Properties

Label 1440.4.a.o.1.1
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +6.00000 q^{7} -60.0000 q^{11} +50.0000 q^{13} +30.0000 q^{17} +40.0000 q^{19} -178.000 q^{23} +25.0000 q^{25} -166.000 q^{29} +20.0000 q^{31} +30.0000 q^{35} +10.0000 q^{37} +250.000 q^{41} +142.000 q^{43} -214.000 q^{47} -307.000 q^{49} -490.000 q^{53} -300.000 q^{55} +800.000 q^{59} +250.000 q^{61} +250.000 q^{65} -774.000 q^{67} -100.000 q^{71} -230.000 q^{73} -360.000 q^{77} -1320.00 q^{79} -982.000 q^{83} +150.000 q^{85} -874.000 q^{89} +300.000 q^{91} +200.000 q^{95} -310.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 6.00000 0.323970 0.161985 0.986793i \(-0.448210\pi\)
0.161985 + 0.986793i \(0.448210\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) 0 0
\(13\) 50.0000 1.06673 0.533366 0.845885i \(-0.320927\pi\)
0.533366 + 0.845885i \(0.320927\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) 0 0
\(19\) 40.0000 0.482980 0.241490 0.970403i \(-0.422364\pi\)
0.241490 + 0.970403i \(0.422364\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −178.000 −1.61372 −0.806860 0.590743i \(-0.798835\pi\)
−0.806860 + 0.590743i \(0.798835\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −166.000 −1.06295 −0.531473 0.847075i \(-0.678361\pi\)
−0.531473 + 0.847075i \(0.678361\pi\)
\(30\) 0 0
\(31\) 20.0000 0.115874 0.0579372 0.998320i \(-0.481548\pi\)
0.0579372 + 0.998320i \(0.481548\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 30.0000 0.144884
\(36\) 0 0
\(37\) 10.0000 0.0444322 0.0222161 0.999753i \(-0.492928\pi\)
0.0222161 + 0.999753i \(0.492928\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 250.000 0.952279 0.476140 0.879370i \(-0.342036\pi\)
0.476140 + 0.879370i \(0.342036\pi\)
\(42\) 0 0
\(43\) 142.000 0.503600 0.251800 0.967779i \(-0.418977\pi\)
0.251800 + 0.967779i \(0.418977\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −214.000 −0.664151 −0.332076 0.943253i \(-0.607749\pi\)
−0.332076 + 0.943253i \(0.607749\pi\)
\(48\) 0 0
\(49\) −307.000 −0.895044
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −490.000 −1.26994 −0.634969 0.772538i \(-0.718987\pi\)
−0.634969 + 0.772538i \(0.718987\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 800.000 1.76527 0.882637 0.470056i \(-0.155766\pi\)
0.882637 + 0.470056i \(0.155766\pi\)
\(60\) 0 0
\(61\) 250.000 0.524741 0.262371 0.964967i \(-0.415496\pi\)
0.262371 + 0.964967i \(0.415496\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 250.000 0.477057
\(66\) 0 0
\(67\) −774.000 −1.41133 −0.705665 0.708545i \(-0.749352\pi\)
−0.705665 + 0.708545i \(0.749352\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −100.000 −0.167152 −0.0835762 0.996501i \(-0.526634\pi\)
−0.0835762 + 0.996501i \(0.526634\pi\)
\(72\) 0 0
\(73\) −230.000 −0.368760 −0.184380 0.982855i \(-0.559028\pi\)
−0.184380 + 0.982855i \(0.559028\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −360.000 −0.532803
\(78\) 0 0
\(79\) −1320.00 −1.87989 −0.939947 0.341321i \(-0.889126\pi\)
−0.939947 + 0.341321i \(0.889126\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −982.000 −1.29866 −0.649328 0.760508i \(-0.724950\pi\)
−0.649328 + 0.760508i \(0.724950\pi\)
\(84\) 0 0
\(85\) 150.000 0.191409
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −874.000 −1.04094 −0.520471 0.853879i \(-0.674244\pi\)
−0.520471 + 0.853879i \(0.674244\pi\)
\(90\) 0 0
\(91\) 300.000 0.345588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 200.000 0.215995
\(96\) 0 0
\(97\) −310.000 −0.324492 −0.162246 0.986750i \(-0.551874\pi\)
−0.162246 + 0.986750i \(0.551874\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1498.00 1.47581 0.737904 0.674906i \(-0.235816\pi\)
0.737904 + 0.674906i \(0.235816\pi\)
\(102\) 0 0
\(103\) 1402.00 1.34120 0.670598 0.741821i \(-0.266038\pi\)
0.670598 + 0.741821i \(0.266038\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1194.00 −1.07877 −0.539385 0.842059i \(-0.681343\pi\)
−0.539385 + 0.842059i \(0.681343\pi\)
\(108\) 0 0
\(109\) 650.000 0.571181 0.285590 0.958352i \(-0.407810\pi\)
0.285590 + 0.958352i \(0.407810\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1510.00 1.25707 0.628535 0.777782i \(-0.283655\pi\)
0.628535 + 0.777782i \(0.283655\pi\)
\(114\) 0 0
\(115\) −890.000 −0.721678
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 180.000 0.138660
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1246.00 0.870588 0.435294 0.900288i \(-0.356645\pi\)
0.435294 + 0.900288i \(0.356645\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2660.00 −1.77409 −0.887043 0.461687i \(-0.847244\pi\)
−0.887043 + 0.461687i \(0.847244\pi\)
\(132\) 0 0
\(133\) 240.000 0.156471
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2770.00 −1.72742 −0.863712 0.503986i \(-0.831866\pi\)
−0.863712 + 0.503986i \(0.831866\pi\)
\(138\) 0 0
\(139\) −560.000 −0.341716 −0.170858 0.985296i \(-0.554654\pi\)
−0.170858 + 0.985296i \(0.554654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3000.00 −1.75435
\(144\) 0 0
\(145\) −830.000 −0.475364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2350.00 1.29208 0.646039 0.763305i \(-0.276424\pi\)
0.646039 + 0.763305i \(0.276424\pi\)
\(150\) 0 0
\(151\) 580.000 0.312581 0.156290 0.987711i \(-0.450046\pi\)
0.156290 + 0.987711i \(0.450046\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 100.000 0.0518206
\(156\) 0 0
\(157\) −1310.00 −0.665920 −0.332960 0.942941i \(-0.608047\pi\)
−0.332960 + 0.942941i \(0.608047\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1068.00 −0.522796
\(162\) 0 0
\(163\) 1862.00 0.894743 0.447371 0.894348i \(-0.352360\pi\)
0.447371 + 0.894348i \(0.352360\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −726.000 −0.336405 −0.168202 0.985752i \(-0.553796\pi\)
−0.168202 + 0.985752i \(0.553796\pi\)
\(168\) 0 0
\(169\) 303.000 0.137915
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3250.00 −1.42828 −0.714141 0.700001i \(-0.753183\pi\)
−0.714141 + 0.700001i \(0.753183\pi\)
\(174\) 0 0
\(175\) 150.000 0.0647939
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1120.00 0.467669 0.233834 0.972276i \(-0.424873\pi\)
0.233834 + 0.972276i \(0.424873\pi\)
\(180\) 0 0
\(181\) −2842.00 −1.16710 −0.583548 0.812079i \(-0.698336\pi\)
−0.583548 + 0.812079i \(0.698336\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 50.0000 0.0198707
\(186\) 0 0
\(187\) −1800.00 −0.703899
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3180.00 −1.20469 −0.602347 0.798234i \(-0.705768\pi\)
−0.602347 + 0.798234i \(0.705768\pi\)
\(192\) 0 0
\(193\) −4670.00 −1.74173 −0.870865 0.491522i \(-0.836441\pi\)
−0.870865 + 0.491522i \(0.836441\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2990.00 1.08136 0.540682 0.841227i \(-0.318166\pi\)
0.540682 + 0.841227i \(0.318166\pi\)
\(198\) 0 0
\(199\) −4240.00 −1.51038 −0.755190 0.655506i \(-0.772455\pi\)
−0.755190 + 0.655506i \(0.772455\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −996.000 −0.344362
\(204\) 0 0
\(205\) 1250.00 0.425872
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2400.00 −0.794313
\(210\) 0 0
\(211\) −4060.00 −1.32465 −0.662327 0.749215i \(-0.730431\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 710.000 0.225217
\(216\) 0 0
\(217\) 120.000 0.0375398
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1500.00 0.456565
\(222\) 0 0
\(223\) −5622.00 −1.68824 −0.844119 0.536156i \(-0.819876\pi\)
−0.844119 + 0.536156i \(0.819876\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1554.00 −0.454373 −0.227186 0.973851i \(-0.572953\pi\)
−0.227186 + 0.973851i \(0.572953\pi\)
\(228\) 0 0
\(229\) 1134.00 0.327235 0.163618 0.986524i \(-0.447684\pi\)
0.163618 + 0.986524i \(0.447684\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1710.00 0.480798 0.240399 0.970674i \(-0.422722\pi\)
0.240399 + 0.970674i \(0.422722\pi\)
\(234\) 0 0
\(235\) −1070.00 −0.297017
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4440.00 −1.20167 −0.600836 0.799372i \(-0.705166\pi\)
−0.600836 + 0.799372i \(0.705166\pi\)
\(240\) 0 0
\(241\) −850.000 −0.227192 −0.113596 0.993527i \(-0.536237\pi\)
−0.113596 + 0.993527i \(0.536237\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1535.00 −0.400276
\(246\) 0 0
\(247\) 2000.00 0.515210
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 660.000 0.165971 0.0829857 0.996551i \(-0.473554\pi\)
0.0829857 + 0.996551i \(0.473554\pi\)
\(252\) 0 0
\(253\) 10680.0 2.65394
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7590.00 1.84222 0.921111 0.389299i \(-0.127283\pi\)
0.921111 + 0.389299i \(0.127283\pi\)
\(258\) 0 0
\(259\) 60.0000 0.0143947
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −762.000 −0.178658 −0.0893288 0.996002i \(-0.528472\pi\)
−0.0893288 + 0.996002i \(0.528472\pi\)
\(264\) 0 0
\(265\) −2450.00 −0.567933
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 150.000 0.0339987 0.0169994 0.999856i \(-0.494589\pi\)
0.0169994 + 0.999856i \(0.494589\pi\)
\(270\) 0 0
\(271\) −6580.00 −1.47493 −0.737466 0.675384i \(-0.763978\pi\)
−0.737466 + 0.675384i \(0.763978\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1500.00 −0.328921
\(276\) 0 0
\(277\) 4530.00 0.982604 0.491302 0.870989i \(-0.336521\pi\)
0.491302 + 0.870989i \(0.336521\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6950.00 −1.47545 −0.737726 0.675100i \(-0.764101\pi\)
−0.737726 + 0.675100i \(0.764101\pi\)
\(282\) 0 0
\(283\) −3882.00 −0.815410 −0.407705 0.913114i \(-0.633671\pi\)
−0.407705 + 0.913114i \(0.633671\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1500.00 0.308509
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1370.00 −0.273161 −0.136581 0.990629i \(-0.543611\pi\)
−0.136581 + 0.990629i \(0.543611\pi\)
\(294\) 0 0
\(295\) 4000.00 0.789454
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8900.00 −1.72141
\(300\) 0 0
\(301\) 852.000 0.163151
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1250.00 0.234671
\(306\) 0 0
\(307\) 4106.00 0.763328 0.381664 0.924301i \(-0.375351\pi\)
0.381664 + 0.924301i \(0.375351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2220.00 −0.404774 −0.202387 0.979306i \(-0.564870\pi\)
−0.202387 + 0.979306i \(0.564870\pi\)
\(312\) 0 0
\(313\) −9430.00 −1.70292 −0.851462 0.524417i \(-0.824283\pi\)
−0.851462 + 0.524417i \(0.824283\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6470.00 1.14635 0.573173 0.819435i \(-0.305712\pi\)
0.573173 + 0.819435i \(0.305712\pi\)
\(318\) 0 0
\(319\) 9960.00 1.74813
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1200.00 0.206718
\(324\) 0 0
\(325\) 1250.00 0.213346
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1284.00 −0.215165
\(330\) 0 0
\(331\) 900.000 0.149452 0.0747258 0.997204i \(-0.476192\pi\)
0.0747258 + 0.997204i \(0.476192\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3870.00 −0.631166
\(336\) 0 0
\(337\) 530.000 0.0856704 0.0428352 0.999082i \(-0.486361\pi\)
0.0428352 + 0.999082i \(0.486361\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1200.00 −0.190568
\(342\) 0 0
\(343\) −3900.00 −0.613936
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 414.000 0.0640481 0.0320240 0.999487i \(-0.489805\pi\)
0.0320240 + 0.999487i \(0.489805\pi\)
\(348\) 0 0
\(349\) 8614.00 1.32119 0.660597 0.750741i \(-0.270303\pi\)
0.660597 + 0.750741i \(0.270303\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2270.00 0.342266 0.171133 0.985248i \(-0.445257\pi\)
0.171133 + 0.985248i \(0.445257\pi\)
\(354\) 0 0
\(355\) −500.000 −0.0747528
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8080.00 −1.18787 −0.593936 0.804512i \(-0.702427\pi\)
−0.593936 + 0.804512i \(0.702427\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1150.00 −0.164914
\(366\) 0 0
\(367\) 2374.00 0.337662 0.168831 0.985645i \(-0.446001\pi\)
0.168831 + 0.985645i \(0.446001\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2940.00 −0.411421
\(372\) 0 0
\(373\) 1810.00 0.251255 0.125628 0.992077i \(-0.459906\pi\)
0.125628 + 0.992077i \(0.459906\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8300.00 −1.13388
\(378\) 0 0
\(379\) 8120.00 1.10052 0.550259 0.834994i \(-0.314529\pi\)
0.550259 + 0.834994i \(0.314529\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11782.0 1.57189 0.785943 0.618299i \(-0.212178\pi\)
0.785943 + 0.618299i \(0.212178\pi\)
\(384\) 0 0
\(385\) −1800.00 −0.238277
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4350.00 0.566976 0.283488 0.958976i \(-0.408508\pi\)
0.283488 + 0.958976i \(0.408508\pi\)
\(390\) 0 0
\(391\) −5340.00 −0.690679
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6600.00 −0.840714
\(396\) 0 0
\(397\) −7470.00 −0.944354 −0.472177 0.881504i \(-0.656532\pi\)
−0.472177 + 0.881504i \(0.656532\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11698.0 −1.45678 −0.728392 0.685161i \(-0.759732\pi\)
−0.728392 + 0.685161i \(0.759732\pi\)
\(402\) 0 0
\(403\) 1000.00 0.123607
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −600.000 −0.0730735
\(408\) 0 0
\(409\) −3650.00 −0.441274 −0.220637 0.975356i \(-0.570814\pi\)
−0.220637 + 0.975356i \(0.570814\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4800.00 0.571895
\(414\) 0 0
\(415\) −4910.00 −0.580777
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1120.00 0.130586 0.0652931 0.997866i \(-0.479202\pi\)
0.0652931 + 0.997866i \(0.479202\pi\)
\(420\) 0 0
\(421\) 4850.00 0.561460 0.280730 0.959787i \(-0.409424\pi\)
0.280730 + 0.959787i \(0.409424\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 750.000 0.0856008
\(426\) 0 0
\(427\) 1500.00 0.170000
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12580.0 1.40593 0.702967 0.711223i \(-0.251858\pi\)
0.702967 + 0.711223i \(0.251858\pi\)
\(432\) 0 0
\(433\) 13130.0 1.45725 0.728623 0.684915i \(-0.240161\pi\)
0.728623 + 0.684915i \(0.240161\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7120.00 −0.779395
\(438\) 0 0
\(439\) 8560.00 0.930630 0.465315 0.885145i \(-0.345941\pi\)
0.465315 + 0.885145i \(0.345941\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4258.00 0.456667 0.228334 0.973583i \(-0.426672\pi\)
0.228334 + 0.973583i \(0.426672\pi\)
\(444\) 0 0
\(445\) −4370.00 −0.465523
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2550.00 −0.268022 −0.134011 0.990980i \(-0.542786\pi\)
−0.134011 + 0.990980i \(0.542786\pi\)
\(450\) 0 0
\(451\) −15000.0 −1.56613
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1500.00 0.154552
\(456\) 0 0
\(457\) −6710.00 −0.686828 −0.343414 0.939184i \(-0.611583\pi\)
−0.343414 + 0.939184i \(0.611583\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14482.0 1.46311 0.731555 0.681782i \(-0.238795\pi\)
0.731555 + 0.681782i \(0.238795\pi\)
\(462\) 0 0
\(463\) 162.000 0.0162609 0.00813043 0.999967i \(-0.497412\pi\)
0.00813043 + 0.999967i \(0.497412\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15974.0 1.58284 0.791422 0.611270i \(-0.209341\pi\)
0.791422 + 0.611270i \(0.209341\pi\)
\(468\) 0 0
\(469\) −4644.00 −0.457228
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8520.00 −0.828224
\(474\) 0 0
\(475\) 1000.00 0.0965961
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10760.0 1.02638 0.513191 0.858274i \(-0.328463\pi\)
0.513191 + 0.858274i \(0.328463\pi\)
\(480\) 0 0
\(481\) 500.000 0.0473972
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1550.00 −0.145117
\(486\) 0 0
\(487\) −9266.00 −0.862182 −0.431091 0.902309i \(-0.641871\pi\)
−0.431091 + 0.902309i \(0.641871\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2860.00 −0.262872 −0.131436 0.991325i \(-0.541959\pi\)
−0.131436 + 0.991325i \(0.541959\pi\)
\(492\) 0 0
\(493\) −4980.00 −0.454945
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −600.000 −0.0541523
\(498\) 0 0
\(499\) 7160.00 0.642336 0.321168 0.947022i \(-0.395925\pi\)
0.321168 + 0.947022i \(0.395925\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1398.00 0.123924 0.0619620 0.998079i \(-0.480264\pi\)
0.0619620 + 0.998079i \(0.480264\pi\)
\(504\) 0 0
\(505\) 7490.00 0.660001
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7446.00 −0.648405 −0.324203 0.945988i \(-0.605096\pi\)
−0.324203 + 0.945988i \(0.605096\pi\)
\(510\) 0 0
\(511\) −1380.00 −0.119467
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7010.00 0.599801
\(516\) 0 0
\(517\) 12840.0 1.09227
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16438.0 1.38227 0.691134 0.722726i \(-0.257111\pi\)
0.691134 + 0.722726i \(0.257111\pi\)
\(522\) 0 0
\(523\) −7322.00 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 600.000 0.0495947
\(528\) 0 0
\(529\) 19517.0 1.60409
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12500.0 1.01583
\(534\) 0 0
\(535\) −5970.00 −0.482440
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18420.0 1.47200
\(540\) 0 0
\(541\) 10878.0 0.864476 0.432238 0.901759i \(-0.357724\pi\)
0.432238 + 0.901759i \(0.357724\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3250.00 0.255440
\(546\) 0 0
\(547\) 16114.0 1.25957 0.629785 0.776769i \(-0.283143\pi\)
0.629785 + 0.776769i \(0.283143\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6640.00 −0.513382
\(552\) 0 0
\(553\) −7920.00 −0.609028
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3690.00 −0.280701 −0.140350 0.990102i \(-0.544823\pi\)
−0.140350 + 0.990102i \(0.544823\pi\)
\(558\) 0 0
\(559\) 7100.00 0.537206
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2562.00 0.191786 0.0958929 0.995392i \(-0.469429\pi\)
0.0958929 + 0.995392i \(0.469429\pi\)
\(564\) 0 0
\(565\) 7550.00 0.562179
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6050.00 0.445746 0.222873 0.974848i \(-0.428457\pi\)
0.222873 + 0.974848i \(0.428457\pi\)
\(570\) 0 0
\(571\) 8260.00 0.605377 0.302688 0.953090i \(-0.402116\pi\)
0.302688 + 0.953090i \(0.402116\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4450.00 −0.322744
\(576\) 0 0
\(577\) −16870.0 −1.21717 −0.608585 0.793489i \(-0.708263\pi\)
−0.608585 + 0.793489i \(0.708263\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5892.00 −0.420725
\(582\) 0 0
\(583\) 29400.0 2.08855
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 966.000 0.0679235 0.0339617 0.999423i \(-0.489188\pi\)
0.0339617 + 0.999423i \(0.489188\pi\)
\(588\) 0 0
\(589\) 800.000 0.0559651
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −26290.0 −1.82057 −0.910287 0.413977i \(-0.864139\pi\)
−0.910287 + 0.413977i \(0.864139\pi\)
\(594\) 0 0
\(595\) 900.000 0.0620108
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11640.0 0.793986 0.396993 0.917822i \(-0.370054\pi\)
0.396993 + 0.917822i \(0.370054\pi\)
\(600\) 0 0
\(601\) −25450.0 −1.72733 −0.863667 0.504064i \(-0.831838\pi\)
−0.863667 + 0.504064i \(0.831838\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11345.0 0.762380
\(606\) 0 0
\(607\) 16694.0 1.11629 0.558145 0.829743i \(-0.311513\pi\)
0.558145 + 0.829743i \(0.311513\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10700.0 −0.708471
\(612\) 0 0
\(613\) 15890.0 1.04697 0.523484 0.852036i \(-0.324632\pi\)
0.523484 + 0.852036i \(0.324632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1230.00 0.0802560 0.0401280 0.999195i \(-0.487223\pi\)
0.0401280 + 0.999195i \(0.487223\pi\)
\(618\) 0 0
\(619\) −10840.0 −0.703871 −0.351936 0.936024i \(-0.614476\pi\)
−0.351936 + 0.936024i \(0.614476\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5244.00 −0.337233
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 300.000 0.0190171
\(630\) 0 0
\(631\) −14060.0 −0.887036 −0.443518 0.896265i \(-0.646270\pi\)
−0.443518 + 0.896265i \(0.646270\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6230.00 0.389339
\(636\) 0 0
\(637\) −15350.0 −0.954771
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17650.0 1.08757 0.543786 0.839224i \(-0.316990\pi\)
0.543786 + 0.839224i \(0.316990\pi\)
\(642\) 0 0
\(643\) 27358.0 1.67791 0.838953 0.544203i \(-0.183168\pi\)
0.838953 + 0.544203i \(0.183168\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6786.00 0.412342 0.206171 0.978516i \(-0.433900\pi\)
0.206171 + 0.978516i \(0.433900\pi\)
\(648\) 0 0
\(649\) −48000.0 −2.90318
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9030.00 0.541150 0.270575 0.962699i \(-0.412786\pi\)
0.270575 + 0.962699i \(0.412786\pi\)
\(654\) 0 0
\(655\) −13300.0 −0.793395
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15600.0 0.922139 0.461070 0.887364i \(-0.347466\pi\)
0.461070 + 0.887364i \(0.347466\pi\)
\(660\) 0 0
\(661\) 16850.0 0.991511 0.495756 0.868462i \(-0.334891\pi\)
0.495756 + 0.868462i \(0.334891\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1200.00 0.0699759
\(666\) 0 0
\(667\) 29548.0 1.71530
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15000.0 −0.862993
\(672\) 0 0
\(673\) −7990.00 −0.457640 −0.228820 0.973469i \(-0.573487\pi\)
−0.228820 + 0.973469i \(0.573487\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18690.0 −1.06103 −0.530513 0.847677i \(-0.678001\pi\)
−0.530513 + 0.847677i \(0.678001\pi\)
\(678\) 0 0
\(679\) −1860.00 −0.105126
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19182.0 −1.07464 −0.537320 0.843379i \(-0.680563\pi\)
−0.537320 + 0.843379i \(0.680563\pi\)
\(684\) 0 0
\(685\) −13850.0 −0.772527
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24500.0 −1.35468
\(690\) 0 0
\(691\) −23380.0 −1.28714 −0.643572 0.765385i \(-0.722548\pi\)
−0.643572 + 0.765385i \(0.722548\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2800.00 −0.152820
\(696\) 0 0
\(697\) 7500.00 0.407579
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11850.0 −0.638471 −0.319236 0.947675i \(-0.603426\pi\)
−0.319236 + 0.947675i \(0.603426\pi\)
\(702\) 0 0
\(703\) 400.000 0.0214599
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8988.00 0.478117
\(708\) 0 0
\(709\) 25646.0 1.35847 0.679235 0.733921i \(-0.262312\pi\)
0.679235 + 0.733921i \(0.262312\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3560.00 −0.186989
\(714\) 0 0
\(715\) −15000.0 −0.784571
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30280.0 1.57059 0.785294 0.619122i \(-0.212512\pi\)
0.785294 + 0.619122i \(0.212512\pi\)
\(720\) 0 0
\(721\) 8412.00 0.434507
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4150.00 −0.212589
\(726\) 0 0
\(727\) 17446.0 0.890009 0.445004 0.895528i \(-0.353202\pi\)
0.445004 + 0.895528i \(0.353202\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4260.00 0.215543
\(732\) 0 0
\(733\) −16750.0 −0.844032 −0.422016 0.906588i \(-0.638677\pi\)
−0.422016 + 0.906588i \(0.638677\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46440.0 2.32108
\(738\) 0 0
\(739\) −36560.0 −1.81987 −0.909933 0.414755i \(-0.863867\pi\)
−0.909933 + 0.414755i \(0.863867\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30142.0 1.48829 0.744147 0.668016i \(-0.232856\pi\)
0.744147 + 0.668016i \(0.232856\pi\)
\(744\) 0 0
\(745\) 11750.0 0.577834
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7164.00 −0.349488
\(750\) 0 0
\(751\) 11860.0 0.576268 0.288134 0.957590i \(-0.406965\pi\)
0.288134 + 0.957590i \(0.406965\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2900.00 0.139790
\(756\) 0 0
\(757\) 37010.0 1.77695 0.888475 0.458925i \(-0.151765\pi\)
0.888475 + 0.458925i \(0.151765\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11718.0 0.558183 0.279091 0.960265i \(-0.409967\pi\)
0.279091 + 0.960265i \(0.409967\pi\)
\(762\) 0 0
\(763\) 3900.00 0.185045
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40000.0 1.88307
\(768\) 0 0
\(769\) 4706.00 0.220680 0.110340 0.993894i \(-0.464806\pi\)
0.110340 + 0.993894i \(0.464806\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28670.0 1.33401 0.667004 0.745054i \(-0.267576\pi\)
0.667004 + 0.745054i \(0.267576\pi\)
\(774\) 0 0
\(775\) 500.000 0.0231749
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10000.0 0.459932
\(780\) 0 0
\(781\) 6000.00 0.274900
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6550.00 −0.297808
\(786\) 0 0
\(787\) 20434.0 0.925532 0.462766 0.886481i \(-0.346857\pi\)
0.462766 + 0.886481i \(0.346857\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9060.00 0.407252
\(792\) 0 0
\(793\) 12500.0 0.559758
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3930.00 −0.174665 −0.0873323 0.996179i \(-0.527834\pi\)
−0.0873323 + 0.996179i \(0.527834\pi\)
\(798\) 0 0
\(799\) −6420.00 −0.284259
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13800.0 0.606465
\(804\) 0 0
\(805\) −5340.00 −0.233802
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4854.00 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −13140.0 −0.568937 −0.284468 0.958685i \(-0.591817\pi\)
−0.284468 + 0.958685i \(0.591817\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9310.00 0.400141
\(816\) 0 0
\(817\) 5680.00 0.243229
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22050.0 −0.937333 −0.468666 0.883375i \(-0.655265\pi\)
−0.468666 + 0.883375i \(0.655265\pi\)
\(822\) 0 0
\(823\) 14578.0 0.617445 0.308722 0.951152i \(-0.400099\pi\)
0.308722 + 0.951152i \(0.400099\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37054.0 1.55803 0.779017 0.627003i \(-0.215719\pi\)
0.779017 + 0.627003i \(0.215719\pi\)
\(828\) 0 0
\(829\) −6150.00 −0.257658 −0.128829 0.991667i \(-0.541122\pi\)
−0.128829 + 0.991667i \(0.541122\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9210.00 −0.383082
\(834\) 0 0
\(835\) −3630.00 −0.150445
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8200.00 0.337420 0.168710 0.985666i \(-0.446040\pi\)
0.168710 + 0.985666i \(0.446040\pi\)
\(840\) 0 0
\(841\) 3167.00 0.129854
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1515.00 0.0616776
\(846\) 0 0
\(847\) 13614.0 0.552282
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1780.00 −0.0717011
\(852\) 0 0
\(853\) −42990.0 −1.72561 −0.862807 0.505533i \(-0.831296\pi\)
−0.862807 + 0.505533i \(0.831296\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −32130.0 −1.28068 −0.640338 0.768093i \(-0.721206\pi\)
−0.640338 + 0.768093i \(0.721206\pi\)
\(858\) 0 0
\(859\) 15440.0 0.613278 0.306639 0.951826i \(-0.400796\pi\)
0.306639 + 0.951826i \(0.400796\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46938.0 −1.85143 −0.925717 0.378216i \(-0.876538\pi\)
−0.925717 + 0.378216i \(0.876538\pi\)
\(864\) 0 0
\(865\) −16250.0 −0.638747
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 79200.0 3.09169
\(870\) 0 0
\(871\) −38700.0 −1.50551
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 750.000 0.0289767
\(876\) 0 0
\(877\) −31230.0 −1.20247 −0.601233 0.799074i \(-0.705324\pi\)
−0.601233 + 0.799074i \(0.705324\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25550.0 −0.977073 −0.488537 0.872543i \(-0.662469\pi\)
−0.488537 + 0.872543i \(0.662469\pi\)
\(882\) 0 0
\(883\) 4318.00 0.164567 0.0822833 0.996609i \(-0.473779\pi\)
0.0822833 + 0.996609i \(0.473779\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1766.00 −0.0668506 −0.0334253 0.999441i \(-0.510642\pi\)
−0.0334253 + 0.999441i \(0.510642\pi\)
\(888\) 0 0
\(889\) 7476.00 0.282044
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8560.00 −0.320772
\(894\) 0 0
\(895\) 5600.00 0.209148
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3320.00 −0.123168
\(900\) 0 0
\(901\) −14700.0 −0.543538
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14210.0 −0.521941
\(906\) 0 0
\(907\) 41906.0 1.53414 0.767071 0.641563i \(-0.221714\pi\)
0.767071 + 0.641563i \(0.221714\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25140.0 −0.914298 −0.457149 0.889390i \(-0.651129\pi\)
−0.457149 + 0.889390i \(0.651129\pi\)
\(912\) 0 0
\(913\) 58920.0 2.13578
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15960.0 −0.574750
\(918\) 0 0
\(919\) 32920.0 1.18164 0.590822 0.806802i \(-0.298804\pi\)
0.590822 + 0.806802i \(0.298804\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5000.00 −0.178307
\(924\) 0 0
\(925\) 250.000 0.00888643
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10150.0 −0.358461 −0.179231 0.983807i \(-0.557361\pi\)
−0.179231 + 0.983807i \(0.557361\pi\)
\(930\) 0 0
\(931\) −12280.0 −0.432289
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9000.00 −0.314793
\(936\) 0 0
\(937\) 28530.0 0.994701 0.497350 0.867550i \(-0.334306\pi\)
0.497350 + 0.867550i \(0.334306\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9678.00 −0.335275 −0.167638 0.985849i \(-0.553614\pi\)
−0.167638 + 0.985849i \(0.553614\pi\)
\(942\) 0 0
\(943\) −44500.0 −1.53671
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36986.0 −1.26915 −0.634574 0.772862i \(-0.718824\pi\)
−0.634574 + 0.772862i \(0.718824\pi\)
\(948\) 0 0
\(949\) −11500.0 −0.393368
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3350.00 0.113869 0.0569345 0.998378i \(-0.481867\pi\)
0.0569345 + 0.998378i \(0.481867\pi\)
\(954\) 0 0
\(955\) −15900.0 −0.538756
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16620.0 −0.559633
\(960\) 0 0
\(961\) −29391.0 −0.986573
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −23350.0 −0.778925
\(966\) 0 0
\(967\) 43774.0 1.45572 0.727858 0.685728i \(-0.240516\pi\)
0.727858 + 0.685728i \(0.240516\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8740.00 −0.288857 −0.144428 0.989515i \(-0.546134\pi\)
−0.144428 + 0.989515i \(0.546134\pi\)
\(972\) 0 0
\(973\) −3360.00 −0.110706
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48310.0 1.58196 0.790979 0.611843i \(-0.209571\pi\)
0.790979 + 0.611843i \(0.209571\pi\)
\(978\) 0 0
\(979\) 52440.0 1.71194
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2282.00 −0.0740432 −0.0370216 0.999314i \(-0.511787\pi\)
−0.0370216 + 0.999314i \(0.511787\pi\)
\(984\) 0 0
\(985\) 14950.0 0.483601
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25276.0 −0.812669
\(990\) 0 0
\(991\) −31580.0 −1.01228 −0.506141 0.862451i \(-0.668929\pi\)
−0.506141 + 0.862451i \(0.668929\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21200.0 −0.675462
\(996\) 0 0
\(997\) −2790.00 −0.0886261 −0.0443130 0.999018i \(-0.514110\pi\)
−0.0443130 + 0.999018i \(0.514110\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.o.1.1 1
3.2 odd 2 160.4.a.a.1.1 1
4.3 odd 2 1440.4.a.n.1.1 1
12.11 even 2 160.4.a.b.1.1 yes 1
15.2 even 4 800.4.c.f.449.2 2
15.8 even 4 800.4.c.f.449.1 2
15.14 odd 2 800.4.a.h.1.1 1
24.5 odd 2 320.4.a.i.1.1 1
24.11 even 2 320.4.a.f.1.1 1
48.5 odd 4 1280.4.d.f.641.2 2
48.11 even 4 1280.4.d.k.641.1 2
48.29 odd 4 1280.4.d.f.641.1 2
48.35 even 4 1280.4.d.k.641.2 2
60.23 odd 4 800.4.c.e.449.2 2
60.47 odd 4 800.4.c.e.449.1 2
60.59 even 2 800.4.a.d.1.1 1
120.29 odd 2 1600.4.a.r.1.1 1
120.59 even 2 1600.4.a.bj.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.a.1.1 1 3.2 odd 2
160.4.a.b.1.1 yes 1 12.11 even 2
320.4.a.f.1.1 1 24.11 even 2
320.4.a.i.1.1 1 24.5 odd 2
800.4.a.d.1.1 1 60.59 even 2
800.4.a.h.1.1 1 15.14 odd 2
800.4.c.e.449.1 2 60.47 odd 4
800.4.c.e.449.2 2 60.23 odd 4
800.4.c.f.449.1 2 15.8 even 4
800.4.c.f.449.2 2 15.2 even 4
1280.4.d.f.641.1 2 48.29 odd 4
1280.4.d.f.641.2 2 48.5 odd 4
1280.4.d.k.641.1 2 48.11 even 4
1280.4.d.k.641.2 2 48.35 even 4
1440.4.a.n.1.1 1 4.3 odd 2
1440.4.a.o.1.1 1 1.1 even 1 trivial
1600.4.a.r.1.1 1 120.29 odd 2
1600.4.a.bj.1.1 1 120.59 even 2