Properties

Label 5440.2.a.bm.1.2
Level $5440$
Weight $2$
Character 5440.1
Self dual yes
Analytic conductor $43.439$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5440,2,Mod(1,5440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5440 = 2^{6} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4386186996\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.41421 q^{3} +1.00000 q^{5} -0.585786 q^{7} +8.65685 q^{9} +2.58579 q^{11} +2.82843 q^{13} +3.41421 q^{15} -1.00000 q^{17} +2.82843 q^{19} -2.00000 q^{21} -3.41421 q^{23} +1.00000 q^{25} +19.3137 q^{27} +4.82843 q^{29} +4.24264 q^{31} +8.82843 q^{33} -0.585786 q^{35} -6.48528 q^{37} +9.65685 q^{39} -6.48528 q^{41} -7.65685 q^{43} +8.65685 q^{45} -4.82843 q^{47} -6.65685 q^{49} -3.41421 q^{51} -0.343146 q^{53} +2.58579 q^{55} +9.65685 q^{57} +9.17157 q^{59} -7.65685 q^{61} -5.07107 q^{63} +2.82843 q^{65} +3.17157 q^{67} -11.6569 q^{69} -4.24264 q^{71} -4.82843 q^{73} +3.41421 q^{75} -1.51472 q^{77} +5.41421 q^{79} +39.9706 q^{81} -9.31371 q^{83} -1.00000 q^{85} +16.4853 q^{87} -2.34315 q^{89} -1.65685 q^{91} +14.4853 q^{93} +2.82843 q^{95} +3.65685 q^{97} +22.3848 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 2 q^{5} - 4 q^{7} + 6 q^{9} + 8 q^{11} + 4 q^{15} - 2 q^{17} - 4 q^{21} - 4 q^{23} + 2 q^{25} + 16 q^{27} + 4 q^{29} + 12 q^{33} - 4 q^{35} + 4 q^{37} + 8 q^{39} + 4 q^{41} - 4 q^{43} + 6 q^{45}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.41421 1.97120 0.985599 0.169102i \(-0.0540867\pi\)
0.985599 + 0.169102i \(0.0540867\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.585786 −0.221406 −0.110703 0.993854i \(-0.535310\pi\)
−0.110703 + 0.993854i \(0.535310\pi\)
\(8\) 0 0
\(9\) 8.65685 2.88562
\(10\) 0 0
\(11\) 2.58579 0.779644 0.389822 0.920890i \(-0.372537\pi\)
0.389822 + 0.920890i \(0.372537\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) 3.41421 0.881546
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −3.41421 −0.711913 −0.355956 0.934503i \(-0.615845\pi\)
−0.355956 + 0.934503i \(0.615845\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 19.3137 3.71692
\(28\) 0 0
\(29\) 4.82843 0.896616 0.448308 0.893879i \(-0.352027\pi\)
0.448308 + 0.893879i \(0.352027\pi\)
\(30\) 0 0
\(31\) 4.24264 0.762001 0.381000 0.924575i \(-0.375580\pi\)
0.381000 + 0.924575i \(0.375580\pi\)
\(32\) 0 0
\(33\) 8.82843 1.53683
\(34\) 0 0
\(35\) −0.585786 −0.0990160
\(36\) 0 0
\(37\) −6.48528 −1.06617 −0.533087 0.846061i \(-0.678968\pi\)
−0.533087 + 0.846061i \(0.678968\pi\)
\(38\) 0 0
\(39\) 9.65685 1.54633
\(40\) 0 0
\(41\) −6.48528 −1.01283 −0.506415 0.862290i \(-0.669030\pi\)
−0.506415 + 0.862290i \(0.669030\pi\)
\(42\) 0 0
\(43\) −7.65685 −1.16766 −0.583830 0.811876i \(-0.698446\pi\)
−0.583830 + 0.811876i \(0.698446\pi\)
\(44\) 0 0
\(45\) 8.65685 1.29049
\(46\) 0 0
\(47\) −4.82843 −0.704298 −0.352149 0.935944i \(-0.614549\pi\)
−0.352149 + 0.935944i \(0.614549\pi\)
\(48\) 0 0
\(49\) −6.65685 −0.950979
\(50\) 0 0
\(51\) −3.41421 −0.478086
\(52\) 0 0
\(53\) −0.343146 −0.0471347 −0.0235673 0.999722i \(-0.507502\pi\)
−0.0235673 + 0.999722i \(0.507502\pi\)
\(54\) 0 0
\(55\) 2.58579 0.348667
\(56\) 0 0
\(57\) 9.65685 1.27908
\(58\) 0 0
\(59\) 9.17157 1.19404 0.597019 0.802227i \(-0.296352\pi\)
0.597019 + 0.802227i \(0.296352\pi\)
\(60\) 0 0
\(61\) −7.65685 −0.980360 −0.490180 0.871621i \(-0.663069\pi\)
−0.490180 + 0.871621i \(0.663069\pi\)
\(62\) 0 0
\(63\) −5.07107 −0.638894
\(64\) 0 0
\(65\) 2.82843 0.350823
\(66\) 0 0
\(67\) 3.17157 0.387469 0.193735 0.981054i \(-0.437940\pi\)
0.193735 + 0.981054i \(0.437940\pi\)
\(68\) 0 0
\(69\) −11.6569 −1.40332
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 0 0
\(73\) −4.82843 −0.565125 −0.282562 0.959249i \(-0.591184\pi\)
−0.282562 + 0.959249i \(0.591184\pi\)
\(74\) 0 0
\(75\) 3.41421 0.394239
\(76\) 0 0
\(77\) −1.51472 −0.172618
\(78\) 0 0
\(79\) 5.41421 0.609147 0.304573 0.952489i \(-0.401486\pi\)
0.304573 + 0.952489i \(0.401486\pi\)
\(80\) 0 0
\(81\) 39.9706 4.44117
\(82\) 0 0
\(83\) −9.31371 −1.02231 −0.511156 0.859488i \(-0.670783\pi\)
−0.511156 + 0.859488i \(0.670783\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 0 0
\(87\) 16.4853 1.76741
\(88\) 0 0
\(89\) −2.34315 −0.248373 −0.124186 0.992259i \(-0.539632\pi\)
−0.124186 + 0.992259i \(0.539632\pi\)
\(90\) 0 0
\(91\) −1.65685 −0.173686
\(92\) 0 0
\(93\) 14.4853 1.50205
\(94\) 0 0
\(95\) 2.82843 0.290191
\(96\) 0 0
\(97\) 3.65685 0.371297 0.185649 0.982616i \(-0.440561\pi\)
0.185649 + 0.982616i \(0.440561\pi\)
\(98\) 0 0
\(99\) 22.3848 2.24975
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) −0.828427 −0.0816274 −0.0408137 0.999167i \(-0.512995\pi\)
−0.0408137 + 0.999167i \(0.512995\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −11.8995 −1.15037 −0.575184 0.818024i \(-0.695069\pi\)
−0.575184 + 0.818024i \(0.695069\pi\)
\(108\) 0 0
\(109\) 17.3137 1.65835 0.829176 0.558987i \(-0.188810\pi\)
0.829176 + 0.558987i \(0.188810\pi\)
\(110\) 0 0
\(111\) −22.1421 −2.10164
\(112\) 0 0
\(113\) −3.17157 −0.298356 −0.149178 0.988810i \(-0.547663\pi\)
−0.149178 + 0.988810i \(0.547663\pi\)
\(114\) 0 0
\(115\) −3.41421 −0.318377
\(116\) 0 0
\(117\) 24.4853 2.26367
\(118\) 0 0
\(119\) 0.585786 0.0536990
\(120\) 0 0
\(121\) −4.31371 −0.392155
\(122\) 0 0
\(123\) −22.1421 −1.99649
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −17.3137 −1.53634 −0.768172 0.640244i \(-0.778833\pi\)
−0.768172 + 0.640244i \(0.778833\pi\)
\(128\) 0 0
\(129\) −26.1421 −2.30169
\(130\) 0 0
\(131\) 13.8995 1.21440 0.607202 0.794547i \(-0.292292\pi\)
0.607202 + 0.794547i \(0.292292\pi\)
\(132\) 0 0
\(133\) −1.65685 −0.143667
\(134\) 0 0
\(135\) 19.3137 1.66226
\(136\) 0 0
\(137\) 1.17157 0.100094 0.0500471 0.998747i \(-0.484063\pi\)
0.0500471 + 0.998747i \(0.484063\pi\)
\(138\) 0 0
\(139\) −17.8995 −1.51822 −0.759108 0.650965i \(-0.774364\pi\)
−0.759108 + 0.650965i \(0.774364\pi\)
\(140\) 0 0
\(141\) −16.4853 −1.38831
\(142\) 0 0
\(143\) 7.31371 0.611603
\(144\) 0 0
\(145\) 4.82843 0.400979
\(146\) 0 0
\(147\) −22.7279 −1.87457
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 7.51472 0.611539 0.305770 0.952106i \(-0.401086\pi\)
0.305770 + 0.952106i \(0.401086\pi\)
\(152\) 0 0
\(153\) −8.65685 −0.699865
\(154\) 0 0
\(155\) 4.24264 0.340777
\(156\) 0 0
\(157\) 21.3137 1.70102 0.850510 0.525960i \(-0.176294\pi\)
0.850510 + 0.525960i \(0.176294\pi\)
\(158\) 0 0
\(159\) −1.17157 −0.0929118
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −0.585786 −0.0458823 −0.0229412 0.999737i \(-0.507303\pi\)
−0.0229412 + 0.999737i \(0.507303\pi\)
\(164\) 0 0
\(165\) 8.82843 0.687292
\(166\) 0 0
\(167\) 2.24264 0.173541 0.0867704 0.996228i \(-0.472345\pi\)
0.0867704 + 0.996228i \(0.472345\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 24.4853 1.87244
\(172\) 0 0
\(173\) −12.8284 −0.975327 −0.487664 0.873032i \(-0.662151\pi\)
−0.487664 + 0.873032i \(0.662151\pi\)
\(174\) 0 0
\(175\) −0.585786 −0.0442813
\(176\) 0 0
\(177\) 31.3137 2.35368
\(178\) 0 0
\(179\) 6.82843 0.510381 0.255190 0.966891i \(-0.417862\pi\)
0.255190 + 0.966891i \(0.417862\pi\)
\(180\) 0 0
\(181\) −2.48528 −0.184730 −0.0923648 0.995725i \(-0.529443\pi\)
−0.0923648 + 0.995725i \(0.529443\pi\)
\(182\) 0 0
\(183\) −26.1421 −1.93248
\(184\) 0 0
\(185\) −6.48528 −0.476807
\(186\) 0 0
\(187\) −2.58579 −0.189091
\(188\) 0 0
\(189\) −11.3137 −0.822951
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −20.8284 −1.49926 −0.749631 0.661855i \(-0.769769\pi\)
−0.749631 + 0.661855i \(0.769769\pi\)
\(194\) 0 0
\(195\) 9.65685 0.691542
\(196\) 0 0
\(197\) −12.8284 −0.913988 −0.456994 0.889470i \(-0.651074\pi\)
−0.456994 + 0.889470i \(0.651074\pi\)
\(198\) 0 0
\(199\) 24.2426 1.71852 0.859258 0.511543i \(-0.170926\pi\)
0.859258 + 0.511543i \(0.170926\pi\)
\(200\) 0 0
\(201\) 10.8284 0.763778
\(202\) 0 0
\(203\) −2.82843 −0.198517
\(204\) 0 0
\(205\) −6.48528 −0.452952
\(206\) 0 0
\(207\) −29.5563 −2.05431
\(208\) 0 0
\(209\) 7.31371 0.505900
\(210\) 0 0
\(211\) 2.10051 0.144605 0.0723024 0.997383i \(-0.476965\pi\)
0.0723024 + 0.997383i \(0.476965\pi\)
\(212\) 0 0
\(213\) −14.4853 −0.992515
\(214\) 0 0
\(215\) −7.65685 −0.522193
\(216\) 0 0
\(217\) −2.48528 −0.168712
\(218\) 0 0
\(219\) −16.4853 −1.11397
\(220\) 0 0
\(221\) −2.82843 −0.190261
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) 8.65685 0.577124
\(226\) 0 0
\(227\) 22.7279 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(228\) 0 0
\(229\) 0.686292 0.0453514 0.0226757 0.999743i \(-0.492781\pi\)
0.0226757 + 0.999743i \(0.492781\pi\)
\(230\) 0 0
\(231\) −5.17157 −0.340265
\(232\) 0 0
\(233\) 9.31371 0.610161 0.305081 0.952327i \(-0.401317\pi\)
0.305081 + 0.952327i \(0.401317\pi\)
\(234\) 0 0
\(235\) −4.82843 −0.314972
\(236\) 0 0
\(237\) 18.4853 1.20075
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 12.8284 0.826352 0.413176 0.910651i \(-0.364419\pi\)
0.413176 + 0.910651i \(0.364419\pi\)
\(242\) 0 0
\(243\) 78.5269 5.03750
\(244\) 0 0
\(245\) −6.65685 −0.425291
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −31.7990 −2.01518
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −8.82843 −0.555038
\(254\) 0 0
\(255\) −3.41421 −0.213806
\(256\) 0 0
\(257\) −2.82843 −0.176432 −0.0882162 0.996101i \(-0.528117\pi\)
−0.0882162 + 0.996101i \(0.528117\pi\)
\(258\) 0 0
\(259\) 3.79899 0.236058
\(260\) 0 0
\(261\) 41.7990 2.58729
\(262\) 0 0
\(263\) 9.31371 0.574308 0.287154 0.957884i \(-0.407291\pi\)
0.287154 + 0.957884i \(0.407291\pi\)
\(264\) 0 0
\(265\) −0.343146 −0.0210793
\(266\) 0 0
\(267\) −8.00000 −0.489592
\(268\) 0 0
\(269\) −18.9706 −1.15666 −0.578328 0.815804i \(-0.696295\pi\)
−0.578328 + 0.815804i \(0.696295\pi\)
\(270\) 0 0
\(271\) −13.6569 −0.829595 −0.414797 0.909914i \(-0.636148\pi\)
−0.414797 + 0.909914i \(0.636148\pi\)
\(272\) 0 0
\(273\) −5.65685 −0.342368
\(274\) 0 0
\(275\) 2.58579 0.155929
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 36.7279 2.19884
\(280\) 0 0
\(281\) −4.34315 −0.259090 −0.129545 0.991574i \(-0.541352\pi\)
−0.129545 + 0.991574i \(0.541352\pi\)
\(282\) 0 0
\(283\) −14.2426 −0.846637 −0.423319 0.905981i \(-0.639135\pi\)
−0.423319 + 0.905981i \(0.639135\pi\)
\(284\) 0 0
\(285\) 9.65685 0.572023
\(286\) 0 0
\(287\) 3.79899 0.224247
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.4853 0.731900
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 9.17157 0.533990
\(296\) 0 0
\(297\) 49.9411 2.89788
\(298\) 0 0
\(299\) −9.65685 −0.558470
\(300\) 0 0
\(301\) 4.48528 0.258527
\(302\) 0 0
\(303\) 27.3137 1.56913
\(304\) 0 0
\(305\) −7.65685 −0.438430
\(306\) 0 0
\(307\) 16.8284 0.960449 0.480225 0.877146i \(-0.340555\pi\)
0.480225 + 0.877146i \(0.340555\pi\)
\(308\) 0 0
\(309\) −2.82843 −0.160904
\(310\) 0 0
\(311\) 15.0711 0.854602 0.427301 0.904109i \(-0.359464\pi\)
0.427301 + 0.904109i \(0.359464\pi\)
\(312\) 0 0
\(313\) −5.79899 −0.327778 −0.163889 0.986479i \(-0.552404\pi\)
−0.163889 + 0.986479i \(0.552404\pi\)
\(314\) 0 0
\(315\) −5.07107 −0.285722
\(316\) 0 0
\(317\) 21.3137 1.19710 0.598549 0.801087i \(-0.295744\pi\)
0.598549 + 0.801087i \(0.295744\pi\)
\(318\) 0 0
\(319\) 12.4853 0.699042
\(320\) 0 0
\(321\) −40.6274 −2.26760
\(322\) 0 0
\(323\) −2.82843 −0.157378
\(324\) 0 0
\(325\) 2.82843 0.156893
\(326\) 0 0
\(327\) 59.1127 3.26894
\(328\) 0 0
\(329\) 2.82843 0.155936
\(330\) 0 0
\(331\) −26.8284 −1.47462 −0.737312 0.675553i \(-0.763905\pi\)
−0.737312 + 0.675553i \(0.763905\pi\)
\(332\) 0 0
\(333\) −56.1421 −3.07657
\(334\) 0 0
\(335\) 3.17157 0.173282
\(336\) 0 0
\(337\) −20.6274 −1.12365 −0.561824 0.827257i \(-0.689900\pi\)
−0.561824 + 0.827257i \(0.689900\pi\)
\(338\) 0 0
\(339\) −10.8284 −0.588119
\(340\) 0 0
\(341\) 10.9706 0.594089
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) −11.6569 −0.627584
\(346\) 0 0
\(347\) 23.6985 1.27220 0.636101 0.771606i \(-0.280546\pi\)
0.636101 + 0.771606i \(0.280546\pi\)
\(348\) 0 0
\(349\) −31.6569 −1.69455 −0.847276 0.531152i \(-0.821759\pi\)
−0.847276 + 0.531152i \(0.821759\pi\)
\(350\) 0 0
\(351\) 54.6274 2.91580
\(352\) 0 0
\(353\) −27.6569 −1.47203 −0.736013 0.676967i \(-0.763294\pi\)
−0.736013 + 0.676967i \(0.763294\pi\)
\(354\) 0 0
\(355\) −4.24264 −0.225176
\(356\) 0 0
\(357\) 2.00000 0.105851
\(358\) 0 0
\(359\) −31.7990 −1.67829 −0.839143 0.543910i \(-0.816943\pi\)
−0.839143 + 0.543910i \(0.816943\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) −14.7279 −0.773015
\(364\) 0 0
\(365\) −4.82843 −0.252731
\(366\) 0 0
\(367\) −14.2426 −0.743460 −0.371730 0.928341i \(-0.621235\pi\)
−0.371730 + 0.928341i \(0.621235\pi\)
\(368\) 0 0
\(369\) −56.1421 −2.92264
\(370\) 0 0
\(371\) 0.201010 0.0104359
\(372\) 0 0
\(373\) −11.7990 −0.610929 −0.305464 0.952204i \(-0.598812\pi\)
−0.305464 + 0.952204i \(0.598812\pi\)
\(374\) 0 0
\(375\) 3.41421 0.176309
\(376\) 0 0
\(377\) 13.6569 0.703364
\(378\) 0 0
\(379\) 26.8701 1.38022 0.690111 0.723703i \(-0.257562\pi\)
0.690111 + 0.723703i \(0.257562\pi\)
\(380\) 0 0
\(381\) −59.1127 −3.02844
\(382\) 0 0
\(383\) −34.2843 −1.75184 −0.875922 0.482452i \(-0.839746\pi\)
−0.875922 + 0.482452i \(0.839746\pi\)
\(384\) 0 0
\(385\) −1.51472 −0.0771972
\(386\) 0 0
\(387\) −66.2843 −3.36942
\(388\) 0 0
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) 0 0
\(391\) 3.41421 0.172664
\(392\) 0 0
\(393\) 47.4558 2.39383
\(394\) 0 0
\(395\) 5.41421 0.272419
\(396\) 0 0
\(397\) −13.3137 −0.668196 −0.334098 0.942538i \(-0.608432\pi\)
−0.334098 + 0.942538i \(0.608432\pi\)
\(398\) 0 0
\(399\) −5.65685 −0.283197
\(400\) 0 0
\(401\) −16.3431 −0.816138 −0.408069 0.912951i \(-0.633798\pi\)
−0.408069 + 0.912951i \(0.633798\pi\)
\(402\) 0 0
\(403\) 12.0000 0.597763
\(404\) 0 0
\(405\) 39.9706 1.98615
\(406\) 0 0
\(407\) −16.7696 −0.831236
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 4.00000 0.197305
\(412\) 0 0
\(413\) −5.37258 −0.264368
\(414\) 0 0
\(415\) −9.31371 −0.457192
\(416\) 0 0
\(417\) −61.1127 −2.99270
\(418\) 0 0
\(419\) −12.2426 −0.598092 −0.299046 0.954239i \(-0.596668\pi\)
−0.299046 + 0.954239i \(0.596668\pi\)
\(420\) 0 0
\(421\) 28.9706 1.41194 0.705969 0.708242i \(-0.250512\pi\)
0.705969 + 0.708242i \(0.250512\pi\)
\(422\) 0 0
\(423\) −41.7990 −2.03234
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 4.48528 0.217058
\(428\) 0 0
\(429\) 24.9706 1.20559
\(430\) 0 0
\(431\) 1.41421 0.0681203 0.0340601 0.999420i \(-0.489156\pi\)
0.0340601 + 0.999420i \(0.489156\pi\)
\(432\) 0 0
\(433\) 2.82843 0.135926 0.0679628 0.997688i \(-0.478350\pi\)
0.0679628 + 0.997688i \(0.478350\pi\)
\(434\) 0 0
\(435\) 16.4853 0.790409
\(436\) 0 0
\(437\) −9.65685 −0.461950
\(438\) 0 0
\(439\) 5.41421 0.258406 0.129203 0.991618i \(-0.458758\pi\)
0.129203 + 0.991618i \(0.458758\pi\)
\(440\) 0 0
\(441\) −57.6274 −2.74416
\(442\) 0 0
\(443\) 14.4853 0.688216 0.344108 0.938930i \(-0.388181\pi\)
0.344108 + 0.938930i \(0.388181\pi\)
\(444\) 0 0
\(445\) −2.34315 −0.111076
\(446\) 0 0
\(447\) −6.82843 −0.322974
\(448\) 0 0
\(449\) −26.4853 −1.24992 −0.624959 0.780658i \(-0.714884\pi\)
−0.624959 + 0.780658i \(0.714884\pi\)
\(450\) 0 0
\(451\) −16.7696 −0.789647
\(452\) 0 0
\(453\) 25.6569 1.20546
\(454\) 0 0
\(455\) −1.65685 −0.0776745
\(456\) 0 0
\(457\) 39.1127 1.82961 0.914807 0.403890i \(-0.132342\pi\)
0.914807 + 0.403890i \(0.132342\pi\)
\(458\) 0 0
\(459\) −19.3137 −0.901487
\(460\) 0 0
\(461\) −41.5980 −1.93741 −0.968706 0.248213i \(-0.920157\pi\)
−0.968706 + 0.248213i \(0.920157\pi\)
\(462\) 0 0
\(463\) −3.17157 −0.147395 −0.0736977 0.997281i \(-0.523480\pi\)
−0.0736977 + 0.997281i \(0.523480\pi\)
\(464\) 0 0
\(465\) 14.4853 0.671739
\(466\) 0 0
\(467\) 0.343146 0.0158789 0.00793945 0.999968i \(-0.497473\pi\)
0.00793945 + 0.999968i \(0.497473\pi\)
\(468\) 0 0
\(469\) −1.85786 −0.0857882
\(470\) 0 0
\(471\) 72.7696 3.35304
\(472\) 0 0
\(473\) −19.7990 −0.910359
\(474\) 0 0
\(475\) 2.82843 0.129777
\(476\) 0 0
\(477\) −2.97056 −0.136013
\(478\) 0 0
\(479\) −15.7574 −0.719972 −0.359986 0.932958i \(-0.617219\pi\)
−0.359986 + 0.932958i \(0.617219\pi\)
\(480\) 0 0
\(481\) −18.3431 −0.836375
\(482\) 0 0
\(483\) 6.82843 0.310704
\(484\) 0 0
\(485\) 3.65685 0.166049
\(486\) 0 0
\(487\) −3.89949 −0.176703 −0.0883515 0.996089i \(-0.528160\pi\)
−0.0883515 + 0.996089i \(0.528160\pi\)
\(488\) 0 0
\(489\) −2.00000 −0.0904431
\(490\) 0 0
\(491\) 16.4853 0.743970 0.371985 0.928239i \(-0.378677\pi\)
0.371985 + 0.928239i \(0.378677\pi\)
\(492\) 0 0
\(493\) −4.82843 −0.217461
\(494\) 0 0
\(495\) 22.3848 1.00612
\(496\) 0 0
\(497\) 2.48528 0.111480
\(498\) 0 0
\(499\) −12.2426 −0.548056 −0.274028 0.961722i \(-0.588356\pi\)
−0.274028 + 0.961722i \(0.588356\pi\)
\(500\) 0 0
\(501\) 7.65685 0.342083
\(502\) 0 0
\(503\) 31.6985 1.41337 0.706683 0.707531i \(-0.250191\pi\)
0.706683 + 0.707531i \(0.250191\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 0 0
\(507\) −17.0711 −0.758153
\(508\) 0 0
\(509\) −20.6274 −0.914294 −0.457147 0.889391i \(-0.651129\pi\)
−0.457147 + 0.889391i \(0.651129\pi\)
\(510\) 0 0
\(511\) 2.82843 0.125122
\(512\) 0 0
\(513\) 54.6274 2.41186
\(514\) 0 0
\(515\) −0.828427 −0.0365049
\(516\) 0 0
\(517\) −12.4853 −0.549102
\(518\) 0 0
\(519\) −43.7990 −1.92256
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 0.142136 0.00621516 0.00310758 0.999995i \(-0.499011\pi\)
0.00310758 + 0.999995i \(0.499011\pi\)
\(524\) 0 0
\(525\) −2.00000 −0.0872872
\(526\) 0 0
\(527\) −4.24264 −0.184812
\(528\) 0 0
\(529\) −11.3431 −0.493180
\(530\) 0 0
\(531\) 79.3970 3.44554
\(532\) 0 0
\(533\) −18.3431 −0.794530
\(534\) 0 0
\(535\) −11.8995 −0.514460
\(536\) 0 0
\(537\) 23.3137 1.00606
\(538\) 0 0
\(539\) −17.2132 −0.741425
\(540\) 0 0
\(541\) 42.7696 1.83881 0.919403 0.393316i \(-0.128672\pi\)
0.919403 + 0.393316i \(0.128672\pi\)
\(542\) 0 0
\(543\) −8.48528 −0.364138
\(544\) 0 0
\(545\) 17.3137 0.741638
\(546\) 0 0
\(547\) −7.21320 −0.308414 −0.154207 0.988039i \(-0.549282\pi\)
−0.154207 + 0.988039i \(0.549282\pi\)
\(548\) 0 0
\(549\) −66.2843 −2.82894
\(550\) 0 0
\(551\) 13.6569 0.581802
\(552\) 0 0
\(553\) −3.17157 −0.134869
\(554\) 0 0
\(555\) −22.1421 −0.939881
\(556\) 0 0
\(557\) −26.8284 −1.13676 −0.568378 0.822767i \(-0.692429\pi\)
−0.568378 + 0.822767i \(0.692429\pi\)
\(558\) 0 0
\(559\) −21.6569 −0.915987
\(560\) 0 0
\(561\) −8.82843 −0.372736
\(562\) 0 0
\(563\) 20.3431 0.857361 0.428681 0.903456i \(-0.358979\pi\)
0.428681 + 0.903456i \(0.358979\pi\)
\(564\) 0 0
\(565\) −3.17157 −0.133429
\(566\) 0 0
\(567\) −23.4142 −0.983305
\(568\) 0 0
\(569\) −26.2843 −1.10189 −0.550947 0.834540i \(-0.685733\pi\)
−0.550947 + 0.834540i \(0.685733\pi\)
\(570\) 0 0
\(571\) 4.44365 0.185961 0.0929805 0.995668i \(-0.470361\pi\)
0.0929805 + 0.995668i \(0.470361\pi\)
\(572\) 0 0
\(573\) 40.9706 1.71157
\(574\) 0 0
\(575\) −3.41421 −0.142383
\(576\) 0 0
\(577\) 22.8284 0.950360 0.475180 0.879889i \(-0.342383\pi\)
0.475180 + 0.879889i \(0.342383\pi\)
\(578\) 0 0
\(579\) −71.1127 −2.95534
\(580\) 0 0
\(581\) 5.45584 0.226347
\(582\) 0 0
\(583\) −0.887302 −0.0367483
\(584\) 0 0
\(585\) 24.4853 1.01234
\(586\) 0 0
\(587\) −28.6274 −1.18158 −0.590790 0.806825i \(-0.701184\pi\)
−0.590790 + 0.806825i \(0.701184\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) −43.7990 −1.80165
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0.585786 0.0240149
\(596\) 0 0
\(597\) 82.7696 3.38753
\(598\) 0 0
\(599\) 45.9411 1.87710 0.938552 0.345139i \(-0.112168\pi\)
0.938552 + 0.345139i \(0.112168\pi\)
\(600\) 0 0
\(601\) −25.7990 −1.05236 −0.526181 0.850372i \(-0.676377\pi\)
−0.526181 + 0.850372i \(0.676377\pi\)
\(602\) 0 0
\(603\) 27.4558 1.11809
\(604\) 0 0
\(605\) −4.31371 −0.175377
\(606\) 0 0
\(607\) −4.58579 −0.186131 −0.0930657 0.995660i \(-0.529667\pi\)
−0.0930657 + 0.995660i \(0.529667\pi\)
\(608\) 0 0
\(609\) −9.65685 −0.391315
\(610\) 0 0
\(611\) −13.6569 −0.552497
\(612\) 0 0
\(613\) 46.9706 1.89712 0.948562 0.316593i \(-0.102539\pi\)
0.948562 + 0.316593i \(0.102539\pi\)
\(614\) 0 0
\(615\) −22.1421 −0.892857
\(616\) 0 0
\(617\) 25.5147 1.02718 0.513592 0.858035i \(-0.328315\pi\)
0.513592 + 0.858035i \(0.328315\pi\)
\(618\) 0 0
\(619\) 16.9289 0.680431 0.340216 0.940347i \(-0.389500\pi\)
0.340216 + 0.940347i \(0.389500\pi\)
\(620\) 0 0
\(621\) −65.9411 −2.64613
\(622\) 0 0
\(623\) 1.37258 0.0549914
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 24.9706 0.997228
\(628\) 0 0
\(629\) 6.48528 0.258585
\(630\) 0 0
\(631\) −15.7990 −0.628948 −0.314474 0.949266i \(-0.601828\pi\)
−0.314474 + 0.949266i \(0.601828\pi\)
\(632\) 0 0
\(633\) 7.17157 0.285044
\(634\) 0 0
\(635\) −17.3137 −0.687074
\(636\) 0 0
\(637\) −18.8284 −0.746009
\(638\) 0 0
\(639\) −36.7279 −1.45293
\(640\) 0 0
\(641\) 28.1421 1.11155 0.555774 0.831334i \(-0.312422\pi\)
0.555774 + 0.831334i \(0.312422\pi\)
\(642\) 0 0
\(643\) 47.6985 1.88104 0.940522 0.339732i \(-0.110336\pi\)
0.940522 + 0.339732i \(0.110336\pi\)
\(644\) 0 0
\(645\) −26.1421 −1.02935
\(646\) 0 0
\(647\) −20.8284 −0.818850 −0.409425 0.912344i \(-0.634271\pi\)
−0.409425 + 0.912344i \(0.634271\pi\)
\(648\) 0 0
\(649\) 23.7157 0.930924
\(650\) 0 0
\(651\) −8.48528 −0.332564
\(652\) 0 0
\(653\) −18.4853 −0.723385 −0.361692 0.932297i \(-0.617801\pi\)
−0.361692 + 0.932297i \(0.617801\pi\)
\(654\) 0 0
\(655\) 13.8995 0.543098
\(656\) 0 0
\(657\) −41.7990 −1.63073
\(658\) 0 0
\(659\) 4.68629 0.182552 0.0912760 0.995826i \(-0.470905\pi\)
0.0912760 + 0.995826i \(0.470905\pi\)
\(660\) 0 0
\(661\) −13.3137 −0.517843 −0.258922 0.965898i \(-0.583367\pi\)
−0.258922 + 0.965898i \(0.583367\pi\)
\(662\) 0 0
\(663\) −9.65685 −0.375041
\(664\) 0 0
\(665\) −1.65685 −0.0642501
\(666\) 0 0
\(667\) −16.4853 −0.638313
\(668\) 0 0
\(669\) 20.4853 0.792007
\(670\) 0 0
\(671\) −19.7990 −0.764332
\(672\) 0 0
\(673\) −28.1421 −1.08480 −0.542400 0.840120i \(-0.682484\pi\)
−0.542400 + 0.840120i \(0.682484\pi\)
\(674\) 0 0
\(675\) 19.3137 0.743385
\(676\) 0 0
\(677\) −4.62742 −0.177846 −0.0889230 0.996038i \(-0.528343\pi\)
−0.0889230 + 0.996038i \(0.528343\pi\)
\(678\) 0 0
\(679\) −2.14214 −0.0822076
\(680\) 0 0
\(681\) 77.5980 2.97356
\(682\) 0 0
\(683\) 14.7279 0.563548 0.281774 0.959481i \(-0.409077\pi\)
0.281774 + 0.959481i \(0.409077\pi\)
\(684\) 0 0
\(685\) 1.17157 0.0447635
\(686\) 0 0
\(687\) 2.34315 0.0893966
\(688\) 0 0
\(689\) −0.970563 −0.0369755
\(690\) 0 0
\(691\) 17.2132 0.654821 0.327411 0.944882i \(-0.393824\pi\)
0.327411 + 0.944882i \(0.393824\pi\)
\(692\) 0 0
\(693\) −13.1127 −0.498110
\(694\) 0 0
\(695\) −17.8995 −0.678967
\(696\) 0 0
\(697\) 6.48528 0.245648
\(698\) 0 0
\(699\) 31.7990 1.20275
\(700\) 0 0
\(701\) −30.3431 −1.14604 −0.573022 0.819540i \(-0.694229\pi\)
−0.573022 + 0.819540i \(0.694229\pi\)
\(702\) 0 0
\(703\) −18.3431 −0.691825
\(704\) 0 0
\(705\) −16.4853 −0.620872
\(706\) 0 0
\(707\) −4.68629 −0.176246
\(708\) 0 0
\(709\) −25.7990 −0.968901 −0.484451 0.874819i \(-0.660981\pi\)
−0.484451 + 0.874819i \(0.660981\pi\)
\(710\) 0 0
\(711\) 46.8701 1.75776
\(712\) 0 0
\(713\) −14.4853 −0.542478
\(714\) 0 0
\(715\) 7.31371 0.273517
\(716\) 0 0
\(717\) 68.2843 2.55012
\(718\) 0 0
\(719\) −53.4975 −1.99512 −0.997560 0.0698205i \(-0.977757\pi\)
−0.997560 + 0.0698205i \(0.977757\pi\)
\(720\) 0 0
\(721\) 0.485281 0.0180728
\(722\) 0 0
\(723\) 43.7990 1.62890
\(724\) 0 0
\(725\) 4.82843 0.179323
\(726\) 0 0
\(727\) 11.4558 0.424874 0.212437 0.977175i \(-0.431860\pi\)
0.212437 + 0.977175i \(0.431860\pi\)
\(728\) 0 0
\(729\) 148.196 5.48874
\(730\) 0 0
\(731\) 7.65685 0.283199
\(732\) 0 0
\(733\) −46.2843 −1.70955 −0.854774 0.519000i \(-0.826304\pi\)
−0.854774 + 0.519000i \(0.826304\pi\)
\(734\) 0 0
\(735\) −22.7279 −0.838332
\(736\) 0 0
\(737\) 8.20101 0.302088
\(738\) 0 0
\(739\) −27.7990 −1.02260 −0.511301 0.859402i \(-0.670836\pi\)
−0.511301 + 0.859402i \(0.670836\pi\)
\(740\) 0 0
\(741\) 27.3137 1.00339
\(742\) 0 0
\(743\) 14.0416 0.515137 0.257569 0.966260i \(-0.417079\pi\)
0.257569 + 0.966260i \(0.417079\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 0 0
\(747\) −80.6274 −2.95000
\(748\) 0 0
\(749\) 6.97056 0.254699
\(750\) 0 0
\(751\) −46.1838 −1.68527 −0.842635 0.538485i \(-0.818997\pi\)
−0.842635 + 0.538485i \(0.818997\pi\)
\(752\) 0 0
\(753\) 40.9706 1.49305
\(754\) 0 0
\(755\) 7.51472 0.273489
\(756\) 0 0
\(757\) −41.1716 −1.49641 −0.748203 0.663470i \(-0.769083\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(758\) 0 0
\(759\) −30.1421 −1.09409
\(760\) 0 0
\(761\) 12.6863 0.459878 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(762\) 0 0
\(763\) −10.1421 −0.367170
\(764\) 0 0
\(765\) −8.65685 −0.312989
\(766\) 0 0
\(767\) 25.9411 0.936680
\(768\) 0 0
\(769\) −34.3431 −1.23845 −0.619223 0.785215i \(-0.712552\pi\)
−0.619223 + 0.785215i \(0.712552\pi\)
\(770\) 0 0
\(771\) −9.65685 −0.347783
\(772\) 0 0
\(773\) −27.1127 −0.975176 −0.487588 0.873074i \(-0.662123\pi\)
−0.487588 + 0.873074i \(0.662123\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) 0 0
\(777\) 12.9706 0.465316
\(778\) 0 0
\(779\) −18.3431 −0.657211
\(780\) 0 0
\(781\) −10.9706 −0.392558
\(782\) 0 0
\(783\) 93.2548 3.33266
\(784\) 0 0
\(785\) 21.3137 0.760719
\(786\) 0 0
\(787\) 31.2132 1.11263 0.556315 0.830971i \(-0.312215\pi\)
0.556315 + 0.830971i \(0.312215\pi\)
\(788\) 0 0
\(789\) 31.7990 1.13207
\(790\) 0 0
\(791\) 1.85786 0.0660581
\(792\) 0 0
\(793\) −21.6569 −0.769057
\(794\) 0 0
\(795\) −1.17157 −0.0415514
\(796\) 0 0
\(797\) 36.6274 1.29741 0.648705 0.761040i \(-0.275311\pi\)
0.648705 + 0.761040i \(0.275311\pi\)
\(798\) 0 0
\(799\) 4.82843 0.170817
\(800\) 0 0
\(801\) −20.2843 −0.716709
\(802\) 0 0
\(803\) −12.4853 −0.440596
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) −64.7696 −2.28000
\(808\) 0 0
\(809\) −31.6569 −1.11300 −0.556498 0.830849i \(-0.687855\pi\)
−0.556498 + 0.830849i \(0.687855\pi\)
\(810\) 0 0
\(811\) −18.5858 −0.652635 −0.326318 0.945260i \(-0.605808\pi\)
−0.326318 + 0.945260i \(0.605808\pi\)
\(812\) 0 0
\(813\) −46.6274 −1.63529
\(814\) 0 0
\(815\) −0.585786 −0.0205192
\(816\) 0 0
\(817\) −21.6569 −0.757677
\(818\) 0 0
\(819\) −14.3431 −0.501190
\(820\) 0 0
\(821\) −36.6274 −1.27831 −0.639153 0.769080i \(-0.720715\pi\)
−0.639153 + 0.769080i \(0.720715\pi\)
\(822\) 0 0
\(823\) −25.0711 −0.873922 −0.436961 0.899480i \(-0.643945\pi\)
−0.436961 + 0.899480i \(0.643945\pi\)
\(824\) 0 0
\(825\) 8.82843 0.307366
\(826\) 0 0
\(827\) 29.5563 1.02777 0.513887 0.857858i \(-0.328205\pi\)
0.513887 + 0.857858i \(0.328205\pi\)
\(828\) 0 0
\(829\) −39.9411 −1.38721 −0.693606 0.720354i \(-0.743979\pi\)
−0.693606 + 0.720354i \(0.743979\pi\)
\(830\) 0 0
\(831\) 34.1421 1.18438
\(832\) 0 0
\(833\) 6.65685 0.230646
\(834\) 0 0
\(835\) 2.24264 0.0776098
\(836\) 0 0
\(837\) 81.9411 2.83230
\(838\) 0 0
\(839\) 42.1838 1.45635 0.728173 0.685394i \(-0.240370\pi\)
0.728173 + 0.685394i \(0.240370\pi\)
\(840\) 0 0
\(841\) −5.68629 −0.196079
\(842\) 0 0
\(843\) −14.8284 −0.510718
\(844\) 0 0
\(845\) −5.00000 −0.172005
\(846\) 0 0
\(847\) 2.52691 0.0868257
\(848\) 0 0
\(849\) −48.6274 −1.66889
\(850\) 0 0
\(851\) 22.1421 0.759023
\(852\) 0 0
\(853\) 31.1716 1.06729 0.533647 0.845707i \(-0.320821\pi\)
0.533647 + 0.845707i \(0.320821\pi\)
\(854\) 0 0
\(855\) 24.4853 0.837379
\(856\) 0 0
\(857\) 13.5147 0.461654 0.230827 0.972995i \(-0.425857\pi\)
0.230827 + 0.972995i \(0.425857\pi\)
\(858\) 0 0
\(859\) −36.7696 −1.25456 −0.627280 0.778793i \(-0.715832\pi\)
−0.627280 + 0.778793i \(0.715832\pi\)
\(860\) 0 0
\(861\) 12.9706 0.442036
\(862\) 0 0
\(863\) 6.48528 0.220762 0.110381 0.993889i \(-0.464793\pi\)
0.110381 + 0.993889i \(0.464793\pi\)
\(864\) 0 0
\(865\) −12.8284 −0.436180
\(866\) 0 0
\(867\) 3.41421 0.115953
\(868\) 0 0
\(869\) 14.0000 0.474917
\(870\) 0 0
\(871\) 8.97056 0.303956
\(872\) 0 0
\(873\) 31.6569 1.07142
\(874\) 0 0
\(875\) −0.585786 −0.0198032
\(876\) 0 0
\(877\) 2.28427 0.0771344 0.0385672 0.999256i \(-0.487721\pi\)
0.0385672 + 0.999256i \(0.487721\pi\)
\(878\) 0 0
\(879\) −61.4558 −2.07285
\(880\) 0 0
\(881\) 48.1421 1.62195 0.810975 0.585081i \(-0.198937\pi\)
0.810975 + 0.585081i \(0.198937\pi\)
\(882\) 0 0
\(883\) −15.1716 −0.510564 −0.255282 0.966867i \(-0.582168\pi\)
−0.255282 + 0.966867i \(0.582168\pi\)
\(884\) 0 0
\(885\) 31.3137 1.05260
\(886\) 0 0
\(887\) −14.9289 −0.501264 −0.250632 0.968082i \(-0.580638\pi\)
−0.250632 + 0.968082i \(0.580638\pi\)
\(888\) 0 0
\(889\) 10.1421 0.340156
\(890\) 0 0
\(891\) 103.355 3.46253
\(892\) 0 0
\(893\) −13.6569 −0.457009
\(894\) 0 0
\(895\) 6.82843 0.228249
\(896\) 0 0
\(897\) −32.9706 −1.10086
\(898\) 0 0
\(899\) 20.4853 0.683222
\(900\) 0 0
\(901\) 0.343146 0.0114318
\(902\) 0 0
\(903\) 15.3137 0.509608
\(904\) 0 0
\(905\) −2.48528 −0.0826135
\(906\) 0 0
\(907\) 6.72792 0.223397 0.111698 0.993742i \(-0.464371\pi\)
0.111698 + 0.993742i \(0.464371\pi\)
\(908\) 0 0
\(909\) 69.2548 2.29704
\(910\) 0 0
\(911\) 12.2426 0.405617 0.202808 0.979218i \(-0.434993\pi\)
0.202808 + 0.979218i \(0.434993\pi\)
\(912\) 0 0
\(913\) −24.0833 −0.797040
\(914\) 0 0
\(915\) −26.1421 −0.864232
\(916\) 0 0
\(917\) −8.14214 −0.268877
\(918\) 0 0
\(919\) 40.9706 1.35149 0.675747 0.737134i \(-0.263821\pi\)
0.675747 + 0.737134i \(0.263821\pi\)
\(920\) 0 0
\(921\) 57.4558 1.89323
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −6.48528 −0.213235
\(926\) 0 0
\(927\) −7.17157 −0.235545
\(928\) 0 0
\(929\) 35.4558 1.16327 0.581634 0.813450i \(-0.302414\pi\)
0.581634 + 0.813450i \(0.302414\pi\)
\(930\) 0 0
\(931\) −18.8284 −0.617077
\(932\) 0 0
\(933\) 51.4558 1.68459
\(934\) 0 0
\(935\) −2.58579 −0.0845643
\(936\) 0 0
\(937\) 34.2843 1.12002 0.560009 0.828486i \(-0.310798\pi\)
0.560009 + 0.828486i \(0.310798\pi\)
\(938\) 0 0
\(939\) −19.7990 −0.646116
\(940\) 0 0
\(941\) 3.45584 0.112657 0.0563286 0.998412i \(-0.482061\pi\)
0.0563286 + 0.998412i \(0.482061\pi\)
\(942\) 0 0
\(943\) 22.1421 0.721047
\(944\) 0 0
\(945\) −11.3137 −0.368035
\(946\) 0 0
\(947\) 35.8995 1.16658 0.583288 0.812265i \(-0.301766\pi\)
0.583288 + 0.812265i \(0.301766\pi\)
\(948\) 0 0
\(949\) −13.6569 −0.443320
\(950\) 0 0
\(951\) 72.7696 2.35971
\(952\) 0 0
\(953\) −21.8579 −0.708046 −0.354023 0.935237i \(-0.615186\pi\)
−0.354023 + 0.935237i \(0.615186\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 42.6274 1.37795
\(958\) 0 0
\(959\) −0.686292 −0.0221615
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) −103.012 −3.31952
\(964\) 0 0
\(965\) −20.8284 −0.670491
\(966\) 0 0
\(967\) −1.02944 −0.0331045 −0.0165522 0.999863i \(-0.505269\pi\)
−0.0165522 + 0.999863i \(0.505269\pi\)
\(968\) 0 0
\(969\) −9.65685 −0.310223
\(970\) 0 0
\(971\) 8.20101 0.263183 0.131591 0.991304i \(-0.457991\pi\)
0.131591 + 0.991304i \(0.457991\pi\)
\(972\) 0 0
\(973\) 10.4853 0.336143
\(974\) 0 0
\(975\) 9.65685 0.309267
\(976\) 0 0
\(977\) 59.2548 1.89573 0.947865 0.318672i \(-0.103237\pi\)
0.947865 + 0.318672i \(0.103237\pi\)
\(978\) 0 0
\(979\) −6.05887 −0.193642
\(980\) 0 0
\(981\) 149.882 4.78537
\(982\) 0 0
\(983\) −41.3553 −1.31903 −0.659515 0.751691i \(-0.729238\pi\)
−0.659515 + 0.751691i \(0.729238\pi\)
\(984\) 0 0
\(985\) −12.8284 −0.408748
\(986\) 0 0
\(987\) 9.65685 0.307381
\(988\) 0 0
\(989\) 26.1421 0.831272
\(990\) 0 0
\(991\) 33.4142 1.06144 0.530719 0.847548i \(-0.321922\pi\)
0.530719 + 0.847548i \(0.321922\pi\)
\(992\) 0 0
\(993\) −91.5980 −2.90677
\(994\) 0 0
\(995\) 24.2426 0.768543
\(996\) 0 0
\(997\) −40.1421 −1.27131 −0.635657 0.771972i \(-0.719271\pi\)
−0.635657 + 0.771972i \(0.719271\pi\)
\(998\) 0 0
\(999\) −125.255 −3.96289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5440.2.a.bm.1.2 2
4.3 odd 2 5440.2.a.ba.1.1 2
8.3 odd 2 1360.2.a.o.1.2 2
8.5 even 2 85.2.a.b.1.2 2
24.5 odd 2 765.2.a.i.1.1 2
40.13 odd 4 425.2.b.e.324.2 4
40.19 odd 2 6800.2.a.ba.1.1 2
40.29 even 2 425.2.a.f.1.1 2
40.37 odd 4 425.2.b.e.324.3 4
56.13 odd 2 4165.2.a.q.1.2 2
120.29 odd 2 3825.2.a.p.1.2 2
136.13 even 4 1445.2.d.f.866.1 4
136.21 even 4 1445.2.d.f.866.2 4
136.101 even 2 1445.2.a.f.1.2 2
680.509 even 2 7225.2.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.b.1.2 2 8.5 even 2
425.2.a.f.1.1 2 40.29 even 2
425.2.b.e.324.2 4 40.13 odd 4
425.2.b.e.324.3 4 40.37 odd 4
765.2.a.i.1.1 2 24.5 odd 2
1360.2.a.o.1.2 2 8.3 odd 2
1445.2.a.f.1.2 2 136.101 even 2
1445.2.d.f.866.1 4 136.13 even 4
1445.2.d.f.866.2 4 136.21 even 4
3825.2.a.p.1.2 2 120.29 odd 2
4165.2.a.q.1.2 2 56.13 odd 2
5440.2.a.ba.1.1 2 4.3 odd 2
5440.2.a.bm.1.2 2 1.1 even 1 trivial
6800.2.a.ba.1.1 2 40.19 odd 2
7225.2.a.o.1.1 2 680.509 even 2