Properties

Label 1440.4.a.j
Level 14401440
Weight 44
Character orbit 1440.a
Self dual yes
Analytic conductor 84.96384.963
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 84.962750408384.9627504083
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 480)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q5q5+32q764q116q1338q17116q19+120q23+25q25+122q29+164q31160q35+146q37+238q41148q43+184q47+681q49470q53++322q97+O(q100) q - 5 q^{5} + 32 q^{7} - 64 q^{11} - 6 q^{13} - 38 q^{17} - 116 q^{19} + 120 q^{23} + 25 q^{25} + 122 q^{29} + 164 q^{31} - 160 q^{35} + 146 q^{37} + 238 q^{41} - 148 q^{43} + 184 q^{47} + 681 q^{49} - 470 q^{53}+ \cdots + 322 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 −5.00000 0 32.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.4.a.j 1
3.b odd 2 1 480.4.a.l yes 1
4.b odd 2 1 1440.4.a.a 1
12.b even 2 1 480.4.a.c 1
15.d odd 2 1 2400.4.a.a 1
24.f even 2 1 960.4.a.t 1
24.h odd 2 1 960.4.a.i 1
60.h even 2 1 2400.4.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.a.c 1 12.b even 2 1
480.4.a.l yes 1 3.b odd 2 1
960.4.a.i 1 24.h odd 2 1
960.4.a.t 1 24.f even 2 1
1440.4.a.a 1 4.b odd 2 1
1440.4.a.j 1 1.a even 1 1 trivial
2400.4.a.a 1 15.d odd 2 1
2400.4.a.v 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1440))S_{4}^{\mathrm{new}}(\Gamma_0(1440)):

T732 T_{7} - 32 Copy content Toggle raw display
T11+64 T_{11} + 64 Copy content Toggle raw display
T17+38 T_{17} + 38 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+5 T + 5 Copy content Toggle raw display
77 T32 T - 32 Copy content Toggle raw display
1111 T+64 T + 64 Copy content Toggle raw display
1313 T+6 T + 6 Copy content Toggle raw display
1717 T+38 T + 38 Copy content Toggle raw display
1919 T+116 T + 116 Copy content Toggle raw display
2323 T120 T - 120 Copy content Toggle raw display
2929 T122 T - 122 Copy content Toggle raw display
3131 T164 T - 164 Copy content Toggle raw display
3737 T146 T - 146 Copy content Toggle raw display
4141 T238 T - 238 Copy content Toggle raw display
4343 T+148 T + 148 Copy content Toggle raw display
4747 T184 T - 184 Copy content Toggle raw display
5353 T+470 T + 470 Copy content Toggle raw display
5959 T216 T - 216 Copy content Toggle raw display
6161 T806 T - 806 Copy content Toggle raw display
6767 T+732 T + 732 Copy content Toggle raw display
7171 T+264 T + 264 Copy content Toggle raw display
7373 T+638 T + 638 Copy content Toggle raw display
7979 T596 T - 596 Copy content Toggle raw display
8383 T884 T - 884 Copy content Toggle raw display
8989 T+930 T + 930 Copy content Toggle raw display
9797 T322 T - 322 Copy content Toggle raw display
show more
show less