Properties

Label 1445.2.d.f.866.1
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.f.866.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{2} -3.41421i q^{3} -1.82843 q^{4} -1.00000i q^{5} +1.41421i q^{6} +0.585786i q^{7} +1.58579 q^{8} -8.65685 q^{9} +0.414214i q^{10} +2.58579i q^{11} +6.24264i q^{12} -2.82843 q^{13} -0.242641i q^{14} -3.41421 q^{15} +3.00000 q^{16} +3.58579 q^{18} +2.82843 q^{19} +1.82843i q^{20} +2.00000 q^{21} -1.07107i q^{22} +3.41421i q^{23} -5.41421i q^{24} -1.00000 q^{25} +1.17157 q^{26} +19.3137i q^{27} -1.07107i q^{28} -4.82843i q^{29} +1.41421 q^{30} +4.24264i q^{31} -4.41421 q^{32} +8.82843 q^{33} +0.585786 q^{35} +15.8284 q^{36} +6.48528i q^{37} -1.17157 q^{38} +9.65685i q^{39} -1.58579i q^{40} +6.48528i q^{41} -0.828427 q^{42} -7.65685 q^{43} -4.72792i q^{44} +8.65685i q^{45} -1.41421i q^{46} -4.82843 q^{47} -10.2426i q^{48} +6.65685 q^{49} +0.414214 q^{50} +5.17157 q^{52} -0.343146 q^{53} -8.00000i q^{54} +2.58579 q^{55} +0.928932i q^{56} -9.65685i q^{57} +2.00000i q^{58} +9.17157 q^{59} +6.24264 q^{60} -7.65685i q^{61} -1.75736i q^{62} -5.07107i q^{63} -4.17157 q^{64} +2.82843i q^{65} -3.65685 q^{66} -3.17157 q^{67} +11.6569 q^{69} -0.242641 q^{70} -4.24264i q^{71} -13.7279 q^{72} -4.82843i q^{73} -2.68629i q^{74} +3.41421i q^{75} -5.17157 q^{76} -1.51472 q^{77} -4.00000i q^{78} -5.41421i q^{79} -3.00000i q^{80} +39.9706 q^{81} -2.68629i q^{82} -9.31371 q^{83} -3.65685 q^{84} +3.17157 q^{86} -16.4853 q^{87} +4.10051i q^{88} -2.34315 q^{89} -3.58579i q^{90} -1.65685i q^{91} -6.24264i q^{92} +14.4853 q^{93} +2.00000 q^{94} -2.82843i q^{95} +15.0711i q^{96} +3.65685i q^{97} -2.75736 q^{98} -22.3848i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 12 q^{8} - 12 q^{9} - 8 q^{15} + 12 q^{16} + 20 q^{18} + 8 q^{21} - 4 q^{25} + 16 q^{26} - 12 q^{32} + 24 q^{33} + 8 q^{35} + 52 q^{36} - 16 q^{38} + 8 q^{42} - 8 q^{43} - 8 q^{47}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) − 3.41421i − 1.97120i −0.169102 0.985599i \(-0.554087\pi\)
0.169102 0.985599i \(-0.445913\pi\)
\(4\) −1.82843 −0.914214
\(5\) − 1.00000i − 0.447214i
\(6\) 1.41421i 0.577350i
\(7\) 0.585786i 0.221406i 0.993854 + 0.110703i \(0.0353103\pi\)
−0.993854 + 0.110703i \(0.964690\pi\)
\(8\) 1.58579 0.560660
\(9\) −8.65685 −2.88562
\(10\) 0.414214i 0.130986i
\(11\) 2.58579i 0.779644i 0.920890 + 0.389822i \(0.127463\pi\)
−0.920890 + 0.389822i \(0.872537\pi\)
\(12\) 6.24264i 1.80210i
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) − 0.242641i − 0.0648485i
\(15\) −3.41421 −0.881546
\(16\) 3.00000 0.750000
\(17\) 0 0
\(18\) 3.58579 0.845178
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 1.82843i 0.408849i
\(21\) 2.00000 0.436436
\(22\) − 1.07107i − 0.228352i
\(23\) 3.41421i 0.711913i 0.934503 + 0.355956i \(0.115845\pi\)
−0.934503 + 0.355956i \(0.884155\pi\)
\(24\) − 5.41421i − 1.10517i
\(25\) −1.00000 −0.200000
\(26\) 1.17157 0.229764
\(27\) 19.3137i 3.71692i
\(28\) − 1.07107i − 0.202413i
\(29\) − 4.82843i − 0.896616i −0.893879 0.448308i \(-0.852027\pi\)
0.893879 0.448308i \(-0.147973\pi\)
\(30\) 1.41421 0.258199
\(31\) 4.24264i 0.762001i 0.924575 + 0.381000i \(0.124420\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) −4.41421 −0.780330
\(33\) 8.82843 1.53683
\(34\) 0 0
\(35\) 0.585786 0.0990160
\(36\) 15.8284 2.63807
\(37\) 6.48528i 1.06617i 0.846061 + 0.533087i \(0.178968\pi\)
−0.846061 + 0.533087i \(0.821032\pi\)
\(38\) −1.17157 −0.190054
\(39\) 9.65685i 1.54633i
\(40\) − 1.58579i − 0.250735i
\(41\) 6.48528i 1.01283i 0.862290 + 0.506415i \(0.169030\pi\)
−0.862290 + 0.506415i \(0.830970\pi\)
\(42\) −0.828427 −0.127829
\(43\) −7.65685 −1.16766 −0.583830 0.811876i \(-0.698446\pi\)
−0.583830 + 0.811876i \(0.698446\pi\)
\(44\) − 4.72792i − 0.712761i
\(45\) 8.65685i 1.29049i
\(46\) − 1.41421i − 0.208514i
\(47\) −4.82843 −0.704298 −0.352149 0.935944i \(-0.614549\pi\)
−0.352149 + 0.935944i \(0.614549\pi\)
\(48\) − 10.2426i − 1.47840i
\(49\) 6.65685 0.950979
\(50\) 0.414214 0.0585786
\(51\) 0 0
\(52\) 5.17157 0.717168
\(53\) −0.343146 −0.0471347 −0.0235673 0.999722i \(-0.507502\pi\)
−0.0235673 + 0.999722i \(0.507502\pi\)
\(54\) − 8.00000i − 1.08866i
\(55\) 2.58579 0.348667
\(56\) 0.928932i 0.124134i
\(57\) − 9.65685i − 1.27908i
\(58\) 2.00000i 0.262613i
\(59\) 9.17157 1.19404 0.597019 0.802227i \(-0.296352\pi\)
0.597019 + 0.802227i \(0.296352\pi\)
\(60\) 6.24264 0.805921
\(61\) − 7.65685i − 0.980360i −0.871621 0.490180i \(-0.836931\pi\)
0.871621 0.490180i \(-0.163069\pi\)
\(62\) − 1.75736i − 0.223185i
\(63\) − 5.07107i − 0.638894i
\(64\) −4.17157 −0.521447
\(65\) 2.82843i 0.350823i
\(66\) −3.65685 −0.450128
\(67\) −3.17157 −0.387469 −0.193735 0.981054i \(-0.562060\pi\)
−0.193735 + 0.981054i \(0.562060\pi\)
\(68\) 0 0
\(69\) 11.6569 1.40332
\(70\) −0.242641 −0.0290011
\(71\) − 4.24264i − 0.503509i −0.967791 0.251754i \(-0.918992\pi\)
0.967791 0.251754i \(-0.0810075\pi\)
\(72\) −13.7279 −1.61785
\(73\) − 4.82843i − 0.565125i −0.959249 0.282562i \(-0.908816\pi\)
0.959249 0.282562i \(-0.0911844\pi\)
\(74\) − 2.68629i − 0.312275i
\(75\) 3.41421i 0.394239i
\(76\) −5.17157 −0.593220
\(77\) −1.51472 −0.172618
\(78\) − 4.00000i − 0.452911i
\(79\) − 5.41421i − 0.609147i −0.952489 0.304573i \(-0.901486\pi\)
0.952489 0.304573i \(-0.0985139\pi\)
\(80\) − 3.00000i − 0.335410i
\(81\) 39.9706 4.44117
\(82\) − 2.68629i − 0.296651i
\(83\) −9.31371 −1.02231 −0.511156 0.859488i \(-0.670783\pi\)
−0.511156 + 0.859488i \(0.670783\pi\)
\(84\) −3.65685 −0.398996
\(85\) 0 0
\(86\) 3.17157 0.341999
\(87\) −16.4853 −1.76741
\(88\) 4.10051i 0.437115i
\(89\) −2.34315 −0.248373 −0.124186 0.992259i \(-0.539632\pi\)
−0.124186 + 0.992259i \(0.539632\pi\)
\(90\) − 3.58579i − 0.377975i
\(91\) − 1.65685i − 0.173686i
\(92\) − 6.24264i − 0.650840i
\(93\) 14.4853 1.50205
\(94\) 2.00000 0.206284
\(95\) − 2.82843i − 0.290191i
\(96\) 15.0711i 1.53818i
\(97\) 3.65685i 0.371297i 0.982616 + 0.185649i \(0.0594386\pi\)
−0.982616 + 0.185649i \(0.940561\pi\)
\(98\) −2.75736 −0.278535
\(99\) − 22.3848i − 2.24975i
\(100\) 1.82843 0.182843
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) −0.828427 −0.0816274 −0.0408137 0.999167i \(-0.512995\pi\)
−0.0408137 + 0.999167i \(0.512995\pi\)
\(104\) −4.48528 −0.439818
\(105\) − 2.00000i − 0.195180i
\(106\) 0.142136 0.0138054
\(107\) 11.8995i 1.15037i 0.818024 + 0.575184i \(0.195069\pi\)
−0.818024 + 0.575184i \(0.804931\pi\)
\(108\) − 35.3137i − 3.39806i
\(109\) 17.3137i 1.65835i 0.558987 + 0.829176i \(0.311190\pi\)
−0.558987 + 0.829176i \(0.688810\pi\)
\(110\) −1.07107 −0.102122
\(111\) 22.1421 2.10164
\(112\) 1.75736i 0.166055i
\(113\) 3.17157i 0.298356i 0.988810 + 0.149178i \(0.0476628\pi\)
−0.988810 + 0.149178i \(0.952337\pi\)
\(114\) 4.00000i 0.374634i
\(115\) 3.41421 0.318377
\(116\) 8.82843i 0.819699i
\(117\) 24.4853 2.26367
\(118\) −3.79899 −0.349725
\(119\) 0 0
\(120\) −5.41421 −0.494248
\(121\) 4.31371 0.392155
\(122\) 3.17157i 0.287141i
\(123\) 22.1421 1.99649
\(124\) − 7.75736i − 0.696631i
\(125\) 1.00000i 0.0894427i
\(126\) 2.10051i 0.187128i
\(127\) 17.3137 1.53634 0.768172 0.640244i \(-0.221167\pi\)
0.768172 + 0.640244i \(0.221167\pi\)
\(128\) 10.5563 0.933058
\(129\) 26.1421i 2.30169i
\(130\) − 1.17157i − 0.102754i
\(131\) − 13.8995i − 1.21440i −0.794547 0.607202i \(-0.792292\pi\)
0.794547 0.607202i \(-0.207708\pi\)
\(132\) −16.1421 −1.40499
\(133\) 1.65685i 0.143667i
\(134\) 1.31371 0.113487
\(135\) 19.3137 1.66226
\(136\) 0 0
\(137\) 1.17157 0.100094 0.0500471 0.998747i \(-0.484063\pi\)
0.0500471 + 0.998747i \(0.484063\pi\)
\(138\) −4.82843 −0.411023
\(139\) 17.8995i 1.51822i 0.650965 + 0.759108i \(0.274364\pi\)
−0.650965 + 0.759108i \(0.725636\pi\)
\(140\) −1.07107 −0.0905218
\(141\) 16.4853i 1.38831i
\(142\) 1.75736i 0.147474i
\(143\) − 7.31371i − 0.611603i
\(144\) −25.9706 −2.16421
\(145\) −4.82843 −0.400979
\(146\) 2.00000i 0.165521i
\(147\) − 22.7279i − 1.87457i
\(148\) − 11.8579i − 0.974710i
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) − 1.41421i − 0.115470i
\(151\) −7.51472 −0.611539 −0.305770 0.952106i \(-0.598914\pi\)
−0.305770 + 0.952106i \(0.598914\pi\)
\(152\) 4.48528 0.363804
\(153\) 0 0
\(154\) 0.627417 0.0505587
\(155\) 4.24264 0.340777
\(156\) − 17.6569i − 1.41368i
\(157\) −21.3137 −1.70102 −0.850510 0.525960i \(-0.823706\pi\)
−0.850510 + 0.525960i \(0.823706\pi\)
\(158\) 2.24264i 0.178415i
\(159\) 1.17157i 0.0929118i
\(160\) 4.41421i 0.348974i
\(161\) −2.00000 −0.157622
\(162\) −16.5563 −1.30079
\(163\) − 0.585786i − 0.0458823i −0.999737 0.0229412i \(-0.992697\pi\)
0.999737 0.0229412i \(-0.00730304\pi\)
\(164\) − 11.8579i − 0.925944i
\(165\) − 8.82843i − 0.687292i
\(166\) 3.85786 0.299428
\(167\) 2.24264i 0.173541i 0.996228 + 0.0867704i \(0.0276546\pi\)
−0.996228 + 0.0867704i \(0.972345\pi\)
\(168\) 3.17157 0.244692
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −24.4853 −1.87244
\(172\) 14.0000 1.06749
\(173\) 12.8284i 0.975327i 0.873032 + 0.487664i \(0.162151\pi\)
−0.873032 + 0.487664i \(0.837849\pi\)
\(174\) 6.82843 0.517662
\(175\) − 0.585786i − 0.0442813i
\(176\) 7.75736i 0.584733i
\(177\) − 31.3137i − 2.35368i
\(178\) 0.970563 0.0727468
\(179\) 6.82843 0.510381 0.255190 0.966891i \(-0.417862\pi\)
0.255190 + 0.966891i \(0.417862\pi\)
\(180\) − 15.8284i − 1.17978i
\(181\) − 2.48528i − 0.184730i −0.995725 0.0923648i \(-0.970557\pi\)
0.995725 0.0923648i \(-0.0294426\pi\)
\(182\) 0.686292i 0.0508713i
\(183\) −26.1421 −1.93248
\(184\) 5.41421i 0.399141i
\(185\) 6.48528 0.476807
\(186\) −6.00000 −0.439941
\(187\) 0 0
\(188\) 8.82843 0.643879
\(189\) −11.3137 −0.822951
\(190\) 1.17157i 0.0849948i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 14.2426i 1.02787i
\(193\) 20.8284i 1.49926i 0.661855 + 0.749631i \(0.269769\pi\)
−0.661855 + 0.749631i \(0.730231\pi\)
\(194\) − 1.51472i − 0.108750i
\(195\) 9.65685 0.691542
\(196\) −12.1716 −0.869398
\(197\) − 12.8284i − 0.913988i −0.889470 0.456994i \(-0.848926\pi\)
0.889470 0.456994i \(-0.151074\pi\)
\(198\) 9.27208i 0.658938i
\(199\) 24.2426i 1.71852i 0.511543 + 0.859258i \(0.329074\pi\)
−0.511543 + 0.859258i \(0.670926\pi\)
\(200\) −1.58579 −0.112132
\(201\) 10.8284i 0.763778i
\(202\) 3.31371 0.233152
\(203\) 2.82843 0.198517
\(204\) 0 0
\(205\) 6.48528 0.452952
\(206\) 0.343146 0.0239081
\(207\) − 29.5563i − 2.05431i
\(208\) −8.48528 −0.588348
\(209\) 7.31371i 0.505900i
\(210\) 0.828427i 0.0571669i
\(211\) 2.10051i 0.144605i 0.997383 + 0.0723024i \(0.0230347\pi\)
−0.997383 + 0.0723024i \(0.976965\pi\)
\(212\) 0.627417 0.0430912
\(213\) −14.4853 −0.992515
\(214\) − 4.92893i − 0.336935i
\(215\) 7.65685i 0.522193i
\(216\) 30.6274i 2.08393i
\(217\) −2.48528 −0.168712
\(218\) − 7.17157i − 0.485720i
\(219\) −16.4853 −1.11397
\(220\) −4.72792 −0.318756
\(221\) 0 0
\(222\) −9.17157 −0.615556
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) − 2.58579i − 0.172770i
\(225\) 8.65685 0.577124
\(226\) − 1.31371i − 0.0873866i
\(227\) 22.7279i 1.50851i 0.656584 + 0.754253i \(0.272001\pi\)
−0.656584 + 0.754253i \(0.727999\pi\)
\(228\) 17.6569i 1.16935i
\(229\) 0.686292 0.0453514 0.0226757 0.999743i \(-0.492781\pi\)
0.0226757 + 0.999743i \(0.492781\pi\)
\(230\) −1.41421 −0.0932505
\(231\) 5.17157i 0.340265i
\(232\) − 7.65685i − 0.502697i
\(233\) 9.31371i 0.610161i 0.952327 + 0.305081i \(0.0986834\pi\)
−0.952327 + 0.305081i \(0.901317\pi\)
\(234\) −10.1421 −0.663012
\(235\) 4.82843i 0.314972i
\(236\) −16.7696 −1.09160
\(237\) −18.4853 −1.20075
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) −10.2426 −0.661160
\(241\) 12.8284i 0.826352i 0.910651 + 0.413176i \(0.135581\pi\)
−0.910651 + 0.413176i \(0.864419\pi\)
\(242\) −1.78680 −0.114860
\(243\) − 78.5269i − 5.03750i
\(244\) 14.0000i 0.896258i
\(245\) − 6.65685i − 0.425291i
\(246\) −9.17157 −0.584758
\(247\) −8.00000 −0.509028
\(248\) 6.72792i 0.427223i
\(249\) 31.7990i 2.01518i
\(250\) − 0.414214i − 0.0261972i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 9.27208i 0.584086i
\(253\) −8.82843 −0.555038
\(254\) −7.17157 −0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 2.82843 0.176432 0.0882162 0.996101i \(-0.471883\pi\)
0.0882162 + 0.996101i \(0.471883\pi\)
\(258\) − 10.8284i − 0.674148i
\(259\) −3.79899 −0.236058
\(260\) − 5.17157i − 0.320727i
\(261\) 41.7990i 2.58729i
\(262\) 5.75736i 0.355691i
\(263\) −9.31371 −0.574308 −0.287154 0.957884i \(-0.592709\pi\)
−0.287154 + 0.957884i \(0.592709\pi\)
\(264\) 14.0000 0.861640
\(265\) 0.343146i 0.0210793i
\(266\) − 0.686292i − 0.0420792i
\(267\) 8.00000i 0.489592i
\(268\) 5.79899 0.354230
\(269\) 18.9706i 1.15666i 0.815804 + 0.578328i \(0.196295\pi\)
−0.815804 + 0.578328i \(0.803705\pi\)
\(270\) −8.00000 −0.486864
\(271\) −13.6569 −0.829595 −0.414797 0.909914i \(-0.636148\pi\)
−0.414797 + 0.909914i \(0.636148\pi\)
\(272\) 0 0
\(273\) −5.65685 −0.342368
\(274\) −0.485281 −0.0293169
\(275\) − 2.58579i − 0.155929i
\(276\) −21.3137 −1.28293
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) − 7.41421i − 0.444675i
\(279\) − 36.7279i − 2.19884i
\(280\) 0.928932 0.0555143
\(281\) 4.34315 0.259090 0.129545 0.991574i \(-0.458648\pi\)
0.129545 + 0.991574i \(0.458648\pi\)
\(282\) − 6.82843i − 0.406627i
\(283\) − 14.2426i − 0.846637i −0.905981 0.423319i \(-0.860865\pi\)
0.905981 0.423319i \(-0.139135\pi\)
\(284\) 7.75736i 0.460315i
\(285\) −9.65685 −0.572023
\(286\) 3.02944i 0.179134i
\(287\) −3.79899 −0.224247
\(288\) 38.2132 2.25173
\(289\) 0 0
\(290\) 2.00000 0.117444
\(291\) 12.4853 0.731900
\(292\) 8.82843i 0.516645i
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 9.41421i 0.549048i
\(295\) − 9.17157i − 0.533990i
\(296\) 10.2843i 0.597761i
\(297\) −49.9411 −2.89788
\(298\) −0.828427 −0.0479895
\(299\) − 9.65685i − 0.558470i
\(300\) − 6.24264i − 0.360419i
\(301\) − 4.48528i − 0.258527i
\(302\) 3.11270 0.179116
\(303\) 27.3137i 1.56913i
\(304\) 8.48528 0.486664
\(305\) −7.65685 −0.438430
\(306\) 0 0
\(307\) −16.8284 −0.960449 −0.480225 0.877146i \(-0.659445\pi\)
−0.480225 + 0.877146i \(0.659445\pi\)
\(308\) 2.76955 0.157810
\(309\) 2.82843i 0.160904i
\(310\) −1.75736 −0.0998113
\(311\) 15.0711i 0.854602i 0.904109 + 0.427301i \(0.140536\pi\)
−0.904109 + 0.427301i \(0.859464\pi\)
\(312\) 15.3137i 0.866968i
\(313\) 5.79899i 0.327778i 0.986479 + 0.163889i \(0.0524039\pi\)
−0.986479 + 0.163889i \(0.947596\pi\)
\(314\) 8.82843 0.498217
\(315\) −5.07107 −0.285722
\(316\) 9.89949i 0.556890i
\(317\) 21.3137i 1.19710i 0.801087 + 0.598549i \(0.204256\pi\)
−0.801087 + 0.598549i \(0.795744\pi\)
\(318\) − 0.485281i − 0.0272132i
\(319\) 12.4853 0.699042
\(320\) 4.17157i 0.233198i
\(321\) 40.6274 2.26760
\(322\) 0.828427 0.0461664
\(323\) 0 0
\(324\) −73.0833 −4.06018
\(325\) 2.82843 0.156893
\(326\) 0.242641i 0.0134386i
\(327\) 59.1127 3.26894
\(328\) 10.2843i 0.567854i
\(329\) − 2.82843i − 0.155936i
\(330\) 3.65685i 0.201303i
\(331\) −26.8284 −1.47462 −0.737312 0.675553i \(-0.763905\pi\)
−0.737312 + 0.675553i \(0.763905\pi\)
\(332\) 17.0294 0.934612
\(333\) − 56.1421i − 3.07657i
\(334\) − 0.928932i − 0.0508289i
\(335\) 3.17157i 0.173282i
\(336\) 6.00000 0.327327
\(337\) − 20.6274i − 1.12365i −0.827257 0.561824i \(-0.810100\pi\)
0.827257 0.561824i \(-0.189900\pi\)
\(338\) 2.07107 0.112651
\(339\) 10.8284 0.588119
\(340\) 0 0
\(341\) −10.9706 −0.594089
\(342\) 10.1421 0.548424
\(343\) 8.00000i 0.431959i
\(344\) −12.1421 −0.654660
\(345\) − 11.6569i − 0.627584i
\(346\) − 5.31371i − 0.285667i
\(347\) 23.6985i 1.27220i 0.771606 + 0.636101i \(0.219454\pi\)
−0.771606 + 0.636101i \(0.780546\pi\)
\(348\) 30.1421 1.61579
\(349\) −31.6569 −1.69455 −0.847276 0.531152i \(-0.821759\pi\)
−0.847276 + 0.531152i \(0.821759\pi\)
\(350\) 0.242641i 0.0129697i
\(351\) − 54.6274i − 2.91580i
\(352\) − 11.4142i − 0.608380i
\(353\) −27.6569 −1.47203 −0.736013 0.676967i \(-0.763294\pi\)
−0.736013 + 0.676967i \(0.763294\pi\)
\(354\) 12.9706i 0.689378i
\(355\) −4.24264 −0.225176
\(356\) 4.28427 0.227066
\(357\) 0 0
\(358\) −2.82843 −0.149487
\(359\) 31.7990 1.67829 0.839143 0.543910i \(-0.183057\pi\)
0.839143 + 0.543910i \(0.183057\pi\)
\(360\) 13.7279i 0.723525i
\(361\) −11.0000 −0.578947
\(362\) 1.02944i 0.0541060i
\(363\) − 14.7279i − 0.773015i
\(364\) 3.02944i 0.158786i
\(365\) −4.82843 −0.252731
\(366\) 10.8284 0.566011
\(367\) 14.2426i 0.743460i 0.928341 + 0.371730i \(0.121235\pi\)
−0.928341 + 0.371730i \(0.878765\pi\)
\(368\) 10.2426i 0.533935i
\(369\) − 56.1421i − 2.92264i
\(370\) −2.68629 −0.139654
\(371\) − 0.201010i − 0.0104359i
\(372\) −26.4853 −1.37320
\(373\) 11.7990 0.610929 0.305464 0.952204i \(-0.401188\pi\)
0.305464 + 0.952204i \(0.401188\pi\)
\(374\) 0 0
\(375\) 3.41421 0.176309
\(376\) −7.65685 −0.394872
\(377\) 13.6569i 0.703364i
\(378\) 4.68629 0.241037
\(379\) − 26.8701i − 1.38022i −0.723703 0.690111i \(-0.757562\pi\)
0.723703 0.690111i \(-0.242438\pi\)
\(380\) 5.17157i 0.265296i
\(381\) − 59.1127i − 3.02844i
\(382\) −4.97056 −0.254316
\(383\) 34.2843 1.75184 0.875922 0.482452i \(-0.160254\pi\)
0.875922 + 0.482452i \(0.160254\pi\)
\(384\) − 36.0416i − 1.83924i
\(385\) 1.51472i 0.0771972i
\(386\) − 8.62742i − 0.439124i
\(387\) 66.2843 3.36942
\(388\) − 6.68629i − 0.339445i
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) −4.00000 −0.202548
\(391\) 0 0
\(392\) 10.5563 0.533176
\(393\) −47.4558 −2.39383
\(394\) 5.31371i 0.267701i
\(395\) −5.41421 −0.272419
\(396\) 40.9289i 2.05676i
\(397\) − 13.3137i − 0.668196i −0.942538 0.334098i \(-0.891568\pi\)
0.942538 0.334098i \(-0.108432\pi\)
\(398\) − 10.0416i − 0.503341i
\(399\) 5.65685 0.283197
\(400\) −3.00000 −0.150000
\(401\) 16.3431i 0.816138i 0.912951 + 0.408069i \(0.133798\pi\)
−0.912951 + 0.408069i \(0.866202\pi\)
\(402\) − 4.48528i − 0.223706i
\(403\) − 12.0000i − 0.597763i
\(404\) 14.6274 0.727741
\(405\) − 39.9706i − 1.98615i
\(406\) −1.17157 −0.0581442
\(407\) −16.7696 −0.831236
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) −2.68629 −0.132666
\(411\) − 4.00000i − 0.197305i
\(412\) 1.51472 0.0746248
\(413\) 5.37258i 0.264368i
\(414\) 12.2426i 0.601693i
\(415\) 9.31371i 0.457192i
\(416\) 12.4853 0.612141
\(417\) 61.1127 2.99270
\(418\) − 3.02944i − 0.148175i
\(419\) − 12.2426i − 0.598092i −0.954239 0.299046i \(-0.903332\pi\)
0.954239 0.299046i \(-0.0966684\pi\)
\(420\) 3.65685i 0.178436i
\(421\) −28.9706 −1.41194 −0.705969 0.708242i \(-0.749488\pi\)
−0.705969 + 0.708242i \(0.749488\pi\)
\(422\) − 0.870058i − 0.0423537i
\(423\) 41.7990 2.03234
\(424\) −0.544156 −0.0264265
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) 4.48528 0.217058
\(428\) − 21.7574i − 1.05168i
\(429\) −24.9706 −1.20559
\(430\) − 3.17157i − 0.152947i
\(431\) − 1.41421i − 0.0681203i −0.999420 0.0340601i \(-0.989156\pi\)
0.999420 0.0340601i \(-0.0108438\pi\)
\(432\) 57.9411i 2.78769i
\(433\) −2.82843 −0.135926 −0.0679628 0.997688i \(-0.521650\pi\)
−0.0679628 + 0.997688i \(0.521650\pi\)
\(434\) 1.02944 0.0494146
\(435\) 16.4853i 0.790409i
\(436\) − 31.6569i − 1.51609i
\(437\) 9.65685i 0.461950i
\(438\) 6.82843 0.326275
\(439\) 5.41421i 0.258406i 0.991618 + 0.129203i \(0.0412419\pi\)
−0.991618 + 0.129203i \(0.958758\pi\)
\(440\) 4.10051 0.195484
\(441\) −57.6274 −2.74416
\(442\) 0 0
\(443\) −14.4853 −0.688216 −0.344108 0.938930i \(-0.611819\pi\)
−0.344108 + 0.938930i \(0.611819\pi\)
\(444\) −40.4853 −1.92135
\(445\) 2.34315i 0.111076i
\(446\) 2.48528 0.117681
\(447\) − 6.82843i − 0.322974i
\(448\) − 2.44365i − 0.115452i
\(449\) 26.4853i 1.24992i 0.780658 + 0.624959i \(0.214884\pi\)
−0.780658 + 0.624959i \(0.785116\pi\)
\(450\) −3.58579 −0.169036
\(451\) −16.7696 −0.789647
\(452\) − 5.79899i − 0.272762i
\(453\) 25.6569i 1.20546i
\(454\) − 9.41421i − 0.441831i
\(455\) −1.65685 −0.0776745
\(456\) − 15.3137i − 0.717130i
\(457\) −39.1127 −1.82961 −0.914807 0.403890i \(-0.867658\pi\)
−0.914807 + 0.403890i \(0.867658\pi\)
\(458\) −0.284271 −0.0132831
\(459\) 0 0
\(460\) −6.24264 −0.291065
\(461\) −41.5980 −1.93741 −0.968706 0.248213i \(-0.920157\pi\)
−0.968706 + 0.248213i \(0.920157\pi\)
\(462\) − 2.14214i − 0.0996612i
\(463\) −3.17157 −0.147395 −0.0736977 0.997281i \(-0.523480\pi\)
−0.0736977 + 0.997281i \(0.523480\pi\)
\(464\) − 14.4853i − 0.672462i
\(465\) − 14.4853i − 0.671739i
\(466\) − 3.85786i − 0.178712i
\(467\) 0.343146 0.0158789 0.00793945 0.999968i \(-0.497473\pi\)
0.00793945 + 0.999968i \(0.497473\pi\)
\(468\) −44.7696 −2.06947
\(469\) − 1.85786i − 0.0857882i
\(470\) − 2.00000i − 0.0922531i
\(471\) 72.7696i 3.35304i
\(472\) 14.5442 0.669449
\(473\) − 19.7990i − 0.910359i
\(474\) 7.65685 0.351691
\(475\) −2.82843 −0.129777
\(476\) 0 0
\(477\) 2.97056 0.136013
\(478\) −8.28427 −0.378914
\(479\) − 15.7574i − 0.719972i −0.932958 0.359986i \(-0.882781\pi\)
0.932958 0.359986i \(-0.117219\pi\)
\(480\) 15.0711 0.687897
\(481\) − 18.3431i − 0.836375i
\(482\) − 5.31371i − 0.242033i
\(483\) 6.82843i 0.310704i
\(484\) −7.88730 −0.358514
\(485\) 3.65685 0.166049
\(486\) 32.5269i 1.47545i
\(487\) 3.89949i 0.176703i 0.996089 + 0.0883515i \(0.0281599\pi\)
−0.996089 + 0.0883515i \(0.971840\pi\)
\(488\) − 12.1421i − 0.549649i
\(489\) −2.00000 −0.0904431
\(490\) 2.75736i 0.124565i
\(491\) 16.4853 0.743970 0.371985 0.928239i \(-0.378677\pi\)
0.371985 + 0.928239i \(0.378677\pi\)
\(492\) −40.4853 −1.82522
\(493\) 0 0
\(494\) 3.31371 0.149091
\(495\) −22.3848 −1.00612
\(496\) 12.7279i 0.571501i
\(497\) 2.48528 0.111480
\(498\) − 13.1716i − 0.590232i
\(499\) − 12.2426i − 0.548056i −0.961722 0.274028i \(-0.911644\pi\)
0.961722 0.274028i \(-0.0883561\pi\)
\(500\) − 1.82843i − 0.0817697i
\(501\) 7.65685 0.342083
\(502\) 4.97056 0.221847
\(503\) − 31.6985i − 1.41337i −0.707531 0.706683i \(-0.750191\pi\)
0.707531 0.706683i \(-0.249809\pi\)
\(504\) − 8.04163i − 0.358203i
\(505\) 8.00000i 0.355995i
\(506\) 3.65685 0.162567
\(507\) 17.0711i 0.758153i
\(508\) −31.6569 −1.40455
\(509\) 20.6274 0.914294 0.457147 0.889391i \(-0.348871\pi\)
0.457147 + 0.889391i \(0.348871\pi\)
\(510\) 0 0
\(511\) 2.82843 0.125122
\(512\) −22.7574 −1.00574
\(513\) 54.6274i 2.41186i
\(514\) −1.17157 −0.0516759
\(515\) 0.828427i 0.0365049i
\(516\) − 47.7990i − 2.10423i
\(517\) − 12.4853i − 0.549102i
\(518\) 1.57359 0.0691397
\(519\) 43.7990 1.92256
\(520\) 4.48528i 0.196693i
\(521\) 6.00000i 0.262865i 0.991325 + 0.131432i \(0.0419576\pi\)
−0.991325 + 0.131432i \(0.958042\pi\)
\(522\) − 17.3137i − 0.757800i
\(523\) −0.142136 −0.00621516 −0.00310758 0.999995i \(-0.500989\pi\)
−0.00310758 + 0.999995i \(0.500989\pi\)
\(524\) 25.4142i 1.11023i
\(525\) −2.00000 −0.0872872
\(526\) 3.85786 0.168211
\(527\) 0 0
\(528\) 26.4853 1.15262
\(529\) 11.3431 0.493180
\(530\) − 0.142136i − 0.00617398i
\(531\) −79.3970 −3.44554
\(532\) − 3.02944i − 0.131343i
\(533\) − 18.3431i − 0.794530i
\(534\) − 3.31371i − 0.143398i
\(535\) 11.8995 0.514460
\(536\) −5.02944 −0.217239
\(537\) − 23.3137i − 1.00606i
\(538\) − 7.85786i − 0.338777i
\(539\) 17.2132i 0.741425i
\(540\) −35.3137 −1.51966
\(541\) − 42.7696i − 1.83881i −0.393316 0.919403i \(-0.628672\pi\)
0.393316 0.919403i \(-0.371328\pi\)
\(542\) 5.65685 0.242983
\(543\) −8.48528 −0.364138
\(544\) 0 0
\(545\) 17.3137 0.741638
\(546\) 2.34315 0.100277
\(547\) 7.21320i 0.308414i 0.988039 + 0.154207i \(0.0492823\pi\)
−0.988039 + 0.154207i \(0.950718\pi\)
\(548\) −2.14214 −0.0915075
\(549\) 66.2843i 2.82894i
\(550\) 1.07107i 0.0456705i
\(551\) − 13.6569i − 0.581802i
\(552\) 18.4853 0.786786
\(553\) 3.17157 0.134869
\(554\) 4.14214i 0.175982i
\(555\) − 22.1421i − 0.939881i
\(556\) − 32.7279i − 1.38797i
\(557\) 26.8284 1.13676 0.568378 0.822767i \(-0.307571\pi\)
0.568378 + 0.822767i \(0.307571\pi\)
\(558\) 15.2132i 0.644026i
\(559\) 21.6569 0.915987
\(560\) 1.75736 0.0742620
\(561\) 0 0
\(562\) −1.79899 −0.0758858
\(563\) 20.3431 0.857361 0.428681 0.903456i \(-0.358979\pi\)
0.428681 + 0.903456i \(0.358979\pi\)
\(564\) − 30.1421i − 1.26921i
\(565\) 3.17157 0.133429
\(566\) 5.89949i 0.247974i
\(567\) 23.4142i 0.983305i
\(568\) − 6.72792i − 0.282297i
\(569\) 26.2843 1.10189 0.550947 0.834540i \(-0.314267\pi\)
0.550947 + 0.834540i \(0.314267\pi\)
\(570\) 4.00000 0.167542
\(571\) 4.44365i 0.185961i 0.995668 + 0.0929805i \(0.0296394\pi\)
−0.995668 + 0.0929805i \(0.970361\pi\)
\(572\) 13.3726i 0.559136i
\(573\) − 40.9706i − 1.71157i
\(574\) 1.57359 0.0656805
\(575\) − 3.41421i − 0.142383i
\(576\) 36.1127 1.50470
\(577\) 22.8284 0.950360 0.475180 0.879889i \(-0.342383\pi\)
0.475180 + 0.879889i \(0.342383\pi\)
\(578\) 0 0
\(579\) 71.1127 2.95534
\(580\) 8.82843 0.366580
\(581\) − 5.45584i − 0.226347i
\(582\) −5.17157 −0.214369
\(583\) − 0.887302i − 0.0367483i
\(584\) − 7.65685i − 0.316843i
\(585\) − 24.4853i − 1.01234i
\(586\) −7.45584 −0.307998
\(587\) −28.6274 −1.18158 −0.590790 0.806825i \(-0.701184\pi\)
−0.590790 + 0.806825i \(0.701184\pi\)
\(588\) 41.5563i 1.71375i
\(589\) 12.0000i 0.494451i
\(590\) 3.79899i 0.156402i
\(591\) −43.7990 −1.80165
\(592\) 19.4558i 0.799630i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 20.6863 0.848769
\(595\) 0 0
\(596\) −3.65685 −0.149791
\(597\) 82.7696 3.38753
\(598\) 4.00000i 0.163572i
\(599\) 45.9411 1.87710 0.938552 0.345139i \(-0.112168\pi\)
0.938552 + 0.345139i \(0.112168\pi\)
\(600\) 5.41421i 0.221034i
\(601\) 25.7990i 1.05236i 0.850372 + 0.526181i \(0.176377\pi\)
−0.850372 + 0.526181i \(0.823623\pi\)
\(602\) 1.85786i 0.0757209i
\(603\) 27.4558 1.11809
\(604\) 13.7401 0.559077
\(605\) − 4.31371i − 0.175377i
\(606\) − 11.3137i − 0.459588i
\(607\) − 4.58579i − 0.186131i −0.995660 0.0930657i \(-0.970333\pi\)
0.995660 0.0930657i \(-0.0296667\pi\)
\(608\) −12.4853 −0.506345
\(609\) − 9.65685i − 0.391315i
\(610\) 3.17157 0.128413
\(611\) 13.6569 0.552497
\(612\) 0 0
\(613\) −46.9706 −1.89712 −0.948562 0.316593i \(-0.897461\pi\)
−0.948562 + 0.316593i \(0.897461\pi\)
\(614\) 6.97056 0.281309
\(615\) − 22.1421i − 0.892857i
\(616\) −2.40202 −0.0967802
\(617\) 25.5147i 1.02718i 0.858035 + 0.513592i \(0.171685\pi\)
−0.858035 + 0.513592i \(0.828315\pi\)
\(618\) − 1.17157i − 0.0471276i
\(619\) 16.9289i 0.680431i 0.940347 + 0.340216i \(0.110500\pi\)
−0.940347 + 0.340216i \(0.889500\pi\)
\(620\) −7.75736 −0.311543
\(621\) −65.9411 −2.64613
\(622\) − 6.24264i − 0.250307i
\(623\) − 1.37258i − 0.0549914i
\(624\) 28.9706i 1.15975i
\(625\) 1.00000 0.0400000
\(626\) − 2.40202i − 0.0960040i
\(627\) 24.9706 0.997228
\(628\) 38.9706 1.55509
\(629\) 0 0
\(630\) 2.10051 0.0836861
\(631\) 15.7990 0.628948 0.314474 0.949266i \(-0.398172\pi\)
0.314474 + 0.949266i \(0.398172\pi\)
\(632\) − 8.58579i − 0.341524i
\(633\) 7.17157 0.285044
\(634\) − 8.82843i − 0.350622i
\(635\) − 17.3137i − 0.687074i
\(636\) − 2.14214i − 0.0849412i
\(637\) −18.8284 −0.746009
\(638\) −5.17157 −0.204745
\(639\) 36.7279i 1.45293i
\(640\) − 10.5563i − 0.417276i
\(641\) 28.1421i 1.11155i 0.831334 + 0.555774i \(0.187578\pi\)
−0.831334 + 0.555774i \(0.812422\pi\)
\(642\) −16.8284 −0.664165
\(643\) − 47.6985i − 1.88104i −0.339732 0.940522i \(-0.610336\pi\)
0.339732 0.940522i \(-0.389664\pi\)
\(644\) 3.65685 0.144100
\(645\) 26.1421 1.02935
\(646\) 0 0
\(647\) −20.8284 −0.818850 −0.409425 0.912344i \(-0.634271\pi\)
−0.409425 + 0.912344i \(0.634271\pi\)
\(648\) 63.3848 2.48999
\(649\) 23.7157i 0.930924i
\(650\) −1.17157 −0.0459529
\(651\) 8.48528i 0.332564i
\(652\) 1.07107i 0.0419463i
\(653\) − 18.4853i − 0.723385i −0.932297 0.361692i \(-0.882199\pi\)
0.932297 0.361692i \(-0.117801\pi\)
\(654\) −24.4853 −0.957450
\(655\) −13.8995 −0.543098
\(656\) 19.4558i 0.759623i
\(657\) 41.7990i 1.63073i
\(658\) 1.17157i 0.0456727i
\(659\) −4.68629 −0.182552 −0.0912760 0.995826i \(-0.529095\pi\)
−0.0912760 + 0.995826i \(0.529095\pi\)
\(660\) 16.1421i 0.628332i
\(661\) −13.3137 −0.517843 −0.258922 0.965898i \(-0.583367\pi\)
−0.258922 + 0.965898i \(0.583367\pi\)
\(662\) 11.1127 0.431907
\(663\) 0 0
\(664\) −14.7696 −0.573170
\(665\) 1.65685 0.0642501
\(666\) 23.2548i 0.901107i
\(667\) 16.4853 0.638313
\(668\) − 4.10051i − 0.158653i
\(669\) 20.4853i 0.792007i
\(670\) − 1.31371i − 0.0507530i
\(671\) 19.7990 0.764332
\(672\) −8.82843 −0.340564
\(673\) 28.1421i 1.08480i 0.840120 + 0.542400i \(0.182484\pi\)
−0.840120 + 0.542400i \(0.817516\pi\)
\(674\) 8.54416i 0.329109i
\(675\) − 19.3137i − 0.743385i
\(676\) 9.14214 0.351621
\(677\) 4.62742i 0.177846i 0.996038 + 0.0889230i \(0.0283425\pi\)
−0.996038 + 0.0889230i \(0.971657\pi\)
\(678\) −4.48528 −0.172256
\(679\) −2.14214 −0.0822076
\(680\) 0 0
\(681\) 77.5980 2.97356
\(682\) 4.54416 0.174005
\(683\) − 14.7279i − 0.563548i −0.959481 0.281774i \(-0.909077\pi\)
0.959481 0.281774i \(-0.0909229\pi\)
\(684\) 44.7696 1.71181
\(685\) − 1.17157i − 0.0447635i
\(686\) − 3.31371i − 0.126518i
\(687\) − 2.34315i − 0.0893966i
\(688\) −22.9706 −0.875744
\(689\) 0.970563 0.0369755
\(690\) 4.82843i 0.183815i
\(691\) 17.2132i 0.654821i 0.944882 + 0.327411i \(0.106176\pi\)
−0.944882 + 0.327411i \(0.893824\pi\)
\(692\) − 23.4558i − 0.891657i
\(693\) 13.1127 0.498110
\(694\) − 9.81623i − 0.372619i
\(695\) 17.8995 0.678967
\(696\) −26.1421 −0.990915
\(697\) 0 0
\(698\) 13.1127 0.496323
\(699\) 31.7990 1.20275
\(700\) 1.07107i 0.0404826i
\(701\) 30.3431 1.14604 0.573022 0.819540i \(-0.305771\pi\)
0.573022 + 0.819540i \(0.305771\pi\)
\(702\) 22.6274i 0.854017i
\(703\) 18.3431i 0.691825i
\(704\) − 10.7868i − 0.406543i
\(705\) 16.4853 0.620872
\(706\) 11.4558 0.431146
\(707\) − 4.68629i − 0.176246i
\(708\) 57.2548i 2.15177i
\(709\) 25.7990i 0.968901i 0.874819 + 0.484451i \(0.160981\pi\)
−0.874819 + 0.484451i \(0.839019\pi\)
\(710\) 1.75736 0.0659525
\(711\) 46.8701i 1.75776i
\(712\) −3.71573 −0.139253
\(713\) −14.4853 −0.542478
\(714\) 0 0
\(715\) −7.31371 −0.273517
\(716\) −12.4853 −0.466597
\(717\) − 68.2843i − 2.55012i
\(718\) −13.1716 −0.491559
\(719\) − 53.4975i − 1.99512i −0.0698205 0.997560i \(-0.522243\pi\)
0.0698205 0.997560i \(-0.477757\pi\)
\(720\) 25.9706i 0.967866i
\(721\) − 0.485281i − 0.0180728i
\(722\) 4.55635 0.169570
\(723\) 43.7990 1.62890
\(724\) 4.54416i 0.168882i
\(725\) 4.82843i 0.179323i
\(726\) 6.10051i 0.226411i
\(727\) 11.4558 0.424874 0.212437 0.977175i \(-0.431860\pi\)
0.212437 + 0.977175i \(0.431860\pi\)
\(728\) − 2.62742i − 0.0973786i
\(729\) −148.196 −5.48874
\(730\) 2.00000 0.0740233
\(731\) 0 0
\(732\) 47.7990 1.76670
\(733\) −46.2843 −1.70955 −0.854774 0.519000i \(-0.826304\pi\)
−0.854774 + 0.519000i \(0.826304\pi\)
\(734\) − 5.89949i − 0.217754i
\(735\) −22.7279 −0.838332
\(736\) − 15.0711i − 0.555527i
\(737\) − 8.20101i − 0.302088i
\(738\) 23.2548i 0.856022i
\(739\) −27.7990 −1.02260 −0.511301 0.859402i \(-0.670836\pi\)
−0.511301 + 0.859402i \(0.670836\pi\)
\(740\) −11.8579 −0.435904
\(741\) 27.3137i 1.00339i
\(742\) 0.0832611i 0.00305661i
\(743\) 14.0416i 0.515137i 0.966260 + 0.257569i \(0.0829214\pi\)
−0.966260 + 0.257569i \(0.917079\pi\)
\(744\) 22.9706 0.842142
\(745\) − 2.00000i − 0.0732743i
\(746\) −4.88730 −0.178937
\(747\) 80.6274 2.95000
\(748\) 0 0
\(749\) −6.97056 −0.254699
\(750\) −1.41421 −0.0516398
\(751\) − 46.1838i − 1.68527i −0.538485 0.842635i \(-0.681003\pi\)
0.538485 0.842635i \(-0.318997\pi\)
\(752\) −14.4853 −0.528224
\(753\) 40.9706i 1.49305i
\(754\) − 5.65685i − 0.206010i
\(755\) 7.51472i 0.273489i
\(756\) 20.6863 0.752353
\(757\) −41.1716 −1.49641 −0.748203 0.663470i \(-0.769083\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(758\) 11.1299i 0.404258i
\(759\) 30.1421i 1.09409i
\(760\) − 4.48528i − 0.162698i
\(761\) 12.6863 0.459878 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(762\) 24.4853i 0.887008i
\(763\) −10.1421 −0.367170
\(764\) −21.9411 −0.793802
\(765\) 0 0
\(766\) −14.2010 −0.513103
\(767\) −25.9411 −0.936680
\(768\) − 13.5563i − 0.489173i
\(769\) −34.3431 −1.23845 −0.619223 0.785215i \(-0.712552\pi\)
−0.619223 + 0.785215i \(0.712552\pi\)
\(770\) − 0.627417i − 0.0226105i
\(771\) − 9.65685i − 0.347783i
\(772\) − 38.0833i − 1.37065i
\(773\) −27.1127 −0.975176 −0.487588 0.873074i \(-0.662123\pi\)
−0.487588 + 0.873074i \(0.662123\pi\)
\(774\) −27.4558 −0.986880
\(775\) − 4.24264i − 0.152400i
\(776\) 5.79899i 0.208172i
\(777\) 12.9706i 0.465316i
\(778\) −6.62742 −0.237604
\(779\) 18.3431i 0.657211i
\(780\) −17.6569 −0.632217
\(781\) 10.9706 0.392558
\(782\) 0 0
\(783\) 93.2548 3.33266
\(784\) 19.9706 0.713234
\(785\) 21.3137i 0.760719i
\(786\) 19.6569 0.701137
\(787\) − 31.2132i − 1.11263i −0.830971 0.556315i \(-0.812215\pi\)
0.830971 0.556315i \(-0.187785\pi\)
\(788\) 23.4558i 0.835580i
\(789\) 31.7990i 1.13207i
\(790\) 2.24264 0.0797896
\(791\) −1.85786 −0.0660581
\(792\) − 35.4975i − 1.26135i
\(793\) 21.6569i 0.769057i
\(794\) 5.51472i 0.195710i
\(795\) 1.17157 0.0415514
\(796\) − 44.3259i − 1.57109i
\(797\) 36.6274 1.29741 0.648705 0.761040i \(-0.275311\pi\)
0.648705 + 0.761040i \(0.275311\pi\)
\(798\) −2.34315 −0.0829465
\(799\) 0 0
\(800\) 4.41421 0.156066
\(801\) 20.2843 0.716709
\(802\) − 6.76955i − 0.239041i
\(803\) 12.4853 0.440596
\(804\) − 19.7990i − 0.698257i
\(805\) 2.00000i 0.0704907i
\(806\) 4.97056i 0.175081i
\(807\) 64.7696 2.28000
\(808\) −12.6863 −0.446302
\(809\) 31.6569i 1.11300i 0.830849 + 0.556498i \(0.187855\pi\)
−0.830849 + 0.556498i \(0.812145\pi\)
\(810\) 16.5563i 0.581731i
\(811\) 18.5858i 0.652635i 0.945260 + 0.326318i \(0.105808\pi\)
−0.945260 + 0.326318i \(0.894192\pi\)
\(812\) −5.17157 −0.181487
\(813\) 46.6274i 1.63529i
\(814\) 6.94618 0.243463
\(815\) −0.585786 −0.0205192
\(816\) 0 0
\(817\) −21.6569 −0.757677
\(818\) 2.48528 0.0868958
\(819\) 14.3431i 0.501190i
\(820\) −11.8579 −0.414095
\(821\) 36.6274i 1.27831i 0.769080 + 0.639153i \(0.220715\pi\)
−0.769080 + 0.639153i \(0.779285\pi\)
\(822\) 1.65685i 0.0577894i
\(823\) 25.0711i 0.873922i 0.899480 + 0.436961i \(0.143945\pi\)
−0.899480 + 0.436961i \(0.856055\pi\)
\(824\) −1.31371 −0.0457652
\(825\) −8.82843 −0.307366
\(826\) − 2.22540i − 0.0774315i
\(827\) 29.5563i 1.02777i 0.857858 + 0.513887i \(0.171795\pi\)
−0.857858 + 0.513887i \(0.828205\pi\)
\(828\) 54.0416i 1.87808i
\(829\) 39.9411 1.38721 0.693606 0.720354i \(-0.256021\pi\)
0.693606 + 0.720354i \(0.256021\pi\)
\(830\) − 3.85786i − 0.133908i
\(831\) −34.1421 −1.18438
\(832\) 11.7990 0.409056
\(833\) 0 0
\(834\) −25.3137 −0.876542
\(835\) 2.24264 0.0776098
\(836\) − 13.3726i − 0.462500i
\(837\) −81.9411 −2.83230
\(838\) 5.07107i 0.175177i
\(839\) − 42.1838i − 1.45635i −0.685394 0.728173i \(-0.740370\pi\)
0.685394 0.728173i \(-0.259630\pi\)
\(840\) − 3.17157i − 0.109430i
\(841\) 5.68629 0.196079
\(842\) 12.0000 0.413547
\(843\) − 14.8284i − 0.510718i
\(844\) − 3.84062i − 0.132200i
\(845\) 5.00000i 0.172005i
\(846\) −17.3137 −0.595258
\(847\) 2.52691i 0.0868257i
\(848\) −1.02944 −0.0353510
\(849\) −48.6274 −1.66889
\(850\) 0 0
\(851\) −22.1421 −0.759023
\(852\) 26.4853 0.907371
\(853\) − 31.1716i − 1.06729i −0.845707 0.533647i \(-0.820821\pi\)
0.845707 0.533647i \(-0.179179\pi\)
\(854\) −1.85786 −0.0635748
\(855\) 24.4853i 0.837379i
\(856\) 18.8701i 0.644965i
\(857\) − 13.5147i − 0.461654i −0.972995 0.230827i \(-0.925857\pi\)
0.972995 0.230827i \(-0.0741431\pi\)
\(858\) 10.3431 0.353109
\(859\) −36.7696 −1.25456 −0.627280 0.778793i \(-0.715832\pi\)
−0.627280 + 0.778793i \(0.715832\pi\)
\(860\) − 14.0000i − 0.477396i
\(861\) 12.9706i 0.442036i
\(862\) 0.585786i 0.0199520i
\(863\) 6.48528 0.220762 0.110381 0.993889i \(-0.464793\pi\)
0.110381 + 0.993889i \(0.464793\pi\)
\(864\) − 85.2548i − 2.90043i
\(865\) 12.8284 0.436180
\(866\) 1.17157 0.0398117
\(867\) 0 0
\(868\) 4.54416 0.154239
\(869\) 14.0000 0.474917
\(870\) − 6.82843i − 0.231505i
\(871\) 8.97056 0.303956
\(872\) 27.4558i 0.929772i
\(873\) − 31.6569i − 1.07142i
\(874\) − 4.00000i − 0.135302i
\(875\) −0.585786 −0.0198032
\(876\) 30.1421 1.01841
\(877\) 2.28427i 0.0771344i 0.999256 + 0.0385672i \(0.0122794\pi\)
−0.999256 + 0.0385672i \(0.987721\pi\)
\(878\) − 2.24264i − 0.0756855i
\(879\) − 61.4558i − 2.07285i
\(880\) 7.75736 0.261501
\(881\) 48.1421i 1.62195i 0.585081 + 0.810975i \(0.301063\pi\)
−0.585081 + 0.810975i \(0.698937\pi\)
\(882\) 23.8701 0.803747
\(883\) 15.1716 0.510564 0.255282 0.966867i \(-0.417832\pi\)
0.255282 + 0.966867i \(0.417832\pi\)
\(884\) 0 0
\(885\) −31.3137 −1.05260
\(886\) 6.00000 0.201574
\(887\) − 14.9289i − 0.501264i −0.968082 0.250632i \(-0.919362\pi\)
0.968082 0.250632i \(-0.0806385\pi\)
\(888\) 35.1127 1.17831
\(889\) 10.1421i 0.340156i
\(890\) − 0.970563i − 0.0325333i
\(891\) 103.355i 3.46253i
\(892\) 10.9706 0.367322
\(893\) −13.6569 −0.457009
\(894\) 2.82843i 0.0945968i
\(895\) − 6.82843i − 0.228249i
\(896\) 6.18377i 0.206585i
\(897\) −32.9706 −1.10086
\(898\) − 10.9706i − 0.366092i
\(899\) 20.4853 0.683222
\(900\) −15.8284 −0.527614
\(901\) 0 0
\(902\) 6.94618 0.231282
\(903\) −15.3137 −0.509608
\(904\) 5.02944i 0.167277i
\(905\) −2.48528 −0.0826135
\(906\) − 10.6274i − 0.353072i
\(907\) 6.72792i 0.223397i 0.993742 + 0.111698i \(0.0356291\pi\)
−0.993742 + 0.111698i \(0.964371\pi\)
\(908\) − 41.5563i − 1.37910i
\(909\) 69.2548 2.29704
\(910\) 0.686292 0.0227503
\(911\) − 12.2426i − 0.405617i −0.979218 0.202808i \(-0.934993\pi\)
0.979218 0.202808i \(-0.0650069\pi\)
\(912\) − 28.9706i − 0.959311i
\(913\) − 24.0833i − 0.797040i
\(914\) 16.2010 0.535882
\(915\) 26.1421i 0.864232i
\(916\) −1.25483 −0.0414609
\(917\) 8.14214 0.268877
\(918\) 0 0
\(919\) 40.9706 1.35149 0.675747 0.737134i \(-0.263821\pi\)
0.675747 + 0.737134i \(0.263821\pi\)
\(920\) 5.41421 0.178501
\(921\) 57.4558i 1.89323i
\(922\) 17.2304 0.567455
\(923\) 12.0000i 0.394985i
\(924\) − 9.45584i − 0.311074i
\(925\) − 6.48528i − 0.213235i
\(926\) 1.31371 0.0431711
\(927\) 7.17157 0.235545
\(928\) 21.3137i 0.699657i
\(929\) − 35.4558i − 1.16327i −0.813450 0.581634i \(-0.802414\pi\)
0.813450 0.581634i \(-0.197586\pi\)
\(930\) 6.00000i 0.196748i
\(931\) 18.8284 0.617077
\(932\) − 17.0294i − 0.557818i
\(933\) 51.4558 1.68459
\(934\) −0.142136 −0.00465082
\(935\) 0 0
\(936\) 38.8284 1.26915
\(937\) −34.2843 −1.12002 −0.560009 0.828486i \(-0.689202\pi\)
−0.560009 + 0.828486i \(0.689202\pi\)
\(938\) 0.769553i 0.0251268i
\(939\) 19.7990 0.646116
\(940\) − 8.82843i − 0.287952i
\(941\) 3.45584i 0.112657i 0.998412 + 0.0563286i \(0.0179395\pi\)
−0.998412 + 0.0563286i \(0.982061\pi\)
\(942\) − 30.1421i − 0.982084i
\(943\) −22.1421 −0.721047
\(944\) 27.5147 0.895528
\(945\) 11.3137i 0.368035i
\(946\) 8.20101i 0.266638i
\(947\) − 35.8995i − 1.16658i −0.812265 0.583288i \(-0.801766\pi\)
0.812265 0.583288i \(-0.198234\pi\)
\(948\) 33.7990 1.09774
\(949\) 13.6569i 0.443320i
\(950\) 1.17157 0.0380108
\(951\) 72.7696 2.35971
\(952\) 0 0
\(953\) −21.8579 −0.708046 −0.354023 0.935237i \(-0.615186\pi\)
−0.354023 + 0.935237i \(0.615186\pi\)
\(954\) −1.23045 −0.0398372
\(955\) − 12.0000i − 0.388311i
\(956\) −36.5685 −1.18271
\(957\) − 42.6274i − 1.37795i
\(958\) 6.52691i 0.210875i
\(959\) 0.686292i 0.0221615i
\(960\) 14.2426 0.459679
\(961\) 13.0000 0.419355
\(962\) 7.59798i 0.244969i
\(963\) − 103.012i − 3.31952i
\(964\) − 23.4558i − 0.755462i
\(965\) 20.8284 0.670491
\(966\) − 2.82843i − 0.0910032i
\(967\) 1.02944 0.0331045 0.0165522 0.999863i \(-0.494731\pi\)
0.0165522 + 0.999863i \(0.494731\pi\)
\(968\) 6.84062 0.219866
\(969\) 0 0
\(970\) −1.51472 −0.0486347
\(971\) 8.20101 0.263183 0.131591 0.991304i \(-0.457991\pi\)
0.131591 + 0.991304i \(0.457991\pi\)
\(972\) 143.581i 4.60535i
\(973\) −10.4853 −0.336143
\(974\) − 1.61522i − 0.0517551i
\(975\) − 9.65685i − 0.309267i
\(976\) − 22.9706i − 0.735270i
\(977\) −59.2548 −1.89573 −0.947865 0.318672i \(-0.896763\pi\)
−0.947865 + 0.318672i \(0.896763\pi\)
\(978\) 0.828427 0.0264902
\(979\) − 6.05887i − 0.193642i
\(980\) 12.1716i 0.388807i
\(981\) − 149.882i − 4.78537i
\(982\) −6.82843 −0.217904
\(983\) − 41.3553i − 1.31903i −0.751691 0.659515i \(-0.770762\pi\)
0.751691 0.659515i \(-0.229238\pi\)
\(984\) 35.1127 1.11935
\(985\) −12.8284 −0.408748
\(986\) 0 0
\(987\) −9.65685 −0.307381
\(988\) 14.6274 0.465360
\(989\) − 26.1421i − 0.831272i
\(990\) 9.27208 0.294686
\(991\) 33.4142i 1.06144i 0.847548 + 0.530719i \(0.178078\pi\)
−0.847548 + 0.530719i \(0.821922\pi\)
\(992\) − 18.7279i − 0.594612i
\(993\) 91.5980i 2.90677i
\(994\) −1.02944 −0.0326518
\(995\) 24.2426 0.768543
\(996\) − 58.1421i − 1.84230i
\(997\) − 40.1421i − 1.27131i −0.771972 0.635657i \(-0.780729\pi\)
0.771972 0.635657i \(-0.219271\pi\)
\(998\) 5.07107i 0.160522i
\(999\) −125.255 −3.96289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.f.866.1 4
17.4 even 4 85.2.a.b.1.2 2
17.13 even 4 1445.2.a.f.1.2 2
17.16 even 2 inner 1445.2.d.f.866.2 4
51.38 odd 4 765.2.a.i.1.1 2
68.55 odd 4 1360.2.a.o.1.2 2
85.4 even 4 425.2.a.f.1.1 2
85.38 odd 4 425.2.b.e.324.2 4
85.64 even 4 7225.2.a.o.1.1 2
85.72 odd 4 425.2.b.e.324.3 4
119.55 odd 4 4165.2.a.q.1.2 2
136.21 even 4 5440.2.a.bm.1.2 2
136.123 odd 4 5440.2.a.ba.1.1 2
255.89 odd 4 3825.2.a.p.1.2 2
340.259 odd 4 6800.2.a.ba.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.b.1.2 2 17.4 even 4
425.2.a.f.1.1 2 85.4 even 4
425.2.b.e.324.2 4 85.38 odd 4
425.2.b.e.324.3 4 85.72 odd 4
765.2.a.i.1.1 2 51.38 odd 4
1360.2.a.o.1.2 2 68.55 odd 4
1445.2.a.f.1.2 2 17.13 even 4
1445.2.d.f.866.1 4 1.1 even 1 trivial
1445.2.d.f.866.2 4 17.16 even 2 inner
3825.2.a.p.1.2 2 255.89 odd 4
4165.2.a.q.1.2 2 119.55 odd 4
5440.2.a.ba.1.1 2 136.123 odd 4
5440.2.a.bm.1.2 2 136.21 even 4
6800.2.a.ba.1.1 2 340.259 odd 4
7225.2.a.o.1.1 2 85.64 even 4