle raw display
6161 T3350T2++23932568 T^{3} - 350 T^{2} + \cdots + 23932568 Copy content Toggle raw display
6767 T3804T2+5531328 T^{3} - 804 T^{2} + \cdots - 5531328 Copy content Toggle raw display
7171 T3+500T2+3957312 T^{3} + 500 T^{2} + \cdots - 3957312 Copy content Toggle raw display
7373 T3+486T2+1079800 T^{3} + 486 T^{2} + \cdots - 1079800 Copy content Toggle raw display
7979 T31592T2+76128384 T^{3} - 1592 T^{2} + \cdots - 76128384 Copy content Toggle raw display
8383 T3684T2++220672448 T^{3} - 684 T^{2} + \cdots + 220672448 Copy content Toggle raw display
8989 T3+668T2+4766400 T^{3} + 668 T^{2} + \cdots - 4766400 Copy content Toggle raw display
9797 T3+1394T2+105157160 T^{3} + 1394 T^{2} + \cdots - 105157160 Copy content Toggle raw display
show more
show less